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Outline 

• Prognostics Overview 
– What is Prognostics? 

– How does Prognostics fit into “PHM”? 

– Types of Prognostic algorithms 

• Trends, Remaining Useful Life, & Uncertainty 
– What does a prognostic algorithm tell you? 

– How do you manage thresholds? 

– How does uncertainty screw everything up? 

• Prognostics Methods 
– Data-Driven Methods 

– Physics-Based Methods 
– Models 

– Algorithms 

– Hybrid Approaches 

– Example 

• Other Considerations 
• Metrics 

• Requirements 

• Current Challenges in Prognostics 

• Q&A 
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Prognostics Overview 

“It’s tough to make predictions, especially 

about the future.” 

Yogi Berra 
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Benefits (Availability, Cost Savings, Maintenance Scheduling, …) 
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Evolution of Maintenance Practices 
From Reactive to Preemptive 

Repair / 
Replace When 

Broken 

Reliability 
Centered 

Maintenance 

Systematic 
maintenance 
approach to ensure 
that assets continue to 
do what their users 
require in present 
operating context 

Enhanced 
Diagnostics 

Process of 
determining why a 
component has failed 

Condition 
Based 

Maintenance 

Predicting the future 
health of a component 
so that maintenance is 
done based on the 
actual condition of the 
component 

Key Enabler: 
Prognostics! 
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Prognostics & Health Management 
Putting the “P” in “PHM” 

Preprocessing 

Sensor Data 

• De-noising 
• Filtering 
• etc. 

Feature 
Extraction 

Preprocessed 
Data 

• Signal statistics 
• Estimated 
   parameters 
• etc. 

(Enhanced) 
Diagnostics 

Features 
• Fault status 
• System 
  capabilities 
• etc. 

Decision 
Management 

Diagnosis 

• Maintenance 
  planning 
• Reconfiguration 
• Replan 
• etc. 

Remaining 
Useful Life 

Prognostics 

• Future 
  capabilities 
• Component 
  RUL 
• etc. 

System 

Decisions 
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Definitions 

• prog∙nos∙tic  

– M-W.com – “Something that foretells” 

– PHM Community – “Estimation of the Remaining Useful Life of a 

component” 

 

• Remaining Useful Life (RUL) – The amount of time a 

component can be expected to continue operating within 

its stated specifications. 

– Dependent on future operating conditions 

– Input commands 

– Environment 

– Loads 

 

So what is “Prognostics” anyway? 
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Some Different Perspectives 
i.e., who cares? 

Maintainers 

• Scheduling Mx 
• Opportunistic Mx 
• System Uptime 
• Minimize    
unnecessary Mx 
 

Logisticians 

• Spares Positioning 
• Reduced Spares  
  Count 
• Logistics Footprint 

Program Mgmt 

• Meeting customer 
  expectations 

Fleet Management 

• Fleet Health 
• Lifecycle Cost 
• Mission Capability 
• Mission Planning 
• Minimize downtime 

Regulatory  Bodies 

• Safety  
• Avoid Catastrophic 
  Failures 
• Minimize impact on  
other (healthy) 
systems 

Engineers 

• Requirements 
  Satisfaction 
• Robustness 
• Design for PHM 

Not Just for Maintenance! 
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Contingency 

Management View 

Contingency 

Data Analysis &  

Decision Making 

Condition Based 

Mission Planning 

System 

Reconfiguration 

Control 

Reconfiguration 

Prognostic 

Control 

Condition Monitoring 

Safety and Risk 

Analyses 

Health Management 

Maintenance and  

Information systems 

Embedded 

Sensors 
Integrated 

Data Bus 

On-Board  

Diagnostics & Prognostics 

Command & 

Control 

Data Comm 
- Sensors 

- Reporting 

- Scheduled 

Inspections 

Maintenance 

Management View 

Condition Based 

Maintenance 

Tech 

Support 

Planning + Scheduling  

Wholesale Logistics 

Training 

Anticipatory 

Material 

Feedback to 

Production 

Control 

Maintenance  

Data Analysis &  

Decision Making 
Preventive 

Maintenance Condition Monitoring  

Reliability Analysis 

Predictive 

Maintenance 
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Knowledgebase 

e.g. IETMs 

Portable 

Maintenance 

Aids 

Troubleshooting 

and Repair 

• Schematic adapted from: A. Saxena, Knowledge-Based Architecture for Integrated Condition Based Maintenance of Engineering Systems, PhD Thesis, Electrical and Computer Engineering, Georgia Institute of 

Technology, Atlanta May 2007. 

