
1

Using Prognostic Information for 

Reconfigurable Control

Dr. George Vachtsevanos /PI

Georgia Tech and Impact Technologies

Douglas Brown / GRA

Brian Bole / GRA

PHM 2009 Conference Tutorial

School of Electrical and Computer Engineering

Georgia Institute of Technology

Atlanta, Georgia   30332-0250

Georgia Institute of Technology Proprietary



2

Can We Make It To The Gas 

Station?
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Controller

Can We Close The Loop?

SYSTEM
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MINING
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ENTER

Fault – Tolerant Control

( Fault Mitigation, Fault Accommodation, 

Reconfigurable Control)

The Caveat: With Prognostic Information

The Link between PHM and Control

Georgia Institute of Technology Proprietary
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BATTLE DAMAGE ASSESSMENT

� 14 ADA SYSTEMS

� 18 ARTILLERY SYSTEMS

� 20 MANEUVER SYSTEMS

� 4 RADARS

� 15 VEHICLES / OTHER WEAPON SYSTEMS

1
3
5
 k
m

• Identify the Fault

Fault Detection and Identification

• Stabilize the Vehicle

Active System Restructuring

Reconfigurable Flight Control

• Continue the Mission 

Reconfigurable Path Planning 

Mission Adaptation

Gabram, Doug. “AH-64D Longbow Operations in Iraq”.  HELICON: Rotorcraft in Transformation, Washington, 

DC, November 9-10, 2004.

The Problem
Case Study
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Conventional

Control

Algorithms

Collective Pitch Saturation

Loss of Tail Rotor Effectiveness

Stuck Swashplate Actuator

CRASH!

Fault Tolerant Control
Conceptual Illustration
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Flight Results - Stuck Collective
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Overall Architecture for Implementation of Fault Diagnosis and Failure Prognosis 

Algorithms
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Features & 
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General Overview
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Testing / Seeded

Fault Data
Modeling

Reasoning Architecture for Diagnosis-Prognosis

Electromechanical

Actuator HUMS

modules

Testing, Modeling, and 

Reasoning Architecture
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Fault Dimension

Fault Model

Understanding the Physics of 

Failure Mechanisms

• Optimum Feature 
Selection

• Mapping of 
Features vs. Fault 
Dimension

• Utility in Diagnosis /  
Prognosis

Optimum mapping of CI’s to Fault Dimension

Georgia Institute of Technology Proprietary
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System Background
Fault Hierarchy (Top–Down)

Georgia Institute of Technology Proprietary

Crew Return 

Vehicle

Triplex Redundant

Actuator

Brushless DC Motor

Critical Component

Fault Mode

Failure Mechanism

Insulation Breakdown



Objective: Detect a fault (without isolating the faulty component; without 

assessing the severity of the fault) as early as possible with specified 

confidence level and given false alarm rate.

The routine is implemented online in real time.

Current Data
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95% Confidence

CLICK TO PLAY! Anomaly Detected

Anomaly Detection
Anomaly Detection Results

Georgia Institute of Technology Proprietary
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Failure Prognosis

• Objective

– Determine time window over which maintenance must be 

performed without compromising the system’s operational 

integrity

– Estimate time-to-failure and provide information to operator/pilot

• Enabling Technologies:

– Data Driven

– Model-Based

• A Model/Measurements Based Approach

Georgia Institute of Technology Proprietary
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Prognosis: Fault Growth 

Characterization

Loading Profile

Cycle Shapes
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Every particle is associated with 

a weight

• Particles, together with their 

weights, represent a sampled 

version of the PDF.

Particle: Possible realization of the states of a process.

We only need to study the 

propagation of weights in time!

Steps:

• Predict the “a priori” PDF 

parameters, using the model

• Update parameters, given the 

new observation

actual state

observation
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The Particle Filter Framework
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Prognosis: Fault Growth 

Characterization

Loading Profile

Cycle Shapes
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Prognosis
Preliminary Simulation Results

0.2
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0

Insulation Prognosis Demo
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Reconfigurable Control – State of the Art 
Boeing1,2

• LQR design methodology using long-term 

prediction as a design constraint.

• Single parameter ρ used to trade-off importance 
between tracking error and control effort.

