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Anomaly Detection based on Information-Theoretic Measures and
Particle Filtering Algorithms

Marcos E. Orchard', Benjamin Olivares', Matias Cerda' and Jorge F. Silva'

'Electrical Engineering Department, Universidad de Chile, Santiago 8370451, Chile
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ABSTRACT

This paper presents an anomaly detection module that uses
information-theoretic measures to generate a fault indicator
from a particle-filtering-based estimate of the posterior state
pdf of a dynamic system. The selected measure allows
isolating events where the particle filtering algorithm is
unable to track the process measurements using a
predetermined state transition model, which translates into
either a sudden or a steady increment in the differential
entropy of the state pdf estimate (evidence of an anomaly on
the system). Anomaly detection is carried out by setting a
threshold for the entropy value. Actual data illustrating
aging of an energy storage device (specifically battery state-
of-health (SOH) measurements [A-h]) are used to test and
validate the proposed framework.

1. INTRODUCTION

Anomaly detection modules (Zhang et al., 2011; Orchard et
al., 2011) play an important role within Prognostics and
Health Management (PHM) systems since they constitute
the first step in the implementation of fault diagnosis and
failure prognosis schemes (Orchard and Vachtsevanos,
2009). In most real applications, the anomaly detector
requires to perform its task simultaneously minimizing both
the false alarm rate and detection time (early detection). The
latter is of paramount importance since the setup of online
prognostic algorithms, and particularly those based on
particle filtering algorithms (Orchard et al., 2008; Orchard
et al., 2009), requires a proper characterization of the initial
state pdf to provide adequate estimate of the remaining
useful life (RUL) of monitored equipment.

Classical anomaly detection methods rely on a model of the
system to measure a discrepancy between the actual
measurements and a predetermined pattern of operation. A
variety of techniques have been proposed to achieve this
task, including tools from estimation theory, failure
sensitive filters, multiple hypothesis filter detection,
generalized likelihood ratio tests, and model-based
approaches (Isermann and Balle, 1997; Ayhan et al., 2006;

Marcos E. Orchard ef al. This is an open-access article distributed under
the terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium. provided the original author and source are credited.

Zhou et al., 2008; Khan and Rahman, 2009). Other methods
focused on statistical analysis techniques, reasoning tools,
spectral methods and information theory (Tolani er al.,
2005; Zhou et al., 2008; Ibrahim et al., 2008).

In the particular case of the battery state-of-health (SOH)
monitoring and prognosis (Orchard et al., 2010; Orchard et
al., 2011), there are still issues regarding the proper
representation of regeneration (self-recharge) phenomena.
Self-recharge phenomena are characterized by sudden,
momentary, and occasionally considerable regeneration of
the battery capacity that tends to fade in time faster than the
typical SOH degradation time constant. These changes,
related to physicochemical aspects and temperature/load
conditions during charge and discharge cycles, are
particularly important in the case of Li-Ion batteries because
they often alter the trend of the SOH prediction curve, thus
affecting the performance of prognostic modules that
depend on Bayesian estimation algorithms to compute
initial conditions for their associated predictive models.

This paper presents a solution for this problem that is
based on a combination of a PF-based state estimators and
information-theoretic measures that allows to detect rare
events within the evolution of the fault condition under
analysis. The paper is structured as follows: Section 2
introduces the basics on particle filtering (PF) anomaly
detection modules, as well as information-theoretic
measures applied to sequential Monte Carlo algorithms.
Section 3 focuses on describing the case study that is used
in this research to illustrate and validate the potential of the
proposed detection approach, which corresponds to the
analysis of capacity regeneration phenomena in a set of data
depicting the battery state-of-health (SOH, [A-h])
degradation. Section 4 presents the proposed anomaly
detection scheme and the results obtained for the case study
of interest. Finally, Section 5 states the main conclusions.
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2. PARTICLE FILTERING, ANOMALY DETECTION AND
INFORMATION-THEORETIC MEASURES

Nonlinear filtering is defined as the process of using noisy
observation data y ={ y,, te N} to estimate at least the first

two moments of a state vector x ={ x,, te N} governed by a

dynamic nonlinear, non-Gaussian state-space model.

From a Bayesian standpoint, a nonlinear filtering
procedure intends to generate an estimate of the posterior
probability density function p(x, |y, )for the state, based on

the set of received measurements. Particle Filtering (PF) is
an algorithm that intends to solve this estimation problem
by efficiently selecting a set of N >>1 particles {x“}_

and weights {w”}_ ., such that the state pdf may be
approximated (Doucet, 1998; Doucet et al., 2001; Andrieu
et al, 2001; Arulampalam et al., 2002) by the empirical
distribution:
N
2 ()= w8, —x) @)
i=1

and the values of the particles weights w,(i) oc w(x™) can be

computed by:
w(x,)= ﬂ-’(x’) oc p(y’ Ix’)p(x' lx"l)
g q,(x 1x.) , 2)
(i) (@) | 4.(D)
wiay = w0 2O D PO 16) gy
q,(x" 1)

where g (x,)denotes the importance sampling density

function (Arulampalam et al., 2002; Doucet et al., 2001).
The choice of this importance density function g (x,) is

critical for the performance of the particle filter scheme. In
the particular case of nonlinear state estimation, the value of

the particle weights w is computed by setting the

importance density function equal to the a priori pdf for the
state, i.e., q,(x1x_)=p(xlx_) (Arulampalam et al.,

2002). Although this choice of importance density is
appropriate for estimating the most likely probability
distribution according to a particular set of measurement
data, it does not offer a good estimate of the probability of
events associated to high-risk conditions with low
likelihood. In this sense, this paper explores the possibility
of using information-theoretic measures to analyze PF-
based estimates of the state pdf in a dynamic system, with
the purpose of detecting this type of events in a timely
manner.

2.1 Particle Filtering for Anomaly Detection

PF-based anomaly detection modules (Kadirkamanathan et
al., 2002; Verma et al., 2004; Orchard and Vachtsevanos,
2009; Zhang et al, 2011; Orchard et al., 2011) have been
used in the past to identify abnormal conditions in

nonlinear, non-Gaussian dynamic systems. The objective in
this type of implementations is to fuse the information that
is available at a feature vector (measurements) to generate
estimates of the a priori state pdf that could be helpful when
determining the operating condition (mode) of a system and
deviations from desired behavioral patterns. This
compromise between model-based and data-driven
techniques is accomplished by the use of a PF-based module
built upon the nonlinear dynamic state model (3):

x, (t+1) = f, (x, () + n())
X (t+1) = £(x, (0, x. (1), 0(1) 3
Features(t) = h, (x, (1), x.(1),v(t))

where f,, f, and h, are non-linear mappings, x,(f) is a
collection of Boolean states associated with the presence of
a particular operating condition in the system (normal
operation, fault type #1, #2), x.(f) is a set of continuous-
valued states that describe the evolution of the system given
those operating conditions, aXt) and v(f) are non-Gaussian
random variables that characterize the process and feature
noise signals, respectively. Since the noise signal n(f) is a
measure of uncertainty associated with Boolean states, it is
recommendable to define its probability density through a
random variable with bounded domain. For simplicity, n(r)
may be assumed to be zero-mean i.i.d. uniform white noise.

PF-based detection modules provide a framework where
customer specifications (such as false alarm rate and desired
probability of detection) can be easily managed and
incorporated within the algorithm design parameters.
However, the analysis of the relationship that exists between
the number of particles and the detection time still depends
on general guidelines inspired in empirical experience (for
example, “the more particles are used, the longer is the
detection time”).

The problem of early detection using PF-based approaches
has also been discussed in (Orchard et al, 2008), where a
Risk-Sensitive PF (RSPF) framework complements the
benefits of the classic approach by representing the
probability of rare and costly events within the formulation
of importance density function to generate more particles in
high-risk regions of the state—space. Mathematically, the
importance distribution is set as:

q(dr’xt ldr(i;’xt(i)l’ylzt)z Vi 'r(dt)'p(dt’xt lyt)’ )

where d, is a set of discrete-valued states representing fault
modes, x, is a set of continuous-valued states that describe
the evolution of the system given those operating
conditions, r(d;) is a positive risk function that is dependent
on the fault mode, and % is a normalizing constant.

Although the approach presented offered better performance
in terms of the detection time, it still required the definition
of a risk importance sampling distribution.
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In this sense, the use of information-theoretic measures
offers an interesting alternative that complements the
paradigm of PF-based anomaly detection modules, under
the assumption that an anomaly should affect the qualitative
behavior of the state pdf estimate. The following section
focuses on the most important concepts that need to be
taken into account when implementing these measures to
analyze and characterize sampled versions of the posterior
distribution.

2.2 Information-Theoretic Measures Applied to
Particle-filtering Algorithms

Several examples that incorporate information-theoretic
measures to analyze the outputs of particle filtering
algorithms can be found in literature (Ajgl and Simandl,
2011; Lanz, 2007; Boers et al., 2010; Skoglar et al., 2009).
Most of those are related to uncertainty characterization,
optimality testing, and evaluation of control strategies. In
particular, this research focuses on the widely known
differential entropy measure (Cover and Thomas, 1991).

Entropy is a measure of uncertainty that is associated to a
probability measure. In particular, the differential entropy H
of a probability density function p(x) is given by:

H(p)2~[ p(log(p(x))dx ®)

Entropy-related applications for particle filtering algorithms
generally aim at evaluating how many i.i.d. samples does
the filtering algorithm require to represent regions of the
state space that accumulate the majority of the probability
mass, for a given state pdf estimate p(x). For example, in
(Liverani et al., 2006) the authors propose the use of
entropy to evaluate the pertinence of resampling procedures
in a particle filtering algorithm aimed at estimating the
states of a partially observed Markov chain. Instead, it is
sought to generate an average weight for sampled particles,
which depends on the distance that exists between the
estimated and the actual value of the states.

In other applications, such as in (Ryan, 2008), the authors
formulate a control strategy for a mobile sensor that intends
to track an object, where the merit function depends on
particle-filtering-based estimates and information-theoretic
measures. Basically this approach uses entropy to
characterize the uncertainty of the estimated pdf, and
proposes a resampling method that intends to minimize the
conditional entropy between the state of the tracked object
and observed data, for a given control strategy.

Although the definition of differential entropy introduced in
(5) allows straightforward computation in most cases, few
considerations are required when trying to compute it in the
case of particle-filtering-based estimates of the conditional
state pdf’s. Indeed, using (5), the differential entropy of the
conditional state pdf estimate, given a set of measurements
Vi,---5 Vs 18 defined as:

H(p(x13))==[ p(x, 1 y)log(p(x, 1y,))dx,, (©)

where the a posteriori state pdf estimate can be inferred
from the likelihood of measurement y, the a priori state
estimate p(xly.;), and the probability of acquiring the
current measurement using Bayes Theorem:

p(x1yy=LOLE) Ly . ™
Py, 1y, )

Thus, replacing (7) in (6) and applying properties of the
logarithm, it is possible to write:

H(p(x,1y))=log(p(y, 1y._))+- ®
=[P 1) [log (p(y, 1)) +log (p(x, 1y,.)) Jdx,

In addition, given that in this specific case all distributions
correspond to particle-filtering estimates, both the a priori
state estimate and the probability of measured data can be
approximated by their corresponding sampled versions, as
in (9)-(10):

i (14 ©
p(x 1y )= Z Wt(i)l/,flp(x,(” | x,(i)l ) ,
i=l1
2 ' 10
PO 1 y) = Z Wz(/lr)é‘(x, —xr“)) > (10)
i=1
where ' ~and w!) are the a priori and posterior weight

t=1/t-1

of the particle (i), respectively. After using (9)-(10) in (8):

N 5 .
H(p(x15))=log(p(y,1,2))+ X wii [log(p(y, Ix))+--- (11)
=

N
+ IOg [z W/(i)l//—lp(xz le(l—)l )]i|
i=1

The term p (y,1y1,1) in (11) can be computed through its
sampled version:

N
PO 1) = S p(3,150): (12
i=1

where )~ are the particle weights. As a final result, the

differential entropy of the particle-filtering estimate of the
posterior state pdf can be computed as in (13) (Orguner,
2009):

H(p(s13,) =log[ﬁ W p(: lx:“)]+

i=1

N ‘ N ' ' (13)
S g (0, lx:f>>)+log(zw:'z,,lp(x:” lx:'z)j
j=1

i=1

The latter expression will be of use when evaluating the
uncertainty associated to online estimates in dynamic
processes.
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3. CASE STUDY: PF-BASED SELF-RECHARGE
DETECTION IN LITHIUM-ION BATTERIES

An appropriate case study has been selected to demonstrate
the efficacy of an anomaly detection module based on a PF
state estimator and information-theoretic ~measures.
Consider the case of energy storage devices, particularly of
Li-Ion batteries, where continuous switching between
charge and discharge cycles may cause momentary
increments in the battery SOH (capacity regeneration).
These sudden increments directly affect RUL estimates in
classic prognostic schemes since the state pdf estimate has
to be adjusted according to new measurements (thus
modifying long-term predictions), while the observed
phenomenon typically disappears after a few cycles of
operation. Particularly in the case of Li-lon batteries, the
regeneration phenomena can produce an unexpected short-
term increment of the battery SOH of about 10% of the
nominal capacity.

The analysis of the aforementioned phenomena will be done
using data registering two different operational profiles
(charge and discharge) at room temperature. On the one
hand, charging is carried out in a constant current (CC)
mode at 1.5[A] until the battery voltage reached 4.2[V] and
then continued in a constant voltage mode until the charge
current dropped to 20[mA]. On the other hand, discharge is
carried out at a constant current (CC) level of 2[A] until the
battery voltage fell to 2.5[V]. Impedance measurements
provide insight into the internal battery parameters that
change as aging progresses. Repeated charge and discharge
cycles result in aging of the batteries.  Impedance
measurements were done through an electrochemical
impedance spectroscopy (EIS) frequency sweep from
0.1[Hz] to 5[kHz]. The experiments were stopped when the
batteries reached end-of-life (EOL) criteria, which was a
40% fade in rated capacity (from 2[A-h] to 1.2[A-h]).

Two main operating conditions are thus distinguished: the
normal condition reflects the fact that the battery SOH is
slowly diminishing as a function of the number of
charge/discharge cycles; while the anomalous condition
indicates an abrupt increment in the battery SOH
(regeneration phenomena). These phenomena, which are
characterized by sudden, momentary, and occasionally
considerable regeneration of the battery capacity, are related
to physicochemical aspects and temperature/load conditions
during charge and discharge cycles. In the case of Li-Ion
batteries, the detection of such events is extremely important
for a proper implementation of prognostic schemes since
they often alter the trend of the SOH prediction curve, thus
affecting the performance of prognostic modules based on
Bayesian algorithms to estimate the initial conditions of
their predictive models.

The study of battery SOH involves the analysis of many
different factors, but this research is focused on one of the
most critical features associated to it: the life cycle. Life

cycle models usually consider a specific term that aims to
incorporate part of the phenomenology that is present in the
battery degradation process. This term is the Coulomb
efficiency, 7., which is a measure for the amount of usable
energy that is expected for the discharge cycle in progress,
compared to the capacity exhibited by the battery during the
previous discharge cycle (Orchard et al., 2010). Equations
(14)-(15) show how this term can be included in a nonlinear
dynamic model that can be used for SOH estimation
purposes:

x, (k+1) = 1,x, (k) + x, (k) x, (k = 1) + @, (k) "
x, (k+1) = x, (k) + @, (k) s
y(k) = x, (k) +v(k) , (15)

where k is the cycle index; x, is a state representing the
battery SOH; x, is a state associated with an unknown

model parameter that is required to explain minor
differences with respect to the expected behavior (which are
specific to the monitored battery); y(k) is the measured
SOH; @, , w, and v are non-Gaussian noises.

Although model (14)-(15) enables the implementation of
Bayesian filtering techniques to monitor degradation
processes in Li-lon batteries, it results inadequate when
trying to detect and isolate the short and long-term effect of
regeneration (self-recharge) phenomena. This fact motivates
the development of anomaly detection modules, either based
on PF-algorithms as in (Orchard et al, 2011), or
information-theoretic measures as the present research
proposes.

4. ANOMALY DETECTION MODULE BASED ON
INFORMATION-THEORETIC MEASURES AND
PARTICLE FILTERING ALGORITHMS

The primary concept behind the proposed anomaly detection
scheme is that any sudden abnormal behavior in the system
should affect the distribution of the PF-based posterior state
estimate. This is caused by the fact that, under abnormal
operating conditions, the system model no longer represents
the best choice for the importance sampling distribution. As
a consequence, the weights associated to particles with low-
likelihood undergo strong corrections, increasing the
differential entropy of the aforementioned conditional state
pdf.

In this sense, the proposed detection module considers a
particle filtering algorithm based on model (14)-(15), as
state estimator module, and a stage where expression (13) is
used to compute the differential entropy of the posterior pdf
estimate. The resulting entropy (which is computed at each
cycle of operation) corresponds to the output of the
detection module. Anomaly detection is carried out by
setting a threshold for the entropy estimate. It is of special
interest to isolate events where the entropy increases in a
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sudden manner, or where steadily increases since in both
cases it evidences that the particle filtering algorithm is
unable to track the process measurements using the
predetermined state transition model.

Validation of the proposed scheme is performed on SOH
degradation data from an accelerated test at Prognostic
Center of Excellence at NASA Ames, where it is of
particular interest to detect the moments when battery SOH
measurements evidence the existence of capacity
regeneration (also known as “self-recharging”) phenomena
(Orchard et al., 2010). Furthermore, as an additional
contribution of the analysis, we will assess what is the
actual impact (in terms of early detection) that is associated
to an increment in the number of particles in the PF state
estimator; taking into account the performance of the
proposed entropy-based indicator as the filter uses more
particles.

Figure 1 shows the actual SOH degradation data and the
results obtained by the proposed detection scheme when 30
particles are used in the implementation of the PF algorithm.
In particular, Figure 1 a) illustrates on the difficulty the PF
estimator undergoes when the a priori transition model
(14)-(15) is used to track the degradation of battery capacity
in the presence of self-recharge phenomena (for example at
the 19", 30", and 47™ cycles of operation). As it has been
mentioned before, the concept behind the entropy-based
detection module is to recognize these issues, providing in
those cases an indicator that may be used as alarm signal.

Particle Filters: Battery EOL

N

Actual Data
PF-based estimate ||

©

a)

Capacity [Ahr]
>
T

1.2 I I I I I I I
0 20 40 60 80 100 120 140 160

Entropy H(p(x(k)ly (0:k))

0 20 40 60 80 100 120 140 160
Cycle

Figure 1. Evolution of the entropy of the posteriori state pdf,
using 30 particles within the implementation of the particle
filtering algorithm

Figure 1b) depicts the evolution in time of the entropy of the
posterior PF-based estimate, for the case of battery SOH
degradation. On the one hand, it is important to note that the
entropy of the posterior state pdf, in absence of self-
recharge phenomena, tends to stabilize until it almost
behaves like a constant function of time. This stabilization

value directly depends on the variance of process and
observation noise kernels in equations (14) and (15), which
are the actual sources of uncertainty within the
implementation of the particle-filtering-based estimator. On
the other hand, Figure 1b) also shows that the entropy-based
indicator experiences strong modifications on its value in
the event of a self-recharge phenomenon (more than eight
times in some cases, as in the 19®, 30™ and 47" cycle of
operation). This fact validates the use of the proposed
approach for anomaly detection purposes, triggering the
alarm whenever the differential entropy of the posterior
state pdf is bigger than a given threshold (e.g., twice the
stabilization value for the entropy of the estimate in the
absence of capacity regeneration phenomena). However, it
is still not clear if an increment on the number of particles
would allow computing a lower threshold for the detection
module, while simultaneously avoiding the generation of
false alarms.

Figure 2 and Figure 3 provide critical information to answer
the latter inquire. On the one hand, Figure 2 depicts the
obtained results when using N=100 particles in the PF-based
estimator, which implies that the computational complexity
of the algorithm increases more than three times. On the
other hand, Figure 3 shows the case when 500 particles are
used.

Particle Filters: Battery EOL

Actual Data
PF-based estimate [

a)

Capacity [Ahr]
>

1.2 I I I I I I I
0 20 40 60 80 100 120 140 160

Entropy H(p(x(k)ly(0:k))

b)

0 20 40 60 80 100 120 140 160
Cycle

Figure 2. Evolution of the entropy of the posteriori state pdf,
using 100 particles within the implementation of the particle
filtering algorithm

Although an increment in the number of particles N reduces
the amount of time that is required to reach a stabilization
value for the entropy of the posterior pdf, it does not
necessarily increase the capability of the filter to track the
evolution of the system in the event of capacity
regeneration. As a consequence, the proposed anomaly
indicator improves its detection capability (and reduces the
probability of false alarms) as the number of particles
increases. Moreover, the resulting fault feature (either in the
case of N=30 or N=100 particles) allows to easily



The Annual Conference of the Prognostics and Health Management Society 2012

implement an anomaly detection module based a PF-based
detection module (Orchard et al., 2011), which uses the
entropy indicator to perform the hypothesis testing and
declare the anomaly, for a given false alarm rate.

Particle Filters: Battery EOL

Actual Data
PF-based estimate

a)

Capacity [Ahr]
>

0 20 40 60 80 100 120 140 160

| | | |
0 20 40 60 80 100 120 140 160
Cycle

Figure 3. Evolution of the entropy of the posteriori state pdf,
using 500 particles within the implementation of the particle
filtering algorithm

Finally, it is important to note that a drastic increment in the
number of particles (as shown in Figure 3) does not
necessarily imply equivalent improvements in the capability
of the anomaly detector. Furthermore, this research shows
that using less than 100 particles is enough to achieve
adequate performance both in terms of detection capabilities
and computational effort for the estimation algorithm.

5. CONCLUSION

This paper presents an anomaly detection module that is
based on a PF state estimator and information-theoretic
measures, which aims at isolating self-recharge phenomena
within the SOH degradation process of an energy storage
device (Li-Ion battery). From obtained results, we surmise
that the proposed anomaly detection approach, which
computes a fault indicator from the entropy of the PF-based
posterior state pdf estimate, is capable of isolating rare and
sudden events —such as self-recharge phenomena in the
degradation curve— in a simple and efficient manner.
Empirical analysis on actual data from acceleration test
shows that although an increment in the number of particles
within the proposed scheme does improve the detection
capability of the proposed approach (also reducing the
probability of false alarms), although it does not necessarily
compensate the raise on the computational cost of the
estimation algorithm. As a result of the aforesaid analysis,
an appropriate range for N (number of particles) is defined
for the case study hereby described.
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ABSTRACT

NASA Ames Research Center’s Sustainability Base is a new
50,000 sq. ft. LEED Platinum office building. Plug loads
are expected to account for a significant portion of the overall
energy consumption. This is because building design choices
have resulted in greatly reduced energy demand from Heat-
ing, Ventilation, and Air Conditioning (HVAC) and lighting
systems, which are major contributors to energy consumption
in traditional buildings. In anticipation of the importance of
plug loads in Sustainability Base, a pilot study was conducted
to collect data from a variety of plug loads. A number of cases
of anomalous or unhealthy behavior were observed including
schedule-based rule failures, time-to-standby errors, changed
loads, and inter-channel anomalies. These issues prevent ef-
fective plug load management; therefore, they are important
to promptly identify and correct. The Inductive Monitoring
System (IMS) data mining algorithm was chosen to identify
errors. This paper details how an automated data analysis pro-
gram was created, tested and implemented using IMS. This
program will be applied to Sustainability Base to maintain
effective plug load management system performance, iden-
tify malfunctioning equipment, and reduce building energy
consumption.

1. INTRODUCTION

Over the past several years there has been tremendous in-
terest in green technologies and sustainable practices within
the building industry. As technology improvements have re-
duced energy consumption from Heating, Ventilation, and Air
Conditioning (HVAC) and lighting systems, plug loads con-
stitute larger percentages of a building’s total load. Manag-
ing plug loads can lead to dramatically reduced building en-
ergy consumption (Lobato, Pless, Sheppy, & Torcellini, 2011;

Christopher Teubert et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

Kaneda, Jacobson, & Rumsey, 2010).

In preparation for deploying a plug load management sys-
tem in Sustainability Base, which was not yet occupied at the
time of this investigation, a pilot study was conducted in an-
other office building on the NASA Ames campus (Poll & Teu-
bert, 2012). The system monitored and controlled plug loads
through the use of smart power strips, each of which had four
channels (receptacles) for devices to be plugged into.

Over the course of the pilot study several issues were ob-
served. Most serious of these were (i) failure of schedule-
based plug load management rules to go into effect, (ii) fail-
ure of a device to go to low-power or standby mode, (iii)
changing a device plugged into a channel, and (iv) inter-
channel load relationship anomalies. These issues prevent
effective plug load management; therefore, they are impor-
tant to promptly identify and correct. We describe each of
these issues in greater detail in the following paragraphs.

Schedule-based rule failures occur when rules to turn devices
off or on at specified times, as commanded by the plug load
management system, fail to go into effect. This could hap-
pen as a result of loss of communication or faulty hardware.
These failures reduce the effectiveness of active plug load
management, thereby increasing energy waste.

Time-to-standby failures are when a device fails to enter a
low-power mode. This error, which can be symptomatic of
a device malfunction, leads to greatly increased energy con-
sumption.

Changed loads refers to a configuration change of the devices
plugged into a power strip. Usually this means that a device
has either been replaced with a newer model or that a different
device has been plugged into that channel. A configuration
change such as this is only an issue if the system adminis-
trators are not notified of the change. For example, changing
loads without updating the associated schedule-based rules
could lead to data loss or damage if a computer is inadver-
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tently de-energized.

Inter-channel anomalies refer to a situation where the rela-
tionship between two channels is undesirable. One example
of such an anomaly would be if a monitor is in active mode
while the computer is off. The error could be symptomatic of
malfunctioning equipment. In the future, this could also in-
dicate failure of load-sensing control, which turns off devices
based on the behavior of a *master’ device. For example, a
rule could be created so that when a computer is off, the pe-
ripherals (speakers, printer, monitor) would be powered down
as well. Load-sensing control was not investigated for the pi-
lot study but it will be in Sustainability Base.

Developing a model-based system to identify the aforemen-
tioned anomalies for each channel would be labor intensive
and would not scale to a plug load management system for an
entire building with hundreds or thousands of loads. There-
fore, it was decided to use a data-driven approach to do au-
tomated analysis. Data-driven algorithms (Kantardzic, 2011)
are capable of analyzing vast amounts of data to pick out un-
usual or unhealthy behavior and therefore lend themselves
nicely to building plug load management at NASA Ames’
Sustainability Base.

The Inductive Monitoring System (IMS) tool (Iverson, 2004)
was chosen for this application because of its ability to learn
healthy behavior without having to create a complex model
for each channel. IMS creates a knowledge base of nomi-
nal behavior from judiciously chosen training data sets. New
plug-load data are then compared to healthy behavior to pick
out anomalies. If not addressed, these anomalies could lead to
increased power consumption, decreased effectiveness of the
plug load management system, or even damage to plug load
devices. Once an anomaly is identified, building personnel
are automatically notified so that they may address the issue.

The Sustainability Base IMS application uses device power
draw data collected by plug load monitoring power strips lo-
cated in copy rooms, break rooms and at workstations. The
power strips measure and transmit power draw once per sec-
ond to a cloud-based data service which records minimum,
mean, and maximum power draw at one minute intervals. The
volume of the data (1440 records per device each day) makes
it necessary to implement automated analysis.

The main contributions of this research are (i) observation of
potential issues with plug load management, (ii) definition of
raw and derived plug load parameters that identify different
anomalies, (iii) application of Inductive Monitoring System
to identify faulty plug load devices or improper usage, and
(iv) development of an automated program to process plug
load data and notify appropriate personnel of problems that
require attention.
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2. INDUCTIVE MONITORING SYSTEM

Inductive Monitoring System is a data mining algorithm de-
signed to detect deviation from healthy system behavior. The
first step in using IMS is off-line learning, or the establish-
ment of a knowledge-base of healthy behavior. To do this a
series of vectors of data previously determined to be healthy,
or training data, are fed in one-by-one to the program. K-
means clustering (Bradley & Fayyad, 1998) is used to group
data into multi-dimensional clusters; different regions of the
cluster space may represent different operating modes of the
system. If the vector is determined to be close to one of the
existing clusters, the cluster is expanded to include it. If the
vector is too far from the clusters it becomes the beginning
of a new cluster. Parameters are used to control how the clus-
ters are expanded or created; the default IMS parameters were
used in this study.

Once the healthy clusters are fully formed, new data sets are
then analyzed. Each vector of the testing data is compared
with the formed clusters, and the closest cluster is determined
for comparison. The composite score is defined as the Eu-
clidean distance between the vector and the closest point on
the nearest cluster in multidimensional space. IMS also cal-
culates the contribution, or local score, of each individual pa-
rameter to the composite score.

The IMS tool has been used in a number of complex sys-
tems. Following the Columbia (STS-107) accident in 2003,
IMS was used to analyze the telemetry from four temperature
sensors located in each wing of the orbiter. IMS analyzed
data from launch/ascent and on-orbit and was able to detect
anomalies much earlier than the monitoring systems used in
mission control (Iverson, 2004).

An IMS based program has been used by the International
Space Station (ISS) flight control team in mission control to
monitor operations the Control Moment Gyroscopes (CMGs)
and External Thermal Control System (ETCS). This program
has successfully identified multiple anomalies in these sys-
tems (Iverson, Spirkovska, & Schwabacher, 2010).

2.1. Sustainability Base Plug Load IMS Application

Sustainability Base IMS will be used as an important tool for
the building’s health management. Output from IMS will al-
low operators to identify and address unhealthy plug load be-
havior promptly, thereby increasing the effectiveness of the
plug load management system and maintaining high system
efficiency. The most critical element in ensuring useful re-
sults from the IMS algorithm is the definition of input vec-
tors. Sample training vectors are shown in Table 1. Each row
is an input vector whose parameters are defined by the column
headers. Combining raw and derived quantities is essential to
permit visibility of different failure types. For Sustainability
Base three parameters were chosen:
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e Raw power draw: This is employed to discover cases of
changed power loads. Changed power draw could also
be symptomatic of a larger problem, or an example of
normal behavior that has not been previously observed.

e Consecutive minutes in the idle mode power range, as
applicable: This feature is meant to find cases where a
device fails to go to standby or low-power mode. The
ranges for idle modes were defined a priori.

e Piecewise function corresponding to the time when the
device is drawing power, and zero, otherwise: These val-
ues are used by IMS to find cases of schedule-based rule
failures, or times when the device is drawing power when
it should not.