• Liang Tang, Gregory J. Kacprzynski, Kai Goebel, Johan Reimann, Marcos E. Orchard, Abhinav Saxena, and Bhaskar Saha, Prognostics in the Control Loop, Proceedings of the 2007 AAAI Fall Symposium on 

Artificial Intelligence for Prognostics, November 9-11, 2007, Arlington, VA. 
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F-35 Prognostic Candidates 
(Some of them, anyway) 



National Aeronautics and Space Administration 

www.nasa.gov First European Conference of the Prognostics and Health Management Society 2012 

Prognostic Algorithm Categories 

• Type I: Reliability Data-based 
– Use population based statistical model 

– These methods consider historical time to failure data which are used to model 
the failure distribution.  They estimate the life of a typical component under 
nominal usage conditions. 

– Ex: Weibull Analysis 

 

• Type II: Stress-based 
– Use population based fault growth model – learned from accumulated knowledge 

– These methods also consider the environmental stresses (temperature, load, 
vibration, etc.) on the component.  They estimate the life of an average 
component under specific usage conditions. 

– Ex: Proportional Hazards Model 

 

• Type III: Condition-based 
– Individual component based data-driven model 

– These methods also consider the measured or inferred component degradation.  
They estimate the life of a specific component under specific usage and 
degradation conditions. 

– Ex: Cumulative Damage Model, Filtering and State Estimation 
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Trends, RUL, & Uncertainty 

“In theory there is no difference between 

theory and practice.  In practice, there is.” 

Yogi Berra 



National Aeronautics and Space Administration 

www.nasa.gov First European Conference of the Prognostics and Health Management Society 2012 

Trends and Thresholds 
First, the basics … 

“Time” (t) 
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) 

tnow 

Failure Threshold 

tEOL 

RUL 

“Safety Margin” 

RUL 

Extrapolated Trend (based on a 
fault propagation model) 

What if the Fault 
Model is “wrong”?  

tEOL = ? 

What about 
other types of 
uncertainty? 

How much do you 
trust the Threshold? 
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Types of Uncertainties 

• Model uncertainties – Epistemic  
– Numerical errors 

– Unmodeled phenomenon 

– System model and Fault propagation model 

• Input uncertainties – Aleatoric 
– Initial state (damage) estimate 

– Manufacturing variability 

• Measurement uncertainties – Prejudicial 
– Sensor noise 

– Sensor coverage 

– Loss of information during preprocessing 

– Approximations and simplifications 

• Operating environment uncertainties 
– Unforeseen future loads / environment 

– Variability in the usage history data 

You just had to go and make things difficult! 

Systematic uncertainties 
due to things we could 
know in principle, but 
don’t in practice. 

Statistical uncertainties 
that may change every 
time the system is run. 

Unknown uncertainties 
due to the way data are 
collected or processed. 

Can be a mix of any of the 
above. 
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Trends and Thresholds Revisited 
… now things get interesting! 

Time (t) 

Tr
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in

g 
Pa
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m
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er

 (
a

) 

tnow 

Failure Threshold (aFT) 

Effects of Measurement Uncertainty 

Band of uncertainty 
around 

measurement points 

Many possible 
Models may “fit” the 

measurements 

Use statistics to 
extrapolate the 

uncertainty into the 
future 

)(tpEOL

End of Life pdf 

Resulting pdf can be 
used to determine 
the probability of 

EOL occurring 
between two future 

time points 

tDP 

Decision Point 

Probability of 
Failure (π) 


DP

now

t

t

EOL dttp )(

Risk vs POF 

R
is

k 

P
O

F 
Higher POF but 

lower risk 
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Trends and Thresholds Revisited 
… now things get interesting! 

Time (t) 

Tr
en

d
in

g 
Pa

ra
m

et
er

 (
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) 

tnow 

Failure Threshold (aFT) 

Effects of Model & Input Uncertainties 

Can be represented 
by a pdf describing 

the initial conditions 

pdf is then 
propagated forward 

in time 

tDP 

Probability that 
the parameter will 
be less than aFT at 

the time tDP 

Decision Point 

 
FT

DP

a

DPat datap

0

|

Resulting pdf’s can 
be used to determine 
the probability that a 

parameter has 
reached a given value 

at a given point in 
the future 

Probability 
distribution of the 

trending parameter 
at a given time in the 

future 

)(apa
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Trends and Thresholds Revisited 
… now things get interesting! 