• Feedback gain computed solving the Algebraic 

Riccati Equation:

Georgia Institute of Technology Proprietary

3 A. Bogdanov, S. Chiu, L. Gokdere, and W. Vian, J., “Stochastic optimal control of a servo motor with a lifetime constraint„” in Proceedings of 

the 45th IEEE Conference on Decision & Control, December 2006, pp. 4182–4187.
4 L. U. Gokdere, A. Bogdanov, S. L. Chiu, K. J. Keller, and J. Vian, “Adaptive control of actuator lifetime,” in IEEE Aerospace Conference, March 

2006.
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Reconfigurable Control – State of the Art 
Barron Associates1,2

Model-based Adaptive Flight Control

NNs for modeling and 

system identification.

Online model 

corrections using the 

adaptation scheme

Structure learning 

modeling algorithm

Receding horizon 

optimal control to 

maximize performance 

and safety

Modified least squares 

for model parameter 

identification

IAG&C
1 D. G. Ward, J. F. Monaco, R. L. Barron, and R. A. Bird, “System for improved receding-horizon adaptive and reconfigurable control,” US Patent 

6,208,914, March 27, 2001.
2 J. F. Monaco, W. D.G., and A. J. D. Bateman, “A retrofit architecture for model-based adaptive flight control,” in AIAA 1st Intelligent Systems 

Technical Conference, Chicago, IL, USA, September 20-22 2004.

Georgia Institute of Technology Proprietary
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Reconfigurable Control – State of the Art
Other Significant Work

• Artificial intelligence

• Active (Direct) adaptive control

• Expert systems

• Intelligent controls (NNs and Neuro-Fuzzy)

• Model Reference Adaptive Control (MRAC)

• Robust control design

• Robust adaptive control

• Supervisory / Hierarchical control
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What is missing?

Control reconfiguration with prognostic information �

real-time implementation issues.

Reconfigurable Control – State of the Art
Observations / Comments

• Computational Complexity

• Latency

• Satisfy Performance Requirements

• Stability

• Optimality

• Uncertainty Representation and Management

Georgia Institute of Technology Proprietary
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Reconfigurable Control – State of the Art 

Our Approach

• Rigorous fault (or degradation) modeling and 

particle filtering for fault detection and diagnosis

• Early diagnosis and accurate prognosis with 

uncertainty management

• Optimization using MPC with constraints

Georgia Institute of Technology Proprietary
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Subsystem-1

Components of 

Subsystem-1

Supervisor

• Monitors mission objectives 

• Defines subsystem objectives

• Responsible for mission adaptation

• Restructure subsystems

• Ensures system stability

• Interface between the system and components 

• Monitors subsystem objectives

• Defines component objectives (RUL and performance) 

• Redistributes control authority among components

• Path replanning

• Ensures subsystem stability

• Interfaces the subsystem

• Monitors component objectives

• Reconfigures set-points

• Ensures component stability

… …

System with PHM Based Reconfigurable Control

Reconfigurable Control Architecture
Functional Relation in the Hierarchy
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Reconfigurable Control
The three level hierarchy (continued)

The High-Level:

• Mission adaptation – adapt mission profile (way points in 

aircraft case, control objectives in EMA case) to meet 

hard mission objectives under impairment constraints.

Georgia Institute of Technology Proprietary

( ) T
cJ u f y y= −

where = Flight path generated from waypoints

= Desired flight path

= Weighting vector
T

c

f

y

y

Methodology: Minimize the following objective function
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Reconfigurable Control
The three level hierarchy

The Middle-level:

• Trajectory re-planning: Find optimal path (trajectory), in 

least cost sense, that meets mission objectives under 

system impairment conditions. Example: Aircraft 

trajectory re-planning

• Re-distribution of control authority: Re-distribute 

available control authority (under impairment constraints) 

to meet hard mission objectives. Example: EMA with 

triple motor redundancy; or, flight control re-distribution.