Power Draw (W) | Idle Time (hrs) | On Time (hrs)
100 0.54 10.33
102 0.56 10.35
160 0.00 10.36
102 0.02 10.38

Table 1. Sample Training Vectors

The power strips transmit power draw measurements every
second to a cloud-based data service, which records data at
one minute intervals. During mode transitions a device will
sometimes spend parts of a minute in different modes, caus-
ing the system to record an average power draw value in a
range where the device does not typically operate. If included
in the training data, these transitory values can prevent the
IMS system from detecting anomalies when a changed de-
vice draws steady-state power in these intermediate ranges.
Recall from the input vector that duration is only captured for
the idle mode in the second parameter, the first parameter of
the input vector is only raw power draw.

In order to eliminate this phenomenon the raw power draw
is filtered to remove intermediate values. Values where the
relative difference is greater than 10% are filtered out, where
the relative difference is defined as the change in power draw
divided by the average, as shown in Eq. (1). The raw power
draw of an example load before and after applying the filter
is shown in Figures 1a and 1b, respectively.

Py — P

RD= ——+———
(Pig1 + F;)/2

ey

The formed vectors are used as input to the IMS algorithm
and the resulting three local scores are used for post process-
ing. Each local score corresponds to the distance, expressed
as a percentage, from an input vector parameter to the closest
cluster of the healthy training data. A simple filter is applied
to remove occasional misleading spikes in the local score that
do not correspond to legitimate errors.
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Figure 1. Results of Power Draw Filter

An error is indicated when there are more than 5 consecu-
tive minutes in which the resulting changed power load lo-
cal score (corresponding to first parameter of input vector)
is above 3%, time-to-standby local score (second parameter)
above 10%, or rules local score (third parameter) is above 5%.
Thresholds for individual IMS local score parameters were
obtained by observing the noise fluctuations in the three pa-
rameters. Adjustments were made manually until the thresh-
olds were at a level where the IMS program reliably filtered
out noise while still detecting anomalies.

These thresholds will likely have to be adjusted for the Sus-
tainability Base deployment. Monitoring the plug loads as
described above allows the appropriate personnel to be noti-
fied of errors so that they may be corrected, thereby prevent-
ing power waste, optimizing plug load management system
performance, and possibly extending the life of the devices in
question.

In the case where the day’s local scores are all below 1% (i.e.,
the system never deviated more than 1% from nominal behav-
ior) the day’s behavior is considered healthy and is added to
the training vector for processing the next day of data. This
allows the program to better define healthy behavior as time
goes on, and prevents the system from picking up deviations
in power draw that come from gradual normal system behav-
ior changes.
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Figure 2. Sustainability Base IMS Program Flow

A separate IMS build may be used to monitor other Sustain-
ability Base subsystems. For example, sensor measurements
from the lighting, ground source heat pump, underfloor air
distribution, and photovoltaic systems can be used to create
additional knowledge bases. The IMS capability will be ex-
panded to incorporate additional systems as they are intro-
duced to the building and as the needs of Sustainability Base
change.

2.2. Automated Sustainability Base Plug Load Monitor-
ing System

An automated IMS system analyzing plug load system health
(see Figure 2) will be implemented by running the Perl pro-
gram every morning on a server to analyze the past day’s data.
It will then find unhealthy behavior and notify building per-
sonnel by email as necessary. The program is modular, al-
lowing for future additions as new needs arise.

The first task that the program executes is downloading the
previous day’s data from the cloud server using the system
API. Each channel’s plug load information is imported and
parsed into the test vectors.

The stored knowledge base of nominal behavior is read from
files for each channel. The test vectors and nominal clusters
are fed into IMS. An additional test is done to find cases of
missing data using the timestamps included in the raw data.

If all local scores are below a certain threshold the vectors are
appended to the training vectors for use in future days’ analy-
ses. This allows the system to learn so that it may better char-
acterize nominal behavior, thereby both reducing false pos-
itives and more accurately recognizing errors. Additionally,
allowing the individual to mark the identified false positives,
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Plug Load Monitoring
Weekly Report

November 8, 2011
ERRORS

High Priority:

— Nodes 1-5: Continued communication error
11/6/11 11/13/11

— Workstation Rm 288/Ch3.0,
Sustained unusual behavior from 11:36
11/8/11 15:22 11/8/11

Low Priority:

— Copy Rm 287/Ch5.0, Shared Copier:
Failure to reach standby mode from
06:00 11/7/11 - 22:00 11/7/11

STATISTICS

Total Energy Use: 3243 kWh

Last Week’s Energy Use: 3254 kWh
Energy Difference: 11 kWh

Report generated automatically at 02:33
on November 8, 2011

Figure 3. Sample Weekly Report

and having the system then add the marked data to the train-
ing vectors could lead to a greater reduction in the frequency
of false positives.

The resulting local score vectors are processed using the
methods described in Section 2.1. Errors are then separated
into three categories based on priority of notification. For
high priority errors, such as prolonged communication errors
or drastically changed loads, a notification is emailed imme-
diately to the system administrators so that the issue may be
resolved. Medium priority errors, such as rule failures, are
saved as part of a weekly report emailed to the system admin-
istrators. Low priority errors, such as short time-to-standby
delay or short-lived communication errors, are saved in a log
file located on the server.

A sample weekly report generated using pilot study data is
shown in Figure 3. Such a report tells the contact what errors
are occurring in the system, where they are occurring, and
when they occurred. Errors are sorted by seriousness of the
anomaly. The report also includes some statistics on power
use and difference from the previous week so that the user
may better understand their environmental impact.

Note that we deliberately chose a weekly report that showed
several alert types (communication failure, failure to reach
standby mode, etc.). Consequently, the energy difference in
Figure 3 does not represent the energy savings from a week
that employed rules versus a week that did not. In fact, in

Desktop Computer:
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this report the week of November 8 and the previous week
had no rules in place, hence the similar energy consumption.
Nor does it represent the difference in energy consumption
between a week in which the identified anomalies were re-
mediated and a week where the anomalies were not reme-
diated. Assessment of remediation of identified anomalies
was beyond the scope of this study. As the system is de-
ployed in Sustainability Base, each identified anomaly and
potential remediation will be individually assessed so as to
not adversely affect system operations in the event that the
identified anomaly is insignificant.

This program was found not to require a large amount of
time or processing ability. However, significant data stor-
age is necessary to cache plug load data, training vectors, and
program logs. Each channel requires on average 126 kB of
storage each day for the plug load data at one minute resolu-
tion. System cost and impact can be reduced by employing
a multi-purpose server, running additional programs for other
functions, rather than a dedicated server.

3. RESULTS

Findings of applying IMS to pilot study plug loads are dis-
cussed in this section. During the pilot study examples of five
types of errors were found: changed loads, time-to-standby
errors, rule failures, inter-channel anomalies, and missing
data. For missing data it was not necessary to use IMS so
it was analyzed using a simple anomaly detection scheme.

These errors are discovered without defining a priori what
types of errors to expect or any model attributes such as rule
times, time to transition to standby mode, or normal power
draw. The only information that is needed is a sample of
healthy data and a range of idle mode power draw for each
channel, as applicable. The IMS program is then able to find
unusual behavior by comparing new data to the knowledge
base learned from the sample data. IMS is capable of discov-
ering errors that have never been seen before in the system.
Additional investigation of such cases can determine whether
the new behavior is detrimental or insignificant to system op-
eration.

Examples of schedule-based rule failures, time-to-standby er-
rors, changed loads and inter-channel anomalies are provided
in the following subsections. In each case the raw data are
plotted together with an indication of the points that have
been flagged by IMS as being abnormal. The dominant IMS
local score output is also presented in a corresponding plot as
percentage relative error, which is a normalized distance from
the relevant test vector parameter to the nearest cluster in the
knowledge base.
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Figure 4. Case of Rule Failure

3.1. Schedule-Based Rule Failures

The first error revealed during the plug load management trial
was the occasional failure for schedule-based rules to go into
effect. This is likely because of loss of communication or a
malfunctioning channel.

An example of this was observed with a printer. Schedule-
based rules were set up to turn off the printer between the
hours of 10PM and 6AM to conserve power, but failed to
go into effect because of communication issues. Figure 4a
shows the power draw of the printer. The black dotted line
is the raw power draw for the printer and the red points have
been flagged by IMS for schedule-based rule failures; note
that because of the threshold applied to the IMS local score
output, not all points from 10PM (0.92) to 6AM (0.25) are
highlighted. The local score over the same time period in
Figure 4b increases the longer it has been since the device
was supposed to be powered down.

The Sustainability Base IMS found when rule failures oc-
curred for all cases tested. Fixing this type of error would en-
sure that the plug load management system eliminates power
consumption during non-business hours, when the device
should be turned off, and maintain the system effectiveness.
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Figure 5. Case of Time-to-Standby Error

3.2. Time-to-Standby Errors

Time-to-standby errors were observed in a couple of cases.
They can occur as a result of device malfunctions and often
require equipment maintenance or possibly replacement.

The power draw for a malfunctioning copier from the pilot
study can be seen in Figure 5a. The black dotted line is the
raw power draw for the copier and the green points corre-
spond to instances where IMS has found time-to-standby er-
rors. Note that the device fails to enter low-power mode for
several days. These cases correspond to an increased local
score during the same time periods as seen in Figure 5b.

IMS was able to reliably pick out when time-to-standby er-
rors occurred in all cases tested. Using built-in low power
functionality was found in the pilot study to be one of the
most effective methods of reducing power draw. Therefore,
it is important to identify cases of this anomaly and correct
them.

3.3. Changed Loads

During the pilot study there were occasions when occupants
changed the devices connected to the power strip. They did
this in order to replace or change the location of their devices.
This can result in data loss or damage if a computer with par-
ticular shutdown procedures is plugged into a controlled out-
let instead of an uncontrolled outlet.
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Figure 6. Case of Changed Load

IMS revealed several cases where a device was swapped with
another device. The power draw for one such channel can
be seen in Figure 6a. This channel originally had a set of
speakers (days 1-13), but they were replaced with a computer
(days 13-31). The data points that IMS has picked to be the
changed load have been marked with blue points. Figure 6b
is the local score of that channel during the time period; the
output prior to day 13 is near zero, meaning that IMS had
seen similar data before.

IMS was able to pick out that the active mode of the com-
puter was a changed load, but the phantom load of the com-
puter was too close to the active mode of the speakers and
therefore was not detected. Similarly, the only case that IMS
was unable to detect was when a computer was replaced with
speakers. The active power draw of the speakers matched
the phantom load of the computer previously on that channel.
This points to the need of active configuration management.
It is likely that additional derived quantities could be used to
find the changed load in this case. This is discussed further in
the Conclusion Section.

3.4. Inter-Channel Anomalies

We also did a preliminary investigation of detecting inter-
channel anomalies. These anomalies could indicate that a de-
vice is malfunctioning or that load-sensing control rules have
failed to go into effect.
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An example of this can be seen in Figure 7a, which shows the
power draw of a printer. In this example the printer (the black
dotted line) has three large spikes in its power draw. The
first spike occurs when the device is re-energized, while the
second and third are from print jobs. In this case the printer
was receiving print jobs while the associated computer (the
green dashed line) was off. The IMS algorithm saw this as
unusual and flagged the points noted in magenta.

Figure 7b shows the IMS global score during that same time
period. Note that IMS was able to distinguish between the
typical start-up load and the anomalous print jobs. The time
stamp in the third parameter of the IMS vector allowed IMS
to distinguish between the start-up power spike, which oc-
curred at the same time every day, and potentially anomalous
behavior.

Note that the data for these channels considered individually
are normal, it is the correlation between the channels that has
changed relative to the knowledge base. Detecting these inter-
channel errors can uncover abnormal device usage or behav-
ior. For the example shown here the behavior actually reflects
the fact that this was a shared printer which received a print
job from another computer, but it was presented to IMS in
such a way as to make it a test case for inter-channel anoma-
lies.
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4. CONCLUSION

These results from the pilot study have proven the effective-
ness of IMS for plug load health monitoring. Sustainability
Base IMS successfully detected schedule-based rule, time-to-
standby, changed load and inter-channel errors in the system.
Such a system is expected to be an effective aid in prevent-
ing energy waste, improving plug load management system
effectiveness, and avoiding system damage. The IMS is cur-
rently being deployed to Sustainability Base. Some fine tun-
ing is expected to strike the right balance between flagging
irrelevant issues and missing relevant ones.

The Sustainability Base IMS system will provide support to
facility managers and occupants to identify usage anomalies.
For this study it was not directly tied into the plug load man-
agement system, which employed only schedule-based rules
to change the on/off state of the channels. The commercial
plug load management system was not able to identify the
anomalies noted by the IMS system and so was unaware of
operational faults that negatively impact energy usage and
system usability.

The results from the pilot study (Poll & Teubert, 2012) show
that proper setup of device power management settings lead
to significant energy savings. The IMS can be employed to
find cases of incorrect setup or malfunctioning equipment.
Additional analysis would be required to accurately estimate
the magnitude of this savings.

Additional research is planned to extend the Sustainability
Base IMS to detect other types of errors. The programs were
created in a modular fashion to allow for such expansions.
These could include additional derived quantities in order to
better pick out device changes where the power draw closely
matches that of the previous device, or to detect new errors as
the needs of the system change.

Another future addition to the Sustainability Base IMS pro-
gram is the ability to do real time analysis. This will require
a fast and reliable method of accessing plug load data. En-
abling such a system will increase its effectiveness by noti-
fying system administrators and occupants sooner of poten-
tial problems and will allow for some real-time system health
statistics to be displayed for Sustainability Base.
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ABSTRACT

The health assessment of composite structures from acous-
tic emission data is generally tackled by the use of cluster-
ing techniques. In this paper, the K-means clustering and the
newly proposed Partially-Hidden Markov Model (PHMM)
are exploited to analyse the data collected during mechani-
cal tests on composite structures. The health assessment con-
sidered in this paper is made difficult by working in uncon-
strained environments. The presence of the noise is illustrated
in several examples and is shown to distort strongly the results
of clustering. A solution is proposed to filter out the noisy
partition provided by the clustering methods. After filtering,
the PHMM provides results which appeared closer to the ex-
pectations than the K-means. The PHMM offers the possi-
bility to use uncertain and imprecise labels on the possible
states, and thus covers supervised and unsupervised learning
as special cases which makes it suitable for real applications.

1. INTRODUCTION
1.1. Context and motivation

The use of organic matrix composite materials has seen con-
siderable growth in many industry sectors in the last decade.
The very high specific strength and stiffness and the low-
weight of carbon fibres composites has catapulted the use of
these materials into the aeronautic market. Their use is also
increasing in automotive and railway industries. However,
challenges remain to predict their durability, their multiple
failure modes over long in-service conditions, to assess the
remaining lifetime and to detect damages requiring immedi-
ate repair in mobile structures. The main issue is to better

Emmanuel Ramasso et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.
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understand the damage mechanisms and kinetics.

Typically the observed failure consists of inter-fibre matrix
cracking, fibre breakage and a variety of interfacial failure
(like fibre-matrix debonding, splitting or inter-ply delamina-
tion). These damages are almost always accompanied by re-
leases of heat and stress-wave propagation due to microstruc-
tural changes.

Detection and analysis of acoustic emissions are powerful
means for identification of damage phenomena and moni-
toring of their evolution (Huguet, Godin, Gaertner, Salmon,
& Villard, 2002; Barr & Benzeggagh, 1994; Huguet, 2002;
Momon, Godin, Reynaud, RMili, & Fantozzi, 2012; Momon
et al., 2010) and generally, a standard method based on only
one or several features of waves is inadequate for compos-
ite materials submitted to complex loadings (Momon et al.,
2012). Pattern recognition techniques are thus considered to
identify distinct types of AE-signals based on a large number
of features obtained from recorded wave hits. However, the
formation of AE-signal clusters highly depends on:

e The experimental configuration,
e The material,
e The geometry of the specimen,

e The existence of AE-sources not correlated to specimen
failure,

e The criterion to identify the particular failure mecha-
nisms from AE-clusters.

Recent works clearly show the assets of supervised tech-
niques to better identify AE signals regardless of test con-
ditions (Momon et al., 2012).

This work deals with the health assessment of tubular com-
posite structures based on data-driven approaches. Such
structures are used in many application fields, such as speed



The Annual Conference of the Prognostics and Health Management Society 2012

rotors, flywheels, pressure vessels, transportation systems
and so on. In these applications, many sources related to the
operation of the structure can generate an acoustic activity in
addition to the material deformation and degradation. The
surrounding electric and electronic appliances can also gen-
erate spurious signals at level of acquisition cards used with
acoustic sensors. Moreover, the stress state in these compos-
ite structures is most of the time complex (multiaxial and het-
erogeneous) due to the combination of in-service loads and
environments. These conditions make particularly difficult
the prediction of damage occurrence.

1.2. Related work on data-driven approaches for damage
phenomena identification and monitoring

State of the art data-driven approches for tackling the prob-
lem of identification and monitoring of damage phenomena
can be found in (Momon et al., 2012) where two families of
pattern recognition approches are considered:

e Unsupervised approaches, in particular a K-means clus-
tering algorithm.

e Supervised approaches, in particular the K-Nearest
Neighbours classifier.

In unsupervised approaches, the data feed a clustering algo-
rithm which finds out the underlying data structure. The term
unsupervised specifies that no prior is available concerning
the potential membership of a datum to a particular class (also
called clusters or group). Generally, unsupervised techniques
require to tune the number of possible clusters, either empir-
ically or automatically based on a given criterion (Momon et
al., 2012). Many unsupervised techniques have been devel-
oped, in particular the K-means algorithm used in (Momon et
al., 2012) where the optimisation relies on the Euclidean dis-
tance which defines circle-shaped clusters. Other algorithms
exist, and some are able to manage the number of clusters
sequentially while relying on the Mahalanobis distance to
fit ellipsoid-shaped clusters with any orientation (Serir, Ra-
masso, & Zerhouni, 2012).

In supervised techniques, each datum is accompanied by a la-
bel which represents the class. Data and labels are then used
to train a classifier which roughly consists in finding the fron-
tiers between the classes. Given a testing instance, the classi-
fier infers membership degrees to all possible classes, and the
class with the maximum membership can be selected. Many
classifiers have been proposed in the literature, in particu-
lar the K-Nearest Neighbours (KNN) (Momon et al., 2012)
which is a model-free classifier which assigns to the testing
instance the most similar datum found in the training dataset.

1.3. Problem statement and contribution

Instead of considering a binary situation where one has or
does not have labels of damage, we consider a more general
case called partially-supervised modelling which consists in
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assuming that the prior on labels is now encoded with impre-
cision and uncertainty. The introduction of this soft comput-
ing part enables one to cope with variable situations:

e If the labels are precise and certain for the whole dataset,
then one retrieves the supervised case.

o If the labels are fully imprecise and certain for the whole
dataset, then one retrieves the unsupervised case.

o If the labels are fully imprecise and certain only for a part
of the dataset but precise and certain for the other part,
then one is facing a semi-supervised case.

o If the labels takes the form of an uncertainty measure
such as a probability, a possibility or a belief mass dis-
tribution (Klir & Wierman, 1999) over the set of labels,
then one is facing a partially-supervised case.

Therefore, the partially-supervised case is the most general
situation and enlarges the binary situation (supervised or un-
supervised) by considering a soft case. It paves the way for
the development of algorithms able to manage supervised or
unsupervised cases.

Partially-supervised learning was considered in several algo-
rithms such as the K-nearest neighbours classifier (Denoeux,
1995), decision trees (Vannoorenberghe & Denoeux, 2002)
and mixture models (Vannoorenberghe & Smets, 2005;
Come, Oukhellou, Denoeux, & Aknin, 2009; Denoeux,
2011). In these algorithms, the uncertainty measure is repre-
sented by belief functions which generalise probabilities and
set-membership approaches (Dempster, 1967; Shafer, 1976;
Smets & Kennes, 1994; Smets, 1994). For prognostics and
health management applications, it was exploited more re-
cently in (Ramasso, Rombaut, & Zerhouni, 2012) where the
authors proposed to combine discrete and continuous predic-
tions.

More recently, the procedures of inference and training in
Hidden Markov Models (Rabiner, 1989) were extended to
the partially-supervised case and the resulting model, called
a Partially-Hidden Markov Model (PHMM) (Ramasso, De-
noeux, & Zerhouni, 2012), is able to perform clustering and
classification. This model appears to be well-suited for data-
driven identification and monitoring of damages in compos-
ites, in particular because:

PHMM manages uncertainties on labels: It is a partially-
supervised technique, managing uncertainties using be-
lief functions which is an original approach compared to
the literature on composites analysis and health assess-
ment.

PHMM considers time-dependency of features: The un-
derlying statistical modelling takes explicitly into ac-
count the relationship between consecutive data, in oppo-
site to previous approaches. This specificity, combined
with the Evidential Expectation-Maximisation algorithm
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(E2M) used to estimate the parameters in the PHMM,
makes it practically more robust to initial conditions than
usual methods.

PHMM is flexibility to represent distributions: The dis-
tributions of features conditionally to the damages can
take various forms, in particular the mixture of Gaussians
which allows to represent ellipsoid-shaped relationships
between features with different orientations, in opposite
to usual approches of clustering based on the Euclidean
distance.

PHMM can be used for prognostics: Usual HMMs were
already exploited for prognostics and the extension to
PHMM can be straightforward. Note that prognostic is
not considered in this paper.

Usual probabilistic HMM were exploited for damage mod-
elling in some recent works, in particular in (Zhou et al.,
2008, 2009). To our knowledge, the most related work can
be found in (Wang, 2011) where imprecise probabilities are
used for composite materials analysis based on HMM. Belief
functions are different from imprecise probabilities (Shafer,
1976; Smets, 1994), the only mathematical link holds in the
lower probability measure which represents a belief measure.
The tools developed in the the theory of belief functions as
considered in Shafer and Smets’ mind (Shafer, 1976; Smets
& Kennes, 1994) are now well recognized are suitable ones
for pattern recognition and are generally developed to allevi-
ate probabilistic assumptions.

The contribution of this paper lies in two main aspects:

e The introduction of PHMM for health assessment of
composites (with the aforementioned assets).

e The proposition of a filtering approach adapted for clus-
tering methods.

e The testing and validation of PHMM and filtering results
on a real-world case.

A plot chart of the proposed methodology is given in Figure 1.

System
(damages

) -»‘ Data acquisition }—»‘ Feature extraction ‘

Clustering
(PHMM)

Prior on
e
states

Interpretation S_egr_nentation
filtering

Figure 1. Plot chart of the proposed methodology.
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2. EXPERIMENTS
2.1. The material

Health was assessed on composite split disks when submitted
to mechanical loading. The tests were performed according
to ASTM D2290 “Apparent hoop tensile strength of plastic or
reinforced plastic pipe by split disk method” (Figure 2).

Split-disk test
fixture

Ring Specimen

Figure 2. Experimental set-up for tensile test on split-disk
specimen.

Rings were produced by cutting and machining filament-
wound carbon fibre reinforced epoxy tubular structures in-
tended for the manufacturing of flywheel rotors. Three
different lay-up configurations, namely [(90°)g], [(90°)2/ £+
20°/(90°)2] and [(90°)2/ £ 45°/(90°)5] lay-ups were stud-
ied.

The transient elastic waves were recorded at the material sur-
face using a multi-channels data acquisition system from EPA
(Euro Physical Acoustics) corporation (MISTRAS Group).
The system is made up of miniature piezoelectric sensors
(p — 80) with a range of resonance of 250 — 325 kHz, pream-
plifiers with a gain of 40 dB and a 20 — 1000 kHz filter, a
PCI card with a sampling rate of 1 MHz and the AEWin soft-
ware. The sensors were coupled on the specimen faces using
a silicon grease. The calibration of the system was performed
after installation of the transducers on the specimen and be-
fore each test using a pencil lead break procedure. Ambient
noise was filtered using a threshold of 40 dB. The acquisi-
tion parameters: PDT (Peak Definition Time) = 60usec; HDT
(Hit Definition Time) = 120usec and HLT (Hit Lock Time) =
300usec were identified using preliminary measurements.
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2.2. Identification of damage mechanisms and their hap-
pening under mechanical loading using Non Destruc-
tive Technique (NDT)

The damages of ring specimens caused by the mechanical
loading were first identified by cautiously inspecting the in-
ner, outer and width surfaces of the specimen following the
mechanical tests. Pictures in Figure 3 and their legends pre-
cisely detail the identified damage mechanisms.

[(90%)] ]

1. Hoop splitting of the spedmen at the edge of the notch
2. Hoop splitting of the spedmen in the gauge area
3. Fibres breakage

(a)

[(90°)/ #45%(90%)]
[(90%) £0%(90%)]

1. Hoopsplitting of the 90° layers at the edge of the notch
2. Plydelamination
3. Fibres breakage

(®)

Figure 3. Photograph of the observed macro-damage on split-
disk specimen after failure. Evidence of splitting in UD struc-
tures lays-up, ply delamination in multidirectional structures
and fibre failures.

Some of them could have been induced by the very high level
energy release at the specimen failure. To avoid any confu-
sion and misinterpretation, some tests were also stopped just
before the specimen failure (at approximately 95% of the ulti-
mate tensile stress), and the composite observed using an op-
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tical microscope (Nikon Eclipse LV 150). These microscopic
observations allowed the damage mechanisms observed from
fractography images to be confirmed (Figure 4).

&

Pty 90 fibres
delamination  failure

45°fibres
failure

Figure 4. Micrograph of the surface of a [(90°)2/ +
45°/(90°)2] specimen (thickness side) loaded at 95% of the
maximum strength. Evidence of Matrix cracking, ply delam-
ination and fibre breakage.

The occurrence of the damages according to the stress level
were identified for each lays-up configuration using a com-
bination of information obtained from NDT techniques, i.e.
AE, IR (Infrared) thermography. A CCD Kodak Megaplus
4.2 camera was also used to record specimen pictures with a
frame rate of 1 frame per second. Infrared thermography pro-
vided high resolution thermal maps as a function of loading
time and allowed the damages, characterized by a heat release
on the surface of the specimen, to be located (Figure 5).

Matrix cracksin 90° winding plies
(Hoop direction)

Ply delamination
(radial direction)

Figure 5. Infrared map during split-disk tests (specimen
[(90°)2/ & 45°/(90°)2]). Evidence of matrix cracks (split-
ting) and radial delamination.

The used apparatus was a Mid-Wavelength InfraRed camera
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with 3 — bum spectral response (MWIR3 JADE from CEDIP
Company). It has a focal plane array detector with 320 x 256
(InSb) and provides high sensitivity of less than 20mK at
300K at high speed frame rate of 150 Hz. Altair software
was used to control the camera and acquire and process the
infrared images. A calibration was done on the specimens in
order to be able to determine absolute temperatures from the
radiative measurements. It takes into account the emissivity
of the material at ambient temperature and the radiation con-
ditions of the environment. Figure 6 provides an example of
the signals recorded on a [(90°)2/ & 45°/(90°)4] specimen.

Since approximately 550MPa (20 seconds), IR images clearly
show the emergence of matrix cracks, growing in the hoop
direction up to the outer 90° layers splitting. A good cor-
relation is observed between acoustic activity and tempera-
ture increase. Each crack propagation can easily be located
on the outer surface of the specimen using IR images. A
temperature increase of several degrees goes with the crack
propagation in this sample area. A significant increase in the
absolute energy from AE of a magnitude order of 109 aJ is
recorded. Since approximately 850MPa (52 seconds), a dam-
age increase, traduced by a quick increase in temperature and
in absolute energy (of about 1010aJ order) was recorded. By
means of macrography images, this damage was identified to
be due to bundles of fibres fracture.

The evolution of the increase in the acoustic activity and tem-
perature at the outer surface of the specimen and the optical
images allowed the different damage modes to be identified
during tensile loading for each specimen. Tables 1, 2, 3 syn-
thesised the results for each specimen family.

In the first table (Tab. 1), the damage modes and onsets as a
function of mechanical stress of the UD specimen are listed.
In addition to fibres breakage just before the final failure,
macrocracks with specimen hoop splitting occur since 450
MPa.

The second table (Tab. 2) and the last table (Tab. 3) show
that for the others stacking sequences, in addition to the hoop
splitting of UD layers, inter-laminar ply delamination is de-
tected. Experimental data do not provide enough information
to clearly distinguish the onsets of each variety of interfacial
failure. Ely and Hill (Ely & Hill, 1995) showed that the signal
amplitude can be used as a filter criteria to distinguish fibre
breakage and longitudinal splitting. Unfortunately, analysis
based on only one or several of the most used parameters,
such as amplitude, energy and duration as a filter criteria do
not allow hoop splitting and ply delamination to be discrimi-
nated.

2.3. Identification of damage mechanisms based on acous-
tic emission data using pattern recognition tools

The following tests are focused on the configuration [(90°)g].
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[(90)6]
Event | Loading onset (MPa) | Detected damage mode
1 450 — 480 Specimen hoop splitting
3 1300 — 1610 Fibres breakage
4 1340 — 1660 Final failure
Table 1. Damage onsets and modes as a function of lay-

up configuration [(90°)¢] determined during quasi-static SD
tests using NDT.

[(90°),/ £ 45°/(90°),]
Event | Loading onset (MPa) Detected damage mode
1 470 — 550 Hood splitting in 90° layers
2 ? Ply delamination
3 1230 — 1310 Fibres breakage
4 1250 — 1380 Final failure

Table 2. Damage onsets and modes as a function of lay-
up configuration [(90°)2/ £ 45°/(90°)2] determined during
quasi-static SD tests using NDT.

2.3.1. Features extraction

Acoustic emission signals obtained from the acquisition
board can be transformed into features which provides rel-
evant information about the wear mechanisms.

Several features can be extracted and we refer to (Hadzor et
al., 2011) for a detail overview. Figure 7 (taken from (Huang
et al., 1998)) summarized the most relevant ones. There are
about 22 well-known features and the most used ones are
in particular: amplitude (in decibels), duration, rise time,
strengh, energy, counts, counts to peak, and some frequency-
based features.

. Rise
Volts Time
™ \e/ Energy
Amplitude
- — } L L _ _ _ _ Threshold
= Jyveeees
l'l WUUW Time
Threshold
Crossing
{ { ’HHHM -
Duration Time

Figure 7. Features of typical AE signal.

