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What have I left out?
Many things!
� Sensor validation
� Data conditioning
� Use of physics-based 

models
� Data set partitioning

• Training
• Test
• Validation

� And so on…



Background



iAI Lab PHM Projects
1. Engine ball bearing prognostics [DARPA 

500k]

2. Engine Prognostics [MGPD/GEAE 765k]

3. Engine system prognostics [DARPA 300K]

4. Boeing data fusion [GE/Boeing 900k]

5. Anomaly detection for aircraft  [LM 625K]

6. Baseline engine parameter estimation 

[GEAE 1MM]

7. Deterioration rate estimation [GEAE 300k]

8. Intelligent maintenance advisor for turbine 

engines [DARPA 350k]

9. Smart wire [Navair 250k]

10. Fault accommodation [NASA 950k]

11. Alert fusion [MGPD 300k]

12. Engine removal forecasting [GEAE 5MM] 

13. Workscope optimization [GEAE 1.5MM]

14. Power management optimization [GEAE 

1MM]

15. OPTICS [GEAE 350k]

16. Physical-based Lifing [GEAE 100k]

17. Modeling and simulation for management 

of PBL [LM 550k]

18. Small Commercial trend [GEAE 500k]

19. Automated workscope [GEAE  400k]

20. EGT workscope [GEAE 50k]

21. LEAP56 advanced functionality study

22. Part lifecycle management [GEAE 500k]
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P HM

PHM: Functional Architecture
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Focus on Asset Health Monitoring (P):
From Anomaly Detection to Diagnostics and Prognostics
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Anomaly Detection



Nature of Anomaly Detection

Anomaly detection asks the question, 

“Is my {complex | mission critical | safety-
critical | expensive | highly loaded | …} system 

operating normally?”

It seems like such a simple question! And 
yet…



Normal Operation, Normal Conditions
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Novel Conditions
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Changes in Fleet: Mixture of Operating Modes

Normal Operation – Typical Conditions

Normal Operation – Novel Conditions

Normal Operation – Wear, New Vendors
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Anomaly Detection

Normal Operation – Typical Conditions
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Wacky Tricks for Anomaly Detection

Data may be 
• univariate or multivariate

• parametric, nonparametric, or mixed

AD approaches differ for each combination…



Wacky Tricks for AD #1:

Rank Permutation Test
[univariate, parametric]



Univariate Parametric Data
Surprisingly common problem, e.g., aircraft EGT monitoring

Two major problems:
1) rapid detection is critical
� safety
� localize start of problem

2) data is “real world”
� ugly 

• outliers
• non-normal distribution
• not independent observations
• noisy

- engine to engine variation not accounted for
- some flight envelope effects not accounted for

How to detect change in a way that is robust to noise & outliers?



general approach
compare “now” to the “recent past”
� now: 2, 5, 10… some small number of most recent time 

steps
� recent past: as many points in the past as feasible

• more data is better (although often not much available)
• maybe offset some points to make slow ramp more 

pronounced



How to compare?
three methods:
� t-test

• data violate almost all assumptions… but statisticians will 
often wave their hands and say, “Well, given enough data, it 
is OK.”

• good standard for comparison

� Wilcoxon rank sum == Mann-Whitney U test
• nonparametric equivalent to t-test
• based on rank distribution
• 99.5% asymptotic relative efficiency for normal data

- much better than t-test for non-normal
• robust to outliers

� rank permutation test



permutation test: Kickin’ it old school!

