



2012 Annual Conference of the Prognostics and Health Management Society

# An introduction to Prognosis, Uncertainty Representation, and Risk Measures

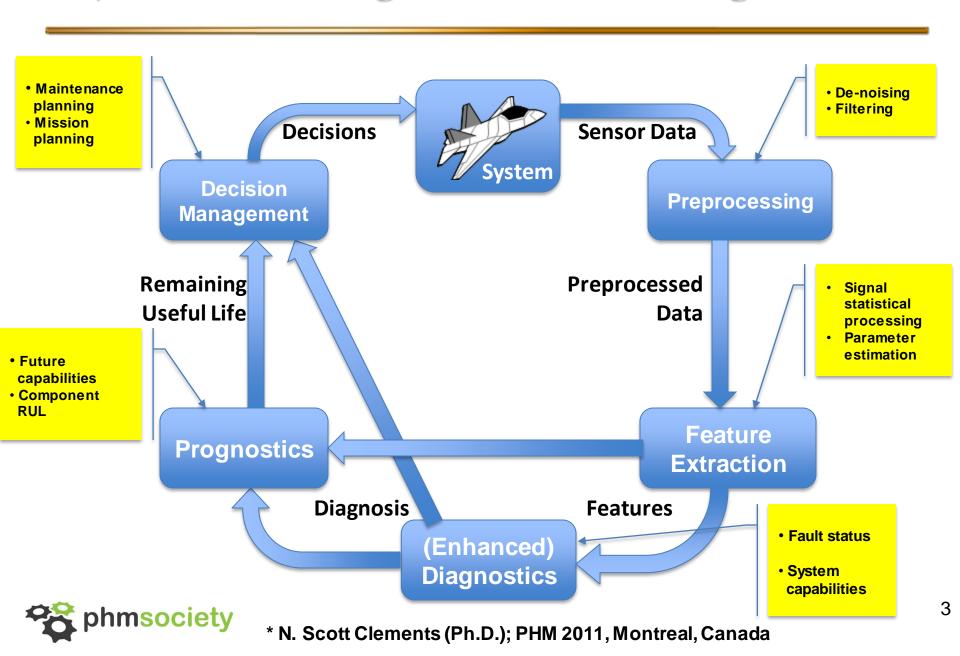
Dr. Marcos Orchard
Department of Electrical Engineering
Universidad de Chile
Santiago, Chile

# 1.1) PHM, Fault Diagnosis and Failure Prognosis

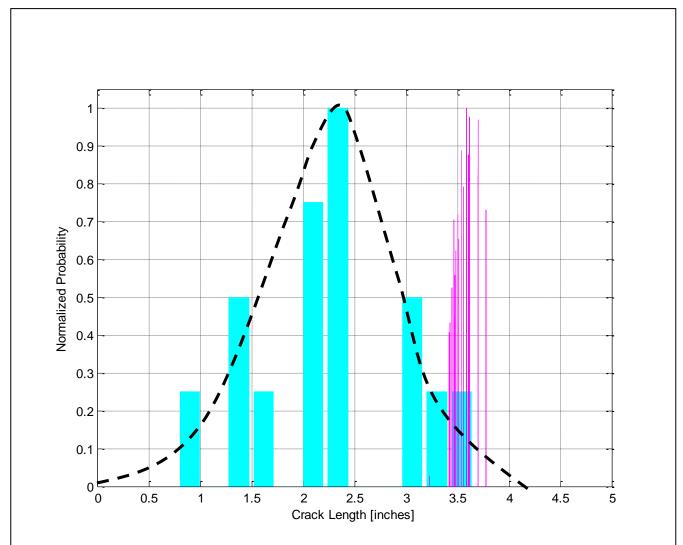




#### 1.1) PHM, Fault Diagnosis and Failure Prognosis



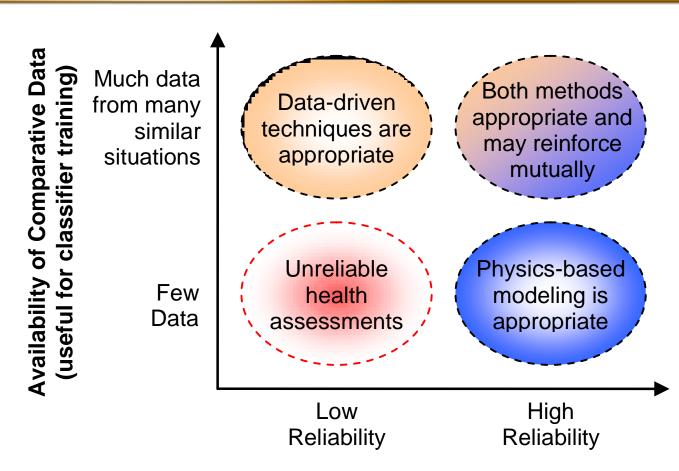
#### 1.1) PHM, Fault Diagnosis and Failure Prognosis







#### 1.2) Process Monitoring: Virtual Sensors and PLS



Reliability of Physics-based model (typically tied to system simplicity)

Source: Adapted from Inman et al. (2005), p. 6

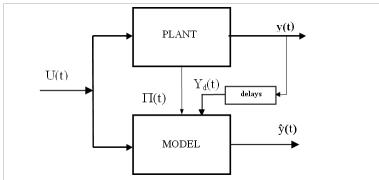




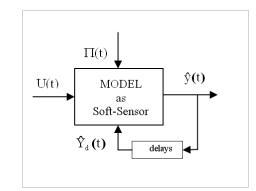
#### 1.2) Process Monitoring: Virtual Sensors and PLS

$$\begin{split} U(t) &= [u_1(t) \ u_1(t\text{-}1) \ ... \ u_2(t) \ u_2(t\text{-}1) \ ... \ u_r(t) \ u_r(t\text{-}1) \ ... \ ]^T \\ \Pi(t) &= [\eta_1(t) \ \eta_1(t\text{-}1) \ ... \ \eta_2(t) \ \eta_2(t\text{-}1) \ ... \ \eta_p(t) \ \eta_p(t\text{-}1) \ ... \ ]^T \\ Y_d(t) &= [y(t\text{-}1) \ y(t\text{-}2) \ ... \ y(t\text{-}d)]^T \end{split}$$

$$\mathbf{x}(t) = \begin{bmatrix} \mathbf{U}(t) \\ \mathbf{\Pi}(t) \\ \mathbf{Y}_{d}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \mathbf{x}_{q} \end{bmatrix}$$



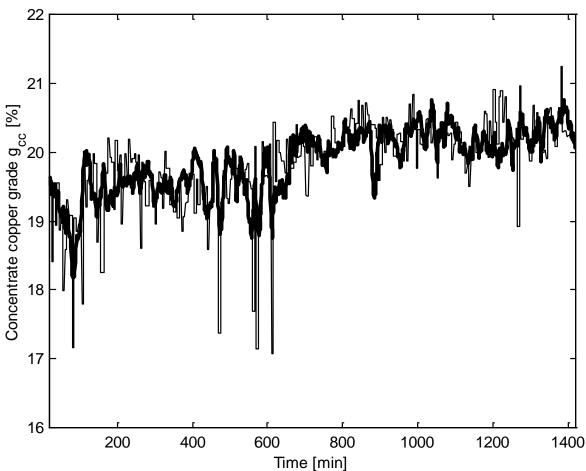
Identification of a dynamic model for y(t) using controls and measured disturbances u(t), other plant outputs  $\eta(t)$ , and delayed plant outputs y(t-d)



Use of the dynamic model as soft-sensor in the absence of measurement y(t) due to unavailable sensor signal

#### 1.2) Process Monitoring: Virtual Sensors and PLS

$$g_{cc}(t) = 0.498 \cdot g_{cc}(t-2) + 0.217 \cdot g_{cf}(t) - 0.046 \cdot L_p(t) - 0.217 \cdot \tau(t-2) - 0.115 \cdot g_{ff}(t) - 0.108 \cdot g_{ff}(t-7)$$

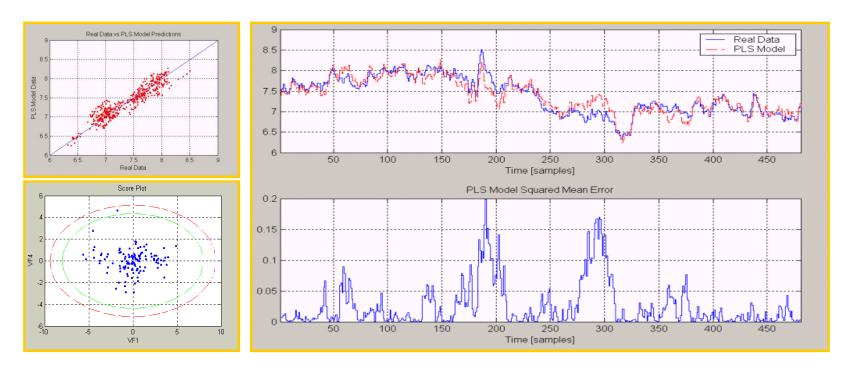






#### 1.2) Process Monitoring: PLS

• Some examples from a rougher flotation plant, where the copper grade is the controlled variable (g<sub>cc</sub>[%]):



<sup>\*</sup> CONTAC Ingenieros Ltda., Software "SCAN"





#### 1.2) Process Monitoring: PLS

- Recursive algorithm that can find directions of "maximum explicability", building a relation between a group of input variables and a set of output variables.
- Method that eases Model Structure Determination and Parameter Estimation in linear-in-the-parameters models.

$$X = \sum_{i=1}^{A} t_i p_i^T + E_x(A) \quad \text{and} \quad Y = \sum_{i=1}^{A} t_i c_i^T + E_y(A)$$

$$Y = XB \quad , B = [w_1 \cdots w_A] \cdot ([p_1 \cdots p_A]^T \cdot [w_1 \cdots w_A])^{-1} \cdot [c_1 \cdots c_A]^T$$

- In addition, it allows to statistically characterize the prediction error in multivariate models.
- Off-line estimation technique. Model parameters are assumed to be constant!



#### 1.3) Parameter Uncertainty and Particle Filters

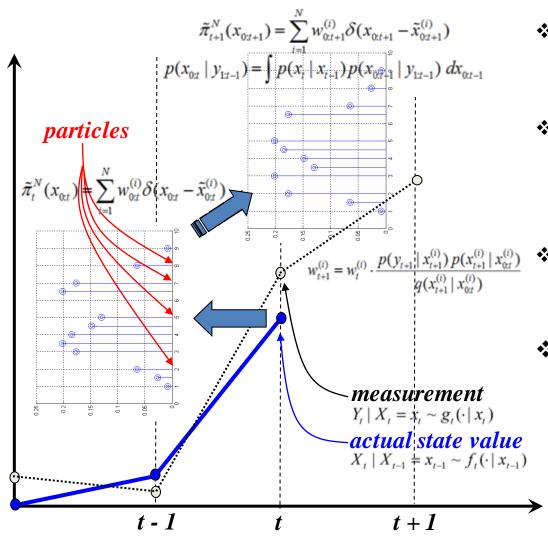
Concept of "Artificial Evolution"

$$\begin{cases} x(t+1) = f_t(x(t), x_{\alpha}(t), \omega_1(t)) \\ x_{\alpha}(t+1) = x_{\alpha}(t) + \omega_{\alpha}(t) \\ \text{Features}(t) = h_t(x(t), x_{\alpha}(t), v(t)) \end{cases}$$

- $f_t$  and  $h_t$  are non-linear mappings.
- **x(t)** is the state vector.
- $\omega_1(t)$  and  $\nu(t)$  are non-Gaussian distributions
- $\mathbf{x}_{\alpha}(t)$  is an state associated with an unknown model parameter  $\alpha$
- $\omega_{\alpha}(t)$  is zero-mean random noise



#### 1.3) Parameter Uncertainty and Particle Filters



- **Particle:** Duple  $\{w_t^{(i)}, x_{0:t}^{(i)}\}$ , being  $x_{0:t}^{(i)}$ a realization of process state pdf.
- ❖ Every particle is associated with an scalar  $W_t^{(i)}$ , namely the weight
  - Sampled version of the PDF
- We only need to study the propagation of particles in time!