The principal components of features were studied via a PCA
with the aim of reducing the number of features by select-
ing the most relevant ones. Using the PCA results, 7 features
were selected, accounting for 95% of the variance. An exam-
ple of PCA is given in Figure 8. As underlined in several pa-
pers on AE-based materials analysis, this figure depicts that
frequency-based features as well as signal energy, duration
and amplitude brings most of the variance and appear as rel-
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Figure 6. Evolution of the damage as a function of time during tensile tests on rings. Lays-up: [(90°)s/ £ 45°/(90°)2]. Hoop
stress, acoustic activity and temperature increase vs. time and infrared maps at different times.

[(90°)2/ £ 20°/(90°)s]
Event | Loading onset (MPa) Detected damage mode
1 480 — 520 Hoop splitting in 90° layers
2 ? Ply delamination
3 850 — 1020 Fibres breakage
4 900 — 1120 Final failure

Table 3. Damage onsets and modes as a function for lay-
up configuration [(90°)2/ £ 20°/(90°)2] determined during
quasi-static SD tests using NDT.

evant features for composites analysis.

Component 2

| I | | | | | | |
0 0005 00l 0015 002 0025 003 0035 004 0045 005
Component 1

Figure 8. The principal components.
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2.3.2. Noise removal

Need of noise removal When the pre-processing of data is
completed (features extracted followed by a PCA), cluster-
ing algorithms can be applied in order to identify families of
degrading modes. However, due to the unconstrained envi-
ronment, a lot of waveforms can be registered, among which
only a few represent damage mechanisms in the composite
structure.

To illustrate the amount of waveforms which can be consid-
ered as false events, we simply applied the K-means cluster-
ing algorithm with K = 10. To cope with the dependency
on the initial conditions of the K-means clustering, 200 itera-
tions and 10 different initialisations were considered and the
partition minimizing the average within-cluster distance was
chosen.

The evolution of the logarithm of the cumulated sum of clus-
ter appearance (logCSCA) along time is represented in Fig-
ure 9(a) for a configuration [(90°)g]. In this configuration,
three main families of damage is generally encountered, but
it is expected that each family can be represented by members
with particular properties, accounting for the choice 10 clus-
ters. This number also well illustrates the influence of noise
as described hereafter.

The logCSCA is defined as follows. Let Q& =
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{1,2,...,k,..., K} be the set of clusters, the following ma-
trix:

S(t,k) =1 if cluster k is activated at sample t

ey
where ¢ is the sample index, represents the cluster appear-
ance. The logCSCA can be computed as:

t
log CSCA(t, k) = logy Y S(x, k)

=1

2

The result is depicted in Figure 9(a). This result is far from
one can expect. Actually, the number of clusters located at the
beginning of the experiment can not reflect a damage mecha-
nism because this area corresponds only to the seating of the
specimen in the grips. The initial portion of the stress-time
curve is clearly non-linear. The material is not significantly
stressed, the applied load at this point just allows the grips to
be straightened. Moreover, only a few phenomenons are de-
tected after the half of the duration of the experiment which
is also unexpected since this area should be one of the most
active ones.

A simple noise removal procedure enables one to obtain a
much more satisfying result as depicted in Figure 9(b). The
procedure is detailed below.

Noise removal procedure Since it appears difficult to au-
tomatically identify a noise waveform from other types of
waveforms directly from the features, the noise removal pro-
cedure is applied after the clustering phase, i.e. in the clus-
ters space. The noise is removed by a simple majority voting
scheme in a given window with size W. The basic assump-
tion is to consider that a mechanical phenomenon implies sev-
eral consecutive waveforms with similar properties. Let Sy
be the filtered matrix of cluster appearance:

Syt k") =1 3)
where
k' = argrlr(lax C; 4
=1
and
-+
Ci= > S(ik) 5)

To speed up the processing, the sliding window of size W
can be moved by step equals to P = W/2. In this case
Sp(t,k*)=1,¥t €[t,t+ PJ.

Setting up the window size At the beginning of an experi-
ment, most of waveforms come from the straightening of the
grips. This phase generates a lot of waveforms (about 20%)
with small energy and small amplitude. Therefore, in this
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Figure 9. Evolution of the logarithm of the cumulated sum
of cluster appearance along time using the K-means with 10
clusters.
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phase, the window size can be large (here chosen equal to 256
points). Then, the specimen start to be notably loaded which
induces more complex mechanical phenomenons generating
waveforms with particular properties until the final failure.
We assume that the damages appearing along time have an
increasing importance as the load increases. Therefore, in or-
der to not filter out these potentially important phenomenons,
the window size decreases along time. The decreasing rate of
the window size is, for the moment, set manually, as depicted
in Figure 10.

300

25071 1

Window size
_
N (@]
o o

—
S
S

N
S

80

0 20 40 60

time (seconds)

100

Figure 10. Evolution of the size of the window used in the
noise removal procedure. The time axis represents the per-
centage of experiments’ duration.

This noise removal procedure is illustrated in Figures 9(a)-
9(b) for the K-means algorithm.

2.3.3. Clustering results

Test on [(90°)g] with 10 states For comparison purpose
(based on the aforementioned K-means results), the Partially-
Hidden Markov Model (PHMM) was tuned with 10 states, 1
component for each state, using mixture of Gaussians to rep-
resent the distribution of features conditionally to the states.
10 different initialisations were used and the PHMM with the
highest likelihood was selected. On the selected model, the
Viterbi decoder was applied to obtain the sequence of states
along time. The state sequence is then processed by the noise
removal procedure. In the PHMM, two sets of partial labels
were used:

e A set of labels in the 3 first seconds of the experiment,
which correspond to the seating of the specimen in the

grips and to the straightening of the grips.
A set of labels in the 3 last seconds of the experiment,
which correspond to the fibre breakage.

For these two areas, the plausibility of the two states was
set to 1. Since other mechanical phenomenons can appear
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in these areas, a random noise drawn uniformly in [0, 1] with
o = 0.1 was added on the labels, followed by a normalisation
of the plausibilities which must be in [0, 1].

Figures 11(a)-11(b) pictorially depict the clustering result be-
fore and after noise removal.

The result provided by the (post-processed) PHMM appears
to be different from the K-means ones. The cluster of noise,
which starts around ¢ = 5 for PHMM, is well isolated by
this method. This result is much more satisfying than the one
obtained by the K-means which is more affected by the noise
since several clusters starts very soon while there is almost no
constraint. Compared to the K-means, the cluster of noise de-
tected by the PHMM also depicts a stationary regime (around
t = 40) which is attributed to the end of the seating of the
specimen in the grips.

Moreover, the K-means seems to provide clusters with quite
periodical starting points (the period seems to be close to 35
seconds on Figure 9(b)) which does not reflect the real behav-
ior of the material. In comparison, the PHMM emphasizes
that in some intervals of time, several damages appear, which
seems more credible. For example, in the last 30%, several
clusters have been identified, which is coherent with the fact
that the material is approaching the fibres breakage and the
final failure.

The results provided by the PHMM are also closer to the ex-
pectations detailed in Table 1 since three main families ap-
pear: around t = 5, ¢ = 30 and for ¢ > 60. The following
tests emphasize this conclusion.

Test [(90°)s] with 3 states The PHMM was run on the con-
figuration [(90°)¢] with 3 states and 2 components per state
and using a similar labeling process as proposed in the previ-
ous test. The number of states corresponds here to the num-
ber of expected families described in Table 1 and the number
of components to different possible members to these fami-
lies. Figure 12 represents the logCSDA criterion along time
for this set-up. The noise removal procedure again improves
the detection by separating the clusters. The first cluster still
presents the stationary regime around ¢ = 40 and could also
includes the signature of the matrix microcracking. The sec-
ond cluster may represent the hoop splitting with propaga-
tion of macrocracks, while the third may characterize the
fibre breakage which, as expected, seems to generate some
“jumps” in the evolution of the logCSDA.

Figure 13 also presents the results of clustering jointly with
report to the mechanical stress and the cumulated energy. The
positioning of the clusters is here well justified: the first clus-
ter gathers the waveforms corresponding to the seating of the
specimen in the grips where the stress is minimal, the second
to possible splittings and the third to fibre breakage.
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Figure 11. Evolution of the logarithm of the cumulated sum
of cluster appearance along time using the PHMM with 10
clusters and 1 component.
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Figure 12. Evolution of the logarithm of the cumulated sum
of cluster appearance along time using the PHMM with 3
clusters and 2 components.
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3. CONCLUSION

In this paper, we considered the problem of health assess-
ment of composite structures in applications where the noise
is present and can strongly influence the results. Considering
the noise in composite structure analysis is a difficult task due
to the number of data to process and to the lack of knowledge
about the damage appearance and evolution. To cope with
this problem, a filtering procedure working in the space of the
clusters (which can be estimated by any clustering approach)
is developed and applied on the K-means and on the the newly
proposed Partially-Hidden Markov Model (PHMM). The re-
sults of the latter are shown to be closer to the expectations
than the former.

As perspectives, several tracks are currently tackled:

e How to automatically set-up the window’s size in the
cluster filtering process? Various experiments let us think
that one solution is to consider the level of energy re-
leased during the experiment. To make it more reliable,
a combination with other features should be used.

e How to obtain a better description of some particu-
lar damages and a better discrimination of the mecha-
nisms of a same damage family, such as ply delami-
nation and splitting, in order to improve the interpreta-
tion of the damage process? The labelling process al-
lowed in PHMM can be exploited to emphasize some
kind of “macro-states” and a hierarchical processing of
these macro-states could give some useful information
about finer degradations.

e On the opposite to the previous item, given a large
number of clusters representing micro-states, how to
gather them into families of damages? Partially super-
vised learning in PHMM can be exploited to assign un-
certain and imprecise prior on some waveforms about
their membership to some predefined macro-states. The
PHMM could then be applied to estimate if “compo-
nents” have to be gathered (Serir, Ramasso, & Zerhouni,
2011).

e How to exploit the model-based approach (Rabiei,
Modarres, & Hoffman, 2011) jointly with data-driven
ones using possibly distributed sensors (Daigle, Bregon,
& Roychoudhury, 2011) for a better health assessment
and prognostics (Kessler, Flynn, Dunn, & Todd, 2011)?
Many information fusion tools were developed in the lit-
erature (Ramasso & Jullien, 2011; Ramasso, Rombaut,
& Zerhouni, 2012) and experiments are now necessary
for a validation on composite structure analysis presented
in this paper.
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ABSTRACT

This paper presents a new approach to the development of
health management solutions which can be applied to both
new and legacy platforms during the conceptual design
phase. The approach involves the qualitative functional
modelling of a system in order to perform an Integrated
Vehicle Health Management (IVHM) design the
placement of sensors and the diagnostic rules to be used in
interrogating their output. The qualitative functional
analysis was chosen as a route for early assessment of
failures in complex systems. Functional models of system
components are required for capturing the available system
knowledge used during various stages of system and IVHM
design. MADe™  (Maintenance ~ Aware  Design
environment), a COTS software tool developed by PHM
Technology, was used for the health management design. A
model has been built incorporating the failure diagrams of
five failure modes for five different components of a UAV
fuel system. Thus an inherent health management solution
for the system and the optimised sensor set solution have
been defined. The automatically generated sensor set
solution also contains a diagnostic rule set, which was
validated on the fuel rig for different operation modes taking
into account the predicted fault detection/isolation and
ambiguity group coefficients. It was concluded that when
using functional modelling, the IVHM design and the actual
system design cannot be done in isolation. The functional
approach requires permanent input from the system designer
and reliability engineers in order to construct a functional
model that will qualitatively represent the real system. In
other words, the physical insight should not be isolated from
the failure phenomena and the diagnostic analysis tools
should be able to adequately capture the experience bases.
This approach has been verified on a laboratory bench top

Octavian Niculita et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.
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test rig which can simulate a range of possible fuel system
faults. The rig is fully instrumented in order to allow
benchmarking of various sensing solution for fault
detection/isolation that were identified using functional
analysis.

1. INTRODUCTION

Initial research on development of IVHM solutions focused
on fault identification during operations and maintenance.
This research direction culminated with the development of
model-based reasoning software tools capable of comparing
the observed behaviour with the expected behaviour of the
system in order to identify abnormal conditions and
eventually performing run-time repairs. Livingstone and its
extension L2, HyDe from NASA, Rodon™ from Combitech
(2012), TFPG FACT, ReasonPro™ (2012) from Impact
Technologies are just a few COTS and open source model-
based reasoners that use system configuration and
qualitative or quantitative behavioural models for
developing fault detection/isolation procedures. A second
research direction in developing IVHM solutions is
supported by design analysis. These types of analysis are
typically carried out for either investigations regarding
system’s potential to realize the health management goals —
as a system design aid. Many different software tools like
eXpress™ from DSI Int. (DSI, 2012), TEAMS™ from
Qualtech Systems Inc. (QSI, 2012), ADVISE, Design
PHM™ from Impact Technologies have been developed to
aid the design of IVHM solutions, to minimize diagnostic
ambiguity and to optimize diagnostic tests for sensitivity
and accuracy (Keller, Baldwinm Ofsthun, Swearingen,
Vian, Wilmering & Williams 2007). The reasoning and
testability tools can be utilized during the Detailed Design
phase of a system.

The first response in the research community to shift the
assessment of failures and associated risks into the
Preliminary Design phase focused on employing safety and
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reliability analysis. System safety analyses typically include
Fault Tree analysis, Event Tree analysis, and Probabilistic
Risk Assessments. The most common of these is the Fault
Tree Analysis (FTA), which is constructed to perform a
Functional Hazard Assessment (FHA). In an FHA, safety
engineers identify unacceptable design features and propose
design or usage changes that will mitigate the failure effects
and satisfy safety requirements. FTA identifies system high-
level failures that could result in loss of life or costly system
equipment. For each of these critical functions, the safety
engineer performs a functional analysis of how the system
works in normal operating conditions, then determines
which failure modes could lead to the occurrence of the
critical system functional failure. FTA are characterized by
a top-down approach, which starts with the identification of
a high-level failure event continued by the revealing of the
contributing events that could lead to the occurrence of that
high-level event. Software tools supporting the Safety
Analysis process include but are not limited to CAFTA™,
Fault Tree +™, and Saphire™. The most frequently types of
reliability analysis are carried out using Failure Modes and
Effects (Criticality) Analysis and System Reliability
Predictions. FMEA/FMECA typically starts with the lowest
level hardware (piece-part FMEA/FMECA) or system
functions (functional FMEA/FMECA), by determining the
fundamental failure modes that have a direct effect on those
piece-parts or functions. The next FMEA step is the
representation of system functional effects at successive
indenture levels of the system. A FMECA adds the notion
of failure criticality to a FMEA The failure rates of the
associated failures are often taken into consideration.
Software tools supporting the Reliability Analysis process
include but are not limited to OCAS™, Isograph™,
Relex™.

Over the last decade, industry and academia have tried to
integrate conceptual system design and diagnostic design
into a common platform, in order to improve the overall
system performance and availability (Brignolo, Cascio,
Console, Dague, Dubois, Dressler, Millet, Rehfus & Struss
2001; Kurtoglu, Johnson, Barszczm Johnson, & Robinson
2008; Glover, Cross, Lucas, Stecki, and Stecki, 2010). A
necessary condition for creating this platform is the
adoption of a recognised common ontology (Wilmering,
2008). Wilmering highlighted that the two main challenges
in the development of this ontology:

. Information re - use;

. Integration of the tools.

Each manufacturer of complex systems seems to have
developed their own methods and apparatus for integration
of system engineering, testability, diagnosability and
reasoning tools.

Since most of the IVHM related research focuses on fault
detection and isolation during system operation and system
maintenance, approaching the IVHM design stage is still in
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its early beginnings (Walker & Kapadia, 2010). Existing
tools use different techniques and methods for system
representation and diagnostic development and have a wide
range of capabilities and performance. There is still the need
to develop reliable benchmarks to quantitatively assess tool
performance and effectiveness. The Diagnostic Competition
defined by NASA Ames Research Centre is a good example
of how to find the best diagnostic solution among tools
generally used during the Detailed Design phase (Kurtoglu,
Narasimhan, Poll, Garcia, Kuhn, de Kleer, van Gemund, &
Feldman, 2009). Our research is trying to complement the
above mentioned research, by evaluating various COTS
software tools capable of integrating IVHM development
process into Conceptual Design of a high-tech high-value
system.

Conceptual Design

Design modelling techniques: [
- Function-based modelling

- Bond-graph modelling

MADe™

Preliminary Design CAFTA™, Fault Tree+ ™,

o ) Saphire ™, O0CAS ™,
Safety and Reliability Based Design Methods ISOGRAPH ™ . Relex ™

-PRA, FTA, FMEA/FMECA, RBD, Event Sequence Diagrams

/Detailed Design TEAMS ™, eXpress ™,
Design for testability ADVISE
[ L2,HyDE, Rodon ™,
\ Design for operation and maintenance TFPG FACT, Reason Pro ™

Figure 1. COTS IVHM Design software tools

This paper focuses on the use of functional analysis for the
development of IVHM solutions. This type of analysis
enables the integration of system failures analysis
(traditionally carried out during the Preliminary Design
phase through safety and reliability analysis) into the
Conceptual Design phase for a new system. This approach
allows for a better understanding of the failure mechanism,
for a more precise identification of fault propagation paths
throughout the system, and for a better system design
against the faults that might arise once the system is
deployed into operations.

When developing a reliable functional model for a complex
system it is necessary to have access to a rigorously defined
taxonomy. The origins of the functional approach used in
design dates back to the mid ‘80s (Hubka, V. & Emst Eder,
W., 1984) (Pahl, G. & Beitz, W., 1988) and it is attributed
to the European schools of design as identified by Stone &
Wood (2000) and Malin, & Throop (2007). Pahl states that
the quality of a system has to be built-in from the beginning
of the design process and maintained throughout the whole
production process. This will insure a high degree of
availability, once the system is deployed into its operational
environment He goes even further; emphasizing that up to
80% of all system faults can be traced back to insufficient
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planning and design work. Assuming this, it can be
stipulated that initiating a failure analysis from the
conceptual design phase will have a positive impact on
the quality of the system being designed. Later on, this
approach generated different views (Ulrich & Eppinger,
1995; Ullman, 1997) in the USA. A consistent review of
the ontology of functions, entities and problems, relevant to
the engineering world and used by FMECA was carried out
by Rudov-Clark, Stecki, and Stecki (2009) and it was
concluded that the taxonomy built by Stone was the most
generic taxonomy, suitable for a wide range of engineering
applications, so it was used in supporting the functional
analysis inside MADe™. It has been demonstrated in the
last decade that functional modelling is a key step in the
system conceptual design process, whether original or
redesign (Stone & Wood, 2000). Stone’s original taxonomy
was considerable extended in the last years by exploiting
component function-based behavioural modelling as part of
the system engineering process (Hutchenson, McAdams,
Tumer, 2012). Functional representations can be identified
in both domains of software and hardware safety and
reliability. The many forms of system safety and reliability
analysis such as Fault Tree, Event Tree, FMECAs and
Probabilistic Risk Assessments are important stages during
system development as part of the Preliminary Design stage.
The main drawback of these methods is that they cannot be
applied at the Conceptual Design stage, since at this point
models are not fully documented, the knowledge repository
is not available, and accurate probability numbers are not
defined with confidence. The function based design
paradigm was further explored by Tumer, as part of the
research focused on failure analysis of complex systems.
She emphasized the integration of failure analysis for
software driven hardware systems into the Conceptual
Design stage (Tumer & Smidts, 2011). Kurtoglu and
Tumer’s research formed the baseline for the creation of a
unified functional fault identification and propagation
framework as part of early design stage of a new generation
of high tech high value systems (Kurtoglu & Tumer, 2008).

The use of system functional analysis as part of the system
design can enhance the confidence of safety analysis at the
early stages and aid throughout the development of system
health management capability. Health management design is
generally undertaken in order to support fault detection
strategies, fault isolation strategies and design of testability
solutions. Fault detection analysis calculates the percentage
of system faults that can be detected by defined tests. Fault
isolation analysis determines the failure ambiguity groups
that will result from exercising the defined tests over the
fault universe. Testability analysis sometimes associated
with sensor set definition and optimization will determine
the optimal sequence of tests to be implemented based on
the fault space, defined tests, and other optimization criteria
(practicality, cost, weight, reliability). As designs become
more complex, defining and implementing a testability
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solution becomes more challenging. Ideally, health
management capability must be developed concurrent with
the design itself. Current practice does not facilitate an
automatic feedback loop between test engineers and system
design engineers. This feedback can be achieved through the
incorporation of health management development process in
the early design stage of the asset.

The functional modelling approach uses functions and flows
to describe the system. Clear ontology should be provided
with each functional model in order to ensure others can
read it, as they might represent a blueprint of the system
using a different ontology.

MADe™ software tool was selected for being the only
COTS software that employs functional analysis as a
method to design IVHM solution during the Conceptual
Design phase of a new asset. The software provides a clear
ontology, which can be used simultaneously by system
designers, reliability-availability-maintainability engineers
and IVHM designers in modelling the real asset and running
specific type of analysis for each individual field. Another
reason behind the selection of this package is the built-in
connection between functional modelling and behavioural
modelling within the same model. This connection allows
for a fast and robust identification of the fault propagation
paths throughout the system. Additional reasons behind the
selection of this tool were the early validation and
reusability of models, its ability to model systems/sub-
systems/components/parts and the automated support for
safety/reliability analysis.

This paper is the first of a series which highlights the pros
and cons of existing COTS software tools employed during
the health management development process. The objectives
of this particular research are to establish the capability and
utility of the MADe implementation of functional analysis
in conceptual design of a health monitoring system for a
laboratory based fuel system typical of that found on UAV
aircraft. The items considered are: i) development of the
fuel system functional and behavioural model ii) sensor set
optimization for identification of selected faults and iii)
challenges encountered throughout the implementation of
the health management solution.

This paper contributes to the transformation of state of the
art software tools into state of practice by identifying the
advantages and shortcomings in building a functional model
to aid the development and integration of IVHM Design
into the Conceptual Design phase of a complex system.

2. FUEL SYSTEM TEST BED

Integrated systems such as those supplying fuel to aircraft
engines are evolving to higher complexity with each
generation and their faults are consequently becoming more
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difficult to diagnose. On the other hand, the demands for
extreme reliability imposed by the regulators and
maximized availability imposed by the operators are
continuously increasing.

We aim to take a relative simple fuel system, to illustrate the
key steps of the diagnostic analysis using functional analysis
and to implement the output of this analysis within an
IVHM solution which meets the initial fault detection and
isolation requirements. A schematic diagram of the fuel
system is presented in Figure 2a. The fuel system contains a
motor driven external gear pump with internal relief valve, a
shut off valve, one filter, two tanks (main tank and sump
tank, the last one emulating the engine), non-return valve,
three-way valve to switch between recirculation and engine-
feed mode, variable restrictor to simulate engine injection
and back pressure when partially closed. The fuel system is
representative of a small UAV engine feed. The diagnostic
analysis will focus on the filter, pump, shut-off valve, pipes
and nozzle failure modes. Five failure modes that are
emulated on the rig are: filter clogging from foreign matter,
pump degradation, valve stuck in a midrange position, leak
in the main line, and a clogged nozzle.

Pressure Pressure External gear
sensor 1 sensor 2 pump
P—PYI : ® El% Pressure
sensor 3
DPV 2
1D %
; = [1T.] Shut-offvalve
“~ Main Tank DPV 4
D DPV 3
— Pressure
sensor 4
Pressure DPV 5
5
sensor Flow-meter
Sump Tank
(]

Figure 2a. Fuel system schematic

The fuel rig can accommodate various faults with different
degrees of severity. When a filter clogs, the flow through
the filter reduces and the pressure difference measured
across the filter increases. The filter failure was emulated by
replacing the filter component with a Direct-acting
Proportional Valve (DPV1). Valve position fully open is
equivalent to a healthy filter; partially closed being
equivalent to a clogged filter with a particular degree of
severity. Various degrees of severity of this fault can be
simulated by varying the DPV position. In this manner,
incipient, slow progression, cascading and abrupt types of
faults can be simulated on the rig and the ability of the
functional approach to model and address such conditions
can be assessed. The physical implementation of the fuel
system test bed is depicted in Figure 2b.

The physical system allows the testing and validation of
various IVHM models and the assessment of the analyses
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carried out using such models. Prior the construction of the
physical system, a physical simulation model was developed
during the fuel system design phase using a CAE COTS
software tool: SimulationX™ from ITI. This modelling
phase encompasses basically the sensibility studies carried
out during the fuel system design phase in order to specify
in a correct manner the components/system performance in
order to meet the specified system requirements.

Figure 2b. Fuel system test bed

The fuel system designer is the one who can get the first
insights into the system failure world, by using physical
simulation models (as fluid-flow SimulationX™ model) to
recreate various faulty scenarios. This knowledge should be
incorporated into the diagnostic analysis models in order to
ensure the consistency and accuracy of such models. The
novelty of this work resides in the ability of simultaneously
simulating various fuel system faults on the real system, in a
simulation environment and in a functional model. The next
section will describe the development of a functional model
capable of aiding the development of the fuel system [VHM
capability.

3. MADE FUNCTIONAL MODELLING FRAMEWORK APPLIED
TO THE FUEL SYSTEM

Functional modelling makes use of a system model which
decomposes the main system function(s) into smaller
functions which are well defined for each component. This
enables the assessment of the correct functionality of the
system. The taxonomy used by this software package has
nine major classes of functions, presented in Table 1. Each
class further expands to other functions.

A primary element of any functional modelling approach is
the representation of real world information corresponding
to the input and output for the previously defined functions.
These elements are represented by flows.

Three categories of flows, namely energy, signal and
material were employed to capture system’s characteristics.
Some of the previously defined functions can accept any
category of flow but others can deal only with particular
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types (e.g. all three functions - to transfer, to transmit, and to
transport belong to the same functional class - to channel,
but, the transfer function accepts all type of flows; the
transmit deals with energy or signal types of flow, while the
transport can be used only in conjunction with material
flow). Energy flows are depicted with red, signals with blue
and material with green in later diagrams.

For the functional layer to be completed according to the
method described in section 3, the links between all
components have to be defined. This is achieved by
translating the real world information exchange into distinct
type of flows and by associating these as inputs and outputs
for the functions defined already. These flows represent a
measurable characteristic for the function (Kirschman,
1996) and are used during the Preliminary Design phase.
The flow related information is mainly useful in supporting
Failure Mode, Effects and Criticality Analysis (FMECA),
where failures are related to the discrepancy in flow
properties.

Class Description

Branch To cause a material or energy to no longer
be joined or mixed

Channel | To cause a material or energy to move from
one location to another

Connect | To bring two materials or energies together

Control To alter or govern the size or amplitude of
material, signal or energy

Convert | To change from one form of material or
energy to another

Provide To accumulate or provide material or energy

Signal To provide information

Stop To cease or prevent the transfer of material,
signal or energy

Support To firmly fix a material into a defined
location or to secure an energy into a
specific course

Table 1: Function classes provided by MADe

Figures 3a and 3b are two snapshots of the fuel system
functional model. Figure 3a describes the function of the
pump motor: to convert the electric energy and a specific
analogue value into mechanical rotational energy.
Components can be fully described following this functional
approach by a single function (e.g. gear pump motor) or a
combination of function (see the shut-off valve functions) as
described in Figure 3b.
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Voltage Pump Motor
e Angular velocity
Value

To convert — to change from one form of energy (electrical
energy) or material to another form of energy (mechanical —
angular velocity)

Figure 3a. Functional model schematic for gear pump motor
component

The gear pump supplies the system with the hydraulic
energy necessary to provide the flow rate and to transfer the
potential contamination down the line.

The pipe between the pump and the shut-off valve transmits
the hydraulic energy received from the pump while the
shut-off valve has a suite of two different functions as
follows: fo channel the hydraulic energy down the line in
the next pipe and fo regulate the hydraulic energy in
response to the information received from the solenoid.
Both components (the pipe and the shut-off valve) have an
extra function: to transport the potential contamination in
the system, if such type of analysis is to be taken into
consideration.
Pump motor | Gear pump

_ Pipe Shut-off valve

-]

= = = ==
o convert -to  To supply - to l'o transmit - t0 Tg channel - to

change one provide energy | move an energy cause a material

form of energy  or material from | or signal from  or eperey to

or material to  storage oneplaceto  move from one

another another location to
another
['o regulate - to
adjust the flow
of energy or
material in
response to a

—_— control signal
Figure 3b. Functional model schematic for gear
pump motor, gear pump, pipe and shut-off valve
components

Within a functional model, the inputs and output are
connected inside each component by a causal link. The
model can capture the polarity of these causal links
depending on the effect of the input on the output (Figure
4a-Figure 4d). Each component functional model
encapsulates the causality connection between two different
types of flow. The pump motor functional model contains a
positive connection between the voltage (the input flow
presented as electrical energy) and the angular velocity
(output flow presented as mechanical rotational energy).
The same positive connection is found in the second
connection (value-angular velocity).
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Figure 4b. Causal links between inputs and outputs flows
for pump motor component

The function of the pump will be to supply flow rate as
hydraulic energy by making use of angular velocity
(provided by the motor) and the flow rate (provided by the
inlet pipe). In order to obtain a consistent model, the output
flows of a component have to match the input flows of the
component positioned downstream.
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Figure 4c. Causal links between inputs and outputs flows for
external gear pump component
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Figure 4d. Causal links between inputs and outputs flows
for valve solenoid component
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Figure 5 presents the full functional model at the system
level and also presents the exchange of information between
components using specific types of flow.

The reticence in using this tool is the fact that requires a
change in failure addressing approach from physical to
functional. Therefore it requires a fully adoption of its
functional taxonomy in order to be able to emulate the real
system into viable models.

At this point, a functional model can answer the questions
related to fault propagations paths throughout the system
(Glover, 2010). However some queries still remain about
the causes of failures, how a system can fail, how critical
each failure is and about the interaction between failures and
their impact on the overall system capability. The answers
to these questions can be revealed by populating the
functional model with failure modes for all components and
by focusing the analysis on the most critical or ones likely
to be the most frequent. The functional model was
populated with failure diagrams for five of the fuel system
components: the filter, the gear pump, the shut-off valve, the
pipe 04, and the nozzle. Once all the failure modes are
defined, the system functional model is considered as being
complete.

Our main goal is to design an [IVHM solution capable of
discriminating between nominal/faulty cases and also
capable of isolating all five faults. Since the fault universe is
relatively small (five faults) we aim for 100% fault detection
and isolation (no ambiguity groups).

