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Who are we? 
• Gautam Biswas 

• Professor of Computer Science and Engineering, Vanderbilt 
University 

• Research Interests: Modeling and Analysis of Complex Systems, 
Fault Detection and Isolation, Intelligent Systems, Data Mining 

• Daniel L.C. Mack 
• Graduate Research Assistant, Computer Science, Vanderbilt 

University 

• Research Interests: Generative Machine Learning, Anomaly 
Detection, Network Theory, Modeling and Analysis of Complex 
Systems 

• Dinkar Mylaraswamy 
• Technology Fellow, Honeywell  

• Research Interests: Condition-based management, Analysis of 
Complex Systems 
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Outline of Talk 
• What is Data Mining? 

• Motivation 

• Definition and the Data Mining process 

• History of primary Data Mining society 

• Data Curation and Preparation 

• Techniques for Data Mining 
• Predictive Modeling – Supervised Learning 

• Classification 

• Segmenting Data – Unsupervised Learning 

• Clustering Methods 

• Anomaly Detection 

• Case Studies: Applications to Diagnosis 
• Enhancing online diagnosers on aircraft 

• Subsystem-level diagnosis 

• System-level diagnosis 

• Demonstrations 

• Discussion and Conclusions 
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Demonstrations 

• Interspersed in Presentation 

• We will be using the Weka Workbench  

• Waikato Environment for Knowledge Analysis developed at Univ. of 

Waikato, NZ 

• Written in Java, distributed under a Gnu General Public license 

under Linux, Windows, Mac OS 

• Collection of state of the art machine learning programs and data 

preprocessing tools 
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Access: www.cs.waikato.ac.nz/ml/weka/  

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/


Why Data Mining? 
• Systems and processes that we work with in this world are complex 

• Manufacturing systems & plants, Power generation and distribution, 
Transportation systems 

• Business and retail systems, Economics 

• Social Systems 

• System of systems 

• Very important that they are safe and secure, cost-effective,  & 
efficient in operations 

 

 

 

• In contrast, we are overwhelmed with data about systems and 
processes 
• Advanced sensors 

• Extensive processing power and memory 

• Ability to bring together diverse sources of data 
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Have to envision and analyze how these systems work in  

different scenarios & environments; solve problems  

State of the art first principles approaches not sufficient  

General agreement that there is useful, but hidden information in the data 

Drowning in Data, Starving for Knowledge  



What is data mining? 

• Non-trivial extraction of novel, implicit, and actionable (useful, 
applicable) knowledge from large data bases 

• Challenges 

• Large data sets 

• Real world data is noisy, incomplete, sometimes erroneous; needs 
interpretation 

• Hypothesis formation may be part of the search or discovery process 

• Make sure knowledge and information extracted is non-obvious  

• Can lead to measurable improvements and  gains 

 

 

• Technologies that enable data exploration, data analysis, and 
data visualization from very large (sometimes heterogeneous) 
data bases at a level of abstraction, such that meaningful and 
useful patterns may be extracted from the data 
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Cannot be done manually 



Data Mining Applications 

• Business-related Applications 
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Data Mining Applications 

• Other Notable Applications 

• Web Mining 

• Page Ranking 

• Learning Page and Query relevance  

• Using search queries and pages read to derive user profiles  

• Image Analysis 

• Training classifiers for detecting weather conditions, oil spills, etc. in 

satellite images 

• Hazard detection 

• Load forecasting for Utilities  

• Prediction models to enhance static load models 

• Diagnosis  

• Mine vibration signatures in electromagnetic devices 

• Diagnostic rules to extend human expert judgment for complex systems 
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Data Mining Enablers 
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Knowledge Discovery in Databases (KDD) 

• KDD and Data Mining are considered synonymous 
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• Data mining: the core of 

knowledge discovery process. 

Data Cleaning 

Data Integration 

Data Warehouse 

Task-relevant Data 

Selection & 

Transformation 

Data Mining 

Pattern Evaluation 

Databases 



KDD (Data Mining) Important Steps 
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• Learning the application domain: 

• Relevant prior knowledge and goals of application 

• Data cleaning and preprocessing: (may take 60% of effort!) 

• Creating a target data set: data selection 

• Data reduction and transformation: 

• Find useful features, dimensionality/variable reduction, invariant 

representation. 

• Choosing data mining approach (task-driven) 

•  summarization, classification, regression, association, clustering. 

• Choosing the mining algorithm(s) 

• Data mining: search for patterns of interest 

• Pattern evaluation and knowledge presentation 

• visualization, transformation, removing redundant patterns, etc. 

• Use of discovered knowledge 
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Architecture of a Typical Data Mining 
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What kind of data? 

• Relational databases 

• Transactional databases 

• Advanced DB and information repositories 

• Object-oriented and object-relational databases 

• Spatial databases 

• Time-series data and temporal data 

• Text databases and multimedia databases 

• WWW (Web) 

September 26, 2011 PHM 2011 Tutorial 13 



Data Mining Functions 
• Concept description: Characterization and discrimination 

• Generalize, summarize, and contrast data characteristics, e.g., dry vs. wet regions 

• Association (correlation and causality) 

• Multi-dimensional vs. single-dimensional association  

• age(X, ―20..29‖) ^ income(X, ―20..29K‖)  buys(X, ―PC‖) [support = 2%, confidence 
= 60%] 

• Buys (diaper, brand A)  Buys (beer, brand B) 

• Classification and Prediction   

• Discrimination: Finding models that describe and distinguish classes or concepts; 
use models to classify new data 

• e.g., classify countries based on climate, or classify cars by gas mileage 

• Presentation: decision-tree, classification rule, neural network, SVMs,  

• Regression: Model continuous valued functions; predict some unknown or missing 
numerical values  

• Cluster analysis 

• Class label is unknown: Group data to form new classes, e.g., cluster houses to find 
distribution patterns 

• Clustering based on the principle: maximizing the intra-class similarity and 
minimizing the interclass similarity 
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Data Mining Additional Functions 

• Outlier analysis 

• Outlier: a data object that does not comply with the general behavior of the 

data 

• It can be considered as noise or exception but is quite useful in fraud 

detection, rare events analysis 

• Trend and evolution analysis 

• Trend and deviation:  regression analysis 

• Sequential pattern mining, periodicity analysis 

• Similarity-based analysis 

 