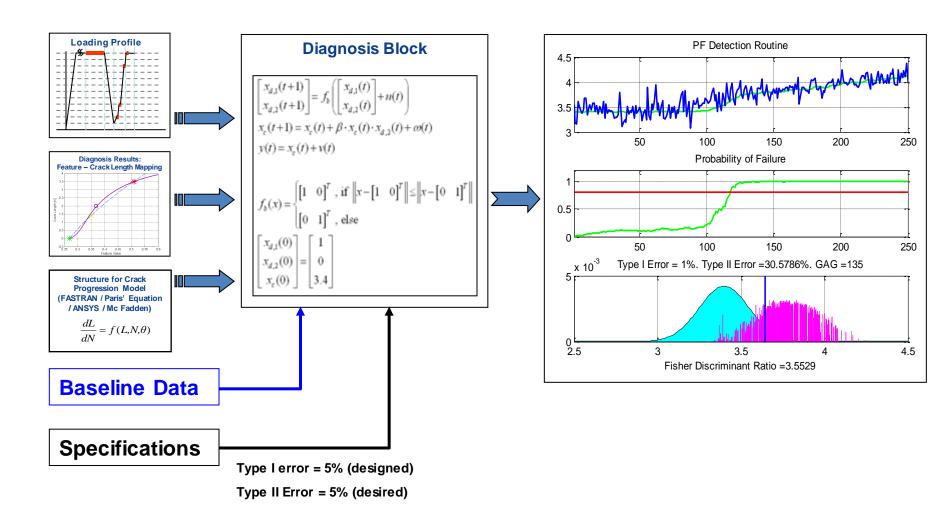
#### ❖ Steps:

- Predict the "a priori" PDF, using the model
- Update parameters, given the new measurement





# 2) Model Uncertainty and PF-based Fault Diagnosis





# 2) Model Uncertainty and PF-based Fault Diagnosis

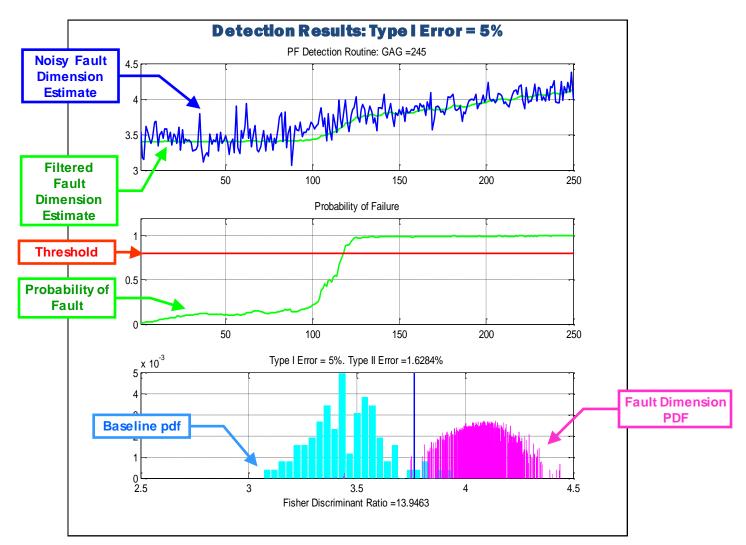
#### **Summary:**

- Type I Error (False Positives) fixed at 5%
  - Design parameter
- Type II Error (False Negatives)

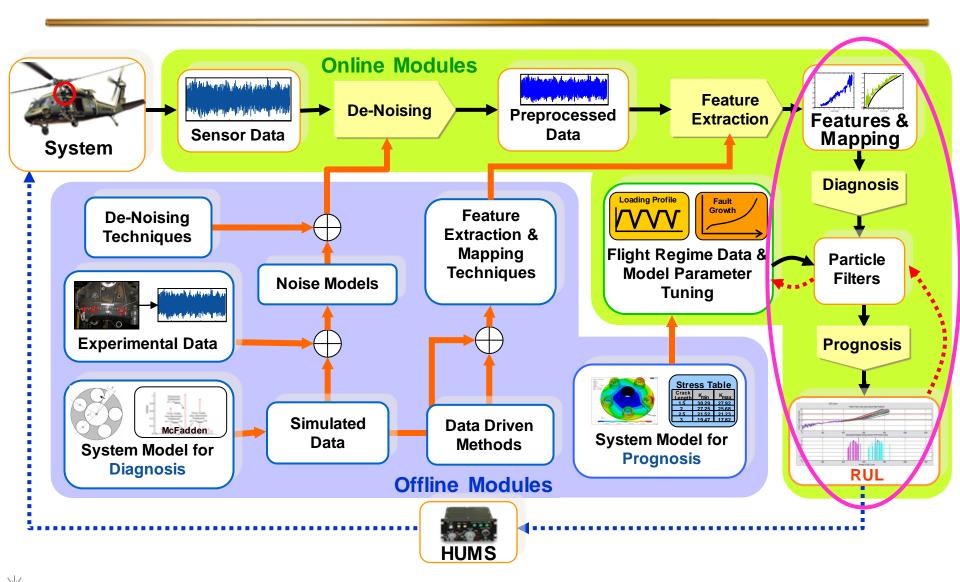
$$1 - \sum_{i} w_T^{(i)} \text{ such that } x_c^{(i)}(T) \ge z_{1-\alpha,\mu,\sigma^2}$$

- Estimated Probability of Fault Condition =  $E\{x_{d,2}\}$
- Fisher's Discriminant Ratio

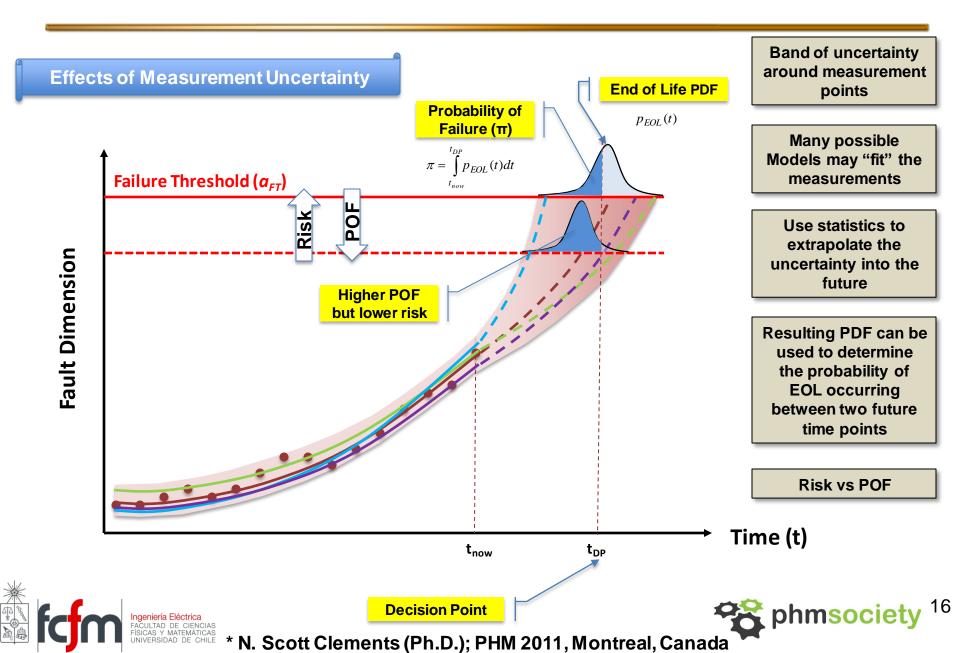
## 2) Model Uncertainty and PF-based Fault Diagnosis

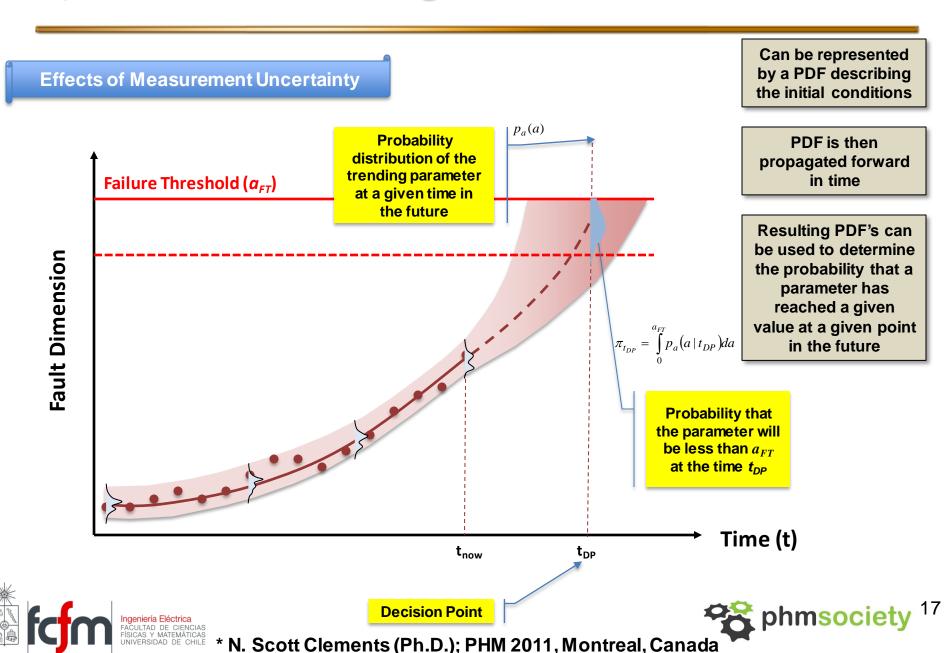










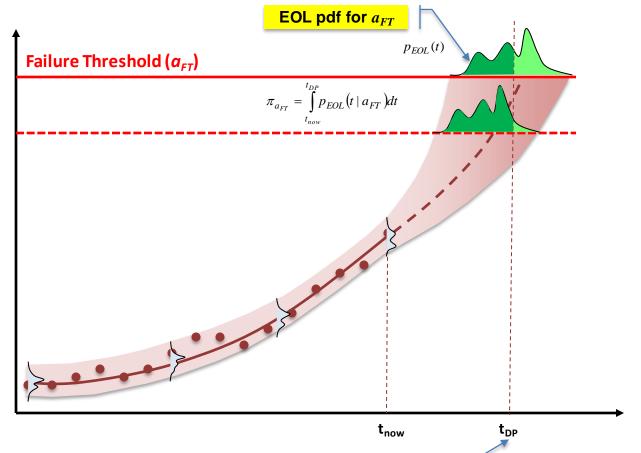


#### **Effects of Measurement Uncertainty**

Can be represented by a PDF describing the initial conditions

PDF is then propagated forward in time

Taking a "horizontal slice" of the resulting surface at  $a_{FT}$  yields the PDF of EOL at that failure threshold