Fisher, R. A. (1935). The Logic of Inductive Inference. 
Journal of the Royal Statistical Society, 98: 39-54



permutation test
five steps:
1. analyze the problem

� determine a testable null hypothesis

2. choose a test statistic
� e.g., sample mean

3. compute the test statistic for the original observations
4. permute the observations, and recalculate the test 

statistic; repeat
5. accept or reject null hypothesis using permutation 

distribution

p==0.072



rank permutation test
Why ranks? 
� to diminish the effects of outliers
� to make distribution-free

• permits precalculation of permutation distribution 
- low memory, fast – important for on-wing applications

What is the cost of using ranks?
� slight loss of power
� BUT: 

• loss is very slight
• well worth gain in 

robustness to ugly data



experimental design
two distributions
� normal
� fat tail, with outliers (49.5% σ=1; 49.5% σ =3; 1% σ =10)/3

three levels of difference 
� [0.5  1.5  3 ]

two levels of “recent past”
� [10 100]

four levels of “now”
� [2  5  10  100]



result 1: U <= permutation
statistic is percent correctly detected at 1% significance level
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result 2: T (mostly) <= permutation
statistic is percent correctly detected at 1% significance level
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result 2: T (sometimes) > permutation
When?
� only in cases where there are two comparison points n2
� mostly where there are 10 comparison points n1

• or for very small difference

Why?
� Statistical theory is powerful stuff!

• Permutation tests are less powerful for very small n. 
• also, 12 choose 2 is 66; 1/66=0.0152

mag n1 n2 dist ttest2 permTest

3 10 2 fat-tail 48.4 1.6

3 10 2 normal 36.8 1.6

1.5 10 2 fat-tail 32.9 0.6

1.5 10 2 normal 19.5 0.1

0.5 10 2 normal 7.1 0.4

0.5 10 2 fat-tail 6.8 0.6

0.5 100 2 fat-tail 10.4 6.2

0.5 100 2 normal 8.7 5.6
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Wacky Tricks for AD #2:

Hotelling T2

[multivariate, parametric]



Multivariate Parametric Data
Again, a very common problem…
� e.g., monitoring subsea hydraulic pumps

The Hotelling T-square statistic, t2 , is a generalization of 
Student's t statistic that is used in multivariate hypothesis 
testing. Hotelling t2 metric provides good sensitive to small 
drifts.

For a group of variables x = (x1, x2, …, xp) with mean of µ = 
(µ1, µ2, …, µp), and covariance matrix 

W = ∑(x - µ) (x - µ)’/(n-1)
Then, the t-square statistic

t2 = (x - µµµµ)’ W-1 (x - µµµµ)

[Looks much like squared Mahalanobis distance.]



Hotelling T-square Stat: Example 1
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Hotelling T-square Stat: Example 1
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Hotelling T-square Stat: Example 2
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T2: Fault 1 – big Step Shift
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T2: Fault 2 – small Step Shift
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Fault 2 – Slow Drift
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Aside #1:

Random Forest
in 30 slides or less!



Aside Outline
� bias and variance
� ensembles of classifiers
� bagging
� classification trees
� random forests

Stay with me! It makes sense in the end…



outline
� bias and variance
� ensembles of classifiers
� bagging
� classification trees
� random forests



bias and variance

Fig. 2.11, Hasti, Tibshirani, Friedman

bias:
� the classifier (regressor) cannot represent the true function 
� i.e., the classifier  (regressor) underfits the data

variance:
� variance arises when the classifier overfits the data

There is often a tradeoff 
between bias and variance:



bias and variance example
red – experimental data
blue – underlying function
green - fit

large bias, small variance: 

small bias, high variance: 



outline
� bias and variance
� ensembles of classifiers
� bagging
� classification trees
� random forests



ensembles of classifiers
For any single classifier, there is typically a tradeoff between
bias and variance. 