September 26, 2011 PHM 2011 Tutorial 15 

Relevant for Fault Analysis and Prognostics 



Brief History of Data Mining Society 

• 1989 IJCAI Workshop on Knowledge Discovery in Databases 

(Piatetsky-Shapiro) 

• Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991) 

• 1991-1994 Workshops on Knowledge Discovery in Databases 

• Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-

Shapiro, P. Smyth, and R. Uthurusamy, 1996) 

• 1995-1998 International Conferences on Knowledge Discovery in 

Databases and Data Mining (KDD‘95-98) 

• Journal of Data Mining and Knowledge Discovery (1997) 

• 1998 ACM SIGKDD, SIGKDD‘ conferences, and SIGKDD 

Explorations Newsletter, KDD Cup 

• SIGKDD conferences held yearly: see http://www.kdd.org/ 

• More conferences on data mining 

• PAKDD, PKDD, SIAM-Data Mining, (IEEE) ICDM, etc. 
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Why preprocess data? 

 Data cleaning  

 Data integration and transformation 

 Data reduction 
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Why do we need to preprocess data ? 

• Data in the real world is dirty 

• incomplete: lack attribute values, lack attributes of 

interest, hard to annotate, or contain only aggregate 

data 

• noisy: contain errors or outliers 

• inconsistent: contain discrepancies in codes or names 

• Lack of quality data  results generated: inconsistent, 

lack robustness, do not contribute to knowledge gain! 

• Quality decisions must be based on quality data 

• Data warehouse needs consistent integration of 

relevant, quality data 



Measures of data quality 

• A well-accepted multidimensional view: 

• Accuracy 

• Completeness 

• Consistency 

• Timeliness 

• Believability 

• Value added 

• Interpretability 

• Accessibility 

 
(source: Han and Kamber, Data Mining: Concepts and Techniques, 
Morgan Kaufmann, 2006) 
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Major data preprocessing tasks 

• Data cleaning 

• Fill in missing values, smoothing noisy data, identify or remove 

outliers, and resolve inconsistencies 

• Data integration 

• Integration of multiple databases, data cubes, or files 

• Data transformation 

• Normalization and aggregation 

• Data reduction 

• Obtains reduced representation in volume but produces the same 

or similar analytical results 
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Still an active area of research 



Practical Example 

• Regional Airline Data 

• Used in Case Studies 

• Raw Sensors 

• Several Aircraft over Several Years 

 

• Trail of Data 

• CDs 

• Raw Binary Files 

• Capture Noise 

• Build Database 
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Curating the Flight Data 

• Complex Data  vs. Complex Representation 
• Simplifying of Representation While Maintaining Data 

• Simplify Workflow 

• Improving Readability 

 

• Design Requirements 

 

• Understanding Raw Data 
• Size 

• Data Types 

 

• Initial Design 
• Good vs. Bad 

• Lessons 

 

• Improved Design 
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Requirements of Database 
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• Fast to Access 
• Scale with Flights 

• Joining Multiple Tables 

• Easy to Update 

 

• Balance with Size 
• Indexes on Multiple Tables 

• Can Grow with New Data 

• Doesn‘t Need a High Grade Server 

 

• Easy to Navigate 
• Essential over Raw Data 

• Lower overhead to pick up schema 

 

 

 



Understanding the Raw Data 
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• The Single Element  - A Flight 

• Binary File(Most Compact Rep) 

• 182 Sensors at Different Sampling Rates 

• Varying Flight Durations(Minutes to Hours) 

• Clean vs. Corrupt 

• Up to 12MB 

 

• Full Set(to Date) 

• 12 Tail Numbers 

• Time for Each 

• >6000 Flights 

• Multiple Fault Annotations 

 

• Reconcile with Requirements 

 



Current Design 

September 26, 2011 PHM 2011 Tutorial 25 

• Modified Library Model 
• Like Dewey Decimal system – two-step process 

• Still Hold Commonly Used Information 

 

• Controller Table 
• Metadata on All Flights 

• Access Binary Filename 

• Built to work with Scripts and Java 

 

• Monitor Tables 
• Summarize Entire Flights 

• Tie into the Controller Tables 

• Quick Access to Commonly Used Info 

• Easily Updated(or entire tables added) 

• 31.6GB  ~12GB + Raw Values 

 



Classification Algorithms 

 Discriminative: Decision Trees, SVM 

 Generative: Bayesian classifiers 



Classification 
• What is classification? 

• Predicts categorical class labels  

• Classifies data by constructing a model (using some other 

attributes or features) based on a training set and class labels 

• Uses model to classify new data with unknown labels 

• Example: US Congressional Voting Record 1984(from UCI 

Machine Learning Repository: 

http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records)  

• 435 data points – each data point defined by 16 features (votes) 

• Example features: adoption of budget, physician fee freeze, aid to 

Nicaraguan contras, mx-missile, education spending, crime, ….. 

• Labels: Democrat, Republican 

• Reference: Schlimmer, J. C. (1987). Concept acquisition through representational adjustment. 

Doctoral dissertation, Department of Information and Computer Science, University of California, 

Irvine, CA. 
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Supervised  Class labels are known 

http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records


Classification: Two-Step Process 
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• Model construction: describing a set of predetermined classes 

• Each data object is assumed to belong to a predefined class, as 
determined by the class label attribute 

• The set of tuples used for model construction: training set 

• The model is represented as classification rules, decision trees, or 
mathematical formulae 

• Model use: for classifying future or unknown objects 

• Estimate accuracy of the model 

• The known label of test sample is compared with the classified 
result from the model 

• Accuracy rate is the percentage of test set samples that are 
correctly classified by the model (also, false positives, false 
negatives) 
• Cross validation studies 

• Test set is independent of training set, otherwise over-fitting will 
occur 



Classification Methods 

• Decision Trees 
• Top-down divide and conquer 

• Covering algorithms for constructing rules  
• Start with rule that covers some of the instances; expand to include 

other instances and exclude instances that are not of the same type 

• Linear and Nonlinear Regression – for numeric data 

• Instance-based classifiers 
• k-nearest neighbor algorithms 

• Bayesian classifiers 
• Probabilistic, predict multiple hypotheses based on probabilities 

• Neural Networks  
• Backpropagation algorithms; robust, accurate, but hard to interpret and 

reconcile with domain knowledge 

• Support Vector Machines (SVM) 
• Discriminant functions – hyperplanes, radial basis functions, kernel 

methods 
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Decision Trees: Illustrated 

 

• Given user profiles (four features) + class label: (buys computer) 

• Build model of computer buyer & non buyer 
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age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

Simpler dataset 



Decision Tree Classifier: Discriminative  

• Decision Tree represents a tree-structured plan of a set of 

features to test in order to predict the output 

• Algorithm: 

• Choose feature with highest information gain 

• Then, repeat … (recursive algorithm) 

September 26, 2011 PHM 2011 Tutorial 31 

age? 

student? credit rating? 