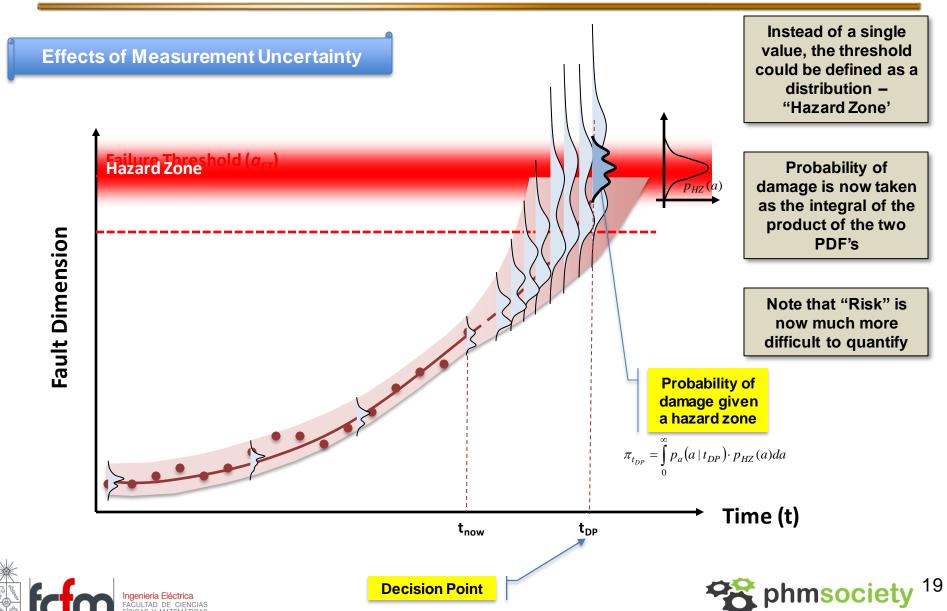
Time (t)

**Decision Point** 

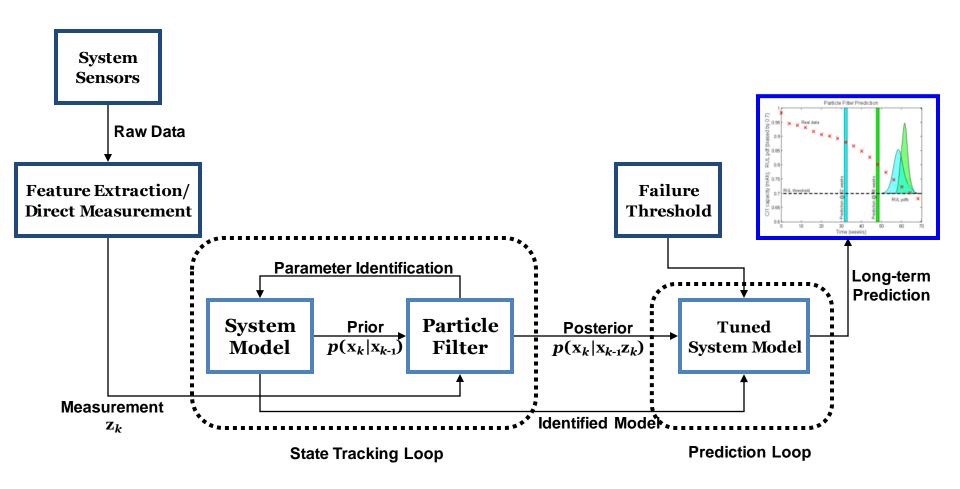


**Fault Dimension** 

**phmsociety** 



\* N. Scott Clements (Ph.D.); PHM 2011, Montreal, Canada





#### Dynamic Model for Feature Growth in Time:

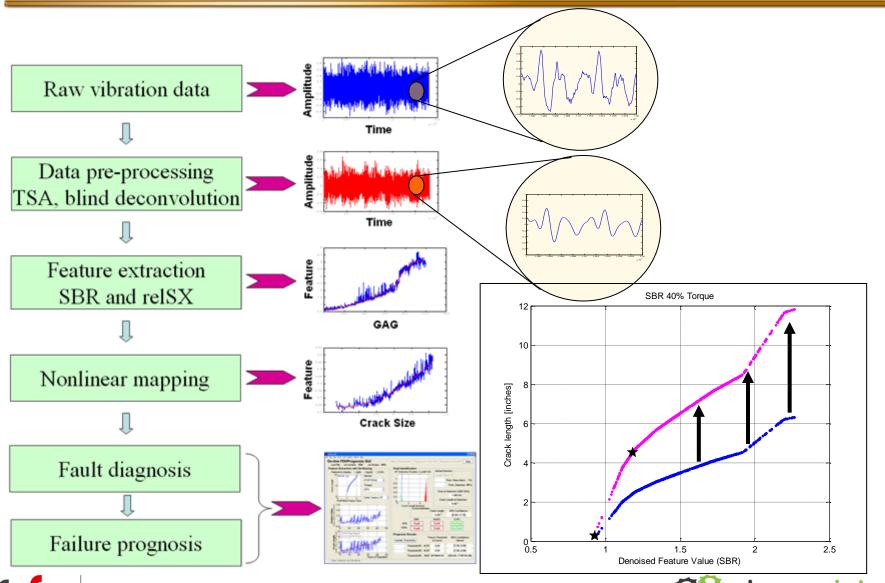
$$\begin{cases} x_1(t+1) = x_1(t) + x_2(t) \cdot F(x_1(t), t, U) + \omega_1(t) \\ x_2(t+1) = x_2(t) + \omega_2(t) \end{cases}$$

- $x_1(t)$  is a state representing the fault dimension under analysis
- $x_2(t)$  is a state associated with an unknown model parameter
- *U* are external inputs to the system (load profile, etc.)
- F(x(t),t,U) is a general time-varying nonlinear function
- $\omega_1(t)$  and  $\omega_2(t)$  are white noises (non necessarily Gaussian)

#### Predicted State Density:

$$\hat{p}(x_{t+k} \mid \hat{x}_{1:t+k-1}) \approx \sum_{i=1}^{N} w_{t+k-1}^{(i)} K\left(x_{t+k} - E\left[x_{t+k}^{(i)} \mid \hat{x}_{t+k-1}^{(i)}\right]\right)$$

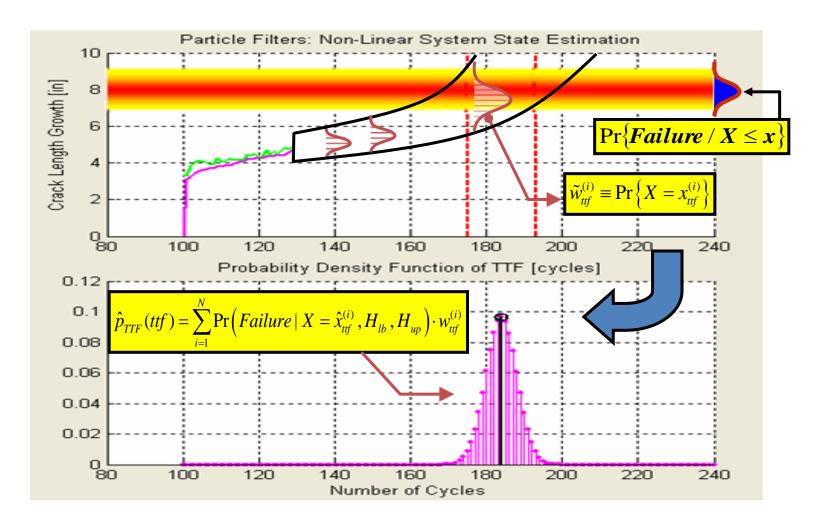




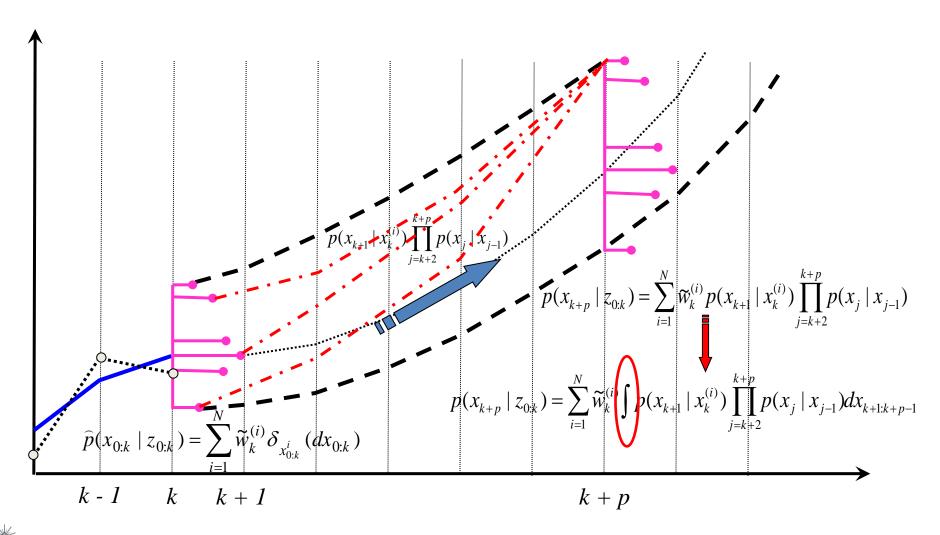
#### PARTICLE FILTERING-BASED FRAMEWORK

- Estimating the Remaining Useful Life (RUL)
- Generation of Long-Term Predictions
- p-step predictions for a fault indicator
- Prediction entails large-grain uncertainty

$$\tilde{p}(x_{t+p} \mid y_{1:t}) = \int \tilde{p}(x_t \mid y_{1:t}) \prod_{j=t+1}^{t+p} p(x_j \mid x_{j-1}) dx_{t:t+p-1} 
\approx \sum_{i=1}^{N} w_t^{(i)} \int \cdots \int p(x_{t+1} \mid x_t^{(i)}) \prod_{j=t+2}^{t+p} p(x_j \mid x_{j-1}) dx_{t+1:t+p-1}$$









#### ✓ First Approach for Long-Term Prediction: (Weight Update Procedure)

Predicted Trajectory:

$$\hat{x}_{t+p}^{(i)} = E[f_{t+p}(\tilde{x}_{t+p-1}^{(i)}, \omega_{t+p})] \quad ; \quad \hat{x}_{t}^{(i)} = \tilde{x}_{t}^{(i)}$$

Predicted State pdf @ time t+k

$$\hat{p}(x_{t+k} \mid \hat{x}_{1:t+k-1}) \approx \sum_{i=1}^{N} (w_{t+k-1}^{(i)}) \hat{p}(x_{t+k}^{(i)} \mid \hat{x}_{t+k-1}^{(i)}) ; k = 1, \dots, p$$

**Predicted Conditional pdf (noise model)** 



#### ✓ First Approach for Long-Term Prediction: (Weight Update Procedure)

#### Weight update for Long-Term Prediction

• Construct a partition of the random variable domain by defining:

$$\begin{split} d_{t+k}^{(1)} &= -\infty; \quad d_{t+k}^{(N+1)} &= \infty \\ d_{t+k}^{(j)} &= \frac{1}{2} \Big( \hat{x}_{t+k}^{(j)} + \hat{x}_{t+k}^{(j-1)} \Big), \quad j = 2, \dots, N \end{split}$$

• Generate the updated particle weights by computing:

$$w_{t+k}^{(i)} = \int_{d_{t+k}^{(i)}}^{d_{t+k}^{(i+1)}} \hat{p}(x_{t+k} \mid \hat{x}_{0:t+k-1}, y_{1:t}) dx_{t+k}$$

