

MODEL VALIDATION OF AN ENGINEERING APPLICATION AT LOS ALAMOS

François M. Hemez

Los Alamos National Laboratory X-3, Mail Stop F644 Los Alamos, New Mexico 87545

hemez@lanl.gov

This presentation has been approved for unlimited, public release.

Date:January 4, 2008Reference:LA-UR-07-8454Level:Unclassified

This material is to be used only for LANL internal training, courses of the LANL/UCSD Engineering Institute, or courses of the Los Alamos Dynamics Summer School. Distribution or reproduction requires prior approval. © Copyright 2003-2009 by François Hemez and the Los Alamos National Laboratory.

UNCLASSIFIED

An Engineering Application

• This application validates our ability to simulate the propagation of an explosive-driven mechanical shock through a complex threaded joint.^(#)

(#) References: Hylok, J.E., et al., "Validation of a Threaded Assembly Joint," 6th European Conference on Structural Dynamics, Paris, France, September 5-7, 2005, LA-UR-05-6511, LA-UR-05-6735.

Background of this Application

- The background of this application is to demonstrate our ability to numerically simulate an environment to which one of our weapon systems may be subjected.
- A Re-entry Body (R/B) is subjected to external impulsive loading.
- The transmission paths include the forward mount and aft mount that connect the payload to the R/B.
- Accurately predicting the shock transmission is essential to assess the response of the Nuclear Explosive Package (NEP).

(Reference: LA-UR-09-4774.)

LA-UR-08-2849 — Page 4 of 31

Impulse Testing Set-up

Impulse (Input)

System

Response (Output)

&V Activities Deployed on This Study

- Code verification activities
- Extraction of response features
- Asymptotic convergence of discrete solutions
- Phenomenon Identification and Ranking Table (PIRT)
- Design of computer experiments
- Design and execution of integral-effect experiments
- Global sensitivity (variance-based), effect screening
- Design and execution of separate-effect experiments
- Development of fast-running meta-models
- Uncertainty propagation and assessment
- Test-analysis correlation
- Assessment of prediction accuracy and uncertainty

SimulationTesting

Levels of Efforts of This Study

- A team of about 6 staff members at LANL worked on this project for one year, with each member at ½ time. (Budget of ~ 6 members x ½ FTE each ≈ \$1M.)
- The experimental campaign for integral-effect testing, including explosive charge development and pre-test setup, lasted about 4 months. (Budget = 12 shots x \$60k each ≈ \$720k.)
- The experimental campaign for separate-effect testing lasted about two weeks and budget was insignificant.
- The simulation budget was ~ 300 runs performed over a 2-month period. The number of CPU hours burned was ~ 300,000 hours, which is 34 years of single-CPU run time! (Budget for 2 months x 1 analyst ≈ 50k.)
- Data processing took 1¹/₂ months. Documentation took about 1 month before the milestone was due.

Components of the Assembly

Threaded Joint Modeling

• The LLNL/ParaDyn explicit simulation implements 480 contact pairs, over 1.4 Million elements and 6 Million degrees-of-freedom. (This is for the 2004-2005 model.)

Sensors 5 & 6

Detail of the Computational Mesh

Displacement Contour

 Each run requires about one hour of computing time to simulate 10⁻³ sec. of response on 100 processors of the Q Machine. About 5 milliseconds of response are simulated for each run of the model.

UNCLASSIFIED

LA-UR-08-2849 — Page 9 of 31

LABORAT

Simulation Setup and Results

UNCLASSIFIED

DIV**ISI**ON

Extraction of Response Features

- A significant effort was spent upfront to understand response quantities of interest to the customers. This involved a lot of discussion since customers did not have a clear appreciation for what they needed.
- We settled on:
- Peak acceleration values (1)
- Temporal moments (energy, E; centroid, τ; duration, D) of acceleration (3)
- Moments (E; T; D) of acceleration Power Spectral Density (PSD) functions (3)
- Shock Response Spectrum (SRS) of acceleration
- Dissipation rate of acceleration (1)
- Secondary interest: peak values and
- times-of-arrival of strain responses (2)

$$\mathbf{M}_{k} = \int_{t_{\text{Start}}}^{t_{\text{End}}} t^{k} \cdot (\mathbf{y}(t))^{2} \cdot dt$$

x 4 acceleration locations
x 2 orientations (Y; Z)
≥ 80 features to analyze!