<=30 
>40 

no yes yes 

yes 

31..40 

fair excellent yes no 

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no
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Information Gain (ID3/C4.5) 

• To satisfy Inductive Bias: shorter trees preferred to deeper 

ones (also satisfies Occam‘s Razor principle) 

• Select  features with the highest information gain first 

• Assume there are two classes, P  and N 

• Let the set of examples S contain p elements of class P  and n 

elements of class N 

• The amount of information, needed to decide if an arbitrary example in 

S belongs to P  or N is defined as 

 

 np

n

np

n

np

p

np

p
npI





 22 loglog),(

J. Ross Quinlan: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, Inc., 1993. 
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Information Gain in Decision Tree 

Induction 

• Assume that using feature F, a set S will be partitioned 

into sets {S1, S2 , …, Sv}   

• If Si contains pi examples of P and ni examples of N, 

the entropy, or the expected information needed to 

classify objects in all subtrees Si is 

 

 

• The encoding information that would be gained by 

branching on F 
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Attribute Selection by Information Gain 

Computation 

• Class P: buys_computer = 

―yes‖ 

• Class N: buys_computer = 

―no‖ 

• I(p, n) = I(9, 5) =0.940 

• Compute the entropy for age: 

 

 

September 26, 2011 PHM 2011 Tutorial 34 

• Hence 

 

 

• Similarly. 
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 30 2 3 0.971 

30..40 4 0 0 

> 40 3 2 0.971 



Continuous-valued features 
• Gini index (IBM IntelligentMiner) 

• All attributes are assumed continuous-valued 

• Assume there exist several possible split values for each attribute 

• May need other tools, such as clustering, to get the possible split 
values 

• If a data set T contains examples from n classes, gini index, gini(T) is 
defined as  
 

    where pj is the relative frequency of class j in T. 
• If a data set T is split into two subsets T1 and T2 with sizes N1 and N2 

respectively, the gini index of the split data contains examples from n 
classes, the gini index gini(T) is defined as 
 
 

• The attribute provides the smallest ginisplit(T) is chosen to split the 
node (need to enumerate all possible splitting points for each 
attribute). 
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Extracting Classification Rules from Trees 

• Represent the knowledge in the form of IF-THEN rules 
• One rule is created for each path from the root to a leaf 

• Each attribute-value pair along a path forms a conjunction 

• The leaf node holds the class prediction 

• Rules are easier for humans to understand 

• Example 

IF age = ―<=30‖ AND student = ―no‖   THEN buys_computer = ―no‖ 

IF age = ―<=30‖ AND student = ―yes‖  THEN buys_computer = ―yes‖ 

IF age = ―31…40‖    THEN buys_computer = ―yes‖ 

IF age = ―>40‖   AND credit_rating = ―excellent‖   THEN buys_computer 
= ―yes‖ 

IF age = ―>40‖ AND credit_rating = ―fair‖  THEN buys_com puter = 
―no‖ 



Validation of Decision Tree structure 

• Separate training (e.g., 67%, 75%, 90%) and testing 

(33%, 25%, 10%) sets 

• Leave one out classifier 

• Use cross validation, e.g., 10-fold cross validation 

• Divide data into 10 equal parts – use 9 parts for training, 1 for test; 

repeat 10 times with each part playing the role of test … 
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Avoid Overfitting in Decision Trees 
• The generated tree may overfit the training data  

• Too many branches, some may reflect anomalies due 
to noise or outliers 

• Result is in poor accuracy for unseen samples 

• Two approaches to avoid overfitting  

• Pre-pruning: Halt tree construction early—do not split a 
node if this would result in the goodness measure 
falling below a threshold 
• Difficult to choose an appropriate threshold 

• Post-pruning: Remove branches from a ―fully grown‖ 
tree – get a sequence of progressively pruned trees 
• Use a set of data different from the training data to decide which is the 

―best pruned tree‖ 

• Use minimum description length (MDL) principle:  

• halting growth of the tree when the encoding is minimized 



Decision Tree Demo 

• Understanding the Data 

 

• Congressional Voting Record 
•  1984 – Reagan Era 

• 16 Votes 

• Test-ban/religious groups in schools 

• Missing Values 

 

• Utilizing a Decision Tree Algorithm 
• Examining the Metrics and Statistics 

 

• Examining the Structure 
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Support Vector Machines: Discriminative 

• Based on Statistical Learning Theory from the 60s (Vapnik, 
Chervonenkis) 

• Method for Building Regression Lines and Classifiers 

 

 

 

 

 

 

 

 

• Images and Information from slides by Jason Weston at NEC 
Labs America 
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Support Vector Machines 

• Vapnik and Chervonenkis found Upper Bound on True 

Risk 

 

 

• h is the VC Dimension of the type of classifier 

• As a hyperplane, this is n+1 where the plane is in n dimensions 

 

• Minimizing this function produces a bounded classifier 

with optimally low risk. 
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Support Vector Machines 

• Sticking with Hyper planes, we want to separate the data 

as cleanly as possible.  
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Support Vector Machines 

• This ends up as a minimization of the weights w, 

according to the constraints. 

 

 

 

 

 

 

 

 

• This is a quadratic program 
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SVM Extensions and Demo 

• Nonseperable Data 

• C-Term 

 

• Complex Boundaries on Data 

• Kernel Trick 

 

• One-Class Learning 

 

• Demo 

• Same Data 

• Understanding the Metrics 

• Different Kernels 
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Bayesian Classifiers: Generative  

• Why Bayesian classifiers? 