Georgia Institute of Technology Proprietary
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No Fault 

Detected

No Need for

ReconfigurationFault Detected

Production Controller (Nominal Operation)

Fault 

Accommodation

Reconfigured Controller

Component Supervisor

Request

Fault Status

Restructure

Model

Evaluate

Performance

and RUL

Reconfigure

Control

• Set Performance

and RUL Requirements 

• Initialize Soft 

Constraints

• Define Cost Function

Parameters

• Interface with 

Subsystem Supervisor 

Subsystem Supervisor

§1010

Interface to Mid-Level SupervisorInterface to Subsystem Supervisor

§2020

Request

Control

Redistribution

Redistribute

Control

Authority

Fault Mitigation

Reconfigurable Control
Low Level – State Transition Diagram
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Evaluation Platform / Validation
The EMA – Nominal system
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The Actuator Testing 

Configuration
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The Model Predictive Control 

Framework
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Technical Approach
Control Reconfiguration Architecture

Actuator

Georgia Institute of Technology Proprietary
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Model Predictive Control
Problem Definition

Georgia Institute of Technology Proprietary
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– Predicted plant outputs

– Desired set-points

– Reconfigured set-points

1 A. Bemporad, M. Morari, and N. L. Ricker, Model Predictive Control Toolbox for Matlab, The Mathworks, Inc., 2004.



34

Fault Growth Model for Prognosis
Outline

• Describes how the primary feature evolves with the turn-to-turn winding   

fault

• Principle assumptions

• Time rate of growth (dL/dt) increases with the current fault dimension (L)

• Time rate of growth (dL/dt) increases with winding temperature (T
wa

)

• Current (i) is related to winding temperature (T
wa

)

Thermal

Model
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Winding 
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Rate
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Feature 

Mapping

g(feature)

Feature

Extraction
g(i(t)) Feature

Data

Processing Processed

Data

To

Prognosis

Raw

Data
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Step 1. Initialization

• Load initial fault dimension L0
• Define fault detection criteria for diagnosis

Hazard ZoneLlim

F
a
u
lt
 D
im
e
n
s
io
n

L0

t0 tmission
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Step 2. Fault Detection

• Continuously monitor for fault

Hazard ZoneLlim
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L1
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Step 3. Initialize Prognosis

• Initialize long term prediction

Hazard ZoneLlim
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L1 Initialize Long 
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Step 4. Calculate RUL

• Predict fault dimension using fault-growth model

• Project hazard-zone crossing onto the time axis for RUL
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Failure Eminent
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Step 5. Compute uRUL
• Find constant control input URUL required to achieve the 
desired tRUL

• If performance and RUL restraints cannot be satisified
request control reconfiguration
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Triplex Redundant Actuator 

Model

Feedback gain adjusted
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Preliminary Results
Various Fault Dimension / Constant Tmission

Georgia Institute of Technology Proprietary

(a) L = 1x10-6 (b) L = 1x10-2 and                          (c) L = 1x10-1 

Simulation results for the fault growth model
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Reconfigurable Control 
Benefits of Reconfigurable Control with PHM

• Capability to enhance mission effectiveness in the 

presence of contingencies

• Means to complete mission while satisfying performance 

constraints and assuring system stability

• Ability to optimize reconfigurable control and PHM 

algorithm requirements for specific components / 

subsystems under degraded operation in order to meet 

mission objectives

Georgia Institute of Technology Proprietary
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Reconfigurable Control 
Benefits of Reconfigurable Control with PHM (Cont.)

• Full functionality for reconfiguration / fault tolerance via 

an intelligent hierarchical architecture

• Ability to perform failure prognosis and reconfigurable 

control in almost real-time avoiding latency problems

• Uncertainty representation and management through a 

particle filtering approach.

Georgia Institute of Technology Proprietary
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Reconfigurable Control 
Benefits of Reconfigurable Control with PHM (Cont.)

• Mission capability updates through the integration of 

reconfigurable control and Integrated Adaptive Guidance 

and Control Systems

• Ability to provide engineering justification for adding new 

reconfiguration, control and communication system 

upgrades with technical and economic benefits clearly 

identifiable

• Provision of feedback to system designers of design 

information that will lead to fault-tolerant high-confidence 

systems.

Georgia Institute of Technology Proprietary
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CONCLUSIONS – FUTURE 

WORK

–Linking PHM To Controls – The Added 

Value

–Need To Mature Prognostic Algorithms

–Computational Issues

–V&V – Qualification

–Opportunity For New R&D

Georgia Institute of Technology Proprietary