Often the failure modes are confused with failure
mechanisms or the failure causes. To overcome this, the
software under investigation uses a rigid terminology for
failure descriptions: these must be characterized by causes,
mechanism, faults, and symptoms. These four elements
form a low level of abstraction regarding system knowledge,
while the functional failure mode is considered to be a high
level and will define the basis of the functional analysis.
For example: a pipe component can leak or be clogged.
These two failure modes are captured by the behavioural
taxonomy as shown in Figure 6a.

Causes are linked to mechanisms, which then lead into
faults that are ultimately connected to functional failures.
Mechanisms and faults can present particular symptoms and
these are captured accordingly in the failure diagram. These
symptoms are the expression of unintended/emerging
behaviour of a faulty system. Figure 6b depicts the
functional model of a pump, highlighting the inputs (speed,
back pressure, and pump characteristic), the function (7o
produce flow), the intended output (the flow rate response
including the normal/abnormal behaviour effects (flow rate
OK, too high or too low)), the failure modes and their
unintended/emerging behaviour (classified as symptoms).
One of the failure modes affecting the pump is represented
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through a failure diagram by defining the cause(s), the
mechanism(s) and faults that can be linked to the functional
failure (of not supplying the required amount of hydraulic
energy as volumetric flow rate). Due to the restrictions of
the physics for this failure mode, this flow indicator can
display either OK or too low, hence the negative causality
between the fault concept and the functional failure concept.
Three types of failure side effects are captured by linking
the symptom concepts to the functional failure diagram
previously defined as in Figure 6c.
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Figure 5. Fuel system functional model

The unintended/emerging behaviours complement the
development of the health management solution, as they
allow the user to define built-in tests for the components
affected by such behaviours in order to obtain a higher
probability of detection. These sensing capabilities will
work in conjunction to the functional sensing capabilities
identified using the functional analysis. Symptom driven
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reasoning modules were proved to be extremely useful for
discrimination between members of the same ambiguity

group.

Causes, mechanisms and faults are all external inputs to the
model and do not arise from the intrinsic functional
representation of the components. Causes and faults selected

for inclusion might be the ones which most frequently occur
(based on service experience) or the ones which the safety
analysis considers most dangerous.
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Figure 6¢. Pump failure diagram, symptoms capturing

All elements of a failure diagram can be characterized by
criticality numbers for difficulty of detection, occurrence,
probability, progression rate and severity. We will first
consider the functional failure of a pipe of not being able to
transport the hydraulic energy as pressure. The criticality
settings for this functional failure are shown in Figure 7.
System  Designers, Reliability = Availability = and
Maintainability (RAM) analysts, IVHM designers and
logisticians are able to populate the failure diagrams through
criticality coefficients using their own experience and
information expertise. Variability in detection difficulty can
be represented within the functional model by choosing the
functional failure to be detectable either during a flight test
or a ground inspection or by setting it as a non-detectable
type of failure. Occurrence, frequency and severity of a
failure may be treated using the same approach. These
settings will be directly fed into the calculation of Risk
Priority Number (RPN) for each individual fault, enabling
the realization of a complete map for safety, reliability,
availability and IVHM design analysis. A real advantage of
this procedure is the consistency obtained by using the same
tool across the entire development process.

@ Pressure

Very high | High | Low | Very low
General

Response | Difficulty of Detection Ground Inspection 50
Criticality i — 3 0
Reliability . § . .
ContinouslyObservable  InFlightTest Ground Inspection NonDetectable
Occurrence Reasonable Probable 6.6
10 <« 1 F 100
ExtremelyUnlikely Remote Occasional ReasonablyProbable Frequent
Severity Marginal 45
0 « m b0
Minor Marginal Critical Catastrophic

Figure 7. Failure diagram - criticality settings

By accommodating this system knowledge, the model
generates a propagation table describing the effect of all
failure modes on the system. This operation is undertaken
by propagating the erroneous output flow of the components
through the software Fuzzy Cognitive Map (FCM)
capability. The propagation table represents the baseline for
generating the list of the functional failures. Previous
research proved that the IVHM design process built on
physical failure assessment is highly error prone as it does
not take into account the impact of failures on other system
components.

The functional model also supports safety and reliability
analysis by performing the most common type of analysis:
Fault Tree Analysis (FTA) and FMECAs. It is not meant to
replace the detailed analysis carried out by dedicated safety
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tools like: Isograph™, Relex™, CAFTA™, Saphire™ or
Fault Tree+ but having these features as part of a functional
modelling tool enhances the health management
development process.

Figure 8 illustrates the fault tree analysis for the fuel system
with five faults: clogged filter, faulty gear pump, faulty
shut-off valve, leaking pipe, clogged pipe. The five faults
were propagated through the model using these failure
diagrams in order to determine their end effects. The FTA
incorporates a list of failure routes, which describes a
sequence of events, eventually leading to a system failure.
Figure 8a shows the fault tree display of a cut set with the
failure of the filter marked in orange. The top element of the
FTA is the function of the overall fuel system — to provide
fuel — which in the case of a filter failure would be lost. The
cut set represents the route through a fault tree between an
event (system failure) and an initiator (component failure
mode).
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Figure 8a. Fault tree displaying the cut set for filter failure

The FTA is accompanied by the decomposition table of
probability of occurrence (P(f)) and relative importance of
each individual failure mode (R1%(F)) as in Figure 8b.

Each component of the functional model is characterized
from the criticality point of view by the duration of
operation, mean time to repair and a failure distribution type
(exponential or Weibull). A criticality analysis can be
carried out by establishing a minimum threshold for
criticality indicators or by activating the failure modes only
for the components under investigation. The second option
was selected for this study. Two types of reliability analyses
were carried out using this software: functional reliability
and hardware reliability. The results of the hardware
reliability calculated using block diagrams are depicted in
Figure 8c. Only the components that can be simulated on the
test bed as being faulty were characterized through an
exponential failure distribution defined by the part failure
rate(\10%hours), mean part failure rate (\10®hours) and
standard deviation (failure rate).

Cut Sets

2@
Basic Event Pif) RI% (F)
IVHM Fuel Systemn
4 Filter
4% Separate Liquid Static pressure Material Low
4 Gear Pump
@ Fractured (Gear Pump)
4 P4 - Pipe04
@ Fractured (P4 - Pipe 04)
4 P5 - Mozzle
& Blocked (PS5 - Nozzle)
4 Shut-Off Valve
@ Corroded (Shut-Off Valve)

00001279 12

00021822 324

00000323 14

00008319 133

00035016 52

Figure 8b. FTA results

Within the same module of the software, the reliability
analysis results can also be complemented by Monte Carlo
simulations.

The functional analysis allows for the automatic
identification of the required set of sensors and the
associated logic capable of detecting and isolating each fault
within the fault universe. In the case of this study, the fault
universe is constituted by a clogged filter, a degraded gear
pump, a shut-off valve stuck mid range, a leaking pipe and a
clogged nozzle.

The sensor identification analysis enables the calculation of
Fault Detection and Fault Isolation coefficients with
reference to the entire fault universe. Fault Detection
analysis calculates the percentage of system faults (defined
as specific component failure modes) detected by the
proscribed tests. Fault Isolation analysis determines the
failure ambiguity groups that will result from exercising the
tests over the fault universe.
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Figure 8c. Fuel system - Hardware reliability

IVHM designers require tools able to run what-if type of
analyses in order to identify the optimum health
management solution meeting the fault detection and fault
isolation requirements. Due to different types of restrictions
in terms of weight, costs, performance, probability of
detection of the HM solution on one side and sensor
reliability on the other side, FDI coefficients might have to
be dropped below the required figures. Ambiguity groups -
collections of failure modes with the same system response -
will appear in such situations. Once sensors have been
identified, the diagnostic analysis also provides the core
elements for a reasoning capability/expert system. Once a
deviation of a particular parameter outside its nominal range
is detected, the function of that component will be evaluated
by examining high-level functional failure mode layers and
the causes, mechanisms, faults and symptoms described in
the lower levels of the model.

4. SENSOR SET OPTIMISATION

The fuel system sensor set optimization analysis is based on
the functional model developed in the previous section. As
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mentioned before, the overall function of the fuel system is
to provide a volume of fuel when commanded by an electric
signal assuming that it was powered up.

When each of the five faults is injected in the system
through its own failure diagrams, the tool will generate a
propagation path of the failure. The propagation paths are
collated into a propagation table which will form the basis
for the sensor set optimization process. Each line from the
Table 2 represents the effects of the five failure modes on
the output flow(s) of the other components.

The vector (F.G.P.P.P.P.S.S.) represents the Filter pressure,
Gear pump flow rate, Pipe 02 flow rate, Pipe 03 flow rate,
Pipe 04 pressure, Nozzle flow rate, Shut-off valve flow rate,
Sump tank volume output parameters. The arrow-up and
arrow-down symbols mark the deviation of these parameter
outside normal boundaries when a particular failure mode
was injected and propagated throughout the functional
model.

For example, the first row of Table 2 shows the effects of a
clogged filter on the system response. A clogged filter
determines the flow rate in pipe 02 to decrease; this will
impact the flow rate down the line in the gear pump, pipe
03, pipe 04, shut-off valve and the sump tank.

COMPONENT FLow FAILURE F G P P |P P |S S
. 1 1
FILTER PRESSURE (LOW  (q ) nfn |o 0 (& 0|4
VIVIVIVY VYV IV
PunP FLow Low . 1 ) M M M M .
GO SO0 &0 &
PIPE PRESSURE | LOwW “lalala'™" A AlA
VIV ¢S LS v|D
NOZZLE FLow Low A M A n v i -
vl |vlv|v &)L
VALVE FLow Low - 1 ~ : N 1 M M
e e vve |

Table 2. Fuel system propagation table obtained using
functional analysis

The functional modelling technique (input flows linked to
output flows throughout the functional layer) might induce
the designer to model only the downstream effects of a
particular fault. The Fuzzy Cognitive Maps (FCM) method
employed by this tool also allows for modelling of upstream
effects. The dotted red line in Figure 9 is the causal
connection representing the effect of a clogged nozzle on
the upstream component (Pipe 04). If a nozzle is getting
clogged, the output parameter (flow rate) decreases. The
variation of this flow rate parameter has an inversely
proportional effect on the Pipe 04 input flow rate parameter
increasing afterwards the output pressure. This behaviour
could not have been achieved without the negative feedback
loop depicted in Figure 9. The same technique will be
replicated upstream using iterative loops throughout the
system until all the effects of a clogged nozzle would be
captured by the model.
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Figure 9. FCM Feedback loops

A functional model will therefore be consistent when the
propagation table generated by the model will replicate from
a qualitative point of view the physics of the system under
similar faulty conditions.

The qualitative characteristics of each individual failure
contained in the propagation table are processed by an
optimization algorithm in order to identify the combination
of elements which allow discriminating between them. The
elements mentioned above are in fact the flows captured in
the functional analysis and the type of flows will determine
the type of sensors to be used to identify a particular fault. A
detailed description of the sensor set discrimination analysis
using this software is presented by Rudov-Clark (Rudov-
Clark, 2009).

Functional analysis is a qualitative analysis. This type of
qualitative analysis identifies the foundation of an HM
solution for a given system for a known fault universe. As
mentioned in the previous section, for this particular
scenario of the fuel system, the fault universe is composed
by five distinct faults. The optimization algorithm generates
6 sensor set solutions, with maximum coverage and no
ambiguity groups. One of the solutions contains four
sensors and is presented in Figure 10 and it comprises of:

S1 - a sensor measuring the static pressure after the Filter,
S2 - a sensor measuring the flow rate after the Gear pump,
S3 - a sensor measuring the flow rate after the Shut-off
valve

S4 - a sensor measuring the pressure in the Pipe 04.

The components that need to be monitored are marked with
green. The type of sensor is determined by the type of the
output flow of those components. By making use of the
output from these sensors, the analysis shows that it is
possible to discriminate with 100% confidence between all
five faults by using a particular diagnostic logic. Obviously,
this was expected as the structure of the fuel system is quite
simple, and there are only five faults.

Based on this analysis, the [IVHM designer has information
about the location of the sensors contained in each sensor
set, and also information regarding the type of the
monitored flow. All the sensor set solutions are
complemented by fault detection, fault isolation and
ambiguity group indicators (if any).

Each sensor set also contains the diagnostic rules to be
implemented on the real system to enable the fault
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identification. Most of the time, the diagnostic rules are
associated with tests that are carried out during the
diagnostic and troubleshooting procedures.

Functional models are typically used for either analysis of a
system’s potential to realize health management goals — as a
design aid - or to support execution of fault isolation
reasoning. The output of the functional analysis represents
the input to other tools that actually create, or help direct the
creation of, executable system diagnostics. The qualitative
diagnostic layer produced by MADe will have to be
complemented by a quantitative layer obtained by physical
simulation of the system flows.
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Figure 10. One of the functional sensor set solutions

Figures 11 shows the diagnostic rules associated with the
sensor set solution from Figure 10.
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Clogged filter:
[ Pressure (Filter) is Low }
[ Function (Filter) is Lost }
Degraded gear pump:

[ Flow rate (Shut-off valve) is High ] [ Pressure (Pipe 03) is Low } [ Pressure (Filter) is Low ]

T

AND

I

Function (Pump) is Lost

Shut-off valve stuck mid range:

[ Pressure (Pipe 04) is Low } [ Pressure (Pipe 03) is High }

[ AND ]

y

[ Function (Shut-off valve) is Lost }

Leaking Pipe:
[Flow rate (Shut-off valve) is Low :|
[ Function (Pipe 04) is Lost ]
Clogged nozzle:

| Pressure (Pipe 04) is High I

l

| Function (Nozzle) is Lost I

Figure 11. Diagnostic rules for the optimized sensor set
solution depicted in Figure 10

These rules form the baseline for diagnostic engine of the
fuel system. For example the function of the gear pump (to
deliver a specific amount of flow rate) is classified as lost if
the sensor monitoring the shut-off valve flow rate has an
output value below nominal, the pressure in pipe 03 below
nominal and the static pressure at the filter is below
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nominal values. In all other cases, the function is considered
to be operating normally. In a similar manner, the other four
diagnostic rules describe the lost of filter, shut-off valve,
pipe and nozzle’s functionality by making use of the output
of the sensors (S1-S4).

Information on weight, cost and reliability can be associated
with each sensor in order to get a clear image of the
comparison between different IVHM solutions (as in Table
3). The software might further generate queries about
various sensor set solutions as in Figure 12.

Name Type #ofSensors Coverage Possible Coverage  Cost Weight (g)
GQ SensorSetl FCM 4 100% 100% £910.00 175.00
‘36 SensorSetZ FCM 4 100% 100% £1,300.00 100.00
23 SensorSet3 FCM 4 100% 100% £1010.00 150.00
83 SensorSetd FCM 4 100% 100% £1 200,00 125.00
.Eé SensorSet5 FCM 4 100% 100% £500.00 30,00
ﬁ% SensorfSetd FCM 4 100% 100% £1 080.00 115.00

Table 3. Sensor set additional information
Total number of sensors
\ Cost
b
S 5 »
Coverage =
| “\"
¢ Weight

Reliability

®Sensor set 1 ® Sensor set 2 @ Sensor set 3
Sensor set 4 ® Sensor set 5 Sensor set 6

Figure 12. Sensor set comparison query

The information generated by functional analysis can be
further used by the HM designer in developing the
executable HM solution and also by the system designer in
analyzing the impact on the overall design once this solution
is integrated with the asset.

5. IVHM SOLUTION — VERIFICATION AND VALIDATION

The sensor set solutions identified and highlighted in the
previous section were embedded in the physical test bed and
the functional diagnostic rules were assessed against
physical simulation results.

For each component, a physical degradation scenario was
simulated and system behaviour in terms of pressure and
volumetric flow rates were captured.
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Figure 13 shows the variation of the pressure parameters in
various points of the system vs. the degradation of the filter.
As described in section 2, the filter degradation was
emulated by gradually closing the DPV1 (see Figure 2a).
Nine degrees of severity were generated corresponding to
100%, 90%, 80%, 70%, 60%, 50%, 40%, 30% and
20%valve opening. Position 100% valve open corresponds
to a healthy filter, 20% valve open corresponds to an almost
clogged filter. The mean values of the volumetric flow rate
and pressure for each set of data (1 minute at 1kHz) were
plotted against valve opening coefficients and the results
were interpolated.

Although, a real operating environment might present more
noise and the sensor sensitivity and accuracy as well as the
parameters magnitude levels might be different on a real
fuel system that in the test-bed, the effects of a failure mode
on the real asset will be similar in both cases from a
qualitative point of view.

Clogged filter diagnostic rule:

[ Pressure (Filter) is Low ]

L

[ Function (Filter) is Lost ]

I Pressure before filter
Pressure after filter

[ Pressure before shut-off valve

[ Pressure after shut-off valve

[ Pressure after nozzle

High severity Low severity
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Figure 13. Pressure rates under a filter degradation scenario

From a diagnostic perspective, the pressure drop across the
filter is generally used for the identification of a clogged
filter (SAE J905, 2009). Functional approach demonstrated
that by using strictly the pressure after the filter (the green
signal in Figure 13), this failure can be fully detected and
isolated. This quantifies in the reduction of the number of
sensors required to identify a clogged filter. It is widely
accepted that the reliance on one fault indicator (pressure
after the filter) is not a robust detection method however one
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potential solution to make the indicator more reliable might
be the use of multiple redundant indicators that provide a
means for resolving differences (e.g. by “voting”).

The degraded pump scenario was implemented by creating a
leak after the pump component through the DPV2 (see
Figure 2a). Initially, for the healthy situation, this valve was
fully closed. Gradually, the DPV2 position was set to 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%
open. The mean values of the volumetric flow rate and
pressure for each set of data (1 minute at 1kHz) were plotted
against valve opening coefficients and the results were
interpolated. As in the previous case, difference between
the emulation approach adopted here and the degradation of
a real pump might exist however from a qualitative point of
view, a degrade pump will provide a lower flow rate for the
same load (system configuration) and same pump speed. On
the test-bed, the pump controls have a feedback loop which
keeps the pump speed constant at all time.

The diagnostic rule for detection and isolation of a degraded
pump combines the variation of three parameters: the
increase of the flow rate through the shut-off valve
(equivalent to a decrease in pressure difference across the
shut-off valve), the decrease in the pressure measured after
the pump and the decrease in the pressure after the filter.
The consistency of the diagnostic rule can easily be verified
by observing the variation of parameters P2, P3 and the
difference between P2 and P3 in Figure 14.

Degraded pump diagnostic rule:

[ Flow rate (Shut-off valve) is High J [ Pressure (Pipe 03) is Low } [ Pressure (Filter) is Low }

AND

L

Function (Pump) is Lost
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Figure 14. Pressure rates under a degraded pump scenario

The malfunction of the shut-off valve (stuck in a midrange
position) was implemented by adding the DPV3 in line with
the shut-off valve (see Figure 2a). Initially, for the healthy
situation, the DPV3 was fully open. Gradually, the direct-
acting proportional valve was closed and data was measured
on the rig for 1 minute at 1kHz for the valve being 100%,
90%, 80%, 70%, 60%, 50%, 40%, 30%, and 20% open. The
mean values of the volumetric flow rate and pressure for
each set of data were plotted against valve opening
coefficients and the results were interpolated.

The diagnostic rule for detection and isolation of a stuck
shut-off combines the variation of two parameters: the
increase in the pressure measured before the valve and the
decrease in the pressure measured after the pump. The
consistency of the diagnostic rule can easily be verified by
observing the variation of parameters P3 and P4 in Figure
15.

Shut-off valve stuck mid range diagnostic rule:

[ Pressure (Pipe 04) is Low } [ Pressure (Pipe 03) is High }

[ AND ]

y

[ Function (Shut-off valve) is Lost }
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M Pressure before filter
Pressure after filter

[ Pressure before shut-off valve

[ Pressure after shut-off valve

[ Pressure after nozzle
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Figure 15. Pressure rates under a degraded shut-off scenario

The leaking pipe scenario was implemented by creating a
leak after the pump component through the DPV4 (see
Figure 2a). Initially, for the healthy situation, this valve was
fully closed. Gradually, the DPV4 position was set to 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%
open. The mean values of the volumetric flow rate and
pressure for each set of data (1 minute at 1kHz) were plotted
against valve opening coefficients and the results were
interpolated.

The diagnostic rule identifying a leak in the Pipe 04 implies
the drop in the flow rate through the shut-off valve
(equivalent to the flow throughout the system). The
consistency of the rule can be verified by observing the
variation of flow in Figure 16a. The flow rate through the
shut-off valve parameter can be interpolated from the
pressure difference across the shut-off valve as per Figure
16b. The decrease of the flow rate through the shut-off valve
is equivalent to the increase in the pressure drop across the
valve (the difference between parameters P3 and P4).

Leaking pipe diagnostic rule:

( Flow rate (Shut-off valve) is Low ]

|

[ Function (Pipe 04) is Lost }
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Figure 16a. Flow rates under a leaking pipe scenario
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Figure 16b. Pressure rates under a leaking pipe scenario

The clogged nozzle scenario was implemented by replacing
nozzle component with DPV5 (see Figure 2a). Initially, for
the healthy situation, this valve was fully open. Gradually,
the DPV5 was closed and data was measured on the rig for
1 minute for the valve being 100%, 90%, 80%, 70%, 60%,
50%, 40%, 30%, and 20% open. The mean values of the
volumetric flow rate and pressure for each set of data were
plotted against valve opening coefficients and the results
were interpolated.

The diagnostic rule identified by the functional model as
being capable of detecting and isolating the clogged nozzle
involves the pressure measured before the nozzle. When this
parameter increases above normal limits, the function of the
nozzle is considered lost (equivalent to the nozzle being
clogged). The consistency of this diagnostic rule can be
verified by observing the variation of this parameter for all
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degrees of severity of a clogged nozzle scenario (P4 in
Figure 17).

Clogged nozzle diagnostic rule:

Pressure (Pipe 04) is High I

l

| Function (Nozzle) is Lost I

M Pressure before filter
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[ Pressure after shut-off valve
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Figure 17. Pressure rates under a nozzle degradation
scenario

To sum up, the sensor set solution identified by the
functional analysis (four sensors — three pressure sensors
and one flow meter) can be further minimized by inferring
the flow rate from two of the existing pressure sensors. This
second optimisation is strictly related to the implementation
process of the sensor set solution on the real asset and is not
part of the IVHM design process.

In order to incorporate the sensor set solution on a real asset
and to deploy the diagnostic rules as part of the IVHM
solution, several calibration procedures have been
performed. As implied in Figure 11, diagnostic rules for a
sensor set solution contain qualitative information only.
Faults are indicated by deviations from nominal healthy
values using Low/High indicators without a quantitative
threshold defining the separation between “normal” and
“low” conditions or between ‘“normal” and ‘“high”
conditions.

6. DISCUSSION

The fuel system test case demonstrates that functional
analysis can support the initial evaluation and assessment of
functional-failure risks of physical systems. Functional

4

approach in general and MADe™ software in particular
have interesting positive and negative characteristics. These
are:

Pros:

1. Functional modelling brings a reasonable degree of
methodology to the future automated processes of
impact analysis. By integrating its rigorous taxonomy,
functional modelling solves one of the shortcomings of
the current IVMH design approach: the lack of a clear,
unified and widely accepted ontology.

The whole reason for introduction of functional
analysis was to offer designers a tool to be used during
the conceptual design when there is no physical
system. No previous information needs to be provided
to the model regarding possible fault propagation

routes. Diagnostic analysis tools like eXpress™
(Hilberth, 1995; Gould, 2004), ADVISE (Keller,
2007), TEAMS™ (QSI, 2012) require IVHM

designers to explicitly build the fault propagation
model by using causal relationships between part,
component, sub-systems and systems. Regarding
functional approach, only the information related to
structural topology and system functionality are used
as input parameters for configuring the model.

3. If combined with the appropriate information like
difficulty of detection, progression rate, occurrence,
probability, severity, functional analysis can
complement and/or substitute safety and reliability
analysis. It allows the designers to focus on functional
failures rather than physical failures.

Another important feature of the functional analysis is
its capability to identify end-effects (upstream and
downstream) of a particular component failure mode.
By employing FCM (Fuzzy Cognitive Maps)
techniques, MADe is able to identify functional
failures resulting from component interaction.

5. Functional approach can easily handle high complexity
factors of the analysis. Any number of
parts/components/sub-systems or system failures can
be introduced in the model using failure diagrams
(cause-mechanism-fault-functional ~ failure).  The
advantages of modelling a system using a high degree
of complexity remain though in discussion.

The health management solutions developed using this
COTS functional analysis software become more
reliable as they are constructed using models that
incorporate simultaneously design, RAM and IVHM
information.

Considering the multitude of multidisciplinary data
incorporated into a functional model, it can be
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concluded that functional analysis offers significant
support for conceptual design analysis in vertical
integration and system engineering.

Cons:

1. System designers might find the mindset shift from
physical approach to functional approach difficult to
adopt. The concepts underpinning the functional
approach might be easier to be adopted by safety and
reliability engineers.

Functional failure analysis provides only qualitative
predictions of system parameter changes. Further tests
and calibration procedures have to be performed in
order to transform the functional analysis output into
executable code.

3. It was demonstrated that the proposed instrumentation
solutions obtained using functional approach are
capable of detecting and isolating the faults defined in
the fault universe. As they do not involve any physics,
the authors have identified a drawback as no
assessment can be undertaken regarding the efficiency
of functional sensor set solutions for prognostic
purposes at this stage.

7. CONCLUDING REMARKS

The paper has presented the results of an applied research
project that combined functional analysis with behaviour
simulation as a design aid for developing health
management solutions.

First of all, a functional model of a fuel rig was developed
using MADe™ and a series of analyses to aid the health
management development process were carried out. The
model of the system incorporates all its components,
topology, functions, failure modes and failure diagrams, in
order to simulate failure propagation paths and local, next
and end-effects on other components. Care must be taken in
setting up the functional model with the choice of
component functions and inflow/outflow to these functions.
The validation of the functional model consistency was
made with reference to the physical simulation model of the
same system. A functional model will be considered
consistent when the functional propagation table
incorporating failure effects on the system matches the
physical propagation table containing the effects of similar
failures.

Secondly, functional modelling for IVHM design and fuel
system design cannot be done in isolation. This paper
described the steps required to correctly develop a
functional model that will reflect the physical knowledge
inherently known about a given system. This means that
during this development process, the model required several
amendments including the use of several feedback loops to
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replicate the upstream effects of a failure throughout the
system in order to ensure good alignment with real physical
behaviour. Since functional qualitative model makes explicit
the essential distinction between normal and faulty
conditions, it covers classes of components rather than
individual ones, thus facilitating component libraries. The
MADe™ framework employs modular, reusable function-
component-behaviour models that can be integrated using
an industrial standard.

Thirdly, the functional qualitative models offer means of
expressing and exploiting approximate knowledge on a firm
theoretical basis in a formal model. For instance,
knowledge about qualitative deviations of component
behaviour is used to identify the detection and isolation
diagnostic rules.

If functional models are populated with reliability,
availability and maintainability figures, the design engineers
are able to systematically investigate functional-risks as
early as possible during the design cycle. Simultaneously,
the functional model increases the rate of success in
deploying an IVHM solution with a reliable diagnostic
logic. During the testing phase, the initial calibration of the
diagnostic rules has to be done in conjunction with the
physical simulation. This calibration will need further
adjustments once the IVHM solution is fully deployed on
the real system in real operating conditions.

Besides functional analysis, a further input to the PHM
community is the construction of physical fuel system test-
bed for assessment and validation of various IVHM design
techniques. As future work, the diagnostic logic obtained
using functional failure analysis will be tested on the real
asset and the propagation of failures and assessment of their
impact on the overall system capability will be compared
with the results obtained by using other COTS IVHM
design tools.

Areas identified for future work include the implementation
of the proposed functional techniques on a large-scale,
highly complex landing gear system and on a central
frequency changer house, both systems having huge
downtimes and high repair costs associated. These systems
will allow investigations regarding the efficiency of the
functional approach when used in various domains
(hydraulic and electric).
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ABSTRACT

Test benches are used to evaluate the performance of new
turbofan engine parts during development phases. This can
be especially risky for the bench itself because no one can
predict in advance whether the component will behave
properly. Moreover, a broken bench is often much more
expensive than the deterioration of the component under
test. Therefore, monitoring this environment is appropriate,
but as the system is new, the algorithms must automatically
adapt to the component and to the driver's behavior who
wants to experience the system at the edge of its normal
domain.

In this paper we present a novelty detection algorithm used
in batch mode at the end of each cycle. During a test cycle,
the pilot increases the shaft speed by successive steps then
finally ends the cycle by an equivalent slow descent. The
algorithm takes a summary of the cycle and works at a cycle
frequency producing only one result at the end of each
cycle. Its goal is to provide an indication to the pilot on the
reliability of the bench's use for a next cycle.

1. INTRODUCTION

This document follows two previous articles published in
2010 and 2011 in the PHM Society. The first one (Lacaille
& Gerez & Zouari, 2010b) presents the health-monitoring
architecture we deploy on one of our test benches and gives
clues about adaptation to context changes in the use of the
machine. We proposed an algorithmic solution using
simultaneously an autoadaptive clustering algorithm and
local detection tools calibrated on each cluster. In the
second paper (Lacaille & Gerez, 2011c) a lighter solution
based on similitude computations and nearest neighbor
algorithms was given. This implementation was essentially
given to be embedded in the FADEC computer of the
engine. In fact the algorithms used on test benches are also

Jérome Lacaille et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.
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good prototypes for online solutions. It’s why a fast solution
needed to be developed to check if it could also work on
dedicated hardware when the engine is installed under an
aircraft wing.

Those two previous propositions deal with online
abnormality detection: during the execution of the test. They
essentially detect fleeting events that suddenly appears
without more warning. This paper presents a solution for an
off line analysis. The algorithm was already implemented in
a lighter form on operational data broadcasted via SatCom
(as ACARS messages) to the ground. This limited version
of the algorithms was partly described in (Lacaille, 2009c¢),
the current proposition deals with automatic detection of
stationary levels, building of temporal snapshots, analysis of
the ground database of such snapshots with a clustering
algorithm to detect recurrent configurations, and the novelty
detection algorithm. Figure 1 shows the OSA-CBM
decomposition of each layer of the algorithm.