• Probabilistic learning:  Calculate explicit probabilities for 

hypothesis, among the most practical approaches to certain types 

of learning problems; Combine prior knowledge with existing data 

• Incremental: Each training example can incrementally 

increase/decrease the probability that a hypothesis is correct.  Prior 

knowledge can be combined with observed data. 

• Probabilistic prediction:  Predict multiple hypotheses, weighted by 

their probabilities 

• Standard: Even when Bayesian methods are computationally 

intractable, they can provide a standard of optimal decision making 

against which other methods can be measured 
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Tom M. Mitchell: Machine Learning. McGraw Hill, International Editions, 1997. 
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Bayes Theorem 

• Given training data D, posteriori probability of a 

hypothesis h, P(h|D) follows the Bayes theorem 

 

 

• MAP (maximum posteriori) hypothesis 

 

 

• Maximum Likelihood Estimate 
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Practical difficulty: require initial knowledge of many probabilities 

 incur significant computational cost 
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Bayes Optimal Classifier 

• Most probable classification of new instance – combine 

predictions of all hypotheses weighed by posterior 

probabilities 

 

 
 vj new instance from set of values V  

• Bayes optimal classification 

 

 

• Maximizes probability that new instance is classified correctly 
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Computationally expensive: compute posterior probability for every hypothesis in H,  

then combine the predictions of each hypothesis 
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Naïve Bayes Classifier 
• Practical solution based on simplified assumption: attributes 

are conditionally independent given the target value, v  

• Each instance (object) to be classified defined by set of features  

 

 

 

 

 

 

 

 

• P(vj) and P(fi|vj) estimated from frequencies in training data 

• If fi continuous use Gaussian density functions to compute P(fi|vj) 
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Greatly reduces the computation cost, only count the class distribution 



Naïve Bayes Classifier: Play Tennis Data set 
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Outlook Temperature Humidity Windy Class

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild high false P

rain cool normal false P

rain cool normal true N

overcast cool normal true P

sunny mild high false N

sunny cool normal false P

rain mild normal false P

sunny mild normal true P

overcast mild high true P

overcast hot normal false P

rain mild high true N
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Naive Bayesian Classifier: example 
• Given a training set, we can compute the probabilities 

• Training set: Given outside conditions, should one play tennis? 

• 14 data points 

• Four features: (1) outlook; (2) Temperature; (3) Humidity; (4) Wind 

Outlook Play No Humidity Play No 

sunny 2/9 3/5 high 3/9 4/5 

overcast 4/9 0 normal 6/9 1/5 

rain 3/9 2/5 

Temperature Wind 

hot 2/9 2/5 strong 3/9 3/5 

mild 4/9 2/5 weak 6/9 2/5 

cool 3/9 1/5 

P(Play Tennis = yes) = 9/14 = 0.64; 

P(Play Tennis = no) = 5/14 = 0.36 

Given: cond = 〈 sunny, cool, high,  strong〉  
will Play Tennis = yes? 0206.0)|(

0053.0
9

3

9

3

9

3

9

2

14

9

)|()()|(





 

condnoPlayTennisP

PlayTennisfPPlayTennisPcondyesPlayTennisP
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i



Naïve Bayes classifier 

• Problems 

• How well do sample frequencies truly represent the true 

distributions in the domain? 

• Example: consider building a classifier to analyze faults or diseases 

• How does one establish prior probabilities? 

• May have to rely on expert judgment 

• What to do when the number of occurrences of a particular feature are 

small? 

• In the extreme, what if number = 0 in data set: Since probabilities are 

multiplied this will strongly bias result 

• In real life, features are not truly independent  

• Example: Outlook and Temperature 
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Bayesian Belief Networks 

• Conditional independence assumption 

on the features overly restrictive 

• Use Bayesian belief networks that extend 

conditional independence to subsets of 

variables 

• Bayes net structure derived using known 

causal relations between features – Graphical 

model 

 

 

 

 

• Learning classifier 

• Learn structure of network 

• Learn parameters of network structure: 

conditional probabilities (tables, distributions) 
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Tree Augmented Naïve Bayesian Networks 

(TANs) 
• Extends Naïve Bayes structure to include relations among 

nodes, with the following restriction 

• Each node in the network can have at most two parents: (i) root 

node – class variable; and (ii) one other node in the network 

Therefore, not as general as a Bayesian network, but a tree-

structured network that is a Markov tree 

• Computationally faster to learn than Bayes net 

• Structure helps readability 
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F1 

Mi … 



Algorithms for learning TAN structures 

• Algorithms to Learn TANs 

• Focus on the tree structure to help improve process 

• Equivalent to selecting the best k features that uniquely classify a 

particular hypothesis – known as the feature selection problem 

(equivalent to inducing a Markov tree) 

• Computational Complexity: O(kn2N), where n is the number of 

available monitors, and N is the number of different flight segments 

available for analysis 

• Two search methods for TAN structure 

• Greedy search (Cohen, et al., 2004) 

• Mutual information function in combination with a minimum spanning 

tree algorithm (Chen, 2006) 
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Algorithm for Learning TAN structure 
• Dataset D with N features and a class label C  

• Observational Root Node FRoot,  

• CorrelationFunction (Bayesian Values or BIC) 

• Corr : likelihood matrix  for each pair of nodes (i,j)  

• AdjMat: adjacency between  nodes: can access parents of node 

• Steps 
1. Build a Minimum Weighted Spanning Tree (MWST) using the 

Correlation Matrix and the Root chosen 

2. Connect every feature to the Class Node to build the TAN 

3. Estimate the parameters, starting with the class  

4. Return (AdjMat, ProbVec); ProbVec: marginal distributions for links 

 Notes:  

• This algorithm uses MWST  with BIC to generate TAN structure; Could 

have used ―greedy‖ search as alternative  

• Choice of observational root node: an important feature  
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Bayesian Learning Demo 

• Naïve Bayes Classifier 

• Examine Metrics 

• Extend to TANs 

• Examine Metrics 

 

• Adding Complexity 

• Examine Metrics 

• Examine Structure 
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Compare Supervised Methods 

• Decision Tree 
• Readability 

• Rule Based 

 

 

• Support Vector Machines 
• Readability 

• Weights 

• Support Vectors 

• Hyperplane Dividers 

 

• Bayesian Method 
• Readability 

• Size issues 

• Probabilistic 
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Compare Supervised Methods: 

Bayesian Network 
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Clustering Methods 

 Hierarchical Clustering: Single- & Complete-Link 

 Partitional Clustering: k-Means 

 Expectation-Maximization (EM) and a  mixture of 
Gaussians 
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What defines a good clustering result? 