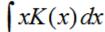
- **Second Approach for Long-Term Prediction:** (Regularization of Predicted State pdf)
- Uncertainty: Resampling procedure for predicted state pdf
- Statistical information given by the position of the particles, not by the particle weight.
- Use of Epanechnikov kernels

$$K_{opt}(x) = \begin{cases} \frac{n_x + 2}{2c_{n_x}} \left( 1 - ||x||^2 \right) & \text{if } ||x|| < 1\\ 0 & \text{otherwise} \end{cases}$$

$$\hat{p}(x_{t+k} \mid \hat{x}_{1:t+k-1}) \approx \sum_{i=1}^{N} w_{t+k-1}^{(i)} K\left(x_{t+k} - E\left[x_{t+k}^{(i)} \mid \hat{x}_{t+k-1}^{(i)}\right]\right)$$



$$\int \|x\|^2 K(x) \, dx < \infty$$





#### ✓ Second Approach for Long-Term Prediction: (Regularization of Predicted State pdf)

#### Long Term Predictions: Second Approach

- For  $i = 1, \dots, N$ ,  $w_{t+k}^{(i)} = N^{-1}$
- Calculate  $\hat{S}_{t+k}$ , the empirical covariance matrix of  $\left\{ E\left[x_{t+k}^{(i)} \mid \hat{x}_{t+k-1}^{(i)}\right], w_{t+k}^{(i)}\right\}_{i=1}^{N}$
- Compute  $\hat{D}_{t+k}$  such that  $\hat{D}_{t+k}\hat{D}_{t+k}^T = \hat{S}_{t+k}$
- For  $i = 1, \dots, N$ , draw  $\varepsilon^i \sim K$ , the Epanechnikov kernel and assign

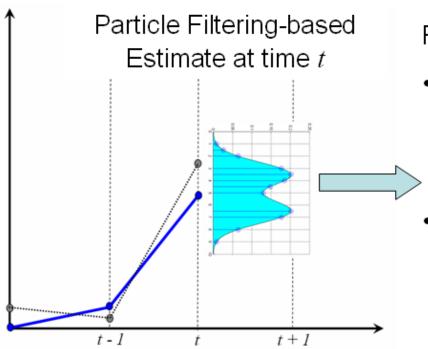
$$\hat{x}_{t+k}^{(i)*} = \hat{x}_{t+k}^{(i)} + h_{t+k}^{opt} \hat{D}_{t+k} \varepsilon^{i}$$

$$K_{opt}(x) = \begin{cases} \frac{n_x + 2}{2c_{n_x}} \left( 1 - ||x||^2 \right) & \text{if } ||x|| < 1\\ 0 & \text{otherwise} \end{cases}$$

$$h_{opt} = A \cdot N^{-\frac{1}{n_x + 4}}$$

$$A = \left(8 c_{n_x}^{-1} \cdot (n_x + 4) \cdot \left(2\sqrt{\pi}\right)^{n_x}\right)^{\frac{1}{n_x + 4}}$$





For k = 1, 2, 3, ...

- Use nonlinear State equation and Inverse Transform Resampling to obtain a set of equally weighted particles centered at  $\left\{E\left[x_{t+k}^{(i)} \mid \hat{x}_{t+k-1}^{(i)}\right]\right\}_{i=1}^{N}$
- Use Epanechnikov kernels and the Regularization algorithm to obtain a new set of equally weighted particles  $\left\{\hat{x}_{t+k}^{(i)}\right\}_{+}^{N}$

#### Long Term Predictions: Regularization of Predicted State PDF

- Apply modified inverse transform resampling procedure. For  $i = 1, \dots, N$ ,  $w_{t+k}^{(i)} = N^{-1}$
- Calculate  $\hat{S}_{t+k}$ , the empirical covariance matrix of  $\left\{E\left[x_{t+k}^{(i)} \mid \hat{x}_{t+k-1}^{(i)}\right], w_{t+k}^{(i)}\right\}_{i=1}^{N}$
- Compute  $\hat{D}_{t+k}$  such that  $\hat{D}_{t+k}\hat{D}_{t+k}^T = \hat{S}_{t+k}$
- For  $i=1,\cdots,N$ , draw  $\varepsilon^i\sim K$ , an Epanechnikov kernel and assign  $\hat{x}_{t+k}^{(i)*}=\hat{x}_{t+k}^{(i)}+h_{t+k}^{opt}\hat{D}_{t+k}\varepsilon^i$





✓ Third Approach for Long-Term Prediction: 
(Projection in Time of State Expectations)

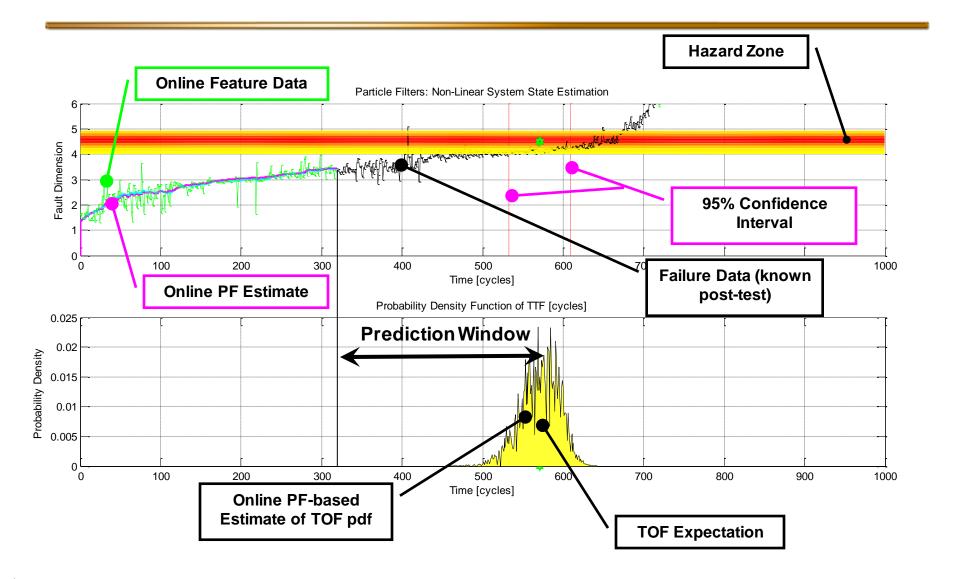
$$\hat{x}_{t+p}^{(i)} = E[f_{t+p}(\tilde{x}_{t+p-1}^{(i)}, \omega_{t+p})] \quad ; \quad \hat{x}_{t}^{(i)} = \tilde{x}_{t}^{(i)}$$

$$w_{t+k}^{(i)} = w_{t+k-1}^{(i)} \; ; \; k = 1, \cdots, p$$

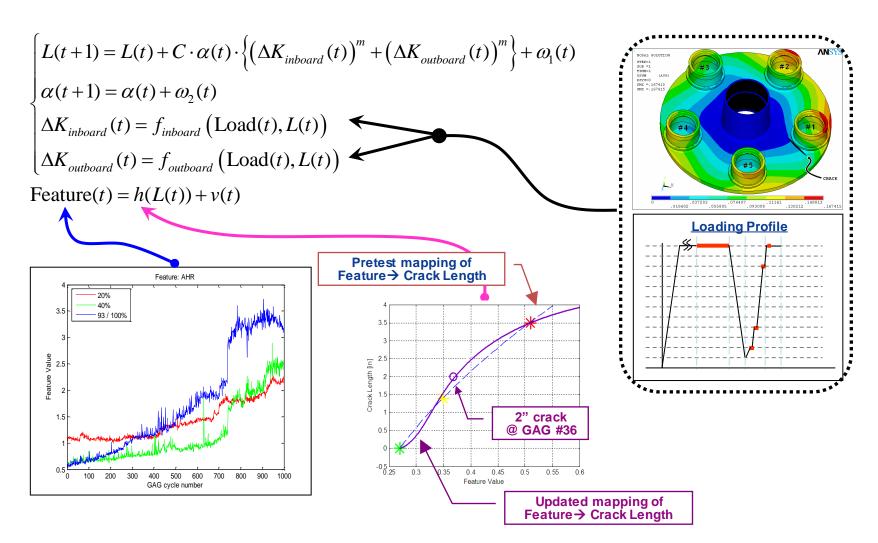
- Simpler in terms of computational effort.
- Particle weights invariant for future time instants.
- When it works, sources of error are negligible compared to:
  - model inaccuracies
  - wrong assumptions about noise parameters







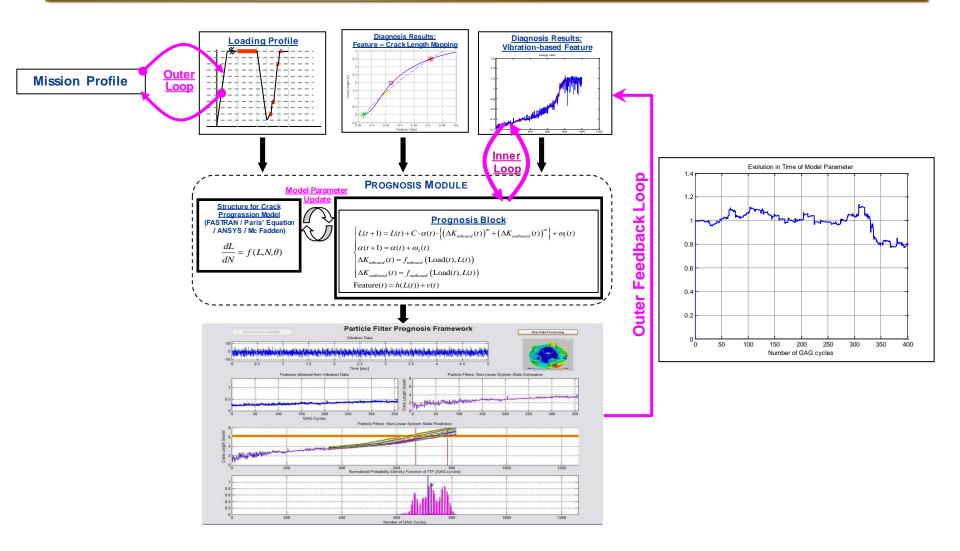






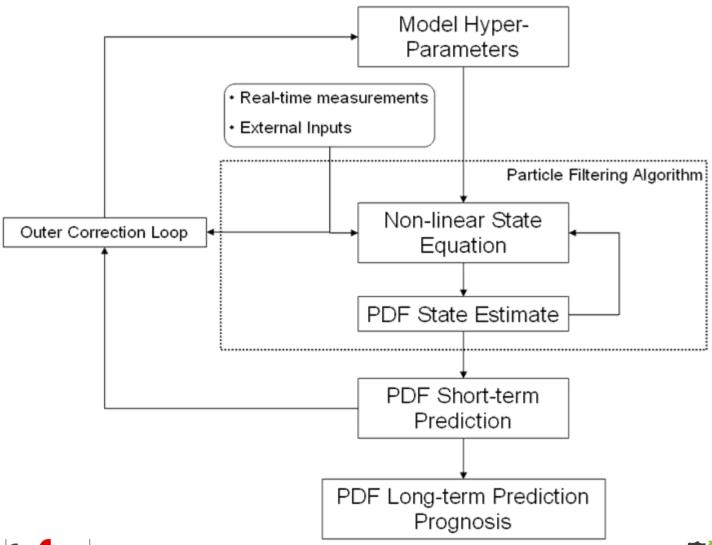


## 4) Parameter Uncertainty and Outer Correction Loops





#### 4) Parameter Uncertainty and Outer Correction Loops



#### 4) Parameter Uncertainty and Outer Correction Loops

Concept of "Artificial Evolution" revised

$$\begin{cases} x(t+1) = f_t(x(t), x_{\alpha}(t), \omega_1(t)) \\ x_{\alpha}(t+1) = x_{\alpha}(t) + \omega_{\alpha}(t) \\ \text{Features}(t) = h_t(x(t), x_{\alpha}(t), v(t)) \end{cases}$$

- $f_t$  and  $h_t$  are non-linear mappings.
- **x(t)** is the state vector.
- $\omega_1(t)$  and  $\nu(t)$  are non-Gaussian distributions
- $\mathbf{x}_{\alpha}(t)$  is an state associated with an unknown model parameter  $\alpha$
- $\omega_{\alpha}(t)$  is zero-mean random noise