Time (t) 
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 (
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) 

tnow 

Failure Threshold (aFT) 

Effects of Model & Input Uncertainties 

Can be represented 
by a pdf describing 

the initial conditions 

pdf is then 
propagated forward 

in time 

Taking a “horizontal 
slice” of the resulting 
surface at aFT yields 

the pdf of EOL at that 
failure threshold 

EOL pdf for aFT 

tDP 

Decision Point 

 
DP

now

FT

t

t

FTEOLa dtatp |

)(tpEOL
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Trends and Thresholds Revisited 
One last twist 

Time (t) 
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 (
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) 

tnow 

Failure Threshold (aFT) 

Instead of a single 
value, the threshold 

could be defined as a 
distribution – 
“Hazard Zone’ 

tDP 

Decision Point 

Probability of 
damage is now taken 
as the integral of the 
product of the two 

pdf’s 

)(apHZ

Probability of 
damage given 
a hazard zone 

 




0

)(| daaptap HZDPatDP


Hazard Zone 

Note that “Risk” is 
now much more 

difficult to quantify 
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Prognostic Methods 

Data-Based or Physics-Based Models? – 

That is the question! 
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Sources of Knowledge 

• FMEA / FMECA 
– Failure modes 

– Effects (and Criticality) – which failure modes to go after 

• Fault Tree Analysis 
– Propagation Models 

• Designers / Reliability Engineers 
– System knowledge and insight 

– Expected / nominal behavior of the system 

• Seeded Failure Testing / Accelerated Life Testing 
– Data 

– Failure signatures 

– Effects of environmental conditions 

• Fielded Systems 
– Sensors measurements 

– Maintenance logs 

– Fleet Statistics 

– Performance Validation 
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Data-Driven Methods 

• Model is based solely on data collected from the system 

• Some system knowledge may still be handy: 
– What the system ‘is’ 

– What the failure modes are 

– What sensor information is available 

– Which sensors may contain indicators of fault progression (and how those 
signals may ‘grow’) 

• General steps: 
– Gather what information you can (if any) 

– Determine which sensors give good trends 

– Process the data to “clean it up” – try to get nice, monotonic trends 

– Determine threshold(s) either from experience (data) or requirements 

– Use the model to predict RUL 

• Regression / trending 

• Mapping (e.g., using a neural network) 

• Statistics 
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Data-Driven Method Example 

• No knowledge of system (just a bunch of data) 

 

• 218 sets of data (“runs”) 

 

• 24 Signals 

– 3 described as “operational settings” 

– 21 described as “sensor measurement n” 

 

• At the start of each run, the system is healthy 

‒ Although perhaps not at 100% 

 

• At some point during each run, a fault develops and grows to 
‘failure’ at the end of the run 

 

PHM2008 Data Challenge 
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Data-Driven Method Example 
PHM2008 Data Challenge 

Operational 
Settings 

Raw Data Plots for a Single Run 

Use Op 
Settings to 
determine 
different 
modes of 
operation 
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Data-Driven Method Example 
PHM2008 Data Challenge 

Modes Parsed and Highlighted 

Consider 
a single 
mode 
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Data-Driven Method Example 
PHM2008 Data Challenge 

Raw Data Plots for a Single Unit & Mode 

Let’s look 
at a single 

sensor 
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Data-Driven Method Example 
PHM2008 Data Challenge 

Raw Data Plots for a Single Sensor 

Different 
sensors show 

different 
trends – Op 
mode and 

Failure mode 
dependent 
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Data-Driven Method Example 
PHM2008 Data Challenge 

Observations  Fault Modes  Reasoner 

Sensor Observations 

1 
Single-valued for each operational setting across all units. 

No useful information. 

2 All operational settings tend to show slight “up” trend as failure progresses. 

3 All operational settings tend to show slight “up” trend as failure progresses. 

4 All operational settings tend to show slight “up” trend as failure progresses. 

5 
Single-valued for each operational setting across all units. 

No useful information. 

6 
Dual-valued for each operational setting across all units. 

The lower value (in each operational setting) appears to be confined to the earlier cycles of each unit. 

7 All operational settings tend to show slight “down” trend as failure progresses, perhaps slightly more pronounced in operational setting 1. 

8 

Operational settings 1, 2, and 3 show “up” trend as failure progresses for all units. 

Operational settings 4, 5, and 6 show a mix of “up” and “down” trends as failure progresses. 

Many curves appear to be rather pronounced (i.e., sharp up or down trend as failure progresses). 

9 
All operational settings show “up” trend as failure progresses for most units, though some units appear flat. 

Many curves appear to be rather pronounced (i.e., sharp up or down trend as failure progresses). 

10 
Operational settings 1 and 2 are single-value across all units. 

Operational settings 3, 4, 5, and 6 are dual-valued across all units. 