• A good clustering method will produce high quality clusters 

defined by 

• high intra-class similarity (low intra-class dissimilarity) 

• low inter-class similarity (high inter-class dissimilarity) 

• The quality of a clustering result depends on both the 

similarity (dissimilarity) measure used by the method and 

its implementation (control structure) 

• From data mining viewpoint: quality of a clustering method 

is measured by its ability to discover hidden patterns in 

data. 



Cluster Analysis Fundamentals 
• Data Object definition 

• Each data object defined by a set of m features 

• n data objects: n  m matrix 

• Data objects defined by similarity or dissimilarity between all pairs of objects 

• n data objects: ½ n.(n -1) numbers 

• Feature values 

• Binary: 0,1 

• Nominal: discrete, but multi-valued: color: red, yellow, blue 

• Ordinal: discrete or continuous, but order is important (1, 17, 54, 60) 

• Interval: separation between numbers; scores: (45, 50) versus (20, 80) on a scale of 
(0,100) 

• Ratio: numbers have absolute meaning, e.g., integers, reals 

• Mixed:  

• Feature values define type of similarity or dissimilarity measure 
employed 
• Example: ratio-valued (real-valued) features distance measures used are 

metrics -- satisfy the triangle inequality 

• Generalized form: Minkowski, special forms:  Manhattan, Euclidean, Mahalanobis 
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Major Clustering Approaches 

• Hierarchical algorithms: Create a hierarchical decomposition 

of the set of data (or objects) using some criterion 

• Partitioning algorithms: Construct various partitions and then 

evaluate them by some criterion 

• Density-based: based on connectivity and density functions 

• Grid-based: based on a multiple-level granularity structure 

• Model-based: A model is hypothesized for each of the 

clusters and the idea is to find the best fit of that model to 

each other 



Hierarchical Clustering 

• Graph Theoretic Methods: 
• Single-link 

• Bring together groups that have smallest dissimilarity between any pair 
of objects 

•  Complete-Link clustering algorithms 

• Bring together groups that form minimal complete subgraphs 

 

 

 

 

 

 

• Clusters displayed as dendrograms 

• How do you determine # of clusters? 

• Algorithms do not scale easily 
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Partitional Clustering 

• Partitioning method: Construct a partition of a database D 

of n objects into a set of k clusters 

• Given a k, find a partition of k clusters that optimizes the 

chosen partitioning criterion (square-error clustering 

methods) 

• Global optimal: exhaustively enumerate all partitions 

• Heuristic methods: k-means and k-medoids algorithms 

• k-means (MacQueen‘67): Each cluster is represented by 

the center of the cluster 

• k-medoids or PAM (Partition around medoids) (Kaufman & 

Rousseeuw‘87): Each cluster is represented by one of the 

objects in the cluster   
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The K-Means Clustering Method  

• Given k, the k-means algorithm is implemented in 4 

steps: 

• Partition objects into k nonempty subsets 

• Compute seed points as the centroids of the clusters 

of the current partition.  The centroid is the center 

(mean point) of the cluster. 

• Assign each object to the cluster with the nearest 

seed point.   

• Go back to Step 2, stop when no more new 

assignments. 
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The K-Means Clustering Method  

• Example 
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Comments on the K-Means Method 

• Strength  

• Relatively efficient: O(tkn), where n is # objects, k is # 
clusters, and t  is # iterations. Normally, k, t << n. 

• Often terminates at a local optimum. The global optimum 
may be found using techniques such as: deterministic 
annealing and genetic algorithms 

 

• Weakness 

• Applicable only when mean is defined, then what about 
categorical data? 

• Need to specify k, the number of clusters, in advance 

• Unable to handle noisy data and outliers 

• Not suitable to discover clusters with non-convex shapes 
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Variations of the K-Means Method 

• A few variants of the k-means which differ in 

• Selection of the initial k means 

• Dissimilarity calculations 

• Strategies to calculate cluster means 

• Handling categorical data: k-modes (Huang‘98) 

• Replacing means of clusters with modes 

• Using new dissimilarity measures to deal with categorical 
objects 

• Using a frequency-based method to update modes of 
clusters 

• A mixture of categorical and numerical data: k-prototype 
method 
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The K-Medoids Clustering Method 

• Find representative objects, called medoids, in clusters 

• PAM (Partitioning Around Medoids, 1987) 

• starts from an initial set of medoids and iteratively 

replaces one of the medoids by one of the non-medoids 

if it improves the total distance of the resulting clustering 

• PAM works effectively for small data sets, but does not 

scale well for large data sets 

• CLARA (Kaufmann & Rousseeuw, 1990) 

• CLARANS (Ng & Han, 1994): Randomized sampling 

• Focusing + spatial data structure (Ester et al., 1995) 



K-Means Demo 

• Set Number of Clusters 

 

• Examine Output 
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Density-Based Clustering Methods 

• Clustering based on density (local cluster criterion), such 

as density-connected points 

• Major features: 

• Discover clusters of arbitrary shape 

• Handle noise 

• One scan 

• Need density parameters as termination condition 

• Several interesting studies: 

• DBSCAN: Ester, et al. (KDD’96) 

• OPTICS: Ankerst, et al (SIGMOD’99). 