Might we achieve high accuracy by combining ensembles of 
high variance (i.e., uncorrelated), low bias classifiers?
� variance is reduced by combining outputs
� bias remains low

basic idea: 
train a set of diverse classifiers (or regressors) and 
combine their output



blue – underlying function
black – data with noise



large bias…
red - fit



large bias… small variance
black – multiple fits
red – average of fits

poor ensemble fit



small bias…



small bias…high variance

fantastic ensemble fit



outline
� bias and variance
� ensembles of classifiers
� bagging
� classification trees
� random forests



bagging
Bootstrap AGGregation (BAGGing)
� create multiple bootstrap samples

• given a training set D of size N
• generate L new training sets Di also of size N by sampling 

cases uniformly from D with replacement
- sampling with replacement it is likely that some examples 

will be repeated in each Di

- on average the set Di will have 63.2% of the examples of 
D, the rest being duplicates 

� train a classifier on each sample
� combine output of classifiers by voting

Good for unstable classifiers (i.e., small bias) – otherwise 
different classifiers aren't very diverse. 
� e.g., good with decision trees
� e.g., bad with naïve Bayes



outline
� bias and variance
� ensembles of classifiers
� bagging
� classification trees
� random forests



Why tree methods?
nominal data: no metric
� descriptions that are discrete and without notion of 

similarity or even ordering
� examples: Yes/No; True/False; chicken/steak/pasta

rule-based vs. PDF/metric

syntactic pattern recognition vs. statistical pattern recognition 

general tree method:
� split the feature space into a set of  regions
� Regression tree (RT): Fit a regression model for each 

partition region
� Classification tree (CT): Assign a class label for each 

partition region



binary recursive partitioning
� binary: split parent node into two child nodes

• look at all features at each split, and choose best one

� recursive: each child node can be treated as parent node
� partitioning: data set is partitioned into mutually exclusive 

subsets in each split 
� prune tree to get good generalization

classification (regression) trees (CART, C4.5, etc.)



classification tree example
Goal: For the patients admitted into ER, to predict who is at 
higher risk of heart attack 
Training data set:
� # of subjects = 215
� Outcome variable = High/Low Risk determined
� 19 noninvasive clinical and lab variables were used as the 

predictors



High 12%

Low  88%

High 17%

Low  83%

Is BP <= 91?

High 70%

Low  30%

High 11%

Low  89%

High 50%

Low  50%

High 2%

Low  98%

High 23%

Low  77%

Is age <= 62.5?Classified as high risk!

Classified as low risk!

Classified as high risk! Classified as low risk!

Is chest pain present?

classification tree 

construction

Yes No

No

No

Yes

Yes

Note mixture of Parametric 
and nonparametric data!



outline
� bias and variance
� ensembles of classifiers
� bagging
� classification trees
� random forests



random forests (RF)
Bagging decision trees with “randomization injection”.
� create multiple bootstrap samples 
� train a decision tree on each sample

• at each node, select a random subset of variables to split on
• grow trees to maximum depth (i.e., no pruning)

� combine resulting trees by voting

properties of RF
� test set error rates (modulo a little noise) are 

monotonically decreasing and converge to a limit
• i.e., there is no overfitting as the number of trees increases

The key to accuracy is low correlation (high variance across 
trees) and low bias:
� to maximize variance, randomness in variable selection is 

introduced
� to minimize bias, trees are grown to maximum depth



RF construction

…



growing each tree
each tree is grown as follows: 
� If the number of cases in the training set is N, sample N 

cases at random with replacement, from the original data. 
This sample will be the training set for growing the tree. 

� If there are M input variables, a number m<<M is specified 
such that at each node, m variables are selected at 
random out of the M and the best split on these m is used 
to split the node. The value of m is held constant during 
the forest growing. 

� Each tree is grown to the largest extent possible. There is 
no pruning



prediction by plurality voting
� The forest consists of N trees. 
� To classify a new object from an input vector, we put the 

input vector down each of the trees in the forest. 
� Each tree gives a classification, and we say the tree 

“votes” for that class. 

� The forest chooses the classification having the most 
votes (over all the trees in the forest). 

• class prediction: each tree votes for a class; the predicted 
class C for an observation is the plurality: 

maxC Σk [fk(x,T) == C]

• regression: predicted value is the average prediction



out-of-bag (oob) error estimate
In RF, there is no need for cross-validation or a separate test 
set to get an unbiased estimate of the test set error. It is 
estimated internally, during the run, as follows: 
� Each tree is constructed using a different bootstrap 

sample from the original data. About one-third of the cases 
are left out of the bootstrap sample and not used in the 
construction of the kth tree. 