### Proposed Outer Correction Loop:

$$\begin{cases} \operatorname{var}\{\omega_{\alpha}(t+1)\} = p \square \operatorname{var}\{\omega_{\alpha}(t)\}, \text{ if } \frac{\|Pred\_error(t)\|}{\|Feature(t)\|} < Th \\ \operatorname{var}\{\omega_{\alpha}(t+1)\} = q \square \operatorname{var}\{\omega_{\alpha}(t)\}, \text{ if } \frac{\|Pred\_error(t)\|}{\|Feature(t)\|} > Th \end{cases}$$

• 0 , <math>q > 1, and 0 < Th < 1 are scalars

#### Formally speaking...

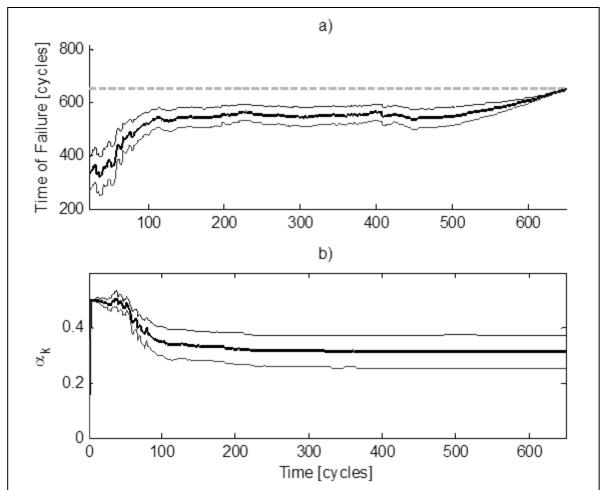
- Assume a nonlinear state equation:  $\begin{cases} x_{k+1} = x_k + \alpha_k \cdot F(x_k, \alpha_k) + \omega_k \\ \alpha_{k+1} = L(\alpha_k, e_k^s) + \omega_k \end{cases}$ where  $L(\alpha_{\iota}, e_{\iota}^{s}) = \alpha_{\iota}$  $y_{k} = x_{k} + U_{k}$
- First Approach:  $var(\omega'_k) := \begin{cases} p \cdot var(\omega'_k) & |e_k^s| \le e^m \\ q \cdot var(\omega'_k) & |e_k^s| > e^{th} \end{cases}$

#### Second Approach:

$$L(\alpha_{k}, e_{k}^{s}) \coloneqq \begin{cases} \alpha_{k} & \left| e_{k}^{s} \right| \leq e^{th} \\ \alpha_{k} + \eta e_{k}^{s} & \left| e_{k}^{s} \right| > e^{th} \end{cases}, \quad var(\omega_{k+1}') \coloneqq \begin{cases} p \cdot var(\omega_{k}') & \left| e_{k}^{s} \right| \leq e^{th} \\ \sigma_{0}^{2} & \left| e_{k}^{s} \right| > e^{th} \end{cases}$$



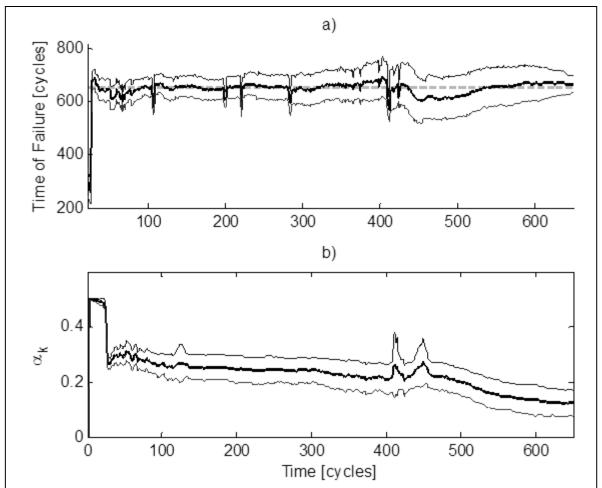
#### Classic PF-based Prognosis Framework:







Outer Correction Loops in a PF-based Prognosis Framework:







- Results for Outer Correction Loops in a case study (several runs of the algorithm, given the stochastic nature of the filtering algorithm)
- ✓ Outer Correction Loop that modifies only the variance of model hyperparameters:

```
Mean of ToF Expectation = 540 cycles (ground truth = 650 cycles)
Mean of 95% CI Lower Limit = 503 cycles
Mean of 95% CI Upper Limit = 573 cycles
```

✓ Outer Correction Loop that modifies only the expectation and variance of hyper-parameters:

```
Mean of ToF Expectation = 645 cycles (ground truth = 650 cycles)
Mean of 95% CI Lower Limit = 608 cycles
Mean of 95% CI Upper Limit = 681 cycles
```





### > RUL On-line Precision Index (RUL-OPI):

- Considers the relative length of the 95% confidence interval computed at time t ( $CI_t$ ), when compared to the remaining useful life.
- Quantifies the concept: "the more data the algorithm processes, the more precise the prognostic result"
- Good prognostic results are associated to values of  $I_1(t) \approx 1$

$$I_{1}(t) = e^{-\left(\frac{\sup(CI_{t}) - \inf(CI_{t})}{E_{t}\{RUL\}}\right)} = e^{-\left(\frac{\sup(CI_{t}) - \inf(CI_{t})}{E_{t}\{ToF\} - t}\right)}$$

$$0 < I_{1}(t) \le 1, \forall t \in [1, E_{t}\{ToF\}), t \in \square$$





### RUL Accuracy-Precision Index:

- Considers the error in the ToF estimate with respect to the length of the 95% confidence interval computed at time t ( $Ci_t$ ) and penalizes the fact that  $E_t$   $\{ToF\}$  > Ground Truth  $\{ToF\}$
- Good prognostic results are associated to values of the index such that  $0 \le 1 I_2(t) \le \varepsilon$  where  $\varepsilon$  is a small positive constant

$$I_{2}(t) = e^{-\left(\frac{Ground Truth\{ToF\} - E_{t}\{ToF\}}{\sup(CI_{t}) - \inf(CI_{t})}\right)}$$

$$0 < I_{2}(t), \forall t \in [1, E_{t}\{ToF\}), t \in \square$$





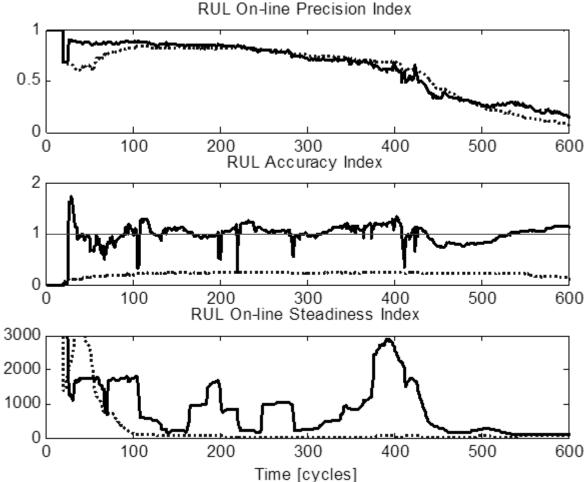
### RUL On-line Steadiness Index (RUL-OSI):

- Considers the current estimate for the expectation of the time of failure (ToF) computed at time t.
- Quantifies the concept: "the more data the algorithm processes, the more steady the prognostic result"
- Good prognostic results are associated to small values for the RUL-OSI

$$I_{3}(t) = \sqrt{Var(E_{t}\{ToF\})}$$

$$I_{3}(t) \ge 0, \forall t \in \square$$

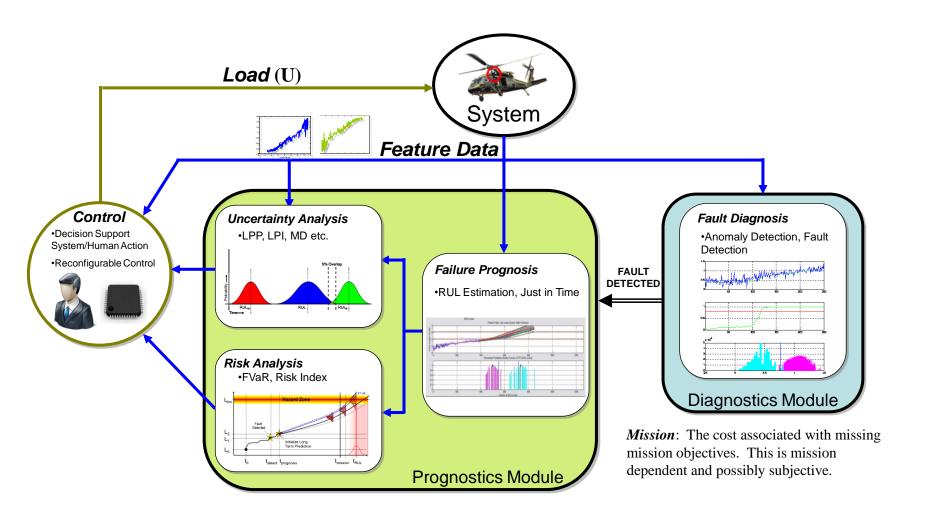
#### Application examples...





- In order to accurately predict the Remaining Useful Life (RUL) of a failing system, one must consider the future, and often unpredictable, stresses that will be acting on the system.
  - How do these stresses affect the Remaining Useful Life (RUL)?
  - How does uncertainty in these stresses affect the RUL estimate?
  - How can uncertainty be quantified?
- Only after addressing these issues, it is possible to answer one particularly interesting question:
  - How can knowledge of uncertainty be used to extend the RUL of a failing system?







- A number of elements can alter in a significant manner the RUL of equipment and components.
- Consider, for example, uncertainty associated to load profiles, model errors, and measurement noise.
- Thus, RUL uncertainty (ΔRUL) can be written as:

• Level 1: 
$$\Delta RUL = \left\{ \left[ \frac{\partial RUL}{\partial model} \Delta model \right]^2 + \left[ \frac{\partial RUL}{\partial load} \Delta load \right]^2 + \left[ \frac{\partial RUL}{\partial meas.} \Delta meas. \right]^2 \right\}^{1/2}$$

• Level 2: 
$$\Delta load = \left\{ \left[ \frac{\partial load}{\partial mission} \Delta mission \right]^2 + \left[ \frac{\partial load}{\partial regime data} \Delta regime data \right]^2 + \left[ \frac{\partial load}{\partial sensors} \Delta sensors \right]^2 \right\}^{1/2}$$

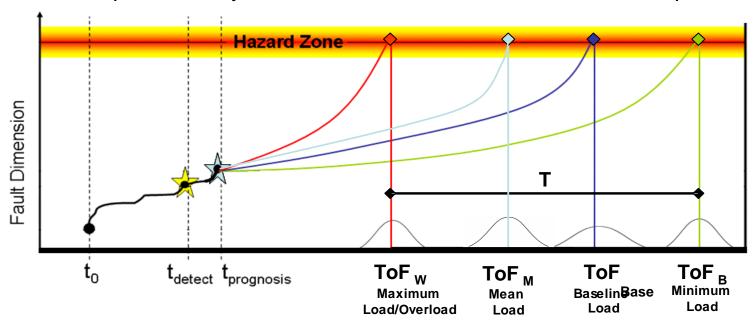
• Level 3: This reasoning can be extrapolated analogously...





- Particle Filter (PF) algorithms have become a key component of failure prognosis frameworks:
  - Strong mathematical foundation
  - Allow online uncertainty representation of state estimates and long-term predictions in nonlinear systems
  - Allow online uncertainty management via the implementation of outer feedback correction loops.
- These facts motivate the usage of PF-based uncertainty measures to quantify, in real time, the impact of load, environmental, and other stresses for long-term prediction.