• DENCLUE: Hinneburg & D. Keim  (KDD’98) 

• CLIQUE: Agrawal, et al. (SIGMOD’98) 



Probabilistic Clustering: Mixture of Gaussians 

• Why do we need a mixture of Gaussians? 
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Mixture of Gaussians 

Wealth versus Age  

Data 



Clustering using a Mixture of Gaussians 
• K-Means (Hard clustering) 

• Based on mean 

• Expectation Maximization (EM) Algorithm using a mixture 

of Gaussians (Soft clustering) 

• Based on mean, variance, and mixing factor 

• EM-Based Clustering Algorithm 

• Choose k : number of clusters 

• Initialize i, i, i ,  1 i  k  (use k-Means) 

• E-step: For each data object Xj , 1 j  n determine assignment 

 score, (zji) to each Gaussian (how much is each Gaussian 

 responsible for Xj) 

• M-step: Update parameters for each Gaussian using new (zji)  

• Evaluate likelihood. If likelihood or parameter converge, stop, else 

repeat E- and M-steps. 
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EM algorithm: E & M steps 

• Initialize using k-means 

 

 

 

• E-step: computing assignment score for each data point 

 

 

 

• M-step: update Gaussian parameters 
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EM Algorithm: Stopping criterion 

• Evaluate log likelihood. If likelihood parameters converge, 

stop 
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Mixture of Gaussians Demo 

• Search for Optimal Cluster Assignments 

 

• Examine Output 

• With Class 

• Without Class 

• Compare Visualization 
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Anomaly (Deviation Detection) 

Chandola, Banerjee, & Kumar (2009). ―Anomaly Detection: A Survey,‖  

ACM Computing Surveys, 41(3): 15-58. 



Anomaly Detection 

• Finding patterns in data that do not correspond to expected (normal) 
behavior 
• Also called outliers 

• Anomaly detection related to Novelty detecion 

• Challenges 
• How do we define an anomaly more precisely? Is it a point behavior, a trend, a 

distinct pattern, and so on. 
• They are a function of the domain of interest 

• Hard to completely characterize nominal behavior; boundary between nominal 
and fuzzy is often not precise (context-dependent) 

• Most natural (and many artificial) systems designed to compensate for 
anomalies; anomalous situations are compensated for by internal feedback or 
control actions 

• Labeled data to train classifiers for anomaly detection often hard to find 
• Have to resort to semi-supervised methods 

• How do we deal with situations, such as noise? 

• Anomaly detection: multi-disciplinary field 
• Statistics, machine learning, data mining, pattern recognition, image 

processing, engineering (systems dynamics, information  theory, spectral 
analysis) 
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Anomaly Detection Applications 

• Cyber-Intrusion detection 

• Fraud detection 

• Medical anomaly detection 

• Industrial Damage Detection & Condition-based 

Maintenance 

• Image Analysis 

• Text anomaly detection  

• Sensor Networks 
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Types of input data  

• Data types 

• Binary 

• Categorical 

• Continuous 

• Relationship among data elements 

• Point data – data instances not related 

• Sequence data – data linearly ordered 

• Time-series data  

• Genome and protein data 

• Spatial data – concept of physical proximity, neighborhood (data 

can be spatio-temporal) 

• Vehicular traffic 

• Weather patterns 
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Types of Anomalies 

• Point anomalies 

• Credit card fraud detection 

• Contextual anomalies 

• Patterns extracted from a spatial region or a time sequence 

• Need contextual + behavioral attributes 

• Used a lot in time series applications 

• Fault detection 

• Collective anomalies 

• Collection of data points represents an anomaly with respect to the 

entire data set 

• Example, a decreasing trend in time series data – each point is within 

bounds but the data points over time should be steady or increasing 

gradually 
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Anomaly Detection Methods 

• Classification-based – supervised 

• Labeled instances for both nominal and anomaly classes 

• Approach – decision trees, Bayesian classifiers 

• Problems 

• Anomalous instances may be sparse – Imbalanced class distributions 

(SIGKDD Explorer 2004 – special issue on learning from imbalanced 

date) 

• Accurate instances of nominal versus anomalous behavior may be hard 

to find (Steinwart, et al. 2005, J. Machine Learning Research) 

• Semi-supervised 

• Only nominal data labeled – often generated from a model of 

nominal operations for a system (Dasgupta and Majumdar, 2002) 

• Problems 

• Hard to find training data that covers range of nominal behaviors 
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Anomaly Detection Methods 

• Clustering-based 

• No training data, widely applicable 

• Assumption in these algorithms – nominal data much more frequent 
than anomalous data 

• Nominal instances will have high likelihood of belonging (or be close in 
distance) to nominal cluster(s); anomalies will low likelihood (or be 
further away) 

• Algorithms – two step approach 

• Cluster 

• For new instances, check distances/likelihood 

• Smith et al. (2002) – comparison of 3 methods 

• Budalakoti, et al. (2006) – applied to time sequence data 

• Sometimes anomalous data may form clusters by themselves (He, et 
al, 2003) 

• Anomalous data – sparse clusters 

• May require expert interpretation 
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Anomaly Detection Methods 

• Nearest neighbor algorithms 
• Like clustering algorithms, but base their analysis on a local neighborhood 

• k-nearest neighbor techniques 

• Statistical 
• Nominal data from high density regions of space; anomalous from low density 

• Parametric  

• Gaussian 

• Regression Analysis 

• Non parametric methods 

• Histogram & kernel functions 

• Spectral 
• Embed data in low dimensional space; use transformations that highlight 

differences in data 

• Principal Component Analysis (PCA) 

• Information-Theory 
• Irregularities in data – detected by measures, such as Kolmogorov Complexity 
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Improving Aircraft Diagnosis Reference 

Models and Reasoner Performance 



Case Studies – Aircraft Diagnosis 

• Vehicle Reasoning 
• Expert Models 

• Balance Simplicity and Completeness 

 

• Data Collection 

• Raw Values 

• Large Data 

 

• Improve Expert Models 

• Work with Expert 

• Combine Data with Model 

• Design Methodologies 
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Background 

88 

Broadly consists of (a) aircraft condition monitoring function – ACMF, (b) central 

maintenance computer function - CMCF. Both configured through a reference model 

 ACMF generates on/off evidence based on pre-defined trigger rule 

 CMCF operates on binary evidence to calculate the most probable cause 



VLRS: Reference Model + Reasoner 
• Example Reference Model 

 

 

 

 

 

 

 

 

 

 

 

 

• Reasoner 

• For computing likelihood of fault, assume Naïve Bayes 
model: 

P(mj | fmi)  

P(fmi) 