#1: DATAACQUISITION ‘

#1.1: Data Preprocessing
#1.2: Dynamic filtering

#2 : DATA MANIPULATION |

#2.1: Steady states detection
#2.2: High regime last segment
#2.3: Pointers extraction

Snapshot extractuon

#3: STATEDETECTION

#3.1: Snapshot state clustering
#3.2: Behaviors modeling
#3.3: Model diagnosis

#4: HEALTH ASSESSMENT

#4.1: Alerts confirmation
#4.2: Trend estimation

Novelty detection

Figure 1: OSA-CBM architecture of the algorithm.
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Statistic Vibration
Process Control Monitoring
BF On line transfer HF
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Supetrvisor Server

Algorithms’ configurations |

SAMANTA environment

Figure 2: Deployment of the PHM system on a distinct server.

The health-monitoring algorithms are developed by Snecma
under the SAMANTA platform which was previously
described in (Lacaille, 2009b). This environment
industrializes blocs of mathematic processing tools in
graphical units. Aeronautic engineers are able to exploit
each mathematic module to build their own specific
solutions. In our case this method uses signal filters to
prepare the data, a stationary process detector, a clustering
tool, some regression and dimension reduction algorithms to
help normalize observations and make them as much
independent of the acquisition context (bench cell driving)
as possible. For the novelty detection part, it uses a score
computation, a threshold based configurable statistic test
and a diagnosis confirmation tool. The two first OSA-CBM
layers (mostly signal filtering) are assembled apart from the
rest of the algorithm. They produce an off line database of
snapshots which is processed by the learning phase of the
analysis layer (#3). The results from the data-driven part and
the statistic test in last layer (#4) produce the diagnosis.

SAMANTA platform embed also some automatic validation
layers (see Lacaille, 2010a and 2012) that helps compute
key performance indicators (with precision) using cross-
validation schemes.

2. CONTEXT OF APPLICATION

A turbofan development test bench is subject to lots of
changes in behavior. The interaction between pilot and
engineers is really tense and the system may be stopped at
any instant if some analyst finds an abnormality in the
observations. The sensors are directly broadcasted to
observations consoles and validated numeric solutions may
launch alarms. The health-monitoring goal is not to stop the
process but to provide information about the health of the
test bench itself (or the tested engine part, but we give a lot
more attention to the bench which is more expensive and
less damageable than the tested prototypes).
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2.1. Implementation in the test cell

To minimize interactions between the driving of the system
and the PHM algorithms we implement an execution driver
of our SAMANTA platform on a separate server with a
local memory buffer able to deal with days of high
frequency acquisition data (50kHz) and weeks of low
frequency acquisition (10Hz) and enough storage space to
manage a big database of snapshots (some data vectors per
cycle — with one or two cycles each day).

2.2. Reliability computation

The PHM algorithms should present computation results
with a minimum of reliability because we don’t want to
interrupt an expensive test experiment scheduled for weeks
or months with bad reasons. Hence a very important
attention is given to the false alarm performance indicator
(PFA). The other indicator we follow is the probability of
detection (POD). It is a lot easier to compute because we
have some past logbooks on which all historical events
where recorded. The main job in that case was to label those
(handwritten) data and to compute the detection rate on past
tests.

The PFA indicator is given by Eq. (1). If one writes
P(Detected) the probability that an abnormality is detected
by the algorithm, P(Healthy) the probability that the
system is healthy. Then the false alarm rate is just the
probability that the system 1is healthy but that an
abnormality is detected. It is represented as the following
conditional probability:

PFA = P(Healthy|Detected) €8

This is  clearly  different  from  the  usual
a = P(Detected|Healthy) which is the first species statistic
error that one needs to calibrate to define the test rejection
domain. This PFA value really represents the inconvenience
of stopping a test for no reason.

The probability of detection is simply given by Eq. (2):
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POD = P(Detected|Faulty) 2)

It is the standard 1 — 8 value, usually called “test power” in
statistical background.

PFA can also be rewritten according to Bayes’ rule and a
computation of a in Eq. (3) shows that the test threshold
should be chosen very far from normal behavior when one
intends to respect a small boundary constraint on the false
alarm rate:

PFA p

=pOD ——— .2
* 1—PFA 1-p

=~ POD X PFAXp 3)
where p = P(Faulty) is usually very small for aircraft
engine parts (less than 10° per hour). A very careful
attention is needed for the choice of this detection threshold.
It is why the decision part of the algorithm has two
additional modules: one for confirmation by several
successive detections and another for the optimization of the
threshold, using a model of the score distribution queue with
Parzen windows.

Figure 3 shows the meaning of the rejection threshold
computed from a choice of a and the power 1 —f of a
statistical test.

Dﬁagnosnci
fhreshoid

Fault error distribufion

Healthy error, distribufion

Probability

Error value

Figure 3: Threshold selection for decision test.

2.3. Description of the bench data

The main element we have to monitor is the rotating shaft
and the principal bearing (called #4 here). One of the
exogenous information we have to deal with is the external
loading applied on the right of this shaft. This is a
longitudinal force which have a lot of influence on the
system behavior because it may change the dynamic mode
positions.

Most measurements come from dynamic high frequency
acquisitions. The corresponding low-frequency observations
are filtered energy computations which may be either
piloted by the shaft speed or be total vibration energy,
eventually quantified according to given bandwidths.

The table below (Table 1) gives the complete list of used
Sensors.
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ESN Engine serial number

CYCL Engine cycle reference

DATE Date of cycle (start to off)
01 XN Shaft rotation speed tr/min
02 XN DERIV Accel. of the rotation -
03 TORQUE Ul'w kg/h
04 P4 Pressure Piston #4 bar
05 PORSDE Position rectifier deg
06 VANPRIM Position primary vane %
07 Pl Pressure Piston #1 bar
08 K ON Disp. Up Pilot mmDA
09 K 0T Disp. Up RMS mmDA
10 K IN Disp. Down Pilot mmDA
11 K IT Disp. Down RMS mmDA
12 ACC_4RN Accel. #4 Rad Pilot cm/s eff
13 ACC_4RT Accel. #4 Rad RMS cm/s eff
14 T4 Temp. #4 degC
15 ACC 1HN Accel. #1 Horiz Pilot cmy/s eff
16 ACC 2VN Accel. #2 Vert Pilot cmy/s eff
17  ACC 3VN Accel. #3 Vert Pilot cmy/s eff
18 ACC MN Accel. Engine Pilot cmy/s eff
19 ACC_IHT Accel. #1 Horiz RMS cm/s eff
20 ACC_2VT Accel. #2 Vert RMS cm/s eff
21 ACC_3VT Accel. #3 Vert RMS cm/s eff
22 Tl Temp. #1 degC
23  ACC MT Accel. Engine RMS cmy/s eff
24 T2 Temp. #2 degC
25 T3 Temp. #3 degC

Table 1: List of sensors and corresponding units, blue and
green backgrounds identify respectively a selection for the
exogenous and endogenous variables.

The #1 to #4 numbers refer to the different bearings where
accelerometers are measuring vibration data. Those
vibration values are summarized as local energies for a
frequency band that corresponds to the shaft speed (N) or a
total amount of energy (T). The first sensors (blue
background) are used as context information or exogenous
variables. The corresponding data vector is used to identify
the context of the measurement. They are used to select
stationary snapshots and to classify the snapshots into
clusters. The others variables (endogenous) are used to
monitor the bench when a context is clearly identified.

Other variables such as microphone band energies are not
displayed in Table 1. Such selection of endogenous and
exogenous variables defines an instance of the algorithm. It
is possible to build different kind of instances (with
corresponding algorithmic parameters) for any part of the
test bench one selects to monitor.

The abnormalities may be very tricky to detect. For example
on Figure 4 one can see measurements taken during a test
cycle that contains such anomaly. Just looking the data is
rarely sufficient to find the abnormal behavior. A
mathematic comparative analysis is definitely needed.
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Shaft speed (XN)

Accel.

Figure 4: Example of measurements acquired during a
whole cycle. The black stepwise line represents the shaft
speed. Displacement (light blue and green) and
accelerometers (dark blue and magenta) are highlighted.
The other blue sensor is the load (the last data have no
meaning since the shaft stopped). An abnormality is hidden
in those data.

3. ALGORITHMS DESCRIPTION

The algorithm is made of two parts. The first one identifies
stationary measurement intervals (in context data) and
builds a snapshot of the endogenous measurements. The
second part loads the database of snapshots, builds clusters,
and for each cluster search for abnormalities.

3.1. Snapshots extraction

‘: '}]}ﬁg‘ e ‘_ - = v E
Zr
EngineData Steady State Buffer

Pointers Database
& Exdract

Figure 5: Graph of SAMANTA modules to extract
snapshots and build a database.

Cysles

The first step of snapshot extraction is the selection of
measurements to identify stationary data. The stationary
measurement detector waits for a main control value to be
almost constant and tests a vector of endogenous
measurements for second order statistic stationarity. In our
case we use the shaft speed as main control and test other
endogenous data for stationarity.

Once a stable point detected, a buffer of observations is
recorded and defines the snapshot. Figure 6 shows a list of
snapshots detected on a symbolic cycle that may represent a
real flight.
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Figure 6: Example of snapshots identification, each star
represents a point detected as a possible snapshot for the test
cycle.

3.2. Novelty detection

The detection part uses three mathematic models: the
clustering algorithm, the score algorithm and the decision
algorithm. Each one needs a specific learning phase to
calibrate.

Pointes DatsBase Data Capitalizing Enginebata

Figure 7: The novelty detection graph of SAMANTA
modules.

The clustering learning phase uses the whole snapshot
database (eventually obtained from a sub-sampling of the
snapshot buffers) but only exogenous vectors of values to
isolate homogeneous clusters with an EM algorithm. This
algorithm, as described in (Lacaille et al. 2010b), is a
generative statistic model from a mixture of Gaussian
distributions. Each Gaussian identifies a different set of
snapshots. The number of classes is estimated by a BIC
criterion and the unclassed snapshots are not used.

During the learning phase a database of snapshot buffers is
used to define the individual classes which can eventually
further be labeled as flight regimes or operating modes. To
make this possible, each buffer signal curve is compressed
into a set of shape indicators hence replacing the
multivariate temporal signal by a vector of indicators U. The
compression scheme (Figure 8) uses specific algorithms to
enlighten changes in the data: for examples an algorithm
computes the trend of the signal, another looks for jumps
and a generic compression uses automatic templates built
from a principal component analysis (PCA).
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Figure 8: Compression process that builds indicators from a
multivariate temporal buffer.

The set of exogenous indicator vector U is then used by the
classification algorithm to build classes as a mixture of
Gaussians. The number of classes to build is controlled by a
BIC criterion but may be also given by expert bounds as the
snapshots are essentially identified as standard layers.

Each set of classed snapshots (the ones that belong to a
cluster) are used to calibrate a score model. Once
indentified in a specific class, each multivariate temporal
signal of endogenous data is compressed locally in another
indicator vector Y (Figure 9). The score process has two
steps; the first one normalizes the endogenous data
suppressing disparities due to little variations in the context.
This is done by a regression algorithm controlled by a L,
criterion (LASSO algorithm) as described in (Lacaille &
Come, 2011b). The second step is a model of the residual of
this regression by a Gaussian score (a Mahalanobis
distance) see (Lacaille, 2009¢).

Context data

Class 1 ¢ l
Local §
—> - —> Score —
Compression :

Input data

Segmentation
Class 2

Unsupervised

- Local |
classification L » . Fp Score
Compression

Class K

Local
Compression

Score —

"""" v

Prognostic
Figure 9: Score analysis after snapshot identification.

Equation 4 explains the mathematics of the regression
model. Each parameter X; ; correspond to a combination j,
non necessary linear, of exogenous variables in U used to
predict endogenous observation Y;, of parameter £ (or a

function of endogenous parameters) for all snapshots i of a
given cluster.

Arg min Zi(Yi,k - Z] A]Xl'])z SubjeCt to Z] |A]| <C (4)

The final and optimal constant C is chosen such that the
generalization error of the regression is the smallest. The
generalization error is computed by a cross validation
scheme. The next graph (Figure 10) explains in 2
dimensions why the constraint is to be chosen in absolute
value instead of Euclidian norm. The figure schematizes the
mean square regression coefficient as the point §, and iso-
square errors as red ellipses (first part of equation 4). The
blue shapes (disk for L, constrain and square for L;
constraint) represents the value of the second part of
equation 4. The value £ to select is on a tangent intersection
of an ellipse (ellipsoid in higher dimension) and the surface
of the blue shape. The radius of the ellipse is the square
error and the radius of the blue shape is the constraint. It
appears clearly that with a square (cube, hypercube) the
chance to find an edge point of the surface is important. As
soon as those points are on the main axis, most of the
coefficients of B should be zero.

L1 constraint

L 2 constraint

Figure 10: Minimization subject to L; constraint (absolute

value) instead of a L, constraint (Euclidian norm) ensures

that most coefficients are set to zero, hence improving the
regression robustness with a small loss in mean square error.

As this model automatically selects variables to ensure a
good robustness, we may use a big set of computations as
inputs. In fact the aeronautic experts give clues about the
physic process and help the conception of a big vector X of
indicator functions that makes a great uses of formal
physical equations.

The final score s of a single observation is given by (Eq. 5)
where 7, =Y, — ¥, is the residual of the preceding
regression for a variable &k and a current snapshot and X is
the matrix of covariance of the vector r = (13,).

s=7r'21r (5)

The score should follow a standard x? distribution under
very restrictive constraints on the model and residual
distribution. In general those constraints are not completely
respected, and in any cases as the real dimensionality of the
problem stays approximate, an indetermination of the
freedom level is possible. We use a last module of algorithm
to establish a more precise decision rule. This decision rule
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is not only based on one score computation but on a small
list of successive scores. Each individual score is compared
to a threshold ¢ and the Boolean results are combined
together by a vote process. The law of the scores is modeled
with Parzen windows on healthy observations. Then
artificial abnormal behaviors are produced with the help of
aeronautic experts and a mechanical physic simulator. Using
the empirical distribution of scores and the pseudo abnormal
observations one is able to determine a good choice for the
threshold for a given a computed from equation 3.

4. RESULTS AND CONCLUSION

Two campaigns of measurements where done on the same
bench test cell. The first one was to challenge a civilian
compressor and lasted almost 3 months. It was a bench
calibration test. The second campaign uses a military
compressor as an extractor for another development bench,
we get also around 3 months of data. In each case, when the
bench was working we may have one to three runs per day.
Results cannot be presented in this article; the main goal for
the PHM team was to validate the algorithm and the
monitoring process.

4.1. Examples of detected abnormalities

Example 1. Normally, during a stabilized step, if the axial
pressure on the shaft increases, the vibration level should
decrease. It was not the case on Figure 11 and this was
detected as an abnormal feature.

/
[ [ W/

Figure 11: On that test run the vibration level, measured by
an accelerometer (light blue), decreases when the pressure

augments (dark blue) and during a stabilized level (XN in
green).

Example 2. Figure 12 shows a sudden increase of the total
vibration levels during a deceleration phase. This is also
another kind of abnormal behavior which was not detected
at first because the system was not able to differentiate
between main accelerations and deceleration (begin or end
of the run), but as soon as we enter this information as a
context observation the detection is fixed.
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Figure 12: A sudden augmentation of vibration was detected
by vibration sensors (red and blue) during a deceleration
(shaft speed in green).
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4.2. Conclusion

The work was tested on data obtained during the 6 months
of experimentation. The PFA indicators were computed on
observed data with the prerequisite identification of all the
real abnormalities referenced in the logbook. Then new
simulated defects compatible with the real observations
were artificially added to the data at known random
positions on the signals. A false alarm rate of PFA=1.3%
and a detection rate of POD=78% were obtained on high
speed rotation clusters. On low speed clusters, too much
variability of the endogenous variables was observed to give
conclusive results. More work will be done on the
identification of specific recurrent clusters, but in any cases
the algorithm may still be used if some standard states are
defined, and if one asks the pilot to reach those states at the
beginning of each run.

Another model should also be defined for non-stationary
measurements because some known difficulties may arise
when the bench crosses a vibration mode during a transient
phase such as acceleration or deceleration.

NOMENCLATURE

BIC Bayesian Information Criterion

LASSO Least Absolute Shrinkage and Selection
Operator
FADEC  Full Authority Digital Engine Control

OSA-CBM Open Systems Architecture for Condition-based
Maintenance

PFA Probability of False Alarm

POD Probability Of Detection

SAMANTA Snecma Algorithm Maturation And Test
Application
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ABSTRACT

The application of PHM (Prognostics and Health
Monitoring) techniques can provide a wide range of benefits
to aircraft operators. Since the primary goal of PHM
systems is to estimate the health state of components and
equipments, as well as forecasting their RUL (Remaining
Useful Life), they are often closely associated with the
reduction in the number of unscheduled maintenance tasks.
Indeed, the avoidance of unscheduled maintenance is a very
important factor, but this technology may potentially lead to
considerable further savings in other fields. The usage of
PHM information by the logistics team for spare parts
inventory control is a good example to illustrate that a PHM
system can potentially provide benefits for other teams
besides the maintenance team. The purpose of this work is
to present a comparison between two different inventory
control policies for non-repairable parts in terms of average
total cost required and service level achieved. The well
known [R, Q] (re-order point, economic order quantity)
inventory model will be used as a reference. This model will
be compared with a model based on information obtained
from a PHM system. Discrete event simulation will be used
in order to simulate and assess the performance of both
models.

1. INTRODUCTION

PHM technology is recognized by the members of the
aeronautical sector such as aircraft operators, MRO
(Maintenance, Repair and Overhaul) service providers,
aircraft manufacturers and OEMs (Original Equipment
Manufacturers) as a relevant tool that may lead to important
competitive advantages such as reduction in operational cost
and increase in fleet reliability. However, quantifying PHM
benefits is not a simple task. Hess, Frith and Suarez (2006)
stated that cost-benefit models are the key to estimate the
value of PHM technology.

Rodrigues, L. R. et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.
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In order to demonstrate the benefit of PHM technologies,
many cost-benefit models have been proposed (Hess et al.,
2006; Luna, 2009; Sandborn & Wilkinson, 2007; Feldman,
Jazouli & Sandborn, 2009). Some of these works (Luna,
2009; Sandborn & Wilkinson, 2007) comprise discrete-
event simulation models.

The objective of these models is to simulate the behavior of
the maintenance or logistics departments when a PHM
system is available for a set of components. Such models
can be divided basically into three blocks: Fleet simulation,
decision making and cost evaluation (Rodrigues, Gomes,
Bizarria, Galvdo & Yoneyama, 2010). Figure 1 shows how
each simulation block interacts with others.

Health Status
_"‘ i
——— Decisions
Fleet Simulation
p
0 Hm. ©
Cost Ve, 2]
Implications ':]"
Decision Making
(Al
% ‘f\ Decisions

Cost Evaluation

Cost Parameters

Figure 1. Simulation block diagram
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The fleet simulation block comprises a simulation of a set of
components that are monitored by a PHM system. Failures
are inserted in the simulation based on historical rates and
the PHM system is assumed to anticipate a given number of
failures by providing PDFs (Probability Density Functions)
of failure instant.

Based on that information, the decision making block is
responsible for defining which actions should be taken in a
certain moment in time. The logic of the decision making
block depends on the activities covered by the simulation.
When the maintenance planning is simulated, the decision
making block can define the best time and the best location
to perform maintenance. If logistics department is
simulated, the decision making block can define the best
moment to place a new purchase order for spare parts and
the ideal number of spare parts to be acquired.

The cost evaluation block computes the total cost resulting
from the actions taken during the simulation. Usually, this
cost is compared to the cost obtained by using a
conventional model in order to quantify the benefits due to
the PHM system.

This work presents a spare parts inventory control policy for
non-repairable items. The proposed policy is based on the
health condition information obtained from a PHM system.
A discrete event simulation is performed in order to
compute the costs associated with the implementation of the
proposed method. A comparison between the proposed
method and the classical [R, Q] inventory control model is
made in terms of average total cost required and service
level achieved.

2. PHM BASIC CONCEPTS

PHM can be defined as the ability of assessing the health
state, predicting impending failures and forecasting the
expected RUL of a component or system based on a set of
measurements collected from the aircraft systems
(Vachtsevanos, Lewis, Roemer, Hess & Wu, 2006). It
comprises a set of techniques which use analysis of
measurements to assess the health condition and predict
impending failures of monitored equipment or system.

The main goal of a PHM system is to estimate the health
state of the monitored equipment and forecast when a failure
is expected to occur (Roemer, Byington, Kacprzynski &
Vachtsevanos, 2005). In order to accomplish this task, it is
necessary to collect a set of data from the aircraft. The
choice of the parameters that will be recorded is based on
the type of equipment/system to be monitored (hydraulic,
electronic, mechanic, structural, etc.) and the failure modes
that shall be covered by the PHM system. These factors also
guide the data collection specification (sample rate, flight
phase, etc.).
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A health monitoring algorithm must be developed for each
monitored system. Each algorithm processes the relevant
data and generates a degradation index that indicates how
degraded the monitored system is. A degradation index can
be generated for each flight leg or for a defined period of
time (a day, a week, etc.).

In many cases it is possible to establish a threshold that
defines the system failure. When the failure threshold is
known, it is possible to extrapolate the curve generated by
the evolution of the degradation index over time and
estimate a time interval in which the failure is likely to
occur (Ledo, Yoneyama, Rocha & Fitzgibbon, 2008;
Kacprzynski, Roemer & Hess, 2002). This estimation is
usually represented as a probability density function, as
illustrated in Figure 2. Due to the operational characteristics
of some equipment — such as tires and the braking system —
it can be useful to express the remaining useful life in terms
of flight cycles. There is always a confidence level
associated with the predicted time interval.
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S /
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x
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Time (or Cycles)

Figure 2. Degradation evolution and instant of failure
prediction

The term IVHM (Integrated Vehicle Health Management) is
commonly used when the information generated by a PHM
system is used as decision support tool. IVHM can be
defined as the ability of making appropriate decisions in
both  strategic and  tactic levels based on
diagnostics/prognostics information, available resources,
logistics information and operational demand in order to
optimize the efficiency of operation (Puttini, 2009).
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3. CLASSICAL INVENTORY MODELS

Failure events occur during fleet operation and spare parts
must be available to keep aircraft flying. To deal with these
failure events and avoid AOG (Aircraft on Ground)
situations, aircraft operators have to maintain a spare parts
inventory. An inventory control program must be
implemented in order to fulfill the highest possible number
of spare parts demand at the least possible cost.

There is a set of classical inventory control models
described in literature that can be used to establish an
inventory policy. Most of these models define an inventory
policy based on total cost minimization. Inventory cost can
be broken down into the following factors (Ballou, 2006;
Hillier & Lieberman, 2005):

Ordering Cost

The cost of ordering an amount of Q spare parts is presented
in Eq. (1). It is composed by two main components: The
acquisition cost C (directly proportional to the amount
ordered) and a constant term K representing the
administrative cost of placing a new purchase order.

oc(Q)=K+C-Q (1)

Where OC is the ordering cost, Q is the number of spare
parts to be purchased, K is the administrative cost and C is
the unit cost.

Holding Cost

Holding cost is also known as storage cost and represents
the aggregated cost related to the storage of the inventory
until it is used. It comprises the cost of capital tied up,
warehouse space leasing, insurance, obsolescence,
protection, inventory management labor, etc.

The holding cost can be computed either continuously or on
a period-by-period basis. In the latter case, the cost may be a
function of the maximum quantity held during the period,
the average amount held, or the quantity in inventory at the
end of the period. If holding cost is computed continuously,
it can be calculate as indicated in Eq. (2).

HC = j H-X(t)dt )

Where HC is the holding cost, H is the holding cost per unit
per unit of time held in inventory and X(z) is the number of
spare parts held in inventory at instant z. In some cases, H is
defined as a fraction of the unit cost.
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Stockout Cost

Stockout cost is the cost of not having a spare part on hand
when it is needed. In the event of a failure, if the failed
component cannot be replaced due to the lack of a spare
part, it may result in an AOG situation. In this case, the
stockout cost represents the losses in the aircraft operator’s
revenue related to the aircraft unavailability.

Some aircraft operators outsource the spare part inventory
management. In this case, the stockout cost is also known as
penalty cost and represents possible contractual penalties for
the inventory owner. Indirect costs such as company
reputation and damage to customer relationship may also be
included as part of the stockout cost.

Inventory simulation can adopt two different scenarios for
stockout costs. In the first scenario, when a spare part is
required and there are no spares on hand, the aircraft with
the failed component remains unavailable until the
inventory is replenished and demand for the failed
component can be satisfied. This scenario is called
backlogging.

In the second scenario, when a spare part is required and
there are no spares on hand, the inventory is no longer
responsible for satisfying that specific demand. In this
scenario, this demand is considered to be met by a priority
shipment. This scenario is called no backlogging.

In this work, the backlogging scenario is considered. The
stockout cost is given by:

SC = j P-Y(t)dt 3)

Where SC is the stockout cost, P is the stockout cost (or
penalty cost) per unit per unit of time and Y(¢) is the number
of spare parts requests not satisfied by the inventory at
instant . Sometimes, P is defined as a fraction of the unit
cost.

3.1. Deterministic Models and Stochastic Models

Inventory models can be divided in two categories:
Deterministic models and stochastic models, according to
whether the demand for a specific period is known or is a
random variable having a known probability distribution
(Hillier & Lieberman, 2005).

Deterministic inventory models are used when the demand
for future periods can be forecast with good precision. An
inventory policy can be developed in order to satisfy all
spare parts requests.
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On the other hand, when it is not possible to forecast future
demand with acceptable precision, stochastic inventory
models are used. These models assume that future demand
is a random variable having a known probability
distribution. The inventory policy is designed based on the
service level desired. Service level is the percentage of spare
parts requests that are satisfied immediately.

In this work, demand is considered to be stochastic with a
normal distribution.

3.2. Continuous Review and Periodic Review

Another common classification for inventory control models
refers to whether the current inventory level is monitored
continuously or periodically (Ballou, 2006).

In continuous review models, a reorder point is defined as
the quantity that triggers the need for a new order. Then a
new order is placed as soon as the stock level falls down to
the reorder point.

In periodic review models, a maximum inventory level is
defined and the current inventory level is checked at discrete
intervals, e.g., at the end of each week or month. A new
order is placed every time the inventory level is checked in
order to replenish it to its maximum value.

In this work, the inventory level will be continuously
monitored.

3.3. The [R, Q] Model

A continuous review inventory policy for a specific
component normally will be based on two critical numbers:
The reorder point (R) and the order quantity (Q). That is the
reason for calling this the [R, Q] model. In this model,
whenever the effective stock level of the component drops
to R units, an order for Q more units is placed to replenish
the inventory. The effective stock is the total of spare parts
in the warehouse and replenishments ordered but not yet
received.

In this work, a [R, Q] model will be simulated and the
results will be compared with the results obtained when the
proposed model used. The assumptions of the [R, Q] model
used in this work are described as follows:

e Each [R, Q] model establishes the policy for a single
component.

¢ The inventory level is under continuous review.

e There is a lead time between when the order is placed
and when the order quantity is received. This lead time
is considered to be fixed.
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e The demand for withdrawing units from inventory
during the lead time is uncertain. However, the
probability distribution of demand is known.

e If a stockout occurs before the order is received, the
excess demand is backlogged, so that the backorders are
filled once the inventory is replenished.

e A fixed administrative cost K is incurred each time an
order is placed (as described in Eq. (1)).

e There is no discount for large quantity order.

e A certain holding cost H is incurred for each unit in
inventory per unit time.

®  When a stockout occurs, a stockout cost P is incurred for
each unit backordered per unit time until the backorder
is filled.

To simulate an inventory model based on this policy, the
only decisions to be made are to choose R and Q. The
expression used to calculate Q is the EOQ (Economic Order
Quantity) formula (Hillier & Lieberman, 2005):

o

Where Q is the quantity of spare parts to be purchased when
a new order is placed, D is the average demand per unit of
time, K is the administrative cost of placing an order, H is
the holding cost per unit per unit of time held in inventory
and P is the stockout cost per unit per unit of time.

2-D-K-(H+P)
H-P

“

The reorder point R is determined based on the desired
service level (SL). In this model, service level is related to
the probability that a stockout will not occur between the
time an order is placed and it is received (called lead time).

A managerial decision needs to be made on the desired
service level. Since the demand probability distribution is
known, R is chosen so that the area under the demand curve
is at least equal to the defined service level. The procedure
to determine R is illustrated in Figure 3.
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Figure 3. Reorder point definition for the [R, O] model

3.4. Extensions of the EOQ Model

Several works exploring the EOQ formula and some
extensions have been published by the Operational Research
community over the last decades (Syntetos, Boyland &
Disney, 2009). In most of these works, continuous demand
is considered (Yong, Ying & Bing, 2011). Other techniques
such as Lot for Lot Ordering (Omar & Supadi, 2003),
Wagner-Within Algorithm (Wagner & Whitin, 1958), Least
Period Cost Model (Ho, Chang & Solis, 2006) and Silver-
Meal Algorithm (Omar & Deris, 2001) are also applied to
deal with discrete demand problems.

Although demand for spare parts presents characteristics
similar to a discrete pattern, many studies consider the
assumption that spare parts demand is continuous and apply
the EOQ formula (Sakaguchi & Kodama, 2009). It happens
because the EOQ model is very easy to understand and
simple to implement, while most of techniques developed to
deal with discrete demand are complex and hard to
implement.

Wongmongkolrit and Rassameethes (2011) proposed a
modification to the EOQ model in order to adapt it to be
used in discrete demand problems.

4. PROPOSED MODEL

This section describes the proposed model to control the
spare parts inventory for a non-repairable item. All
assumptions listed on section 3.3 for the [R, Q] model are
valid for the proposed model, which also considers the
following assumption:

e The proposed model receives information from a PHM

system that systematically monitors the health status of
the items installed on the fleet.
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It can be noticed that the set of assumptions considered by
the proposed model is very similar to the set of assumptions
of the classical [R, Q] model presented in the previous
section. In fact, the proposed model is essentially a [R, QO]
model, but it differs from the classical [R, Q] model in how
the reorder point R is calculated.

In the classical model, reorder point R is fixed. It is only
necessary to calculate R at the beginning of simulation
because it does not change unless desired service level or
demand probability distribution change during the
simulation.

However, in the proposed model, reorder point is obtained
based on the information received from the PHM system.
Since in this work PHM information is considered to be
updated on a daily basis, the reorder point R will be also
updated at the same rate.

Figure 4 illustrates the procedure to calculate the reorder
point R for the proposed model. Since the reorder point is
systematically updated, it will called R(?).