If the input of the system is also assumed to be a stochastic process:



Given  $P\{U=u\} = \sum_{j=1}^{N_u} \pi_j \delta(u-u_j)$  , where  $\{u_j\}_{j=1}^{N_u}$  is a set of constant load values, then

$$\hat{p}_{ToF}(t) = \sum_{i=1}^{N_u} \pi_j \sum_{i=1}^{N} \Pr(Failure \mid X = \hat{x}_t^{(i)}, U = u_j, H_{lb}, H_{ub}) \cdot w_t^{(i)}$$



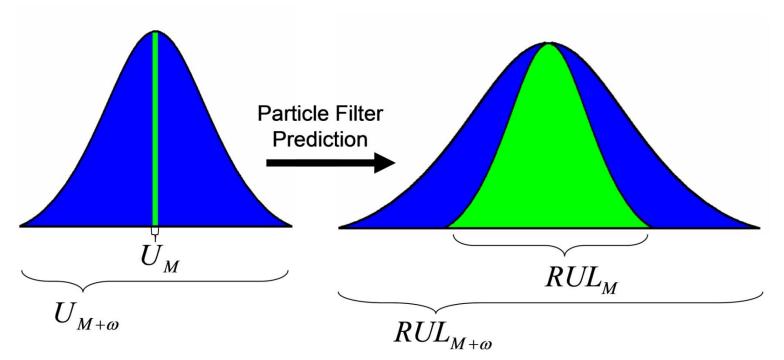


#### Dispersion Sensitivity

$$DS_{\omega} = \frac{stdev(RUL_{Base+\omega})}{stdev(RUL_{Base})}$$

#### Confidence Interval Sensitivity

$$CIS_{\omega} = \frac{Length(CI\{RUL_{Base+\omega}\})}{Length(CI\{RUL_{Base}\})}$$

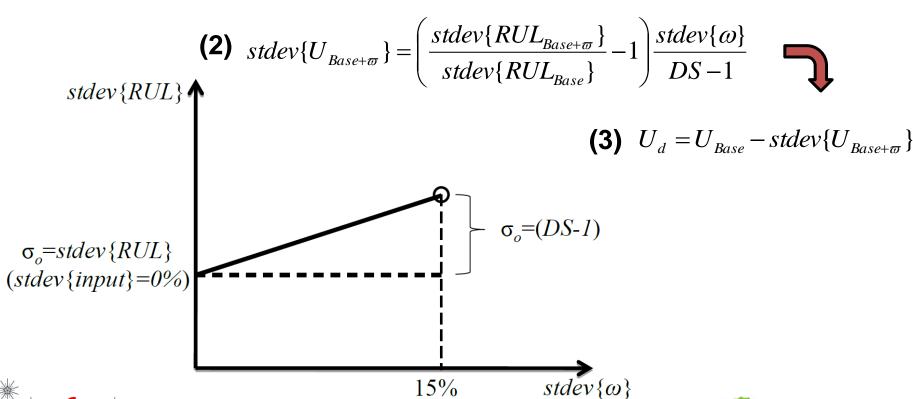




### Dispersion Sensitivity Approach

(1) 
$$stdev\{RUL_{Base+\varpi}\} = \frac{RUL_D - E\{RUL_{Base}\}}{Z_{0.95}}$$







### **Confidence Interval Sensitivity Approach**

(1) 
$$Length(CI\{RUL_{Base+\varpi}\}) = 2(RUL_D - E\{RUL_{Base}\})$$



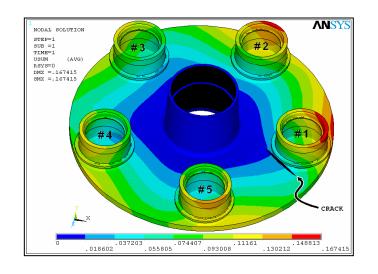
$$(2) \quad stdev\{U_{Base+\varpi}\} = \left(\frac{Length(CI\{RUL_{Base+\varpi}\})}{length(CI\{RUL_{Base}\})} - 1\right) \frac{stdev\{\omega\}}{CIS - 1}$$
 
$$length(CI\{RUL\})$$
 
$$(3) \quad U_d = U_{Base} - stdev\{U_{Base+\varpi}\}$$
 
$$CI_o = length(CI\{RUL\})$$
 
$$(stdev\{input\} = 0\%)$$

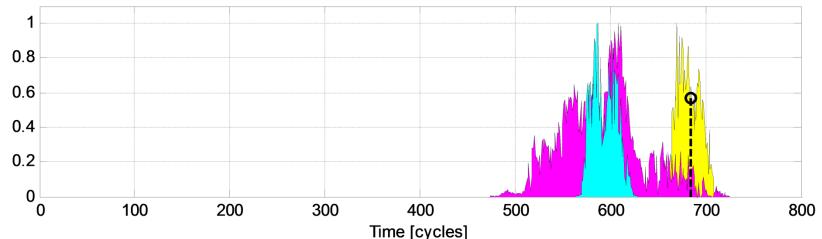


#### **Case Study:**

A critical component (planetary gear carrier plate) in a rotorcraft transmission system is experiencing a fatigue crack.

The baseline load on the rotorcraft is 120% of the maximum recommended torque. At this load, a failure is predicted to occur at time 594 cycles.







### Dispersion Sensitivity Approach

# $U_{Base}$ =120% $\Longrightarrow$ ToF: 594

$$U_D=?$$
  $\Longrightarrow$  ToF: 714

#### **Dispersion Sensitivity**

$$\begin{split} DS_{15\%} &= \frac{stdev\{RUL_{Base+\omega}\}}{stdev\{RUL_{Base}\}} \\ &= \frac{41.52cycles}{12.44cycles} = 3.3362 \end{split}$$

### **Dispersion Sensitivity Approach**

#### **Dispersion Sensitivity**

$$U_{Base} = 120\% \implies \text{ToF: } 594$$

$$U_D=?$$
  $\Longrightarrow$  ToF: 714

$$\begin{split} DS_{15\%} &= \frac{stdev\{RUL_{Base+\omega}\}}{stdev\{RUL_{Base}\}} \\ &= \frac{41.52cycles}{12.44cycles} = 3.3362 \end{split}$$

(1) 
$$stdev\{RUL_{Base+\varpi}\} = \frac{RUL_D - E\{RUL_{Base}\}}{Z_{0.95}} = \frac{714 - 594}{1.627} = 73.755$$

(2) 
$$stdev\{U_{Base+\varpi}\} = \left(\frac{stdev\{RUL_{Base+\varpi}\}}{stdev\{RUL_{Base}\}} - 1\right)\frac{stdev\{\omega\}}{DS - 1} = 31.64\%$$

(3) 
$$U_d = U_{Base} - stdev\{U_{Base+\varpi}\} = 120\% - 31.64\% = 88.36\%$$

Ingeniería Eléctrica
PACULTAD DE CIENCIAS FISICIAS PATEMATICAS UNIVERSIDAD DE CHILLE PARAMETER PAR





### **Dispersion Sensitivity Approach**

#### **Dispersion Sensitivity**

$$U_{Base} = 120\% \implies \text{ToF: } 594$$

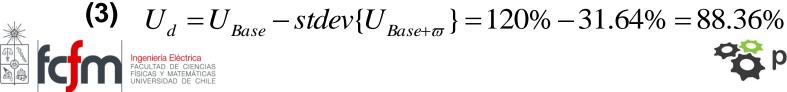
$$U_D$$
=88.36%  $\Longrightarrow$  ToF: 714

$$DS_{15\%} = \frac{stdev\{RUL_{Base+\omega}\}}{stdev\{RUL_{Base}\}}$$
$$= \frac{41.52cycles}{12.44cycles} = 3.3362$$

Actual Results from Fault Testing:  $U_D=93\%$ 

(1) 
$$stdev\{RUL_{Base+\varpi}\} = \frac{RUL_D - E\{RUL_{Base}\}}{Z_{0.95}} = \frac{714 - 594}{1.627} = 73.755$$

(2) 
$$stdev\{U_{Base+\varpi}\} = \left(\frac{stdev\{RUL_{Base+\varpi}\}}{stdev\{RUL_{Base}\}} - 1\right)\frac{stdev\{\omega\}}{DS - 1} = 31.64\%$$





### **Confidence Interval Sensitivity Approach**

#### **Confidence Interval Sensitivity**

$$U_{Base} = 120\% \implies \text{ToF: } 594$$

$$U_D=?$$
  $\Longrightarrow$  ToF: 714

$$CIS_{15\%} = \frac{Length(CI\{RUL_{Base+\omega}\})}{Length(\{RUL_{Base}\})}$$
$$= \frac{142cycles}{38cycles} = 3.7368$$



### **Confidence Interval Sensitivity Approach**

#### **Confidence Interval Sensitivity**

$$U_{Base} = 120\% \implies \text{ToF: } 594$$

$$U_D=?$$
  $\Longrightarrow$  ToF: 714

$$CIS_{15\%} = \frac{Length(CI\{RUL_{Base+\omega}\})}{Length(\{RUL_{Base}\})}$$
$$= \frac{142cycles}{38cycles} = 3.7368$$

(1) 
$$Length(CI\{RUL_{Base+\varpi}\}) = 2(RUL_D - E\{RUL_{Base}\}) = 2(714 - 594) = 240$$

(2) 
$$stdev\{U_{Base+\varpi}\} = \left(\frac{Length(CI\{RUL_{Base+\varpi}\})}{Length(CI\{RUL_{Base}\})} - 1\right)\frac{stdev\{\omega\}}{CIS - 1} = 29.13\%$$

(3) 
$$U_d = U_{Base} - stdev\{U_{Base+\varpi}\} = 120\% - 29.13\% = 90.87\%$$
 Ingeniería Eléctrica FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE





### **Confidence Interval Sensitivity Approach**

#### **Confidence Interval Sensitivity**

$$U_{Base} = 120\% \implies \text{ToF: } 594$$

$$U_D = 90.87\% \implies \text{ToF: 714}$$

$$CIS_{15\%} = \frac{Length(CI\{RUL_{Base+\omega}\})}{Length(\{RUL_{Base}\})}$$

$$= \frac{142cycles}{38cycles} = 3.7368$$

Actual Results from Fault Testing:  $U_D = 93\%$ 

(1) 
$$Length(CI\{RUL_{Base+\varpi}\}) = 2(RUL_D - E\{RUL_{Base}\}) = 2(714 - 594) = 240$$

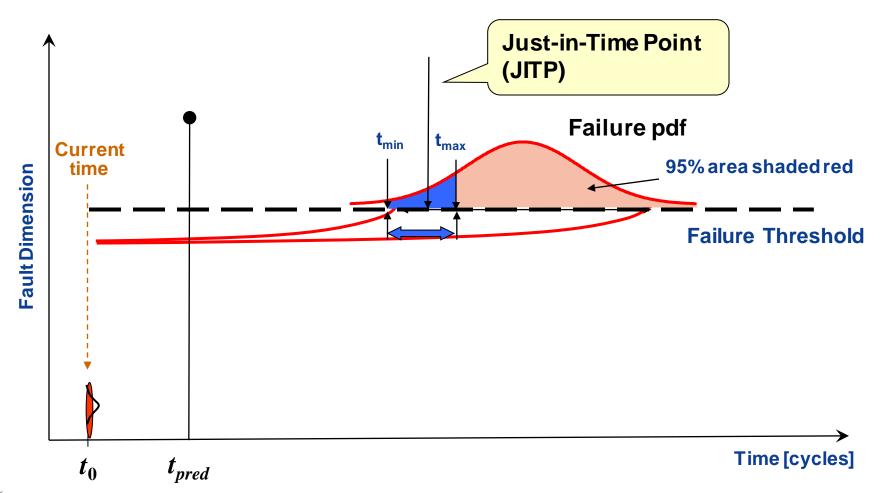
(2) 
$$stdev\{U_{Base+\varpi}\} = \left(\frac{Length(CI\{RUL_{Base+\varpi}\})}{Length(CI\{RUL_{Base}\})} - 1\right)\frac{stdev\{\omega\}}{CIS - 1} = 29.13\%$$