P(fmi | mi, mj, …, mk) =   P(mi | fmi)  P(mj | fmi)  ……  P(mk| fmi) 

and   fm1, fm2, ….., fmn   do not interact. 
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Data Mining / Learning Loop 1 
• Achieve continual improvement in performance of VIPR 

reference model 

Adverse 

Event Report 
Identify Root Cause 

Tail Number 

Flight Number of 

incident 

Extract 

Historical Data 

Nominal + Faulty 

Flights 

Data Curation 

& Preparation 

Data Mining / 

Discovery Algorithms 

 

TAN Classifiers 

Clustering Algorithms 

Anomaly Detection 

Extract Information 

for Reference Model 

 

1) Improved Monitors 

2) New Monitors 

3)  Combined “super” 

monitors 

Update Reference 

Model 

Compute Metrics 

Evaluate 

New Adverse 

Event Report 

Not Satisfactory 

Supervised Learning Loop 
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Case Study Overview 

• Start with a Subsystem 

• Develop a Method 

• Using Knowledge Discovery Loop 

 

• Explore Other Subsystems 

• Verify effectiveness of Method 

• Gain Perspective on Structures 

• Gain Perspective on Data Mining Tools 

 

• Abstract to Higher Levels of Diagnosis 

• Examine Viability of Methodology 

• Understand how it impacts Subsystem Models 
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Case Study 1 and 2 – Subsystem Exploration 

• Engine Failures 
• Improve General Engine Model 

• Explore the Nature of an Engine Failure 

 

• What is needed? 
• Plenty of Data (nominal and faulty) from Regional Airline Database 

• Clear Timeline 

• Domain Knowledge about fault and related CI‘s and monitors 

 

• Goal 
• Understand the Methodology 

• The General Steps 

• Human in the Loop 

 

• Twist: One fault at a time to Multiple Faults 
• Improve Understanding with More(Diverse) Data 
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Case Study 1: Fuel HMA 

• Isolate Event from Data and Annotation  
• Over speed and over temperature engine #3  shutdown 

 

• Understand the Nature of Event 
• Engine Shutdown 

• Isolate Component 
• Examine Raw Data 

• Graphically 

• Establish Root cause: Fuel HMA (Hydromechanical unit) sluggish 

 

• Domain Knowledge obtained from human expert  
• Likely Manifestation Time: ~50 Flights 

 

• Extract Monitors and CIs related to Fault 
• Sample Reference Model 

• Three Phases of Monitors 

 

• Extract Data From Database 
• Simple Script 
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Airline Data: Feature Transformation 

• Which Features to Use? 

• Over 180 sensors in the raw data 

• How well will features correlate with the Reference Model 

   and be sensitive to the fault ? 

• Option 1: Diagnostic Monitors  

• Binary valued features from reference model 

• May suffer from loss of information because of the abstraction 

• Option 2: Condition Indicators(CI) 

• Extend classifier variables to include CIs 

• Functions on raw sensor values 

• Computed for Phases of Operation 

• Apply threshold to produce diagnostic monitors 
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Data Transformation Path 

Raw Parameters 
Engine 1 Speed  

Engine 2 Speed 

Engine 3 Speed  

Engine 4 Speed 

Core Speed Engine 1 

Core Speed Engine 2 

Core Speed Engine 3 

Core Speed Engine 4 

Air Temperature 

Engine 1 Exaust Gas 

Temperature 

Engine 2 Exaust Gas 

Temperature 

Engine 3 Exaust Gas 

Temperature 

Engine 4 Exaust Gas 

Temperature 

Flight Phase 

Altitude 

Startup Indicators 
StartTime 

IdleSpeed 

peak Engine Temperature 

Core Speed at Peak 

StartSlope 

StrtCutOff 

LiteOff 

prelit Engine Temperature 

phaseTWO 

timeToPeak 

Conditional Indicators 

TakeOff Indicators 
peak Core Speed 

peak Engine Speed 

peak Engine Temperature 

takeoff Core Speed 

takeoff Engine Speed 

takeoff Air Temperature 

takeoff Altitude 

takeoff Engine Temperature 

takeoff Margin 

Rolldown Indicators 
Rolltime 

resdTemperature 

dip Engine Temperature 

Corespeed at Dip 

Corespeed Slope 

Corespeed Cutoff 

no Start 

slow Start 

Hung Start 

Hight Temp 

multStart 

phOneDwell 

hotStart 

medTempMargin 

lowTempMargin 

overSpeed 

overTemp 

abruptRoll 

highRollEGT 

rollBearing 

Diagnostic Monitors 
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Case Study 1: Fuel HMA 

• Data Information 

• 50 Flights 

• 3rd Engine In Set Labeled Faulty 

• Other Labeled Nominal 

• 200 Samples in 50 Flights 

• Other Flights After Labeled Nominal 

 

• Utilize Bayesian Learning – Derive TAN structure 

 

• Results from Demo 
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Case Study 1: Fuel HMA 

• Generality of Classifier 
• Engine 1 vs. Engine 3 

• Fault vs. Nominal 

 

• Examining the Proximity of Data 
• Earlier Detection 

 

• Split Data into Bins 
• Further away from the Fault 

• Test on Holdout Set(remainder of bins + more nominal) 

 

• Examine the Bin 
• Accuracy 

• FP 

• Structure 
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Case Study 1: Fuel HMA  

• Results from Binning 

 

 

 

 

 

 

 

• Select Bin 1 
• For Monitor Updates 

 

• Notice startTime and peakEGTC 
• Form Super Monitor 
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Anatomy of the FuelHMA incident & impact on Reasoner 
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Idling speed drop 

Actuator fault 

Aggressive controller 

Sluggish start 

Controller saturation 

Over-temp condition 

Auto shutdown 

Peak EGT monitors 

LiteOff monitors 

Idle speed Monitor 

Incident 

Shutdown Report 

Event Timeline 

~ 10 flights 
~ 20-30 flights ~ 40-50 flights 

Original Model 

Improved Model 



Case Study 1 to Case Study 2 

• For consideration 

• Context 

• ―Nominal‖ Data 

 

• Results for FuelHMA fault 

 

 

 

• How well will this method work for other faults? 

• What if more data is available? 