0,
Component 1 80%
50%
Component 2
Component 3 10%
t t+LT Time

T

Figure 4. Reorder point definition for the proposed model

Lead Time

}7

Let’s assume that ¢ is the current day and the curves showed
in Figure 4 are the instant of failure probability density
functions given by a PHM system for three similar
components. The reorder point R(¢) must be calculated in
order to define whether a new order must be placed or not.
An order placed on day ¢ will be delivered on day 7+LT,
where LT is the lead time. The proposed model will
calculate R(t) based on the probability that each component
will fail before instant +L7. These probabilities correspond
to the gray area under each probability density function in
Figure 4.
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It can be seen that component 1 has a probability 80% of
failing before instant ¢+L7. The probabilities for
components 2 and 3 fail before instant 7+L7T are,
respectively, 50% and 10%.

Based on this information, the model calculates the
probability of N components fail before instant r+LT. For
instance, in the example above the probability of all three
components to fail before instant ¢+LT is obtained by
multiplying the probability of each component to fail before
instant #+LT (i.e. 80% x 50% x 10% = 4%). The complete
fail probability table for this example is shown in Table 1.

Probability that Probability that
Number of . .
. exactly N failures at most N failures
failures . .
(N) will occur before will occur before
instant t+LT instant t+LT
0 9% 9%
1 46% 55%
2 41% 96%
3 4% 100%

Table 1. Fail probability table

The fail probability table and the desired service level are
used to define the reorder point R(?). Let’s suppose that the
desired service level for this example is 95%. The last
column on the right in Table 1 shows that if there are 2
spare parts in inventory, there will be a probability of 96%
that stockout will not occur. In other words, having 2 spare
parts on the inventory corresponds to a service level of 96%
(higher than the desired 95%). Since 2 is the lowest number
of spare parts that satisfies the service level requirements,
the reorder point R(?) is 2.

The EOQ formula will be used to calculate the number of
parts to be purchased in the proposed model. The only
difference between the proposed model and the classical [R,
Q] model will be reorder point calculation.

5. SIMULATION

The spare part inventory control simulation is described in
this section. As mentioned earlier, a comparison will be
made between the classical [R, Q] model described in
section 3 and the proposed model based on information
obtained from a PHM system described in section 4.

In order to compare the performance of both inventory
models, two identical fleets will be simulated. The classical
[R, O] model will be used to control the spare part inventory
of the first fleet, while the other fleet will have its spare part
inventory controlled by the proposed model.
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5.1. Scenario Description

The spare parts logistic network considered in the
simulation is illustrated in Figure 5. There is only one
supplier and the spare parts are held in only one warehouse.

]
% Supplier
@ Warehouse

O S G
b

Discard 7

Figure 5. Spare parts logistic network

Spare parts enter the system when a new order is placed.
Supplier always delivers the spare parts to the warehouse.
Even if there is an aircraft waiting for the part, it is sent to
the warehouse and then to the aircraft. There is a lead time
between when the order is placed and when the order
quantity is received.

When a failure occurs and a component has to be replaced, a
spare part is supplied by the warehouse. Since components
are considered to be non-repairable, faulty components are
discarded.

If a failure occurs and there is no spare parts at the
warehouse, the aircraft with the faulty component waits the
next spare part delivery.

5.2. Simulation Parameters

In order to run the simulation, there are some parameters
that must be set. A list of the parameters used during the
simulation is shown in Table 2.
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Parameter Value Unit
. . Monetary Units
Administrative Cost (K) 50 M.U)
Unit Cost (C) 500 M.U.
Holding Cost (H) 1 M.U. per day
per unit
Stockout Cost (P) 5 M.U. per.day
per unit
Fleet Size 10 Aircraft
Lead Time 15 Days
MTBF 180 Days
MTBF Standard Deviation 30 Days
Simulation Step 1 Day
Simulated
Period of Time 15 Years

Table 2. Simulation parameters

5.3. Simulation Results

Five different service levels were defined (80%, 85%, 90%,
95% and 99%) and for each service level 15 simulations
were run for each model (classical and proposed).

For the classical model, the economic order quantity Q is 3
units, calculated using Equation 4. The average demand
used to calculate Q is the fleet size divided by the MTBF

(Mean Time Between Failures). As mentioned earlier, the
economic order quantity Q does not depend on the desired
service level.

On the other hand, the reorder point R changes according to
the service level. Figure 6 illustrates an example of how
inventory level changed over time for the classical [R, Q]
model during a period of 300 days. In Figure 6, the desired
service level is 80% and the calculated reorder point is 0.84
units. In real systems, the reorder point is commonly
rounded up. In this work, decimal values were kept.

When the effective stock (dashed green) is lower than the
reorder point R (dotted red), a new order of 3 units is placed.
The ordered units are immediately added to the effective
stock (dashed green). The stock on hand (solid blue),
however, only receives the ordered units after the lead time.

As mentioned earlier, in the proposed model the EOQ
formula is used. So, the economic order quantity Q for the
proposed model is also 3 units for all service levels
considered in the simulation. The reorder point R(z) is
updated on a daily basis according to the information
received from the PHM system. Figure 7 shows an example
of how inventory level changed over time for the proposed
model during a period of 300 days.

The desired service level in Figure 7 is 80%. When the
effective stock (dashed green) is lower than the reorder
point R(?) (dotted red), 3 spare parts are ordered. These
spare parts are immediately added to the effective stock and,
after the lead time, they are added to the stock on hand
(solid blue).
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Figure 6. Inventory level evolution for the classical [R, Q] model
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Figure 7. Inventory level evolution for the proposed model

For each simulation, the total cost required and the achieved 28 o
service level were recorded for both classical and proposed @ Proposed Model
models. Total costs are composed by ordering costs, holding _ 26¢ O Classical [R, Q] Model ]
costs and stockout costs. The results are shown in Figure 8. =) o4l D% |
For all desired service levels, the proposed model presented § Qg
a lower average total cost. For high service levels, the better ) 22/ =8 i
performance of the proposed model is more evident. 'g' 20! : i % |

o o
Figure 9 shows another comparison between the average o al %
total cost obtained during simulation of both classical [R, QO] -g 18/ = mg i
model and the proposed model, where each cost component = 16! % |
(ordering cost, holding cost and stockout cost) can be 5|
observed separately. For each service level in Figure 9, the 14 w w w w w
bar on the left shows the average total cost obtained with the 80% 85% Service ?_0;\/7«3| 95% 9%
classical [R, Q] model, while the bar on the right shows the
average total cost obtained with the proposed model. Figure 8. Total cost comparison
For all service levels considered in this work, the average
ordering cost obtained with both classical [R, Q] model and 30
the propose.d model were very similar. This result was “:lOrdering Cost[_JHolding Cost il Stockout Cost
expected, since the EOQ formula was used by the two 5]
models to determine the number of spare parts to be T
ordered. The average stockout cost values obtained with the 5 20l —
two models were also very similar. = ]
On the other hand, when the average holding costs obtained ~ S 15f =
by simulating the two models are compared, it can be =
noticed that the proposed model allowed reducing this cost é 10
component in all service levels considered during the =
simulation. 5 o ] 1 [

i
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Figure 9. Average total cost components comparison
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The proposed model differs from the classical [R, Q] model
only in how the reorder point is calculated. This parameter
determines when new spare parts shall be ordered and
affects directly the average inventory level and the average
holding cost. The information obtained by the PHM system
allowed predicting future demands with better accuracy.
Since parts are purchased closer to the instant when they
will be used, the average period of time they stay in stock is
reduced. Consequently, the average holding cost incurred is
also reduced when compared to the classical [R, Q] model.

6. CONCLUSIONS

This paper presented a new inventory control model for
non-repairable items, based on health condition data
obtained from a PHM system.

The results obtained by simulating the proposed model and
a classical inventory control model showed that the
proposed model allows satisfying a defined service level
with a lower average total cost. For high service levels, the
proposed model showed itself even more efficient.

Future investigation could extend the idea presented in this
paper by adapting the model to be used for repairable parts.
Another opportunity to extend this work is to explore the
performance of the proposed model when spare part
inventories for multiple items are simultaneously controlled.

ACKNOWLEDGMENT

The authors acknowledge the support of FINEP
(Financiadora de Estudos e Projetos - Brazil), CNPq
(research fellowship) and FAPESP (grant 2011/17610-0).

REFERENCES

Ballou, R. H. (2006). Gerenciamento da Cadeia de
Suprimentos / Logistica Empresarial. In 5th ed. Porto
Alegre.

Feldman, K., Jazouli, T. & Sandborn, P. (2009). A
Methodology for Determining the Return on Investment
Associated with Prognostics and Health Management.
IEEE Transactions on Reliability, Vol. 58, No. 2.

Hess, A., Frith, P. & Suarez, E. (2006). Challenges, Issues
and Lessons Learned Implementing Prognostics for
Propulsion Systems. In Proceedings of ASME Turbo
Expo Power for Land, Sea and Air.

Hillier, F. S. & Lieberman, G. J. (2005). Introduction to
Operations Research. In 8th ed. New York.

Ho, J. C., Chang, Y. L. & Solis, A. O. (2006). Two
Modifications of the Least Cost per Period Heuristic for
Dynamic Lot Sizing. Jounal of Operation Research
Society, Volume 57.

61

Kacprzynski, G. J., Roemer, M. J. & Hess, A. J. (2002).
Health Management System Design: Development,
Simulation and  Cost/Benefit  Optimization. In
Proceedings of IEEE Aerospace Conference, Big Sky.

Ledo, B. P., Yoneyama, T., Rocha, G. C. & Fitzgibbon, K.
T. (2008). Prognostics Performance Metrics and their
Relation to Requirements, Design, Verification and
Cost-Benefit. In  Proceedings of International
Conference on Prognostics and Health Management,
Denver.

Luna, J. J. (2009). Metrics, Models, and Scenarios for
Evaluating PHM Effects on Logistics Support. In
Proceedings of Annual Conference of the Prognostics
and Health Management Society.

Omar, M. & Deris, M. M. (2001). The Silver-Meal Heuristic
Method for Deterministic Time-Varying Demand.
Journal of Matematika, Volume 17.

Omar, M & Supadi, S. S. (2003). A Lot-for-Lot Model with
Multiple Installments for a Production System under
Time-Varying Demand Process. Journal Matematika.

Puttini, L. C. (2009). Gerenciamento da Saide de Sistemas
Aeronduticos: Conceitos e Visdo de Futuro. In
Proceedings of VIII Sitraer, Sdo Paulo.

Rodrigues, L. R., Gomes, J. P. P., Bizarria, C. O. Galvio, R.
K. H. & Yoneyama, T. (2010). Using Prognostic System
Forecasts and Decision Analysis Techniques in Aircraft
Maintenance Cost-Benefit Models. In Proceedings of
IEEE Aerospace Conference, Big Sky.

Roemer, M. J., Byington, C. S., Kacprzynski, G. J. &
Vachtsevanos, G. (2005). An Overview of Selected
Prognostic Technologies with Reference to an Integrated
PHM Architecture. In Proceedings of the First
International Forum on Integrated System Health
Engineering and Management in Aerospace.

Sakaguchi, M. & Kodama, M. (2009). Sensitivity Analysis
of an Economic Order Quantity for Dynamic Inventory
Models with Discrete Demand. International Journal of
Manufacturing Technology and Management, Volume
18.

Sandborn, P. A. & Wilkinson, C. (2007). A Maintenance
Planning and Business Case Development Model for the
Application of Prognostics and Health Management
(PHM) to Electronic Systems. Microelectronics
Reliability, Volume 47, Issue 12, Electronic system
prognostics and health management.

Syntetos, A. A., Boyland, J. E. & Disney, S. M. (2009).
Forecasting for Inventory Planning: A 50 Year Review.
Journal of the Operational Research Society, Volume 60.

Vachtsevanos, G., Lewis, F. L., Roemer, M., Hess, A., &
Wu, B. (2006). Intelligent Fault Diagnosis and Prognosis
for Engineering Systems. In /st ed. Hoboken.

Wagner, H. M., Whitin, T. M. (1958). Dynamic Version of
the Economic Lot Size Model. Management Science,
Volume 5.



The Annual Conference of the Prognostics and Health Management Society 2012

Wongmongkolrit, S. & Rassameethes, B. (2011). The
Modification of EOQ Model under the Spare Parts
Discrete Demand: A Case Study of Slow Moving Items.
In Proceedings of the World Congress on Engineering
and Computer Science, Volume 2, San Francisco.

Yong, Z. W., Ying, X. & Bing, S. (2011). Study on Spare
Parts Inventory Control by Quantitative Analysis in the
Environment of ERP System. In Proceedings of the
International Conference of Business Management and
Electronic Information (BMEI).

BIOGRAPHIES

Leonardo Ramos Rodrigues holds a
bachelor’s  degree in  Electrical
Engineering from Universidade
Federal do Espirito Santo (UFES,
2003), Brazil, and a Master Degree in
Aeronautical Engineering from
Instituto Tecnolégico de Aerondutica
(ITA, 2008), Sao José dos Campos,
Sdo Paulo, Brazil. He is currently
pursuing his doctorate in Aeronautical Engineering at ITA.
He is with EMBRAER S.A., Sdo José dos Campos, Sdo
Paulo, Brazil, since 2006. He works as a Development
Engineer in an R&T group at EMBRAER performing
research on PHM technology for application to aeronautical
systems. His current research interests are the application of
health monitoring techniques for electronic components and
the usage of PHM information for inventory optimization.

Takashi Yoneyama is a Professor of
Control Theory with the Electronic
Engineering Department of ITA. He
received the bachelor’s degree in
electronic engineering from Instituto
Tecnolégico de Aerondutica (ITA),
Brazil, the M.D. degree in medicine
from Universidade de Taubaté, Brazil,
and the Ph.D. degree in electrical
engineering from the University of London, U.K. (1983).
He has more than 250 published papers, has written four
books, and has supervised more than 50 theses. His research
is concerned mainly with stochastic optimal control theory.
Prof. Yoneyama served as the President of the Brazilian
Automatics Society in the period 2004-2006.

62



The Annual Conference of the Prognostics and Health Management Society 2012

Initial Condition Monitoring Experience on a Wind Turbine

Eric Bechhoefer!, Mathew Wadham—GagnonZ, and Bruno Boucher®

'NRG Systems, Hinesburg, VT,05461,USA
erb@NRGSystems.com

23 TechnoCentre éolien, Gaspé, Qc, G4X 1G2,Canada

mgagnon@eolien.qc.ca
bboucher@eolien.qc.ca

ABSTRACT

The initial installation of a condition monitoring system
(CMYS) on a utility scale wind turbine produced a number of
unexpected results. The CMS was installed on the
TechnoCentre éolien Repower MM92. The installation
allowed testing of a MEMS (microelecctromechanical
system) based sensor technology and allowed and in-depth
analysis of vibration data and revolutions per minute (RPM)
data. A large 3/revolution effect, due to tower shadow and
wind shear, required the development of an enhanced time
synchronous average algorithm. The ability to easily
measured changes in main rotor RPM, as a result of tower
shadow and wind shear phenomenology, may also facilitate
the detection of icing or blade pitch error.

1. INTRODUCTION

NRG System in collaborative partnership  with
TechnoCentre éolien, installed a CMS on a 2.05 MW
Repower MM92 at the TechnoCentre’s northern wind
energy research location in Riviére-au-Renard. CMS allows
operations and maintenance professionals to dramatically
lower their costs by accurately predicting when components
in the turbine’s drive train are likely to fail months in
advance. Maintenance and crane calls can then be scheduled
at the most optimal time, such as during the low-wind
season.

The goal of this collaboration is to validate the performance
of a new CMS architecture and gain experience of CMS on
a wind turbine. During the validation processes, both raw
and processed data is available to NRG System and the
TechnoCenter. The CMS installation consisted of:

e A two axis, low speed (1000 mv/g) MEMS

E Bechhoefer et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.
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accelerometer, used for measuring nacelle motion,

e Seven, High Speed (50 mv/g, 0-32 KHz) MEMS
accelerometers for drivetrain monitoring,

e  One tachometer (smart sensor), and

e A local data concentrator, which provides sensor
control, temporary data storage, and Ethernet
access.

The CMS was installed on a Repower MM92. This wind
turbine uses a three stage, planetary gearbox with a total
shaft rate increase of approximately 1:96. Power is
generated from a double feed induction machine, allows the
main shaft input rates to vary from 7 to 15 revolutions per
minute (RPM, or 0.11 to 0.25 Hz). The CMS was
configured to perform an acquisition every 10 minutes, and
down load raw vibration data every 6 hours.

Most industrial accelerometers have an operational range
from 2 Hz to 10 KHz. The rates and frequencies associated
with many of the gearbox components are below this rate. In
order to do analysis on these components, the CMS used
MEMS based accelerometers instead of traditional lead
zirconate titanate (PZT) based accelerometers. The CMS’s
MEMS devices have a response to DC, which makes them
appropriate for this application.

It was important to validate this CMS on an operational
wind turbine in that may many of the technologies have
never before been implement in a CMS. For example, the
CMS, in addition to validating MEMS accelerometers
performance:

e Tested new packaging design using conductive
plastics to lower packaging cost of the sensor
(approximately 1/7 cost of stainless steel
packages),

e Implemented all of the condition indicator (CI)

processing and analysis (such as the time
synchronous average, gear analysis (residual,
energy operator, narrowband/amplitude
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modulation/frequency modulation) and bearing
envelope analysis) on the sensors themselves.

e Implemented a smart tachometer sensor which
passed zero crossing data to all of the vibration
sensors so that they can perform the shaft, gear and
bearing analysis

e A bused sensor system to reduce the weight and
cost of harnessing, and

e A cloud based user display, again to lower the
setup and maintenance cost to the user.

e A true prognostic capability by providing an
estimate of the remaining useful life of a
component based on a physics of failure model.

Ultimately, it is anticipated that such architectures will
deliver world class diagnostics/prognostic performance at a
fraction of the cost of traditional, “star” architecture CMS
using PZT accelerometers.

1.1. System Considerations with Using MEMS

The newest generation of MEMS accelerometers offers
performance that in many cases is superior to traditional
PZT devices if it is packaged correctly. MEMS
accelerometers sense changes in capacitance, based on
distance from a reference, instead of charge (piezoelectric
effect) due to shear. Because of this physically different way
to measure acceleration, these devices can measure from DC
to 32 KHz. However, since MEMS accelerometers are
capacitive sensor (vibration changes sensor capacitance,
which is proportional to voltage), they are sensitive to
electromagnetic  interference =~ (PZT  have  better
electromagnetic noise immunity). As such, to ensure
performance near a large generator, they must be packaged
with an analog to digital converter at the sensor.

One disadvantage of MEMS accelerometers is that they are
noisier than PZT accelerometers. The power spectral density
of a typical accelerometer at 1 KHz is 10 to 190ug/VHz (see
Analog). Compare this to a wideband MEMS device, such
as Analog Devices ADXLO001 with 4mg/Hz, or
approximately 2 to 40 times noisier. That said, from a
system perspective the data acquisition, processing and
condition indicator (CI) generation gives significant process
gain and a large reduction in noise.

As an example, a typical shaft analysis would result in a
time synchronous average (TSA, Randal 2011, McFadden
1994) of length 8196 for 20 revolutions. The reduction in
non-synchronous noise (part of which is accelerometer self
noise) is the product of the process gain due to the TSA
(1/rev or 0.2236) and the noise reduction of the spectrum
of the TSA (1/N(length/2) or 0.011), which in total is 0.0025
* the spectral density. This reduction is more than adequate
for most CMS analysis. It was observed that use of a MEMS
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accelerometer does not significantly degrade the ability to
detect component fault given the process gain of the CMS
analysis.

1.2. Opportunities for Using MEMS

The MEMS accelerometer was packaged with the analog-to-
digital converter (ADC) because it is sensitive to
electromagnetic interference. This necessitates RAM to
store the vibration data during the acquisition, a
microcontroller to drive the ADC, and a receiver/transmitter
to move data. By selecting a microcontroller with a floating
point unit, it was possible to perform all of the processing of
the vibration data on the sensor.

The sensor, when finished processing (about 20 seconds)
sends condition indicator data to the local data concentrator.
This greatly reduced to the overall system cost of the system
by allowing the use of low cost microcontrollers vs. higher
cost Intel or ARM based processors.

1.3. Tachometer Function

Because vibration processing is done locally at the sensor,
the sensor will need zero crossing data to perform analysis
on the components that it monitors. The zero crossing data
is used for calculation of the time synchronous average.

A tachometer sensor was developed that, instead of sending
the digitized output of the Hall Effect speed sensor,
measured the zero crossing times (ZCT). The ZCT was then
broadcast by the tachometer sensor to all vibration sensors
on the network. The output of the Hall Effect speed sensor
was tied to the microcontroller general purpose input/oupt
(GPIO) pin. When the GPIO pin went high, the
microcontroller measured the time from the last interrupt.
The clock on the microcontroller was 100 MHz, with a jitter
20 parts per million.

2. INITIAL VETTING AND VERIFICATION

Following the installation in early December 2011, the CMS
was evaluated to ensure:

e That the system MEMS based sensors were
measuring vibration data,

e That the configuration was correct, and processing
appropriate for Shaft, Gear and Bearing condition
indicators.

The CMS was configured to acquire data for 40 seconds. As
noted, the generator is a variable speed system: a lower limit
of 11,000 rpm was set on the CMS to ensure that the CI
collected would be taken at similar torque/rpm values. This
gave a range of 7 to 12 revolutions on main rotor. At the
high speed side (total gearbox ratio of 1:96) the output shaft
and generator has 105 to 150 revolutions.



The Annual Conference of the Prognostics and Health Management Society 2012

2.1. MEMS Accelerometer Accuracy

There was an initial concern that the MEMS accelerometer
would be too noisy to accurately measure the vibration on
the gearbox. Shaker table testing found that the MEMS
accelerometers where typically within 2% error. This testing
was conducted at higher frequencies and G values (needed
because of the feedback system on the shaker itself) than
would be seen on the planetary section of the wind turbine.
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— 50 mvig

0,005

S01 Acceeleration,G's @ 0.25 Hz

L
01415
Date

Q
0114 0116

Figure 1 Comparison of Co-Located Sensor (1000 mv/g vs.
50 mv/g)

Two sensors where co-located on the main bearing of the
turbine. The first sensor was a low frequency (0-20 Hz)
sensor, 1000 mv/g, sampled at 1KHz. The second sensor
was a high frequency (0-32 KHz) sensor, 50.4 mv/g,
sampled at 3.3 Hz. This gives a time synchronous average
(TSA) length of 32768 points. Over the course of the
winter, a large SO1 values was measured on both sensors
(and on the planetary carrier sensor as well). It was
suspected that this was an icing event, which was
subsequently confirmed (Figure 2). Because this was real
signal, the SO1 between the two sensors should be seen and
were compared to see how the high frequency (low gain)
sensor performed relative to the more accurate, low
frequency sensor (Figure 1).

The SO1 values were calculated from TSA with only 7
revolutions, at a shaft rate of .25 Hz. The correlation
between the two sensors was 0.98, with a 4% bias error in
the high frequency sensor. The RMS error is 5e-4 Gs. This
is remarkable performance in detecting low G signals at low
frequency. More so in that the high speed sensor is
operating at only 0.007% of full range. This suggests that
the MEMS accelerometers are capable of detecting gear
faults in the planetary section of the gearbox.
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Figure 2 Icing on Wind Turbine Blade

2.2. Tachometer and Main Rotor Speed Variation

It was immediately noted that the main rotor had large
variations in speed over the 40 second acquisition. Because
of the extremely low shaft rate (0.18 to .25 Hz), the
acquisition must be extended long enough to capture an
imbalance on the main rotor. Additionally, an acquisition on
the Ring/Carrier/Planets must be long enough to generate
valid TSA (admittedly, 7 revolutions is not a large number
of revolutions). Because of the large variance in wind
speed, it was found that variation in main rotor RPM
average 0.5%. Some acquisitions had variations in RPM of
greater than 2.5% (Figure 3).

These large variations in shaft speeds will be propagated
throughout the gearbox, with the effect being greatest on the
low speed shafts/gears. This is because the higher speed
shafts require smaller acquisition times. As noted, the high
speed shaft, which is turning 95.9 times faster than the low
speed shaft, requires significantly less time to get one
revolution. In fact, a six second acquisition results in 150
revolutions of the shaft.

Without some method to normalize the variation in shaft
rate, there will be smearing in the spectrum (Figure 4). This
example is taken from the planetary carrier sensor, where
the 123 tooth ring gear frequency is clearly present at 27.2
Hz. There are three planets, and which will result in
sidebands at 26.53 and 27.86 Hz (+/-3 * shaft rate, which
for this acquisition was 0.22 Hz). In the Figure 4 subplots,
the spectral representation of the raw spectrum is smeared.
At higher harmonics (2™ harmonic at 54.4 Hz, and 3™
harmonic at 81.6Hz), the raw spectrum is hardly greater
than the base noise.
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Figure 3 Examples of Main Rotor Speed Variations

This is in comparison to the TSA spectrum, which clearly
shows the expected sidebands. Since many gear fault
algorithms are based on the ratio of the gear mesh frequency
to its sideband, without normalization, the ability to detect
gear fault on the lower speed shaft is greatly reduced.

0
78 80 82 84 86

Figure 4 Comparison of Spectrum of TSA vs. Spectrum of
Raw Vibration Data

2.3. The Need for Improved an TSA

The observant reader will note that in Figure 3, there is a
ripple in the rotor speed. On closer observation (Figure 5), it
is seen that there is a 3/revolution change in RPM overlaid
on the RPM change as a result of changes in wind speed.

This phenomenology has been observed (Dolan, 2006) by
wind turbine controls and power conversion engineers.
These 3/rev oscillations are important from their perspective
since they could have wide ranging effects on control
systems and power quality. In systems connected directly to
the grid, these torque oscillations could affect of grid power
quality. For systems interfaced to the grid through
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converters, these torque oscillations would be more
important in terms of converter control.

What Is This?
13.5-

RPM

125 i L L i L
a 1 2 3 4 5 6 7 8 9

Revolutions (40 Seconds)

Figure 5 Example 3/Rev Torque Ripple

This torque ripple is the result of tower shadow and wind
shear. Tower shadow occurs because the wind flow directly
in front of the tower is stalled. As the blade passes in front
of the tower at the bottom of the arc, it generates less lift
which reduces the torque on the hub. Wind shear occurs
because air is a viscous fluid: wind speed increases with
height. As the blade reaches the top of the rotor arch, the
blade generates more lift which increases the torque on the
hub.

From a condition monitoring perspective, there has been no
reporting of this shaft behavior. This could have deleterious
effects on the performance of the TSA. Typically
(McFadden (1997), Bechhoefer (2009)) the model for the
TSA assumes linear increase/decrease in rotor speed. TSA
using Spline interpolation could control a 1/rev torque
ripple. The 3/rev torque ripple violates both methodologies.
This required the development of an “enhanced” TSA
algorithm.

Current TSA algorithms uses a tachometer input to calculate
the time (and number of sampled data points) in one
revolution of the shaft under analysis. The sampled data
points are then re-sampled using linear/spline interpolation.
In the enhanced TSA algorithm, each revolution was
partitioned into 16 inter revolution sections, on which the
data points were re-sampled (Figure 6).

16 inter revolution sections where used because:

e From Nyquist, to reconstruct the 3/rev, at least 6
sub-sections would be needed.

e The Fourier Transform used in this implementation
was a Radix-2, thus the TSA always is a power of
2. To divide evenly, the sub-sections should also be
a power of 2
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e Both 8 and 16 inter revolution sections methods
were tested, the 16 inter revolution section version
had marginally improved performance (RMS error
between re-sampled and original data).
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Figure 6 Comparison of the 3/Rev change in RPM, vs the
TSA and "Enhanced" TSA

For example, the TSA for the carrier sensor, based on a .22
Hz shaft rate and a sample rate of 3296 sps, had 32768 data
points. For each of the 16 inter revolution sections, the
sampled vibration data was linear interpolated into 2048
data values.

In Figure 6, the TSA of the shaft RPM data was taken, and
the result was de-trended. This represents the change in
main rotor RPM over one revolution. The old/current TSA
algorithm would resample the data linearly between one
revolution. The enhanced TSA represents the 3/Rev change
in RPM by “chopping” one revolution into 16 pieces, and
linearly interpolating.
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Figure 7. Difference in Phase Between Old and Enhanced
TSA
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The enhanced TSA better represents the phase changes of
the vibration signal better than the original TSA (Figure 7).

In Figure 7, the two TSA algorithms start and end in phase
(see subplot 1). However, the difference in phase soon
becomes apparent. This phase error is similar to jitter, which
reduces the ability of the FFT to produce an accurate
spectrum. Similar to the comparison of a raw spectrum with
a TSA spectrum, the enhanced TSA will show a better
representation of the gearbox spectrum (Figure 8).
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Figure 8 Difference in Spectrum Between Old and
Enhanced TSA

Note that the enhanced TSA has more distinct side bands,
and that the 2™ and 3™ harmonics of the ring gear are clearly
more prominent that in the old/current TSA algorithm. The
enhanced TSA algorithm itself did not greatly add to the
processing time.

2.4. Inline Decimation in the TSA

There are two contending system issues when selecting the
accelerometer sample rate. For bearing analysis, one needs
to sample at a high enough sample rate to capture the
structural resonance of the bearing. This is needed for
bearing envelope analysis. For the TSA, one needs to
sample at a low enough rate such that the length of the TSA
is less than the maximum allowable FFT length (which is
32768 data points).

This becomes a problem for larger wind turbines (2MW and
greater) where the main shaft rate is a faction of a Hertz. For
example, consider main shaft with turning at 11 RPM (0.18
Hertz). For the main and carrier bearing, one would like
capture the 2 KHz to 2.2 KHz window for bearing analysis.
This requires sampling at greater than 4.4 KHz. The closest
sample rate for the CMS is 6104 sps. For this shaft rate, the
length of the TSA is:

(1)
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This is longer the maximum allowable FFT. The next lower
sample rate is 3052, but this is too low for the bearing
analysis.