� Put each case left out in the construction of the kth tree 
down the kth tree to get a classification. In this way, a test 
set classification is obtained for each case in about one-
third of the trees. At the end of the run, take j to be the 
class that got most of the votes every time case n was 
oob. The proportion of times that j is not equal to the true 
class of n averaged over all cases is the oob error 
estimate. This has proven to be unbiased in many tests. 



forest error rate
the forest error rate depends on two things: 
� the correlation between any two trees in the forest 

• increasing the correlation increases the forest error rate 

� the strength of each individual tree in the forest 
• a tree with a low error rate is a strong classifier 
• increasing the strength of the individual trees decreases the 

forest error rate 

� reducing m reduces both correlation and strength 
� increasing m increases both
� there is an “optimal” range of m - usually quite wide 

This (m) is the only adjustable parameter to which random 
forests is somewhat sensitive. 

Using the out of bag (OOB) error rate a value of m in the 
range can quickly be found. 



typical RF error profile



some properties of RF
� one of the most accurate machine learning approaches 

• accuracy is as good as Adaboost and sometimes better
• some modified versions of RF (e.g., rotation forests) may be 

more accurate, but lack variable importance feedback

� relatively robust to outliers and noise
� faster than bagging or boosting
� gives useful internal estimates of generalization error and 

variable importance
� simple and easily parallelized
� robust to high dimensionality, correlation among inputs
� good for feature selection/dimensionality reduction
� very fast to calculate

• calculate splitting criterion for only m variables at each 
branch



Wacky Tricks for AD #3:

RFAD 
[multivariate, mixed 

parametric & nonparametric]



Multivariate Parametric & Nonparametric Data

A very common problem! Sensed parameters and fault codes 
available in all kinds of data sets…
� aircraft airframes
� CT scanners
� turbines (engines, combined cycle, etc.)
� paper manufacturing
� financial data
� subsea oil extraction machinery
� locomotive

Problem: typical classification algorithms can’t 
easily accommodate mixed parametric 
and nonparametric data!

[ Yeah, there are some work-arounds (I will describe one), 
but generally… no joy! ]



Recall, the nature of Anomaly Detection

A two-class problem: normal operation & abnormal operation.

Normal Operation – Typical Conditions

Normal Operation – Novel Conditions

Normal Operation – Wear, New Vendors
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But how to train a classifier?
� Anomaly detection can be thought of as a 

two class classification problem
� However data is generally extremely unbalanced - way 

more normal data than abnormal
• That’s why they call it “anomalous”!

How do you train a classifier with incredibly unbalanced 
data? Make up the minority class!
� Label all of the “normal operation” data “class 0”
� Fill the entire space with fake data, label it “class 1”

• Literature suggests use marginal distribution
• Experience shows a uniform distribution works better for a 

wide range of problems.
- Better still, use a different class 1 realization every n

trees or so.



Random Forest Anomaly Detection

Normal
data

Generate 
Synthetic 

Abnormal data 

Build Classifier  

Detect Anomaly

• No need to identify # of clusters
• Non-parametric decision boundary



Not necessarily RFAD
As you may have heard, RF have some wonderful properties:
� Fast
� Accurate
� Robust to noise, correlation, high dimensionality
� Trivially easy to accommodate mixed parametric and 

nonparametric data

However, if you have some classifier you prefer – e.g., neural 
networks – you can use the same fake data trick. Just not 
nearly as elegant…



Diagnosis



Recall, Normal Operation

Normal Operation – Typical Conditions
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Normal Operation – Wear, New Vendors
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Anomaly Detection

Normal Operation – Typical Conditions

Normal Operation – Novel Conditions
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Fault Identification

Normal Operation – Typical Conditions

Normal Operation – Novel Conditions

Normal Operation – Wear, New Vendors
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Fault Identification
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Faults will also manifest differently as conditions change...