(3) 
$$U_d = U_{Base} - stdev\{U_{Base+\varpi}\} = 120\% - 29.13\% = 90.87\%$$
 Ingeniería Eléctrica Facultad De Ciencias Fisicas y MATEMATICAS UNIVERSIDAD DE CHILE





Just-in-Time Point vs. RUL Expectations





### > Definition:

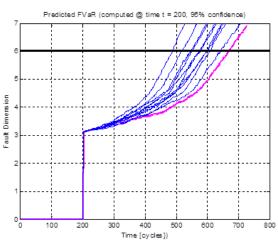
(R1) 
$$\mathcal{R}(C) = C$$
 for all constants  $C$ ,  
(R2)  $\mathcal{R}((1-\lambda)X + \lambda X') \leq (1-\lambda)\mathcal{R}(X) + \lambda \mathcal{R}(X')$  for  $\lambda \in (0,1)$  ("convexity")  
(R3)  $\mathcal{R}(X) \leq \mathcal{R}(X')$  when  $X \leq X'$  ("monotonicity")  
(R4)  $\mathcal{R}(X) \leq 0$  when  $||X^k - X||_2 \to 0$  with  $\mathcal{R}(X^k) \leq 0$  ("closedness")

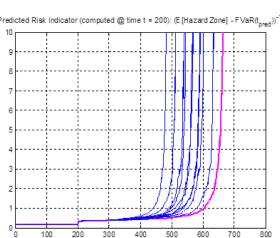
 It will also be called a coherent measure of risk in the basic sense if it also satisfies

(R5) 
$$\mathcal{R}(\lambda X) = \lambda \mathcal{R}(X)$$
 for  $\lambda > 0$  ("positive homogeneity")



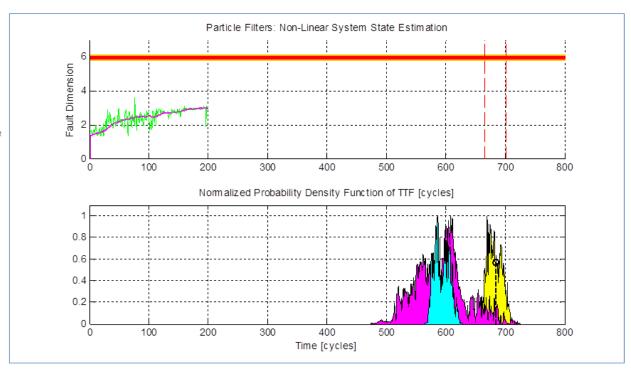
#### Fault Value at Risk (FVaR) and Risk Assessment:





$$FVaR(t, t_{prognosis}) \iff \alpha = 0.95 = \int_{-\infty}^{FVaR(t, t_{prognosis})} \hat{p}(x_t^1 \mid y_{t_{prognosis}}) dx_t^1$$

$$Risk_{FVaR}(t, t_{prognosis}) = (E\{Hazard\ Zone\} - FVaR(t, t_{prognosis}))^{-1}$$



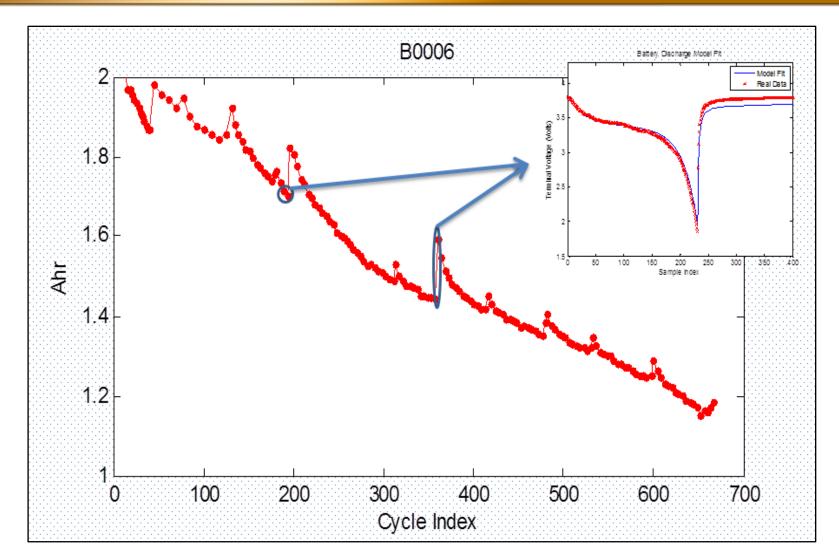




Time [sec]









- Data registering two different operational profiles (charge and discharge) at room temperature (NASA Ames Research Center).
- Charging is carried out in a constant current (CC) mode at 1.5[A] until the battery voltage reached 4.2[V] and then continued in a constant voltage mode until the charge current dropped to 20[mA].
- Discharge is carried out at a constant current (CC) level of 2[A] until the battery voltage fell to 2.5[V].
- The experiments were stopped when the batteries reached end-of-life (EOL) criteria, which was a 40% fade in rated capacity (from 2 [A-hr] to 1.2[A-hr]).

- Normal condition reflects the fact that the battery SOH is slowly diminishing as a function of the number of charge/discharge cycles
- Anomalous condition indicates an abrupt increment in the battery SOH (regeneration phenomena).
- To detect the condition of interest, a PF-based anomaly detection module is implemented using nonlinear model



### **Anomaly Detection Module: Self-recharge Phenomena**

State Equation Dynamic Model

$$\begin{cases} \begin{bmatrix} x_{d,1}(t+1) \\ x_{d,2}(t+1) \end{bmatrix} = f_b \begin{pmatrix} \begin{bmatrix} x_{d,1}(t) \\ x_{d,2}(t) \end{bmatrix} + n(t) \\ x_{c1}(t+1) = (1-\beta)x_{c1}(t) + \omega_1(t) \\ x_{c2}(t+1) = 0.95x_{c2}(t) \cdot x_{d,2}(t) + 0.2x_{d,1}(t) + \omega_2(t) \end{cases}$$

$$y(t) = x_{c1}(t) + x_{c2}(t) \cdot x_{d,2}(t) + v(t)$$

$$f_b(x) = \begin{cases} \begin{bmatrix} 1 & 0 \end{bmatrix}^T, & \text{if } ||x - \begin{bmatrix} 1 & 0 \end{bmatrix}^T|| \le ||x - \begin{bmatrix} 0 & 1 \end{bmatrix}^T|| \\ \begin{bmatrix} 0 & 1 \end{bmatrix}^T, & \text{else} \end{cases}$$

$$\begin{bmatrix} x_{d,1}(0) & x_{d,2}(0) & x_{c1}(0) & x_{c2}(0) \end{bmatrix}^{T} = \begin{bmatrix} 1 & 0 & 2 & 0 \end{bmatrix}^{T}$$





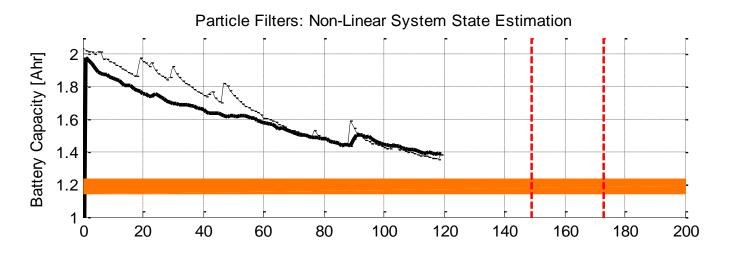
### **SOH Estimation Module (Self-recharge Phenomena)**

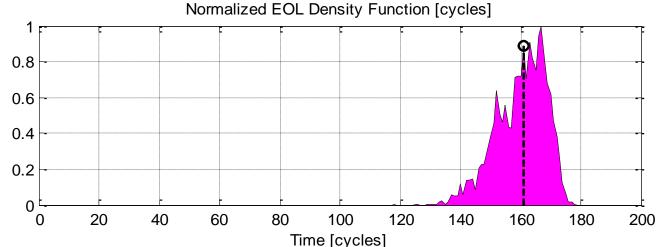
### State Equation Dynamic Model

$$\begin{cases} x_1(t+1) = x_1(t) + C \cdot x_2(t) \cdot (a - b \cdot t + t^2)^m + \omega_1(t) \\ x_2(t+1) = x_2(t) + \omega_2(t) \\ x_3(t+1) = \alpha \cdot x_3(t) + \omega_3(t) \end{cases}$$

$$y(t) = x_1(t) + x_3(t) + v(t)$$

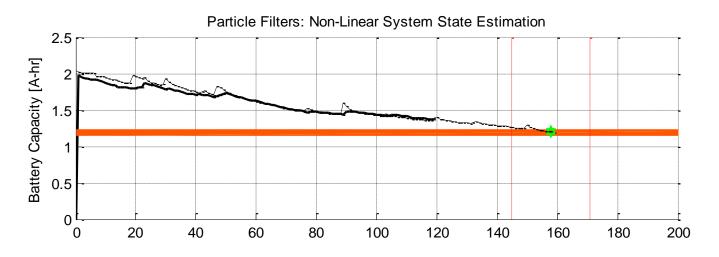
- $x_1(t)$  is a state representing the fault dimension
- $x_2(t)$  is a state associated with an unknown model parameter
- $x_3(t)$  is a state associated with the capacity regeneration phenomena
- a, b, C and m are constants associated to the duration and intensity
  of the battery load cycle (external input U)

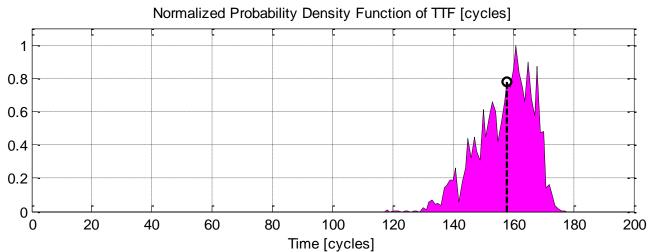
















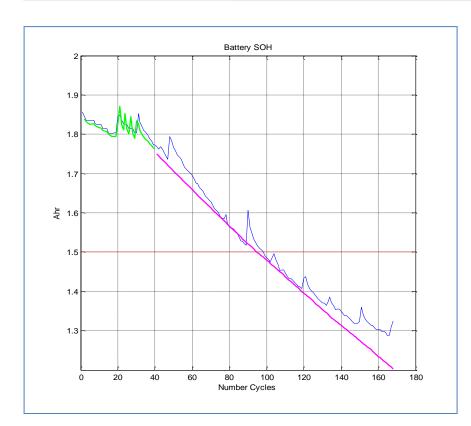
### SOH Estimation Module (Self-recharge Phenomena)

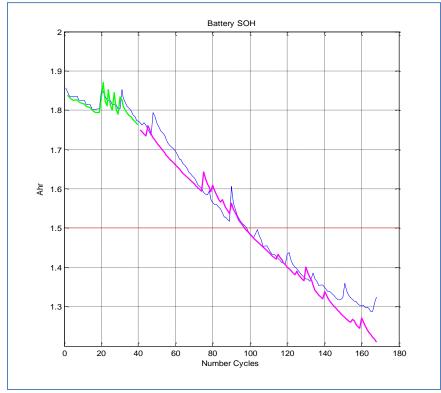
### State Equation Dynamic Model

$$\begin{cases} x_1(k+1) = \eta_c x_1(k) + x_2(k) x_1(k) + w_1(k) \\ x_2(k+1) = x_2(k) + w_2(k) \\ x_3(k+1) = \delta(U(k)) \cdot [w_{31}(k)] + \delta(1 - U(k)) \cdot [x_3(k) w_{31}(k)] + \delta(2 - U(k)) \cdot [x_3(k) + w_{31}(k)] \end{cases}$$