11 All operational settings tend to show slight “up” trend as failure progresses. 

12 All operational settings tend to show slight “down” trend as failure progresses, perhaps slightly more pronounced in operational setting 1. 

13 

Operational settings 1, 2, and 3 show “up” trend as failure progresses for all units. 

Operational settings 4, 5, and 6 show a mix of “up” and “down” trends as failure progresses. 

Many curves appear to be rather pronounced (i.e., sharp up or down trend as failure progresses). 

14 
All operational settings show “up” trend as failure progresses for most units, though some units appear flat. 

Many curves appear to be rather pronounced (i.e., sharp up or down trend as failure progresses). 

15 All operational settings tend to show slight “up” trend as failure progresses. 

16 
Operational settings 1, 2, 4, 5, and 6 are single-valued across all units. 

Operational setting 3 is dual-valued across all units with the lower value confined to the earlier cycles of each unit. 

17 
All operational settings tend to show slight “up” trend as failure progresses. 

Signals are discrete valued (no fractional values, only integral). 

18 
Single-valued for each operational setting across all units. 

No useful information. 

19 
Single-valued for each operational setting across all units. 

No useful information. 

20 All operational settings tend to show very slight “down” trend as failure progresses, perhaps slightly more pronounced in operational setting 1. 

21 All operational settings tend to show very slight “down” trend as failure progresses, perhaps slightly more pronounced in operational setting 1. 
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Data-Driven Method Example 
PHM2008 Data Challenge 

Observations 

Sensor Data Fault Mode 

Learned Trends 

Reasoner 
RUL 

Estimator 
RUL Estimate 

offset # points in test unit RUL estimate

# points in training unit
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Data-Driven Methods 

• Pros 
– Easy and Fast to implement 

• Several off-the-shelf packages are available for data mining 

– May identify relationships that were not previously considered 
• Can consider all relationships without prejudice 

 

• Cons 
– Requires lots of data and a “balanced” approach 

• Most of the time, lots of run-to-failure data are not available 

• Very real risk of “over-learning” the data 

• Conversely, there’s also a risk of “over-generalizing” 

– Results may be counter- (or even un-)intuitive 
• Correlation does not always imply causality! 

– Can be computationally intensive, both for analysis and implementation 

 

• Example techniques 
– Regression analysis 

– Neural Networks (NN) 

– Bayesian updates 

– Relevance vector machines (RVM) 

Pros & Cons 
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Physics-Based Methods 

• Description of a system’s underlying physics using suitable 
representation 

• Some examples: 
– Model derived from “First Principles” 

• Encapsulate fundamental laws of physics 
 PDEs 

 Euler-Lagrange Equations 

– Empirical model chosen based on an understanding of the 
dynamics of a system 

• Lumped Parameter Model 

• Classical 1st (or higher) order response curves 

– Mappings of stressors onto damage accumulation 
• Finite Element Model 

• High-fidelity Simulation Model 

 

• Something in the model correlates to the failure mode(s) of 
interest 
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Physics-Based Method Example 
Lithium Ion Battery 

Metal 
Resistance 

Double-Layer 
Capacitance 

Charge Transfer 
Resistance 

Warburg 
(Diffusion) 
Resistance 

Electrolyte 
Resistance 

Randles Equivalent 
Impedance Model 

+
+

-

+
+
+
+
+

+
+
+
+

+ +

+

-
- -
-

-

-

-

-
-
-

--
-

Ion flow

Electron flow

Current flow
Anode

(negative)
Cathode
(positive)

++

+
+

+
+

+

+
+

+

+

+

+

+

-
-

-

- -

-
-

-
-

-
- -

-

-

Oxidation reaction yields:
Free electrons (negative)
Positive ions

Reduction reaction yields:
Electron “holes” (positive)

Negative ions

Separator

1st Order Lumped Parameter Model 

E(t) 

R1 R2 

C 

v(t) 

i(t) 

RL 

vc(t) 
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Physics-Based Method Example 
Lithium Ion Battery 

E(t) 

R1 R2 

C 

v(t) 

i(t) 

RL 

vc(t) 

Discharge Curves 

0 5 10 15 20 25 30 
12.8 

13.0 

13.2 

13.4 

13.6 
Battery Pulse Data 

Time (sec) 

V
o
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a
g
e
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V
) 

τ = CR2 
τ = CR2 

iR1 

iR1 
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Physics-Based Method Example 

• As the battery ages, changes in the electro-chemical 
properties manifest in changes to R1, R2, and C 

 