Normal Operation – Typical Conditions

Normal Operation – Novel Conditions

Normal Operation – Wear, New Vendors

Fault #1 – Novel Conditions

Fault #2 – Novel Conditions



The Nature of Diagnosis
� Data driven diagnosis generally a multiclass classification 

problem
� Data can be real or – if you have a good model – synthetic

• Again, the issue of very small minority class
- But here it can’t be solved with fake data!

� Issues of observability
• Some faults can’t be seen
• Some faults are confounded

- Add more sensors? Ha! Good luck…

� Several key tricks for maximizing performance:
• Feature extraction
• Feature selection
• Data fusion
• Classifier fusion



ParamParamParamParam
(DEGT,GWFM
GPCN25 …)

Base Classification System

machine 
learning 

classification 
algorithm



ParamParamParamParam
(DEGT,GWFM
GPCN25 …)

Base Classification System

machine 
learning 

classification 
algorithm

The performance of this 
sucks! Why?
� The raw data space is 

never (OK, rarely) the best feature 
space to do classification!

� Extracted features give 
much better performance

• Mean, variance, kurtosis, 
etc.

• 1st, 2nd deritives
• Ratios
• Frequency content
• Normalization
• etc.
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Classification w/ Feature Extraction

The performance of this is at least 
tolerable. Why?
� Extracted features help 

performance considerably!
� But look at all the features! 

• They make it difficult for the 
classifier to sort out what is 
important

• Moreover, they “trick” the 
classifier in to classifying things 
spuriously
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Classification w/ Feature Extraction & Selection

Better performance still! Why?
� Feature selection reduces the 

large set of features to a 
smaller set of discriminate 
features.

� This is the baseline approach 
that should be used to at a 
minimum.



Feature Selection
How is feature selection done? Many ways…
� By hand – what seems relevant
� Statistical approaches like forward/backward deletion
� Evolutionary algorithms
� Random forests!

• If you didn’t think they were awesome enough already, they 
also have a built-in variable importance measure!



RF variable importance
margin of a case is the proportion of votes for the true class 
minus the maximum proportion of votes for the other classes
� the larger the margin, the higher the confidence of 

classification

margin allows definition of variable importance
to estimate the importance of the mth variable:
� take the OOB cases for the kth tree, assume that we 

already know the margin for those cases M0
� randomly permute all values of the variable m
� apply the kth tree to the OOB cases with the permuted 

values
� compute the new margin M
� compute the difference M0-M

variable importance is defined as the average lowering of the 
margin across all OOB cases and all trees in the RF



RF feature selection

variable importance can be used for dimensionality reduction
� smaller feature sets → more accurate classifiers 

(particularly non-RF)
� highly correlated variables “split” variable importance

• good practice to drop one variable at a time, then 
recalculate margin

• “backward deletion”
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Data Fusion w/ Feature Extraction & Selection

Much more sophisticated! 
� Fusion of parametric and nonparametric data allows 

(where there is rich nonparametric data available) much
improved performance



Transforming nonparametric to parametric data

Some mixed P/NP systems are tough!
• Relevant nonparametric data may only occur when alarms are tripped. 

They are not present for all missions, which makes it difficult to encode 

patterns to be combined with parametric data.
• Parametric data usually retain a change in their characteristics once a fault 

has occurred given that the measurements are taken under similar

operating conditions. 

Temporal Persistence
• Error messages may only occur in response to a change, even though the 

changed condition persists. 

• We want to add an element of temporal persistence to the nonparametric 

information; e.g., to “remember” that the error has occurred some time in 
the recent past:

- If the error message was a false alarm, ideally it would not be kept 

around for long.

- If a message occurs repeatedly, we need to capture the characteristics 

of that repetition as well. 
- The influence of recent faults should be greater than the influence of 
faults that occurred long ago. 