Because there is limited processing resources on the sensor,
an inline low pass filter and decimate capability was added
to the TSA:

e Ifthe length of the TSA, n > 32768, then

o Decimate = n/32768,

o Filter coefficients are derived for a 4
point, FIR filter design, where the
normalized frequency is 1/Decimate.

o For Decimation of 2, b = [0.204 0.593

0.204]
The flow of the enhanced TSA algorithm is:

for 1 to # of TSA Revolution
for 1 to 16 (the number of sub sections to capture 3/rev
interpolate the vector of zero cross times
get the change in time between the re-sampled data, dt.
for the length of each sub section
if decimate = 1 (no decimation)
interpolate the data point at
index, index + 1, for time dt.
Else
Interpolate the data point by filtering
the data point at index -1,0,1 using b
the data point at index 0,1,2 using b
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Figure 9 Effect on In-line Decimation on TSA Spectrum

This inline process allows the higher sample rate required
for bearing analysis, and does not greatly increase the order
of operations for the TSA algorithm. It does not affect the
gear or shaft analysis at all. Shaft analyses measures the 1st,
2nd and 3rd harmonics (bin 2, 3 and 4 of the TSA FFT),
while the gear diagnostics, which analysis higher harmonics,
is improved. This is because of the reduction in higher
frequency noise (Figure 9).
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The ring gear is 123 teeth, giving the first 5 harmonics (up
to bin 615). There are additional tones at 2382 through 2782
(which represent 428 to 500 hz values) are undetermined.
Above this frequency, the spectrum is measuring broadband
noise.

3. VALIDATION OF BEARING FAULT DETECTION WITH
MEMS ACCELEROMETERS

There is a concern that the high spectral noise floor of
MEMS based accelerometers will make them an
inappropriate sensor for bearing analysis. Early stage (stage
3) bearing faults have spectral content typically 3 orders or
magnitude smaller than spectral content of gears or shafts.
This makes fault detection difficult with even the lowest
noise PZT accelerometers. To verify the ability to detect
bearing faults, a test rig was developed on which nominal
and faulted bearing could be run.

Both inner and outer races faults were developed. Testing
was conducted with a shaft rate of 25 Hz, which is
approximately the rate of wind turbine high speed shaft. The
load on the bearing was varied from 0, 25, 50, 100, 150,
200, 250 and 300 lbs of load (the design load of the bearing
was 1025 1lbs.). Figure 10 is an example of the outer race
fault.

Figure 10. Example Outer Race Fault

The outer race bearing fault rate was 80.4 Hz. Envelope
analysis performed on the sensor was with windows of: 0.5-
1.5 KHz, 2.5-3.5 KHz, 4-5 KHz, 9-10 KHz, 10-11 KHz, 13-
14 KHz, and 22-24 KHz. Surprisingly, the envelope energy
did not vary greatly with window, and was relatively
independent of load. For the level of damage (Figure 10), it
was found that the damage outer race energy was
approximately 10x the nominal bearing energy and easily
detected (Figure 11).

Similar results were obtained for inner race fault. This data
set will be made available at www.mftp.org.
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Figure 11 Outer Race Fault Using MEMS Accelerometer

4. ALGORITHM FOR THE DETECTION OF ICE/BLADE
PITCH ERROR

It has been shown that the main rotor is sensitive to both
tower shadow and wind shear. These phenomena, due to
changes in blade lift as a result of changes in wind speed,
could be used to detect difference in lift between each blade.
For example, if each blade is identical, then the Iift
generated on each blade would be identical at a given angle
on the hub. This in turn would generate a sinusoidal
3/revolution change in RPM. The amplitude of the Hilbert
transform of this 3/rev sinusoid would be nearly constant
(McFadden, 1986).

Pre Icing P2P = 0.53222 vs. Post Icing P2P 2.5

90
3

Pr'erlcing:

1

Figure 12 Pre/Post Icing Change in RPM

Consider what would happen if either the blades had icing
or if the pitch angle of one blade was in error. The lift

generated by that blade would be less. This blade would
generate less torque, and as a result, there would a smaller
increase in RPM due to when coming out of the tower
shadow or as a result of wind shear.

Most operators will not allow one to deliberately fault a
turbine. But, as noted (see Figure 2) icing can occur. Since
the CMS is down loading raw, time domain data four times
a day, if one can capture a raw data collection during an
icing event, one can test the proposed hypothesis. This
occurred during the January 14 icing even (Figure 12).

During an icing event, the balance of the rotor can be
greatly affected. Prior to the icing event, the SO1 imbalance
was .001Gs (about .25 ips). The peak-2-peak change in
amplitude of the Hilbert transform of the main rotor RPM
(AHT) was 0.5 RPM. Just after the icing event, the SO1
acceleration peaked at 0.14Gs (3.5 ips!) with an AHT of 2.5
RPM.

Since blade pitch error is a common cause of
underperformance in a wind turbine, this potentially could
be a good indicator of that type of fault.

CONCLUSIONS

Condition Monitoring of wind turbines poses some unusual
requirement on the CMS. The slow shaft rate of the main
shaft results in low amplitude, low frequency vibrations,
while the high speed side requires high bandwidth to detect
gear and bearing faults. This in turn requires the
development of highly sensitive accelerometer with a
bandwidth from close to DC (0 Hz) to above 10 KHz. While
MEMS sensors are typically noisier than PZT
accelerometers, it was found that the MEMS sensors were
both accurate, an have low enough spectral noise to capture
the vibration features on the turbine. This was observed at
very low signal intensities and frequencies. This would be
difficult to replicate this performance with a PZT
accelerometer.

The extremely low frequencies on the main shaft required
the development of an in-line decimation enhancement to
the TSA. This allowed the sample rate of the sensor to be
high enough for bearing envelope analysis, while limiting
the length of the TSA to a maximum length of 32768.

The ability of MEMS accelerometers to diagnose and detect
stage 3 bearing faults was also validated.

Other peculiarities of a wind turbine are:

e The large change in main rotor RPM due to
changing wind conditions over an acquisition, and

e A smaller, 3/revolution change in RPM due to
tower shadow and wind shear.

This required the development of an enhanced TSA
algorithm to accurately control the 3/rev change in speed.
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The ability to detect small changes in main rotor RPM can
facilitate icing or blade pitch errors. This was demonstrated
during an icing event. This new algorithm will be deployed
and verified in the near future.
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ABSTRACT

Prognostics, which deals with predicting remaining useful
life of components, subsystems, and systems, is a key tech-
nology for systems health management that leads to improved
safety and reliability with reduced costs. The prognostics
problem is often approached from a component-centric view.
However, in most cases, it is not specifically component life-
times that are important, but, rather, the lifetimes of the sys-
tems in which these components reside. The system-level
prognostics problem can be quite difficult due to the increased
scale and scope of the prognostics problem and the rela-
tive lack of scalability and efficiency of typical prognostics
approaches. In order to address these issues, we develop
a distributed solution to the system-level prognostics prob-
lem, based on the concept of structural model decomposi-
tion. The system model is decomposed into independent
submodels. Independent local prognostics subproblems are
then formed based on these local submodels, resulting in a
scalable, efficient, and flexible distributed approach to the
system-level prognostics problem. We provide a formulation
of the system-level prognostics problem and demonstrate the
approach on a four-wheeled rover simulation testbed. The re-
sults show that the system-level prognostics problem can be
accurately and efficiently solved in a distributed fashion.

1. INTRODUCTION

Prognostics is the process of predicting the end of (useful) life
(EOL) and/or the remaining useful life (RUL) of components,
subsystems, or systems. The prognostics problem itself can
be divided into two distinct problems: (i) the estimation prob-
lem, which determines the current state of the system, and (i7)

Matthew Daigle et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.
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the prediction problem, which, using the current system state
estimate, computes EOL and/or RUL. In this paper, we focus
on a model-based prognostics approach (Orchard & Vachtse-
vanos, 2009; Daigle & Goebel, 2011b; Saha & Goebel, 2009;
Luo et al., 2008). In model-based prognostics, an underly-
ing model of the system, its components, and how they fail
is leveraged, where health state estimation is formulated as
a joint state-parameter estimation problem, typically using a
filtering approach, and prediction is formulated as a simula-
tion problem (Daigle, Saha, & Goebel, 2012).

To the best of our knowledge, all prognostics research to date
has been focused on individual components, and determining
their EOL and RUL, e.g., (Orchard & Vachtsevanos, 2009;
Saha & Goebel, 2009; Daigle & Goebel, 2011a; Celaya et
al., 2011; Bolander et al., 2010; Luo et al., 2008; Bying-
ton et al., 2004). However, in many cases, the desired infor-
mation is the EOL of the system, which is obtained through
system-level prognostics. Generally, the EOL of a system de-
pends on its constituent components and how they interact.
Approaching this problem from the centralized perspective
becomes very difficult, as common (centralized) prognostics
algorithms may not scale to the system level.

In order to address the problems with centralized approaches,
in recent work, we have developed a distributed model-based
prognostics architecture that allows the decomposition of a
large prognostics problem into several independent local sub-
problems from which local results can be merged into a global
result (Daigle et al., 2011; Daigle, Bregon, & Roychoudhury,
2012). Since each local subproblem can be solved indepen-
dently, each can be assigned to a different processing unit
and be solved in parallel. Such a distributed approach is in
contrast to other proposed distributed prognostics architec-
tures in which the global problem is not decomposed and
the computation is distributed onto multiple processing units,
e.g., (Saha, Saha, & Goebel, 2009). Our distributed approach
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scales well and the resulting subproblems are typically small
and easy to solve, resulting in an efficient and flexible dis-
tributed solution to the prognostics problem. Such an ap-
proach has obvious advantages when applied to the system-
level prognostics problem. In this paper, we formulate the
system-level prognostics problem and propose a solution us-
ing this distributed prognostics framework. We apply our
system-level prognostics approach to a rover testbed and pro-
vide results in simulation to empirically demonstrate and val-
idate the approach.

The paper is organized as follows. Section 2 formulates
the system-level prognostics problem and overviews the pro-
posed distributed solution. Section 3 describes the estima-
tion problem, and Section 4 describes the prediction problem.
Section 5 presents the rover case study, and shows prognos-
tics results in simulation. Section 6 concludes the paper.

2. SYSTEM-LEVEL PROGNOSTICS

While most prognostics approaches focus on individual com-
ponents, in most practical cases it is actually the EOL of the
system that must be determined. With this prediction, the
future usage of the system may be optimally planned to max-
imize system life and to schedule system-wide maintenance
activities. It is often important to take a system-level per-
spective of prognostics, because the degradation of individual
components is often coupled, i.e., the way one component de-
grades is dependent on how a connected component degrades.
This may occur, for example, if one component provides the
inputs to another component, in which case, prognostics of
the latter component cannot be performed in isolation.

In this section, we first define the system-level prognostics
problem. We then introduce the system-level prognostics ap-
proach and architecture using a distributed prognostics frame-
work that is based on structural model decomposition.

2.1. Problem Formulation

The goal of system-level prognostics is the prediction of the
EOL and/or RUL of a system. We assume the system model
may be generally defined as

x(t) = £(t,x(t), 6(t), u(t), v(t)),
y(t) = h(tv X(t)v O(t)a u(t)7 n(t))v

where x(t) € R" is the state vector, 8(t) € R™ is the
unknown parameter vector, u(t) € R™ is the input vector,
v(t) € R™ is the process noise vector, f is the state equation,
y(t) € R™ is the output vector, n(¢) € R"" is the measure-
ment noise vector, and h is the output equation.! This model
describes both the nominal behavior and faulty behavior, in-
cluding the fault progression functions.

'Here, we use bold typeface to denote vectors, and use n, to denote the
length of a vector a.
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In system-level prognostics, we are interested in when the
performance of a system lies outside some desired region
of acceptable behavior. The desired performance is ex-
pressed through a set of n. constraints, Cror = {c;};<;,
where ¢; : R"» x R™ x R™ — B maps a given point
in the joint state-parameter space given the current inputs,
(x(t),0(t),u(t)), to the Boolean domain B = [0, 1], where
ci(x(t),0(t),u(t)) = 1 if the constraint is satisfied. If
ci(x(t),0(t),u(t)) 0, then the constraint is not satis-
fied, and the behavior of the system is deemed to be un-
acceptable. These deterministic constraints may refer to
component-level, subsystem-level, or system-level specifica-
tions or requirements and define a fixed partition of the state-
parameter-input space into acceptable and unacceptable re-
gions of behavior. When the constraints are violated, it does
not necessarily refer to a hard failure, but any point at which
the operational risk is too large to continue system operation,
or future behaviors of the system will be in some way unac-
ceptable. At this point we say the system has no useful life
remaining.

These individual constraints may be combined into a single
system-level threshold function Tgor, : R™* x R™ x R™ —
B, defined as

TEOL(X(t)y B(t), u(t))
{1, 0 € {ci(x(t),0(t),u(t)
0,

Ne
=1

otherwise.

Tror evaluates to 1, i.e., the system has reached an unac-
ceptable region of behavior, when any of the constraints are
violated. EOL is then defined as

EOL(tp) &
inf{t ER:t>tp A TEOL(X(Yf)7 H(t), u(t))

1}’

i.e., EOL is the earliest time point at which T, is met (eval-
uates to 1). RUL is expressed using EOL as

RUL(tp) £ EOL(tp) —tp.

Note that because x(t) is a random variable, EOL and RUL
must necessarily be random variables also.

2.2. Prognostics Approach

In order to make an EOL or RUL prediction for the system,
the initial state from which to make a prediction is required.
In general, this initial state is not directly observed, and must
be estimated. Therefore, there are two sequential problems
for prognostics: the estimation problem and the prediction
problem. The estimation problem is to find a joint state-
parameter estimate p(x(t), 8(t)|yo.:) based on the history of
observations up to time ¢, yo.;. This estimate is represented
as a probability distribution because, generally, the system
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state is not directly observed, and there is sensor noise, n(t),
and process noise, v(t). At a given prediction time, ¢p, the
prediction algorithm uses the joint state-parameter estimate
p(x(tp),0(tp)|yo:t,p) and computes p(EOL(tp)|yo:t, ) and
p(RUL(tp)|yo:t, ). Along with the uncertainty in the state-
parameter estimate, process noise and uncertainty in the fu-
ture inputs to the system all contribute to the uncertainty in
the EOL/RUL prediction.

This system-level prognostics problem, consisting of estimat-
ing the system state and then predicting its evolution to EOL,
can be solved using component-level approaches by treating
the entire system as a single component and applying these
approaches directly. However, for a large system, both the es-
timation and prediction problems are correspondingly large.
Due to the large state-parameter dimension, a centralized ap-
proach does not scale well, and can be very inefficient.

Therefore, we propose to decompose the global system-
level prognostics problem into independent local subprob-
lems, such that the solutions to the local subproblems may
be easily merged to form the solution to the global prognos-
tics problem. This forms a naturally distributed approach in
which the local subproblems, since they are independent, may
be solved in parallel, thus providing scalability and efficiency.
Further, the approach allows different algorithms to be em-
ployed on each subproblem. The subproblems often corre-
spond directly to component-level prognostics problems, and
the approach provides a mechanism to combine component-
level prognostics results into system-level results.

In (Daigle et al., 2011), we developed such a distributed solu-
tion to the estimation part of the prognostics problem, based
on the concept of structural model decomposition (Pulido &
Alonso-Gonzélez, 2004). In recent work, the same concept
was used to decompose the prediction problem (Daigle,
Bregon, & Roychoudhury, 2012). Structural model decom-
position allows one to decompose a system model into a set
of submodels for which local prognostics problems can be
directly defined. The global model of the system, denoted as
M, is defined as follows.

Definition 1 (Model). The model of a system, M, is a tuple
M = (X,0,U0,Y,C), where X is the set of state variables
of x, O is the set of unknown parameters of 6, U is the set of
input variables of u, Y is the set of output variables of y, and
C' is the set of model constraints of f, h, and Cgoyr..

Informally, a model consists of a set of variables and a set
of constraints among the variables. While technically f and
h themselves are (complex) constraints, we represent them
instead as sets of simple constraints. This view is also more
consistent with the way modelers describe f and h, i.e., as sets
of equations, each describing a single state or output variable.

Model decomposition is accomplished by assigning some
variables as local inputs for which the values are known (e.g.,
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they are directly measured). In this way, the submodels are
made computationally independent of each other. Within this
scheme, a submodel is then defined as follows.

Definition 2 (Submodel). A submodel M; of a system model
M = (X, 0,U,Y, C) is a tuple M; = (Xi, 0,,U,Y;, Cl),
where X; C X,0, CO,U; CXUUUY,andY; CY are
the state, parameter, input, and output variables, respectively,
and C; C C are the submodel constraints.

For distributed prognostics, we find a set of submodels that
satisfy a certain set of properties. For distributed estimation,
the submodels use U; C U U (Y —Y;), and we find a set of
minimal submodels such that each Y; is a singleton, and over
all Y;,Y; where i # 5, Y; N'Y; = @. So, each submodel uses
some global model inputs and some measured values as lo-
cal inputs, and, in this way, the submodels become decoupled
and may be computed independently from each other. By cre-
ating submodels with one output variable each, we maximize
the number of estimation submodels and the opportunity for
parallelization of the estimation task. By making the sub-
models minimal, they require no constraints or variables that
are not strictly necessary to compute Y;. An algorithm for
computing the set of submodels with these properties is given
in (Daigle et al., 2011), which is based on the model decom-
position algorithms presented in (Pulido & Alonso-Gonzélez,
2004; Bregon, Biswas, & Pulido, 2012).

For distributed prediction, the submodels use U; C Up,
where Up C X U U. Here, Up is a set of variables whose
future values can be hypothesized. In the centralized case,
Up = U. We find a set of minimal submodels such that
each submodel has at least one ¢ € C'goy, belonging to C;,
and over all submodels, C'goy, is covered. This ensures that
Tror may be computed for the system; since Tgor is 1
whenever any of the constraints in C'goy, are violated, we can
independently evaluate when those individual constraints will
be violated and then take the minimum to obtain the system
EOL. An algorithm for computing the set of submodels with
these properties is given in (Daigle, Bregon, & Roychoud-
hury, 2012). Both decomposition algorithms work in a sim-
ilar way; essentially, they start with a variable or constraint
that must be computed in the local submodel, and then trace
the dependencies backwards until local inputs are reached,
including all variables and constraints found throughout the
search within the submodel.

Note that the problem of defining Up is critical to obtaining
accurate results for system-level EOL in a distributed manner.
On average, the most accurate result will be achieved when
the system model is directly used for prediction, because it
captures all the interdependencies between the components.
In the general case, damage could be progressing in multiple
components, and damage progression in one component may
have an effect on damage progression in another component
due to their coupling. In such cases, for system-level prog-
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Figure 1. Sample system-level prognostics architecture.

nostics the components cannot be decoupled due to these in-
teractions, and the prediction problem cannot be decomposed
into two independent problems, one for each component. It is
only appropriate to neglect these interactions when they are
either negligible or predictable a priori. It will be shown in
Section 5 how this is an important consideration.

2.3. Prognostics Architecture

A sample system-level prognostics architecture based on the
distributed framework is shown in Fig. 1. In discrete time
k, and using a discrete-time version of the model, the dam-
age estimation module takes as input both u; and y; and
splits them into local inputs and outputs for the submodels.
Estimation is performed for each submodel using an appro-
priate algorithm, computing local state-parameter estimates
p(xL,0}]yi.,). Some of these local estimates are merged
corresponding to the prediction submodels. For example,
submodel M builds its local state using the estimates from
the estimators of My, M3, and M,. The local predictors
compute local EOL/RUL predictions p(EOLj, ,|y{.,.,,) and
p(RUL, |y{..,) at given prediction time kp based on the
local EOL constraints. Local predictions are then merged into
global predictions p(EOLy,|yo:xp) and p(RU Ly, |yo:kp)
by taking the minimum of the local predictions.

3. DISTRIBUTED ESTIMATION

As described in Section 2, in our distributed estimation
scheme, the local estimator for each submodel M, produces
a local estimate p(x}, 0} |y?.,.), where xi C xj, 8}, C 0y,
and yi C yy. Here, the local inputs used, u’, consist of ele-
ments from both u and y, where measured values are directly
used as local inputs. The estimation problem is decomposed
by finding a set of minimal submodels that together cover the
subset of x and 6 required for prediction, by using these local
inputs. This approach to distributed estimation is different
from approaches like the distributed decentralized extended
Kalman filter (Mutambara, 1998) or other estimation fusion
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techniques (Sinha et al., 2008) where local estimates are com-
municated between local estimators. Here, local estimators
do not communicate and operate completely independently.

In order to effectively perform joint state-parameter estima-
tion, the system should be observable, among other require-
ments. If the global model is structurally observable, then we
are guaranteed that the local submodels for estimation are as
well (Moya et al., 2010).

Any suitable algorithm may be used for joint state-parameter
estimation. In this paper, we use an unscented Kalman fil-
ter (UKF) (Julier & Uhlmann, 1997, 2004) with a variance
control algorithm (Daigle, Saha, & Goebel, 2012). The UKF
assumes the general nonlinear form of the state and output
equations described in Section 2, but restricted to additive
Gaussian noise.

We summarize the main details of the UKF below, and refer
the reader to (Julier & Uhlmann, 1997, 2004) for details. In
the UKF, distributions are approximated using the unscented
transform (UT). The UT takes a random variable x € R"=,
with mean X and covariance P, that is related to a second
random variable y € R"™v by some function y = g(x), and
computes the mean y and covariance P, using a minimal set
of deterministically selected weighted samples, called sigma
points (Julier & Uhlmann, 1997). X ¢ denotes the ith sigma
point from x and w’ denotes its weight.> The sigma points
are always chosen such that the mean and covariance match
those of the original distribution, X and P,,. Each sigma
point is passed through g to obtain new sigma points Y, i.e.,

Y =g(x’)

2Sigma point weights do not directly represent discrete probabilities, so are
not restricted to [0, 1].
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with mean and covariance calculated as
y=2 vy
i
T .
Py, = Zwl(lﬂ -y -y
i
In this paper, we use the symmetric unscented transform, in

which 2n, 4 1 sigma points are symmetrically selected about
the mean according to (Julier & Uhlmann, 2004):

R .
W — (”:I:JIF"?)7 =0
m, i=1,...,2n,
X, =0
yi_ x+< 0u+@PmJZi:1,”J%
5{—( (nm+n)Pm>i d=mnz+1,...,2n,,
where ( (ne + /Q)Pzgﬂ)i refers to the ith column of the ma-

trix square root of (n, + k)P.,. Here, x is a free parameter
that can be used to tune higher order moments of the distribu-
tion. If x is assumed Gaussian, then selecting kK = 3 — n, is
recommended (Julier & Uhlmann, 1997).

In the filter, first, ns; sigma points X k—1|k—1 are derived
from the current mean Xj_;|;—; and covariance estimates
P _11—1 using a sigma point selection algorithm. The pre-
diction step is:

~ i i ,
Xijp—1 = f(xk—1|k—1auk71)vl =1,...,n,

o i .
yklk—l = h(Xklkr—l)7Z = 1, ...y
Ns
Xplk—1 = ZWZX%U@A
i
ng
Vih-1 = w'¥i
i
with
Prr1=Q+

Ns
Zw’(Xﬁdk,l — K1) (X1 — Knpp—1) "
[

where Q is the process noise covariance matrix. The update
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step is:
P, =R+ Zwi(y;;ucq — Vetk—1) Vg1 — Yelp—1)"

Poy = w (X1 — Xere1) Vhpor — rpp—1)”
i

K, =P,,P,)
Xk = Xp—1 + Ki(Yr — Yijp—1)
Py =Py — Ki Py Ki

where R is the sensor noise covariance matrix.

Joint state-parameter estimation is accomplished in the UKF
by augmenting the state vector with the unknown parameters,
and the corresponding diagonal elements of the process noise
matrix, Q, are set to nonzero values. In this way, the param-
eter estimates become time-varying and are modified by the
filter using the measured outputs.

The variance values in Q associated with the unknown pa-
rameters determine both the rate of parameter estimation con-
vergence and the estimation performance once convergence
is achieved, therefore, techniques have been developed to
tune this value online to maximize performance, e.g., (Liu &
West, 2001; Orchard, Tobar, & Vachtsevanos, 2009; Daigle,
Saha, & Goebel, 2012). We adopt the approach presented
in (Daigle, Saha, & Goebel, 2012), in which the algorithm
tries to control the variance of the hidden wear parameter
estimate to a user-specified range by modifying the process
noise variance. Effectively, the algorithm increases the vari-
ance when the relative parameter spread is below the desired
level, and decreases it otherwise. With the proper settings,
the parameter estimates converge quickly and track with high
accuracy and precision.

4. DISTRIBUTED PREDICTION

Each local prediction module takes as input local state-
parameter estimates formed from the local estimators, as dis-
cussed in Section 2. The required estimates must be con-
structed from the local estimates of the submodels used for
estimation. A prediction submodel has a set of states X;
and parameters ©;, and it must construct a local distribu-
tion p(x%,0}|yl.,). To do this, we assume that the local
state-parameter estimates may be sufficiently represented by
a mean p’ and covariance matrix X*. For each prediction
submodel M;, we combine the estimates from estimation
submodels that estimate states and parameters in X; U ©;
into p’ and covariance X°. If there is overlap in the state-
parameter estimates, i.e., if two submodels both estimate the
same state variable x or parameter 6, then this may be re-
solved by a number of techniques, e.g., taking the estimate
with the smallest variance, or taking an average. Note that,
due to the decomposition into independent local submodels,
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Algorithm 1 EOL Prediction

Inputs: {(XZ(J) GZ(J))’ Z(J)}],
i(5)
Outputs: {EOL,C wk; W
for j = 1to N do

ke kp
X;c(]) —x
OZ(j) . 92(11)

Predict t,
while T 1 (
Predict i}
Bgiﬂ“*p(

)

A

Xi(j)7 9;’6(3')7 ol

) =0do
116:9)

|X1(J) gl(J) Az)

end while
EOLY « k
end for

we recover only an approximation to the joint posterior dis-
tribution as would have been found by a global estimator. In
particular, covariance information is lost due to the decou-
pling and will appear as zeros in the merged covariance ma-
trix. As shown in (Daigle et al., 2011) and as will be seen in
Section 5, the approximation still results in accurate predic-
tions.

Given the mean and covariance information, we represent the
distribution with a set of sigma points derived using the un-
scented transform. Then, as in (Daigle & Goebel, 2010), each
sigma point is simulated forward to EOL, and we recover the
statistics of the EOL distribution given by the sigma points.

The prediction algorithm is executed for each submodel 7, de-
riving local EOL predictions using its local threshold func-
tion based on the local EOL constraints. The pseudocode for
the prediction procedure is given as Algorithm 1 (Daigle &
Goebel, 2011b). For a given submodel M, each sigma point

XZ(J) 91(1))

J is propagated forward until T ( evaluates to

1. The algorithm hypothesizes future inputs Gy,

Each prediction submodel M; computes a local EOL/RUL
distribution, i.e., p(EOL]_|y{.,.,) and p(RUL} [y....)-
The system EOL is determined by the minimum of all the
local distributions, since Tgoy, of the system is 1 whenever
any of the local constraints are violated, and each local distri-
bution is associated with a subset of these constraints. Specif-
ically, for m prediction submodels,

p(EOLkP |y02kp) = mln({p(EOL;lcP |y6kp)}?;1)

To compute this, we sample from each local EOL distribution
and take the minimum of the local samples. This is repeated
many times and the statistics of the global EOL distribution
are computed.
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5. CASE STUDY

In this section, we apply our system-level prognostics ap-
proach to a four-wheeled rover testbed developed at NASA
Ames Research Center. We develop a model of the rover, and
demonstrate the approach using simulated scenarios.

5.1. Rover Modeling

The rover model was originally presented in (Balaban et al.,
2011). In this section we summarize the main features and
include some extensions to the model.

The rover consists of a symmetric rigid frame with four
independently-driven wheels. The wheel speeds are governed
by

1

WprL = —— (TmFL — TfFL — TgFL + TgrFL) (c1)
JrL

. 1

WFR = Trn (TmFR — TfFR — TgiFR — TgrFr)  (C2)

. 1

WBL = Trn (TmBL — T¥BL — TgiBL + TgrBL) (c3)

. 1

WBR = Tin (TmBR — TfBR — TglFR — TgrBR)  (Ca)
The F, B, L, and R subscripts stand for front, left,

back, and right, respectively. Here, for wheel w &
{FL,FR,BL,BR}, J, denotes the wheel inertia; 7,,, =
kri,, is the motor torque, where i,, is the motor current and
k- is an energy transformation gain; 77, = Ufwwy 1s the
wheel friction torque, where pi,, is a friction coefficient;
Tglw = Twhtgls(Vw — v) is the torque due to slippage, where
1y, 18 the wheel radius, f14;, is a friction coefficient, v,, is the
translational wheel velocity, and v is the translation velocity
of the rover body; and 7y, = 7y lhgrww cOsy is the torque
due to the rotational movement of the rover body, where fi4,+,
is a friction coefficient, w is the rotational velocity of the rover
body, and v = arctan /b with [ being the rover length and b
being its width.

We consider here friction-based damage progression in the
motors, resulting in an increase in motor friction over time,
which will lead to an increase in power consumption. For
wheel w, 7, is governed by (Daigle & Goebel, 2011b)

[LfFL = ViFL i FL WhL (c5)
[LfFR = VfFR [LfFR WhR (ce)
[LfBL = VfBL WfBL WhL (c7)
[LfBR = VfBR LfBR WhR (cs)
where for wheel w, v, is an unknown wear coefficient.
The translational velocity v of the rover is described by
. 1
v=_ (Fgirr + Farr + Fapr + FaBr) , (co)
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< F, grBR

Figure 2. Rover forces.

where m is the rover mass, and for wheel w, Fg,, =
tgiw(Vw — v) is the force due to slippage. The rotational
velocity w is described by

1
W= j(dCOS’nglFR +dcosyFgpr — dcosyFgirrL

—dcosvFypr — dFgrpr — dFgrpr — dFy L
— dFg.BR). (c10)

Here, J is the rotational inertia of the rover, d is the distance
from the center of the rover to each wheel, and for wheel w,
Fyrw = pigrow is the force due to the rotational movement of
the rover body. The rover forces are illustrated in Fig. 2.

The wheels are driven by DC motors with PI control that sets
the voltages V' applied to the motors. The motor currents are
governed by

ipL = %(VFL —irLRrp — kowrr) (c11)
ipR = %(VFR—iFRRFR*kwaR) (c12)
iBL = %(VBL —iprRpr — kwwBL) (c13)
iBR = %(VBR —igrRBR — kwWwBR). (c14)

Here, L is the motor inductance, k,, is an energy transforma-
tion term, and for wheel w, R is the motor resistance. The
voltages applied to the motors are determined by the con-
trollers, where for wheel w, Vi, = P (U — wyy) + I * €405
where P is a proportional gain, u,, is the commanded wheel
speed, [ is an integral gain, and e;,, is the integral error term.
The integral error terms are governed by

€iFL = UFL — WFL (c15)
€;FR = UFR — WFR (c16)
€iBL = UBL — WBL (c17)
€;BR = UBR — WBR- (c18)

The motor windings heat up as current passes through them.