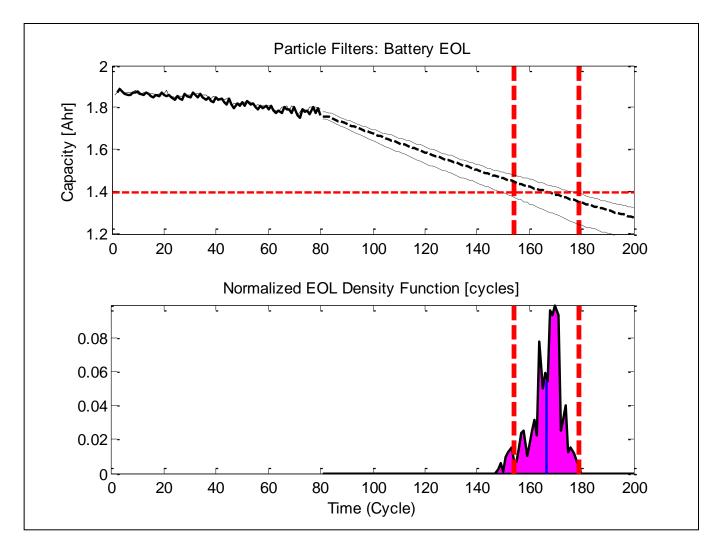
$$y(k) = x_1(k) + [\delta(1 - U(k)) + \delta(2 - U(k))]x_3(k) + v(k)$$

- $\eta_c$  is the Coulombic efficiency
- x<sub>1</sub> is a state representing the battery SOH
- $x_2$  is a state associated with an unknown model parameter
- $x_3$  is a state associated with the added SOH due to regeneration phenomena
- ullet U is a external input associated with the apparition of regeneration phenomena
- $w_1, w_2, w_{31}, w_{32}$ , and v are iid non-Gaussian noises

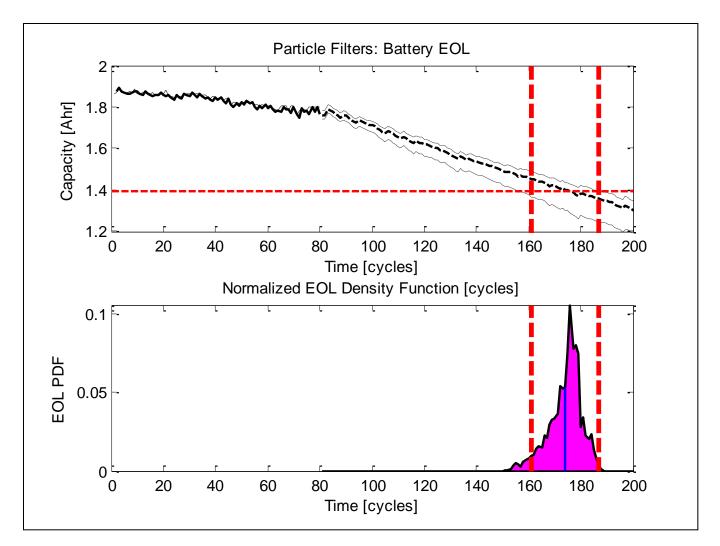






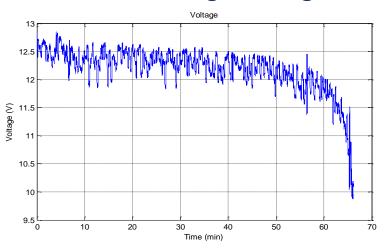


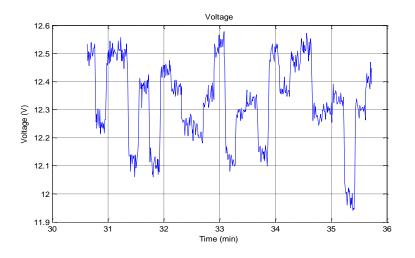


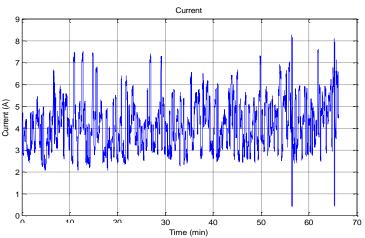


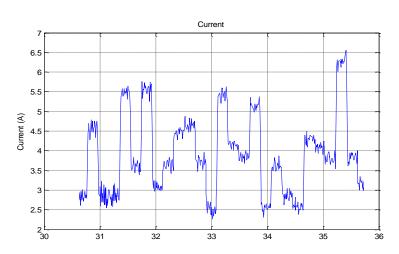


### State-of-Charge Prognosis:





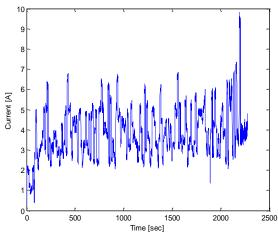


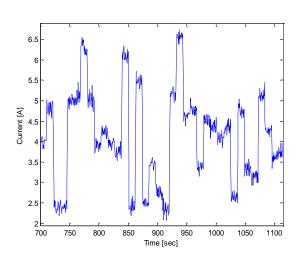




### State-of-Charge Prognosis:

- Probabilistic characterization of usage conditions
- Real-time state estimation/prognosis
- Self-tuning model (parameter estimation)
- PF-based framework allows to compute confidence bounds for SOC predictions
- Modeling the future usage

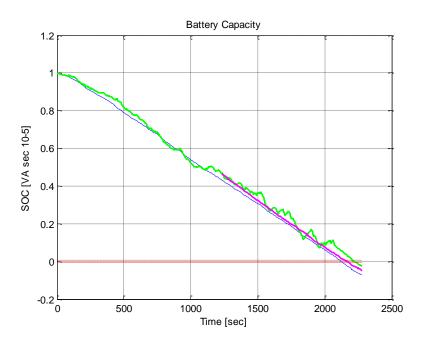


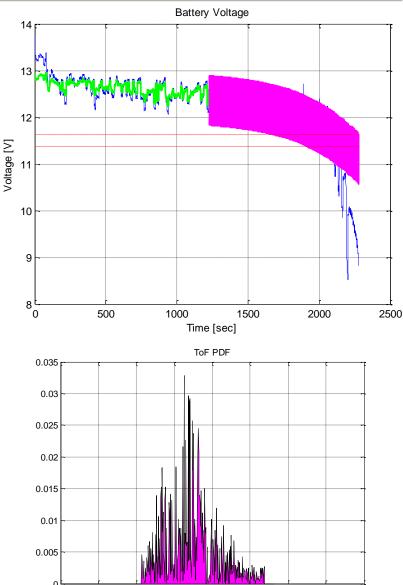






# State-of-Charge Prognosis: (Preliminary Results)



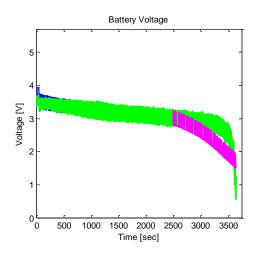


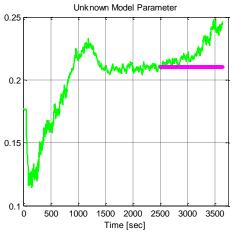
Time [sec]

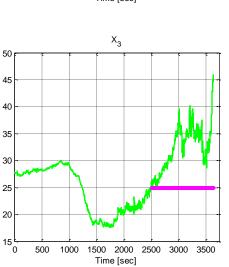


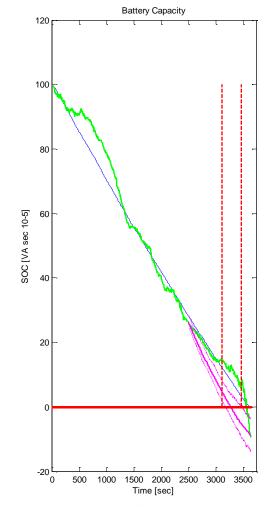


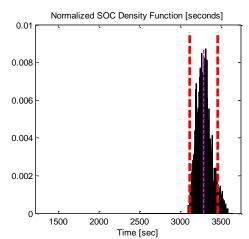
### State-of-Charge Prognosis: (Preliminary Results)







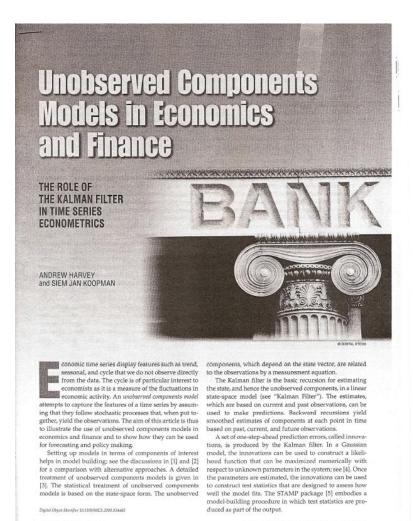








## 8.3) Case Study: PF-based Risk Analysis in Finance



 $= \omega + \alpha \sigma_{t-1}^2 \eta_{t-1}^2 + \beta \sigma_{t-1}^2$  $\mathcal{N}(0,1)$  i.i.d  $\forall t$ . Entrenamiento Intervalo de Confianza del 95% Filtrado uGARCH (PF) GARCH offline 50 100 150 200 250 x 10 Entrenamiento Intervalo de Confianza del 95% Filtrado uGARCH (EKF)

**GARCH offline** 

150

2500 = Proceso Observado 2000 -1500 -50 100 150 200 250 d) 100 150 200 250

DECEMBER 2009 & IEEE CONTROL SYSTEMS MAGAZINE 71

1066-033X/09/\$26.00@2009/EEE

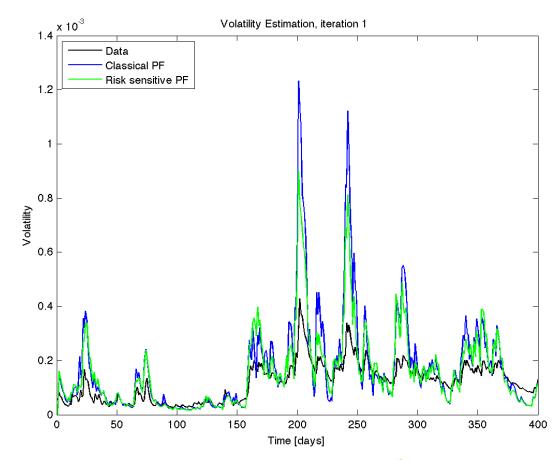
250

## 8.3) Case Study: PF-based Risk Analysis in Finance

$$\sigma_t^2 = \omega + \alpha \sigma_{t-1}^2 \eta_{t-1}^2 + \beta \sigma_{t-1}^2$$

$$r_t = \mu + \sigma_t \epsilon_t$$

- r<sub>t</sub>: Return process
- σ<sub>t</sub>: Stochastic volatility
- $\mu \in \mathbb{R}$
- $\omega \in \mathbb{R}^+$
- $\alpha, \beta$ : Parameters in  $[0, 1]^2$
- $\epsilon_t \sim \mathcal{N}(0,1)$
- $\eta_t \sim \mathcal{N}(0, \sigma)$





### **Thank You!**

### **Questions?**









### **Contact Information**

www.die.uchile.cl

doctorado@die.uchile.cl

magister@die.uchile.cl