Transforming non-parametric to parametric data
Decaying
• The time since message occurrence is input to a function that – over time –

decreases the influence of the variable. The output diminish the influence of the 

message occurrence as a function of time. As the frequency of the message 
occurrence increases, their transformed value is higher.



Transforming non-parametric to parametric data

Cumulative Index
• The value of the decayed message is added to the newly occurring

message, resulting in an increasing value for increased frequency 

For the example:

m=1, a=2, n=0.1.

Tuning Parameters
• Different decaying functions with different decaying time constants 

have different impact on conversion, affecting AD performance.
• Need GA or similar to tune parameters 
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State-of-the-art Diagnostic System
� Same system! Just a more elegant figure…
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State-of-the-art Diagnostic System
� As before, many features are extracted from the sensed 

data. 
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State-of-the-art Diagnostic System
� As before, many features are extracted from the sensed 

data. 
� Partitioning the data into many not necessarily orthogonal 

feature subsets…
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State-of-the-art Diagnostic System
� As before, many features are extracted from the sensed 

data. 
� Partitioning the data into many not necessarily orthogonal 

feature subsets…
� Allows many classifiers to be developed
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State-of-the-art Diagnostic System
� Allows many classifiers to be developed
� Want the classifiers to be diverse

• If they are all making the same mistakes, no reason to have 
multiple classifiers

• Diversity is promoted through different data subsets, 
different training parameters, different underlying classifiers,
different regions of the input space – whatever you can 
think of
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State-of-the-art Diagnostic System
� More or less trivial step

• Make range common
• Make direction common (“high is better” – whatever 

standard)
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State-of-the-art Diagnostic System
� The output from the classifiers can be treated as an 

intermediate feature space
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State-of-the-art Diagnostic System
� The output from the classifiers can be treated as an 

intermediate feature space
� And a meta-classifier can be trained to resolve the output 

from the classifiers
• I’ll bet you’ll never guess what I recommend as the meta-

classifier!
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State-of-the-art Diagnostic System
� Pro tip: Using some of the raw features along with the 

output from the individual classifiers results in improved 
performance

• Note that it helps tremendously to do feature selection on 
the intermediate feature space and the feature subset for 
classification
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Lagniappe:

Classifier Performance

Assessment & Tuning 



Signal Detection Theory
� A system (human, guinea pig, computer model, etc.) 

responds to a stimulus by discriminating (correctly or 
incorrectly) between signal and noise.  

� In the most simple case, there are two possible stimuli 
(“noise” and “signal plus noise”) and two possible 
categorical responses.

� After subjecting the system to a number of trials, the 
categorical responses are matched with the “noise” and 
“signal plus noise” stimuli to construct a 2×2 contingency 
table, which is then used to calculate HR and FAR.  

� results vary with decision criterion…



Signal Detection Theory (cont.)

� By changing the decision criterion for a response, we can 
construct multiple contingency tables and plot a curve of 
HR, FAR points based on the tables.  

� the curve describes the system’s discrimination ability 
• Receiver Operator Characteristic
• ROC curve

� ROC curves can be used to compare multiple 
classification systems and/or to select optimal 
decision criterion



ROC curves
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Interpreting ROC curves



creating an ROC curve
� a classifier produces a single ROC point

� if the classifier has a “sensitivity” (threshold) parameter, 
varying it produces a series of ROC points (confusion 
matrices)

� alternatively, if the classifier is produced by a learning 
algorithm, a series of ROC points can be generated by 
varying the class ratio in the training set



empirical ROC curve
vary the decision threshold, connect the dots
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C1>C2

comparing two classifiers



comparing two classifiers
C1 > C2 at high hit rate
C1 < C2 at lower hit rate



distilling ROC to a scalar…
Still, sometimes the Pointy Haired Boss  wants just 1 number 
to compare classifiers instead of a bunch of plots…

� area under the curve (AUC)
• range between 0.5 and 1
• 0.5 sucks
• 1.0 is perfect

� not perfect, but 
better than 
accuracy