 Response of interest but too high-dimensional.

Verification Coverage of Key Physics

• The definition of test problems for code verification focuses on the main mechanics that the finite element code must be able to implement correctly.

DIVISION

Code Verification Test Problems

• These test problems possess *exact* solutions to which code predictions are compared (with or without mesh refinement). The point is to find major code mistakes.

Solution Convergence

• A simplified geometry of the joint, that preserves the key mechanics of interest, is used to assess solution convergence through mesh refinement studies.

As far as verifying the mechanics of the threads, these two meshes are equivalent!

- Over twenty meshes were built and analyzed!
- The contact algorithm based on penalty coefficients (even though it is fast-running) was found to be deficient; it did not conserve total energy.
- Lagrange multipliers were used instead; they performed satisfactorily for the problem.

Design of Physical Experiments

 The domain of validation of 1D, defined by the level of applied impulse, and a 12-run design of experiments is defined with blocking and replication.

	Impulse (x 10 ⁺³ dyne-sec.)	Velocity (cm/sec.)	Impulse Level	Shell Set	Test ID Number
ı T	71.00	2.57	Low	1	1
3%	75.40	2.73	Low	2	4
	70.90	2.57	Low	3	7
ア	70.80	2.56	Low	4	10
і Ъ	82.85	3.00	Medium	1	2
6%	91.30	3.31	Medium	2	5
	78.20	2.83	Medium	3	8
ل م	85.40	3.09	Medium	4	11
	119.20	4.32	High	1	3
J 5% Variabilit	116.40	4.22	High	2	6
	107.20	3.88	High	3	9
B	110.10	3.99	High	4	12
Los Alame		JNCLASSIFIED	l		

DIVISION

Sample of Measured Acceleration

• The response of the structure to the applied impulse is a fast transient. Energy dissipates quickly through the threaded joint.

Time History

Power Spectrum Density (PSD)

• The material response remains linear for the most part (no yielding, except maybe locally on the upper shell).

DIVISIO

Test-to-test Repeatability

• Test replication is used to estimate the experimental variability. The tests are reproducible given the levels of explosive charge and assembling variability.

Descriptive Statistics of Acceleration Signals	Low Impulse	High Impulse
Mean, µ _A	0.00 g	0.00 g
Standard deviation, σ_A	627 g	641 g
Minimum, A _{Min}	-5,297 g	-17,314 g
Maximum, A _{Max}	5,542 g	11,57 g
Ratio σ _A /A _{Min}	-11.8%	-3.7%
Ratio σ _A /A _{Max}	11.3%	5.5%
Range (σ_A / A_{Max}) – (σ_A / A_{Min})	23.1%	9.2%

(Reference: LA-UR-05-8229.)

UNCLASSIFIED

Energy Flow Diagram

• An energy flow diagram is defined to start writing the Phenomenon Identification and Ranking Table (PIRT).

Sample of Threaded Assembly PIRT

• The PIRT developed included about 230 phenomena, down to the level of individual model variables.

Phenomena	Master Phenomenon	Energy in/out	Min	Nom	Мах	Importance	Mean Confidence	Dist confidence
Upper Shell Strain Gages								
Explosive load to upper shell	deta sheet load	E in		Low		High	Mid	Mid
				Mid		High	Mid	Mid
Exaction of peopless and on				High		High	Mid	Mid
upper shell	fabrication	E in (shape)		Low		High	High	Mid
				Mid Hiah		High Hiah	High High	Mid Mid
Tolerance on the upper shell	I fabrication	E in				Mid	High	High
AAI friction between shells	friction	E out				Mid-Low	Mid	Mid
AHI thread friction	triction	E out				MIG-LOW	WIG	MIC
Preload of Upper shell	preload	E out				Mid-Low	Mid	Mid
Modulusof Al 7075	mat prop	Mat resp to E				High	High	High
Density	mat prop	Mat resp to E				High	High	High
Poisson's Ratio	mat prop	Mat resp to E				High	High	High
Yield Stress	mat prop	Mat resp to E				Mid-Low	High	High