• Understand of Robustness(or Lack thereof) 

 

• Look at Case Study 2 

 

Accuracy False Positives False Negatives 

99.6% 0.5% 0% 
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Case Study 2: Power Turbine Blade 

• Adverse Event 
• NUMBER FOUR ENGINE DEVELOPED A VIBRATION 

• CREW SHUT DOWN THE ENGINE, DECLARED AN EMERGENCY.  

• POWER TURBINE BUCKET HAD A MISSING BLADE.  

 

• Domain Knowledge 
• Fault: Power Turbine Missing Blade: Result: Excessive Vibration 

• Manifestation Time: ~50 Flights 

 

• Follow Methodology 
• Features: Utilize Same Monitors 

• Initial 

• Classifier 

• Bins 

 

• Extract Data and Derive Classifier 
• Classifier Results 
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Case Study 2: Power Turbine Blade 

• Results of Binning 50 flights into 5 bins 

 

 

 

 

 

 

 

• Next Steps 

 

 

 

 

Bin Flights Acc FP ORN Ch of ORN 

1  1 to 10 90.625 4.2 Starttime(Slow) Everything but Rolltime and DipEGTC 

2 11 to 20 92.5 2.5 Starttime(Slow) 
Everything but N2atPeak,peakN2,tkoN2, 

dipeEGTC 

3 21 to 30 87.5 5 Starttime(Slow) Everything but N2atPeak 

4 31 to 40 88.125 12.5 Starttime(Slow) Everything but startslope and rolltime 

5 41 to 50 85.625 11.7 Starttime(Slow) 
Everything but 

startslope,peakEGTC,rolltime,resdtemp,N2atPe

ak and dipEGTC 
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Case Study 1 and 2 - Combined 

• Added to Methodology 
• Context 

• New Information with the Fuel HMA TAN 

 

 

 

• Turbine Vibration TAN 

 

 

 

• Lessons Learned 
• Features 

 

 

Learned 

Fault 
Fuel HMA ACC Fuel HMA FP Fuel HMA FN 

Turbine  Blade 

Acc 
Turbine Blade 

FP 
Turbine 

Blade FN 

Fuel HMA 99.60% 0.50% 0% 95.93% 4.10% 0% 

Learned Fault 
Fuel HMA 

ACC 
Fuel HMA FP Fuel HMA FN 

Turbine  Blade  

Acc 
Turbine  Blade  

FP 
Turbine  Blade 

FN 

Turbine Blade 85% 15% 0% 92.18% 2.10% 25% 
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Case Study 3: System-level fault 

• Event Information 
• A NUMBER ONE ENGINE FIRE WARNING ILLUMINATED AFTER  

• FUEL MANIFOLD WAS LEAKING FUEL,  

 

• What can we know? 

• Manifold Fault 

• Engine One 

• Manifestation time? 

 

• Methodology 

• Using Existing Features 

• Label Engine 1 Faulty 
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Case Study 3: System-level fault 

 

• Context with other Data 
 

 

• Build TAN and Examine on Other Data Sets? 

 

 

 

 

• Consult with Domain Expert 
• Manifold Issues – system level 

• Multi fault analysis 

LearnedFault 
Fuel HMA 

ACC 
Fuel HMA FP 

Fuel HMA 

FN 
Fuel Manifold 

ACC 
Fuel Manifold 

FP 
Fuel Manifold 

FN 
Vibration 

Acc 
Vibration 

FP 
Vibration 

FN 

Fuel HMA 99.60% 0.50% 0% 97.18% 2.80% 0% 95.93% 4.10% 0% 

Fuel 

Manifold 
77.50% 22.50% 0% 90.31% 5.40% 22.50% 44.38% 55.60% 0% 

Turbine 

Blade 
85% 15% 0% 91.88% 8.10% 0% 92.18% 2.10% 25% 
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Case Study 3: System-level fault 

• Multiple Engines 

• Initial Thoughts 

 

 

 

• Unsupervised Methods 

• Clustering for grouping anomalies 

 

 

• Using Discovered Knowledge 
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Summary: Three case studies 
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7 

Fuel metering 

fault
Blade break/nozzle 

damage

Fuel manifold 

rupture



Studies 1 through 3 
• Single subsystem (engine) model vs. more global system 

model  

• At system level, fault may affect multiple subsystems … have to 

reconcile monitors from multiple subsystems 

 

• Understanding what is missing 

 

• Using a Naïve approach to the model 

 

 

• Looking at Other Subsystems? 
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Data Mining / Learning Loop 2 
• Unsupervised Learning methods for ‗Novel‘ Anomaly 

detection 

Extract 

Historical Data 

Nominal + Faulty 

Flights 

Data Curation 

& Preparation 

Anomaly 

Detection 

Data Mining / 

Discovery 

Algorithms 

 

Unsupervised 

Clustering 

Unusual Clusters 

Identify Tail 

Numbers 

No 

Supervised 

Learning 

Loop 

Unsupervised Learning Loop 
September 26, 2011 PHM 2011 Tutorial 109 



Case Study 4: Introduce Navigation data 

• Multiple Subsystems 

• Engine + Nav data 

• Can the combined data tell us more? 

• Will the combined data improve detection metrics and help resolve faults 
more accurately? 

 

• Good Navigation from Bad Navigation 

• Have to discover fault from no fault situation 

• Extend analysis to anomaly detection schemes 

 

• Understand Flight Profiles 

 

• Examine Implicit Structure 

• Can we extract relations between subsystems? 
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Case Study 4 Conclusions 

• Normal Operation 

• Several ―Abnormal‖ Modes 

 

• Visualization 

• Projection Plots 

• X-Y Coordinate Analysis 

 

 

• Initial Results 

• Understand ―Abnormal‖ Flights 
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Next Steps and Future Work 

• Single fault to Multi-fault analysis 
• Extend from Naïve Bayes calculations to more complete Bayes net 

calculations – should produce more accurate likelihood of multiple 
fault hypotheses 

• Work with human experts to analyze conditional 
probabilities produced by TANs into conditional 
probabilities in reference models 
• Tricky issue because classifier conditional probabilities are a 

function of initial probability distributions 

• Extend single subsystem analysis to system level analysis  

• Deal with cascading faults 

• Extend supervised learning methods to unsupervised 
learning to address anomaly detection problem 
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