The temperature of the windings for the motors are governed
by

. 1,
Turr = — (i3, R — hapr(Tarr — TrarL))

7, (c19)
. 1,
Tarr = 7 (izrR — harr(Tarr — Trurr)) (c20)
. 1,
Tapr = 7 (iR — hapr(Tupr — TmBL)) (c21)
: 1,
TaBr = 7 (i5rR — hapr(Tur — Tmpr)),  (c22)

where J; is the thermal inertia of the windings, and for wheel
w, hgy 1S a heat transfer coefficient, and 7,,,, is the motor
surface temperature. It is assumed that heat is lost only to
the motor surface, and that winding resistance R is approx-
imately constant for the temperature range considered. The
surface temperature of the motor for wheel w is given by

. 1
TmrL = j(hdFL(TdFL —Trr) — harn(Tmrr — 1))
(c23)
. 1

TmrRr = j(hdFR(TdFR —Tomrr) — harR(Tmrr — Ta))

’ (c24)

. 1
TmBL = j(thL(TdBL —TmBr) — heBr(Tmpr — Ta))

’ (c25)

TmBR = j(thR(TdBR —TmBr) — haBr(TmBr — T4)),

’ (c26)

where J; is the thermal inertia of the motor surface, and for
wheel w, h,,, is a heat transfer coefficient, and 7, is the am-
bient temperature. Heat is transferred from the windings to
the surface and lost to the environment.

The batteries, which are connected in series, are described
by a simple electrical circuit equivalent model that includes a
large capacitance C' in parallel with a resistance R,,, together
in series with another resistance R,.> The battery charge vari-
ables ¢; are governed by

¢ =—-Vi/Rp1 — (irr +irr +iBr +iBL) (ca7)
g2 = —Va/Rpe — (irL +irr +iBR +iBL) (c28)
gs = —V3/Rp3 — (irL +irr +iBR +iBL) (c29)
Gs = —Va/Rps — (irr +irr +iBr +iBL). (c30)

3We use a simple model here only for demonstration purposes. More detailed

battery models for prognostics can be found in the literature, e.g., (Saha &
Goebel, 2009).
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Submodel X O; U, Y; C;

My q1 Chp1, Rs1 i Vi €27,C31,C35

Ms g2 Chr2, Rs2 iy Vs €28,C32,C35

M3 q3 Ch3, Rs3 i Vs €29,€33,C35

My qa Cha, Rsa iy Vi €30,€34,C35

Ms Tarr, TmFL harr,harr  ipp mEFL  C19,C23,C36,C40

Me Tirr, Tmrr harr,harr  iFg mFR  €20,C24,C37,C41

M= Tupr, TmBL hasrL,heBL  iBL mBL  C21,C25,C38,C42

Ms TiBr, TmBR hiBr,haBr iR mBR  €22,C26,C39,C43

Mo IFL,€iFL %) UFL, W], 35 €11,C15,C36,C44

Mo iFR,€iFR 1) UFR,WpR iFR €12,C16,C37,C45

M 1BL,€iBL 1%} UBL,WBL, 1B €13,C17,C38,C46

Mo iBR,€iBR ] UBR,WER iBR €14,€18,€39,C47

Mas WFL,V,W, UfFL VfFL ZFLWJFR,UJBL,UJBR UJ}L C1,C5,C9,C10,C36,C45,C46,C47
Mia WFR,V,W, UfFR VfFR ZFR7 UJFL, wBL» WBR WER €2,C6,C9,C10,C37,C44,C46,C47
Mis WBL,V,W, WfBL VfBL ZBL,WFL,OJFR7WBR WEL C3,C7,9,C10,C38,C44,C45,C47
Mg WBR,V,W, LfBR VfBR ZBR,UJFL,UJFR,WBL W*BR C4,C8,C9,C10,C39,C44,C45,C46

Table 1. Estimation Submodels

The available sensors measure the voltages of the batteries,

W'=q¢/Chi —Re1 % (ipr +irr+igr+ipr) (c31)
Vo =q2/Cho — Reo * (ipr +irr +iBr +iBL) (C32)
Vs =q3/Ch3s — Rs3 * (irpr +irr +iBr +iBL) (C33)
Vi =0q4/Cps — Rsa % (irr + ipr + iR +iBL), (C34)
the battery current,
iy =4rL +irr +iBR +IBL, (c35)
the motor currents,
ipr =irL (c36)
irR = IFR (c37)
ipr, =1IBL (c38)
iBr = iBR, (c39)
the motor surface temperatures,
mrPL = ImFL (c40)
mrRr = ImFR (ca1)
mBL = ImBL (c42)
mBR = TmBR; (ca3)
and the wheel speeds,
Wy = WFL (Ca4)
WpR = WFR (ca5)
WRr = WBL (ca6)
WER = WBR- (ca7)

Here, the * superscript indicates a measured value.

We are interested in predicting when any of the rover batter-
ies are at their voltage threshold, beyond which the batteries
will be damaged (Saha & Goebel, 2009). The constraints are
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given as
Vi>V~ (ca8)
Vo>V— (ca9)
Va>V— (¢50)
Vi>V—, (c51)
where the voltage threshold is given by V'~ = 9.6 V, and for

battery i, V; = Qi/cbi_Rsi*(iFL+iFR+iBR+iBL)- We are
also interested in when the motor temperature gets too high.
The motor windings are designed to withstand temperatures
up to a certain point, after which, the insulation breaks down,
the windings short, and the motor fails (Balaban et al., 2010).
The constraints are given as

TmrL < T, (¢52)
Trr < Ty, (¢53)
Tmpr < T)F (c54)
Tpr < T}, (cs5)

where the temperature limit is given by 7.7 = 70° C. The
rover cannot be operated when any of these constraints, c4g—
cs5, are violated.

In the general case, we consider uncertainty in the friction
wear parameters Vrrr, VfrRr, VfBL, and vypg; the heat
transfer coefficients hyrr, harr, hagr, haBRr> harL, harR,
heBL,and h,pR; the battery capacitances Cy1, Cpa, Cps, and
Cpq; and the battery resistances R, Rs2, Rs3, and Rg4. Sen-
sor and process noise were estimated based on data from the
actual rover testbed.

5.2. Results

To demonstrate the validity of the approach, we describe
two scenarios for system-level prognostics of the rover. In
the first, the rover is operating nominally without any faults
present, and in the second, friction damage is progressing
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Submodel X O; U; Y., C;

Mz q1 Chv1, Ra1 1FL,%"FR,%BL,1BR &  C27,C48
Mg q2 Ch2, Rs2 IFL,%FR,%BL,1BR &  C28,C49
Mg qs3 Ch3, Rs3 1FL,"FR,BL,IBR &  €29,C50
Mg g4 Chra, Rsa 1FL,%FR,%BL,1BR &  €30,C51
Mo Tarr, Tmrr  harr,herr  iFL g €19,€23,C52
Moz Tarr,Tmrr hdarr,haFr iFR I €20,C24,C53
Moz Tapr,TmBr  haBr,heBL iBL I €21,025,C54
Moy TiBr,TmBr haBr,haBrR iBR D €22,026,C55

Table 2. Prediction Submodels Using Motor Currents as Local Inputs

on one motor. In both cases, the rover travels between var-
ious waypoints, moving at an average speed of 0.5 m/s. The
unknown parameters are initialized incorrectly (with around
10% error) so that the local estimators must converge to the
true values. In both cases, the estimation step is performed
in a distributed manner using the set of submodels derived
by using measured values as local inputs, shown in Table 1.
For example, submodel M computes an estimate of V}* us-
ing the measured value of 7; as a local input, and using the
minimal set of constraints to do this. For the prediction sub-
models, as will be shown, the correct submodels to use de-
pends on the scenario, and illustrates when and when not the
prediction step can be decomposed.

5.2.1. Nominal Operation

We first consider a scenario involving nominal, fault-free op-
erations. In this case, EOL occurs around 3 h. An RUL pre-
diction is made every 500 s. With the rover traveling at an
average speed of 0.5 m/s, the motor currents average to about
0.15 A each and so the total current draining from the four
batteries is 0.6 A. Since these values do not vary much dur-
ing nominal operation, we can use the motor currents as local
inputs for the model decomposition. These submodels are
shown in Table 2. Note that the estimates from the estima-
tion submodels M;—Mg are used directly in the prediction
submodels M7;—May, respectively, and that estimation sub-
models Mg—M ¢ are not necessary. Note also that the pre-
diction submodels do not compute any outputs, rather, their
goal is to compute EOL constraints (e.g., M7 computes c4g).

The system-level prediction results are shown in Fig. 3. Pre-
dictions from the battery submodels are shown in Fig. 4. In
this case, the motor temperatures reach a steady-state that is
below the temperature threshold, so only the batteries have an
impact on system EOL, which is the minimum of the EOLs
predicted for the battery submodels. In particular, it is the
first and fourth batteries (corresponding to M7 and My,
respectively) that discharge the fastest, as shown explicitly in
Fig. 4. The figures show the means of the predicted RUL
distributions, the true RUL, RU L*, and an accuracy cone of
a = 10% around it. In Fig. 3, we show both the system-
level predictions using the distributed approach with M7—
My and the centralized approach using the global predic-
tion model M. The global prediction model contains all
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the states, parameters, and constraints given in the previous
subsection, minus the output constraints, and uses the com-
manded wheel speeds (known a priori) as hypothesized in-
puts. Since the currents are also known a priori, the system-
level prediction can be decomposed, and the predictions made
using the local submodels closely match those made using the
global model, as shown in the figure.

We use the relative accuracy (RA) metric (Saxena et al., 2010)
for prediction accuracy. Averaged over all predictions, RA is
97.48% for the distributed approach and 98.74% for the cen-
tralized approach. Using relative standard deviation (RSD) as
a measure of spread, and averaged over all prediction points,
RSD is 0.40% for the distributed approach and 0.43% for
the centralized approach. The distributed approach is only
slightly less accurate but has better precision. Here, both ap-
proaches are very accurate since the system state-parameter
estimates are very accurate, and there is only a small amount
of error associated with assuming a constant average mo-
tor current or wheel speed. Correspondingly, the prediction
spread is relatively small because the uncertainty in the state-
parameter estimate is very small.

5.2.2. Friction Damage Progression

We now consider a scenario in which for the front-left motor,
there is nonlinear friction damage progression with vypr, =
1 x 10™*s. As a result of the continuously increasing fric-
tion, the current drawn by the motor increases as well in order
for the motor controller to maintain the same desired wheel
speed. Hence, the total current drawn from the batteries is
increased, and EOL occurs around 2 h. Because 7, is con-
stantly changing, and in a way that is dependent on the motor
state, it cannot be predicted a priori, and so cannot be used as
a local input because the resulting predictions will not be ac-
curate. Therefore, we require a submodel that estimates iy,
and we so employ submodels using as local inputs average
values for the remaining motor currents, average commanded
wheel speeds, and average rover translational velocity v and
rotational velocity w. The prediction submodels for this case
are shown in Table 3. For comparison, we demonstrate also
prediction using M7;—Ms,, and, for this strategy, at each
prediction point the average value of current measured over
the last minute is used as the future hypothesized value. Of
course, this will not yield accurate results since future values
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Submodel X O; U; Y., C;

Mas q1,UFL,€iFL,WFL, 4fFL Co1, Rs1,VfFL UFL,V,W,1FR,1BL,*BR &  C1,C5,C11,C15,C27,C48
Mg G2,1FL,€FL,WFL, LfFL Ch2, Rs2,VfrL UFL,V,W,1FR,1BL,"BR &  C1,C5,C11,C15,C28,C49
Moz Q3,FL,€FL,WFL, LfFL Cr3, Rs3,V5FL UFL,V,W,1FR,1BL,TBR <  C1,C5,C11,C15,C29,C50
Mog G4,1FL,€iFL,WFL, 4fFL Cra, Rsa, vsrrL UFL,V,W,1FR,1BL, BR &  C1,C5,C11,C15,C30,C51
Mg Tarr, TmrL,iFL, €iFL,WFL, bfFL  RdrL,RaFL,VfFL UFL,V,Ww D €19,€23,C52,C11,C15,C1,C5
Mg Tarr, TmFr harr, haFRr IFR D €20,C24,C53

M3z Tar, TmBL haBL,haBL iBL g €21,C25,C51

M3 TiBr, TmBR haBR, haBR iIBR & €22,C26,C55

Table 3. Prediction Submodels Using Commanded Wheel Speeds and Rover Velocities as Local Inputs
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Figure 3. System RUL prediction performance under nominal
conditions with o = 0.1.

of the current will actually be larger. Note that the predic-
tion submodels used in this case do not correspond directly to
those used for estimation. So, when constructing the estimate
for M5, for example, it takes the estimates from M, Mo,
and M3.

The system-level prediction results are shown in Fig. 5. Al-
though the increased friction causes the temperature of the
front-left motor to increase, it is still the batteries discharging
that dominates the system-level EOL in this case. We show
the predictions using M 17— Moy, Mos—M 3o, and the global
model M. For Mgs—Ms3s, average values of v = 0.5 m/s
and w = 0 rad/s are used. Here, the predictions using the lat-
ter two approaches are virtually identical (the predictions us-
ing Mo5—M 3o are hidden under those for M), and fairly ac-
curate. In contrast, as expected, the predictions using M 17—
My are very inaccurate, and only converge towards the true
RUL at the very end. This quite effectively demonstrates
that, in this scenario, it is incorrect to use the front-left mo-
tor current as a local input for predictions, since it cannot be
predicted independently from the front-left motor submodel,
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Figure 4. Individual battery submodel RUL prediction per-
formance under nominal conditions with o = 0.1.

and therefore a submodel that itself predicts this current is
required to obtain accurate predictions.

Here, RA averages to 58.95% using My7—May, 94.24% us-
ing Maos—M3o, and 94.32% using M. RSD averages to
0.76% using My7—May, 1.62% using Maos—M3zs, 1.73%
using M. Here, we also observe an increase in prediction
spread using the centralized approach with only a slight in-
crease in accuracy over the distributed approach.* Overall,
accuracy and precision are both decreased compared to the
nominal scenario because there is more uncertainty in the
state-parameter estimate, specifically, that dealing with the
estimate of vy pr,. This uncertainty in the state-parameter es-
timate contributes to the additional uncertainty in the RUL
predictions.

4The RSD for M17-May4 is the lowest because those submodels do not
include the motor friction component, so do not have the additional uncer-
tainty associated with the estimation of the wear parameter.
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Figure 5. System RUL prediction performance with friction
damage progression with o = 0.1.

6. CONCLUSIONS

In this paper, we formulated the system-level prognostics
problem and proposed a distributed solution based on struc-
tural model decomposition. Using a four-wheeled rover as
a simulation-based case study, we demonstrated the effec-
tiveness of the approach. Most importantly, the distributed
approach allows for, in many practical circumstances, the
decomposition of the system-level prognostics problem into
component-level prognostics problems and provides a mech-
anism to merge local prognostics results into a system-level
result. Further, since the local subproblems are independent,
this allows component experts to focus on prognostics solu-
tions for their components. However, we showed also that
this approach is not always possible if accurate results are de-
sired, since in some cases the prediction problem cannot be
so easily decomposed, and it depends crucially on correct as-
sumptions about what variables may serve as local inputs for
the prediction problem.

Although in this paper we focused on the model-based prog-
nostics paradigm, our approach is flexible in that data-driven
algorithms may be used also, once the local subproblems are
defined. For example, in previous works, structural model
decomposition was used to automatically design gray box di-
agnosis models that were implemented using different data-
driven techniques (for instance, state space neural networks
in (Pulido, Zamarreno, Merino, & Bregon, 2012) or machine
learning techniques in (Alonso-Gonzalez, Rodriguez, Prieto,
& Pulido, 2008)). By decomposing the system-level prob-
lem into independent subproblems through structural model
decomposition, we can apply similar ideas to solve each prog-
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nostics subproblem by using the most appropriate technique,
whether it is a model-based, data-driven, or hybrid approach.

An important direction of future work is in algorithms for
optimal placement of sensors for model decomposition, be-
cause the level of model decomposition that can be achieved
is dependent on the number of sensors and where they are
placed. This results in the most efficient decomposition of
the system-level prognostics problem. Current work also
addresses combining the distributed prognostics framework
with a distributed diagnostic approach for integrated diag-
nostics and prognostics (Bregon, Daigle, & Roychoudhury,
2012).
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ABSTRACT

Advanced vehicle diagnostics and prognostics (D&P)
technology enhances ownership experience, and reduces
corporate warranty cost. D&P performance optimization
requires significant algorithm tuning and a large amount of
test data collection, which is resource consuming.

In this paper, we propose a novel D&P framework called
Collaborative Vehicle Health Management (CVHM) to
automatically optimize the D&P algorithms on a host
vehicle, using the field data collected from peer vehicles
encountered on the road. The carefully designed system

architecture and learning algorithms enhance D&P
performance without costly human intervention. The
experimental results on battery remaining useful life

prediction show the effectiveness of the proposed
framework. This proposed framework has been
implemented in a small test fleet as a proof-of-concept
prototype.

1. INTRODUCTION

Diversified passenger vehicle usage leads to diversified
vehicle system failure modes and aging processes. As a
result, it is very challenging to achieve accurate and robust
diagnostic and prognostic (D&P) performance for vehicle
systems in the field. In the state-of-the-art practice of D&P
algorithm development, a large amount of data has to be
collected through fault injection on bench or test vehicles
for diagnostics, or through accelerated ageing tests for
prognostics. And a significant amount of algorithm tuning
work has to be done by development engineers.

Yilu Zhang et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.
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Motivated by this challenge, we propose a novel D&P
framework called, Collaborative Vehicle Health
Management (CVHM), where field data from peer vehicles
are aggregated to automatically optimize the D&P
algorithms for the host vehicle. This is an extension of the
decade-long evolving research and development in the area
of remote vehicle diagnostics (Millstein, 2002) (Kuschel,
2004) (Carr, 2005) (You, Krage, & Jalics, 2005) (Zoia,
2006) (Zhang, Grantt, Rychlinski, Edwards, Correia, &
Wolf, 2009) (Byttner, Rdégnvaldsson, Svensson, Bitar, &
Chominsky, 2009). Three key enablers are needed to realize
CVHM,

1. An onboard CVHM architecture that facilitates peer
vehicle data aggregation, and host vehicle D&P
algorithm adaptation

2. Intelligent data modeling and statistical decision
making technologies that allow the extraction of fault
signature, failure precursor, trending information, and
other actionable knowledge to enhance the D&P
performance.

3. A heterogeneous wireless communication solution that
combines cellular network, and opportunistic V2V
(vehicle-to-vehicle) communication to allow the
exchange of large-volume data between vehicles in a
cost-effective way.

In this paper, we present the latest development in the first
two items above, using battery remaining useful life as the
example application. The reader is referred to (Bai, Grimm,
Talty, & Saraydar, 2011) for the background of item 3.

This paper is organized as follows. The proposed CVHM
architecture is introduced in Section 2, followed by the
development of the prognostic algorithms in Section 3.
Section 4 discusses the system implementation. Section 5
presents the experimental results. Section 6 discusses future
works.
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2. COLLABORATIVE VEHICLE HEALTH
MANAGEMENT SYSTEM ARCHITECTURE

A typical vehicle health management system architecture is
illustrated in Fig. 1. Sensor information regarding particular
vehicle subsystem is either directly collected by the VHM
ECU that runs D&P algorithms or is transferred from other
ECUs through an in-vehicle communication network. Note
that, in real implementations, the VHM ECU may be
implemented as a functional module within an ECU, such as
a body control module (BCM), that executes control
functions. The D&P module has various D&P algorithms
for different targeted vehicle components or subsystems,
such as battery, electrical power generation and storage
(EPGS) system, fuel delivery system, etc. The D&P module
processes the sensor information, and generates D&P
results, including the detected anomalies, isolated faulty
components, and the predicted remaining useful life (RUL)
of related components. The D&P algorithms are usually
developed, calibrated, and tested through a sophisticated
vehicle development process. Once the vehicle is released
for production, the D&P algorithms and the associated
calibration values are usually fixed. If major updates on the
onboard algorithms are needed, an ECU reprogramming can
be done after the vehicle is usually called to a dealer service
shop. Lately, the technology of remote ECU refresh is
maturing, which may allow the ECU reprogramming to be
done remotely through telematics connections.

The proposed CVHM system, as shown in Fig. 2, is built
upon the existing VHM system architecture. The newly
added V2X ECU provides the wireless communication

interface in order to exchange vehicle health related data
between the host vehicle and peer vehicles. V2X represents
vehicle-to-vehicle or vehicle to infrastructure. The V2X
ECU stores the data in an onboard database. The VHM ECU
has an algorithm adaptation module and a learning
algorithm library, in addition to the regular D&P module.
The algorithm adaptation module makes use of appropriate
learning algorithms to process the vehicle health related data
stored in the onboard database in order to tune and optimize
the calibration values within the D&P module.

Battery life prediction

EPGS Diagnostics

1
1

Other D&P Algorithms

Sensor/Communication

¢

Vehicle Subsystem

Fig. 1: A typical VHM system architecture in the state-of-
the-art
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Fig. 2: Proposed CVHM system architecture
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The advantage of CVHM can be understood based on the
following example. A battery life prediction algorithm
usually implements an ageing model that specifies how the
battery internal resistance grows given the number of
charge-discharge cycles. There are parameters in the ageing
model that specifies the growth rate of the battery internal
resistance, which is critical in battery life prediction. These
parameters are typically calibrated using accelerated ageing
test during the vehicle development process, and applied to
across the board to all vehicles. However, it is difficult for a
pre-calibrated model to account for the intrinsic diversity of
usage patterns and environment impacts. The fact is that
batteries for the same battery/vehicle model may have
different life span that ranges from 1 year to 10+ years. At
the same time, with large enough vehicle population, for any
given vehicle, chance is high that there are peer vehicles
with similar usage profiles that have been used for longer
time, and therefore have gone further ahead in the ageing
process. With CVHM, field data from these peer vehicles
can be used to fine tune the growth rate in the battery ageing
model, and consequently achieve higher prediction
performance.

3. ALTORITHM DEVELOPEMNT

The general framework to develop model-based prognostics
for remaining useful life (RUL) prediction involves the
following steps.

First, one or more fault signatures are identified to
characterize target system’s state of health, Z = f(SOH).
Depending on applications, these fault signatures may be
assessed either directly or indirectly. For example, in the
application of SLI (Starting, Light, Ignition) battery life
prediction, multiple fault signatures have been proposed
(Zhang, Grube, Shin, & Salman, 2008) (Zhang, Grube,
Shin, & Salman, 2009) (Shin & Salman, 2010). Some of
them can be directly measured by onboard sensors, e.g.,
minimum cranking voltage. Some of them can be directly
calculated from other sensor measurements, e.g., cranking
resistance can be calculated by dV /dI, where dV and dI are
voltage and current changes in the beginning of the cranking
process, respectively. There are also fault signatures that
cannot be directly measured, and have to be estimated as the
parameters in a system model, e.g., battery capacity.

The second step is to establish the failure criteria for fault
signatures with respect to specific applications. That is, if
Z > Z,, a system failure is declared, where Z, is a threshold.
For example, one of the main functions for SLI battery is to
crank the engine. As battery ages, its SOH deteriorates, and
so does its cranking capability. One of the fault signatures,
cranking resistance, increases during the ageing process.
When the cranking resistance reaches certain level, the
engine can hardly be started. This is when a battery failure
is declared. The failure criteria are highly application
specific, and usually require careful calibration.

The third step is to establish a system-ageing model that
specifies how the fault signatures evolve with respect to
usage. That is,

Z=27(L;6),

where L is a set of variables that characterize the usage
profile of the target system, and 9 is a set of parameters that
specify the detailed relationship between the usage and the
fault signature evolution.

The CVHM framework follows the above general model-
based prognostics framework. The main enhancement is that
the system ageing model is updated as more data is made
available from peer vehicles. In the next few sections, we
take battery RUL prognosis as an example application to
illustrate the development and implementation of the
CVHM framework.

3.1. Fault signature generation algorithms

Extensive previous research has been conducted, and
multiple SLI battery fault signatures have been identified,
including minimum cranking voltage, delta V, cranking
power, voltage residual, and cranking resistance (Zhang,
Grube, Shin, & Salman, 2008) (Zhang, Grube, Shin, &
Salman, 2009) (Shin & Salman, 2010). A brief description
of these fault signatures are listed Table 1. These fault
signatures change along with the battery age. For instance,
the cranking resistance increases in an accelerated ageing
experiment, as shown in Fig. 3. It’s worth noting that the
battery capacity is also an effective signature. However, it is
difficult to be estimated accurately online.
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Fig. 3 Cranking resistance change during the accelerated
ageing test for 14 batteries from JBI_Aging_2008 data set
(battery 9 does not have data) in the conditions of 100%
SOC and 25°C
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Battery Fault

Signatures Formula

Minimum

cranking voltage | Vmin = Min(Vbace)

Delta V: the
difference Vaeita = Vmin1 — Vminz

between the first | \where v, . and V,y;n, are the first and
and second

@ second minimum voltages, respectively
minimum voltage

T+0.5

P = f VbaseIpare dt

Cranking power J

where T =t when I > 1004

Z?:l(vbatt (l) - 17batt (l))

Ve =
R n

Voltage residual -
g where V¢ is estimated by calibrated

model from good batteries

i _ VbattO—Vmin
Cranking

. Ibatto—lmax
resistance

where Ly, = max(Ipget)

Table 1: Battery fault signatures

3.2. Prognosis algorithm with adaptation

While fault signatures indicate the current status of the fault,
failure prediction requires an ageing model to depict how
the fault signatures evolve as the battery ages. Multiple
ageing models have been proposed in the literature. Some of
them are physics-based models, considering either specific
ageing mechanism of battery (Schiffer, Sauer, Bindner,
Cronin, Lundsager, & Kaiser, 2007), or general ageing laws
for mechanical or electro-chemical systems (Edwin, Chiang,
Carter, Limthongkul, & Bishop, 2005). In reality, these
models are more or less hybrids of empirical and physics-
based models that have many model parameters fitted
through experiments. Other models are purely data driven
based on various linear or non-linear curve fitting
techniques (Saha, Poll, & Christophersen, 2009). Due to the
intrinsic complexity of the battery aging process, there is no
clear winner in the proposed ageing models in terms of
prediction accuracy. In this research, we adopted a few
static parametric models, including polynomial curve fitting,
exponential curve fitting, and support vector machine
(Vapnik, 1998). There was not significant difference
between these models in our experimental results. We
present the algorithm development based on a 3rd order
polynomial model due to its structural simplicity.

Each fault signature is modeled by the following equation:

P(E) = pit® + pot® + pst +py
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where 9 is predicted fault signature value, t is the battery
age in terms of service time, and p;,p,,p; andp, are
model parameters. Since both SOC and battery temperature
can affect battery fault signature, different models have to
be learned for different SOC and temperatures. The battery
RUL is defined as

RUL = argmin, [§(t) = yo] —

tcurrent

where y, is a predefined threshold, and t.,,;en: IS the
current battery age.

As discussed in Section 2, the ageing model calibrated with
accelerated ageing test may not be able to characterize the
ageing process in the field. In the proposed CVHM, the
ageing model is adapted using the data from peer vehicles
that have gone further in the ageing process.

Let yu(t;) be the fault signature value measured or
estimated by the host vehicle at time instant t;, where
j =1..Jand ] is the current time index for the host vehicle.
Let py 1, Py2. Pus Pua D€ the ageing model parameters
maintained by host vehicle, and pp, 1, Dp, 2: Pp;,3: Ppya DE
the ageing model parameters used by peer vehicle P, where
k =1..K and K is the number of peer vehicles. The model
adaptation procedure is as follows.

1. Estimate host vehicle fault signature values using peer
vehicles’ ageing model parameters, which yields,

y\H,Pk(tj) = pPk,1tj3 + pPk,thz + Dpy3tj + Ppya
where ¥, p, (t;) indicates the estimate of host vehicle fault
signature using the ageing model from peer vehicle P;.

2. Calculate the corresponding estimation error for the

ageing model from each peer vehicle P, as,
2calPh.p (8 = Y ()]

Pick N models with the smallest error. Without loss of
generality, the corresponding peer vehicles can be
represented as Py, , Py, ,..., Py, . In the experiment
presented in this paper, N is set to 3.

RH,Pk

Calculate the adjusted host vehicle fault signature
values, ¥ (t;), by averaging the fault signature values
based on the selected peer vehicles’ ageing models,

N
1
T () =7 Tupy ()
n=1

Update the host vehicle ageing model, using the
adjusted fault signature values

J

{PHJ' PH,2: PH,3» PH,4} = argmin ZD—/H (tj) - }A’(tj)]z
P1,P2,P3,P4 =

Where y(tj) = pltj3 + pztjz + p3tj + Pa.
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The adjusted ageing model parameters
{ Dy 1, P2 Pus Puay are used for future battery RUL
prediction.

4. SYSTEM IMPLEMENTATION

The proposed CVHM architecture has been implemented in
a three-vehicle test fleet for the battery RUL prognosis
application. To reduce the development cycle and cost, the
test fleet is constructed in the way that one host vehicle
implements the full CVHM architecture, and two peer
vehicles implement only the V2X module. Each of the two
peer vehicles maintain a database of battery D&P data from
multiple batteries, which simulates the situation where data
from multiple peer vehicles can be transferred to the host
vehicle for D&P algorithm adaptation.

For the host vehicle prototype implementation, there are
three major hardware components as shown in Fig. 4. The
first one is a dSpace® MicroAutoBox (MAB) that has direct
connection with the sensors on the battery. It employs the
functions of data acquisition, signal pre-processing, and
fault signature generation. During each vehicle cranking
process, the MAB generates multiple battery-status related
parameters, including battery temperature, SOC, cranking
resistance, minimum cranking voltage, cranking powering,
delta V, voltage residual.

Fig. 4: Overview of system Implementation

The second major hardware component is a VHM laptop (an
HP® 8440w laptop with Microsoft® Windows XP) that
connects with the MAB through a Vector® CANCaseXL.
The VHM laptop implements a VHM module that runs the
adaptive D&P algorithms to predict battery RUL. The
implementation of VHM module involves multiple
operations, including the CAN (Control Area Network)
communication with MAB, the D&P algorithms, the
database manipulations, the communication with the V2X
laptop, and a graphical interface for development users to
conduct debugging and demonstration. A C++/MATLAB
mixed programming technique is used to effectively
accommodate different operation needs.
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