PIRT extracted from: Doebling, S., Anderson, M., Maupin, R., Hylok, J., Hemez, F., Rutherford, A., Salazar, I., Bement, M., Robertson, A., "Simulation of Engineering Shock Response of a Joint Surrogate Assembly: Verification and Validation Plan," Los Alamos Report LA-CP-04-0232, Los Alamos National Laboratory, Los Alamos, New Mexico, February 2004, unclassified but limited distribution (OUO).

UNCLASSIFIED

 The PIRT down-selected to a total of twelve individual phenomena (1 control parameter and 11 variables "θ") for parametric study and uncertainty quantification.

Parameter Screening

• Propagating uncertainty for 12 variables is still too high-dimensional. Statistical screening is performed first to identify which phenomena are truly important.

DIVISION

Results of Statistical Screening

• The sources of uncertainty that are found to exercise a significant effect on predictions are identified using analysis-of-variance (main effect analysis only).

UNCLASSIFIED

Separate-effect Validation Experiments

• Friction testing is carried out on separate components to better estimate the statistics of friction coefficients.

Experimental Procedure:

- Mill used to apply axial force to the assembly;
- One part is held fixed, the other is rotated by hand;
- Strain gage dynamometer provides six-axis measurements of forces and moments;
- Ratio of axial moment to axial force gives the friction coefficient.

Amanda Rutherford of LANL operates the friction test apparatus (2005).

DIVISION

Sample of Friction Measurements

• Distribution of friction coefficients for AI/Ti interface.

UNCLASSIFIED

DIV**ISI**ON

Statistics of Friction Coefficients

• One "surprise" is that we find significantly different coefficients for the Al/Ti interface whether contact and friction occur on the threads or along flat surfaces.

Kinetic Friction Coefficient	Nominal Range	Nominal Mean	Measured Value		
Steel/Titanium (L)	0.225–0.975	0.6	0.443 ± 0.031		
Aluminum/Titanium (K, edge)	0.325–1.675	1.0	0.47 ± 0.030		
Aluminum/Titanium (K, thread)	0.325–1.675	1.0	0.77 ± 0.090		
Aluminum/Aluminum (H)	0.525–1.275	0.9	0.52 ± 0.067		
(The measured statistics are the mean value and +/- one standard deviation.)					

- Another surprise is that the nominal range used for the Al/Al interface almost missed the measured value!
 - ... This is a manifestation of over-confidence.

Meta-modeling

• With the friction coefficients measured (G, H, K, L), all that is left is the tape joint pre-load (A) and magnitude of the impulse (M). Meta-models are developed in 2D.

Test-analysis Correlation

 Predictions of a first 2D meta-model, developed with the *nominal* values of friction coefficients (G, H, K, L) are compared to test measurements.

UNCLASSIFIED

Improvement in Prediction Accuracy

 Predictions of a second meta-model, developed with the *measured* values of friction coefficients (G, H, K, L), are compared to test measurements.

Test-analysis Comparison

Acceleration (left) and strain (right) time histories:

divisio

Frequency-domain Comparison

 The measured and predicted shock response spectra agree remarkably well up to 15,000 Hertz, and within the +/- 1-σ bounds of experimental uncertainty.^(*)

ASC

Overall V&V Assessment

Conclusion

- We delivered an assessment of prediction accuracy over the entire design space where the model needs to be exercised, not just in the neighborhood of a few test settings.
- We quantified the accuracy of our predictions and, more importantly, learned which sources of modeling uncertainty had the most influence on predictions.
- One short-coming of this study was the inability to thoroughly quantify the level of numerical uncertainty due to mesh discretization because, at the time, the tools needed to refine the mesh were not available.
- ... This deficiency has since been addressed. In 2009, we demonstrated the capability to perform refinement and quantify the level of numerical uncertainty.