• Usage and/or BIT data are used to continuously estimate 
the impedance values 

 

• Regression analysis is used to correlate the impedance 
values to battery capacity (State of Health) 

Lithium Ion Battery 

E(t) 

R1 R2 

C 

v(t) 

i(t) 

RL 

vc(t) 
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Physics-Based Models 

• Pros 
– Results tend to be intuitive 

• Based on modeled phenomenon 

• And when they’re not, they’re still instructive (e.g., identifying needs for more fidelity or 
unmodeled effects) 

– Models can be reused 
• Tuning of parameters can be used to account for differences in design 

– If incorporated early enough in the design process, can drive sensor 
requirements (adding or removing) 

– Computationally efficient to implement 

 

• Cons 
– Model development requires a thorough understanding of the system 

– High-fidelity models can be computationally intensive 

 

• Examples 
– Paris-Erdogan Crack Growth Model 

– Taylor tool wear model 

– Corrosion model 

– Abrasion model 

 

Pros & Cons 
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Algorithms 

• Assess the current damage state 

• Utilize physics-based model in prescribed fashion for prediction 

• Use the model in forward mode 

– Take future conditions into consideration 

– Explore different paths 

– Handle uncertainty (unlikely to be Gaussian) 

• Criteria for Algorithm Choice (example) 

– Estimate the state in the presence of noise  

• Use algorithms such as filters. 

– Deal with system nonlinearities and non-parametric noise 

• Use suitable techniques such as Monte-Carlo. 

– Run real-time 

• Use appropriate algorithms such as Particle Filters (Markov Chain Monte 

Carlo). 
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A “Filter” Approach 

System Model 

Input Sequence 

Output Sequence 

State Proposed State Estimate 

Sensor Filter 

Corrected State Estimate 
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Damage Estimation with Particle Filters 

• Particle filters (PFs) are state observers that can be applied to 
general nonlinear processes with non-Gaussian noise 
– Approximate state distribution by set of discrete weighted samples: 

 

 

– Suboptimal, but approach optimality as N ∞ 

• Parameter evolution described by random walk: 
 

 

– Selection of variance of random walk noise is important 

– Variance must be large enough to ensure convergence, but small 
enough to ensure precise tracking 

• PF approximates posterior as 

8/14/2012 
Annual Conference of the Prognostics and 

Health Management Society 2010 
36 
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Particle Filters 

• Employ particle filters for 
joint state-parameter 
estimation 
– Represent probability 

distributions using set of 
weighted samples 

– Help manage uncertainty 
(e.g., sensor noise, 
process noise, etc.) 

– Similar approaches have 
been applied successfully 
to actuators, batteries, and 
other prognostics 
applications 

8/14/2012 
Annual Conference of the Prognostics and 

Health Management Society 2010 
37 

w

x

t

Distribution 

evolves in 

time 

State represented 

with discrete 

probability 

distribution 



National Aeronautics and Space Administration 

www.nasa.gov First European Conference of the Prognostics and Health Management Society 2012 

Particle Filter (PF) Tracking 

Initialize PF Parameters

Propose Initial Population , x0,w0

Propagate Particles using State 

Model , xk-1xk

Update Weights, wk-1  wk
Measurement

zk

Weights 

degenerated?

Resample

Yes

No
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Particle Filter Prediction 

Start Prediction at tp

Estimate Initial Population , xp,wp

Propagate Particles using State 

Model , xp+k-1xp+k

EOL threshold 

exceeded?

Generate RUL pdf from {wp}

Yes

No
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• General idea 

– Propagate each particle forward until EOL reached 

(condition on EOL evaluates to true) 

– Use particle weights for EOL weights 

• Particle filter computes 

 

• Prediction n steps ahead approximated as 

 

• Similarly, EOL prediction approximated as 

 

 

 

Prediction 

8/14/2012 
Annual Conference of the Prognostics and 

Health Management Society 2010 
40 
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Prediction 

8/14/2012 
Annual Conference of the Prognostics and 

Health Management Society 2010 
41 

Spring damage progression EOL prediction 

Hypothesize

d inputs 



National Aeronautics and Space Administration 

www.nasa.gov First European Conference of the Prognostics and Health Management Society 2012 

Sampling Importance Resampling (SIR) PF 

• Begin with initial particle population 

• Predict evolution of particles one step ahead 

• Compute particle weights based on likelihood of given observations 

• Resample to avoid degeneracy issues 
– Degeneracy is when small number of particles have high weight and the rest have very low weight 

– Avoid wasting computation on particles that do not contribute to the approximation 

8/14/2012 42 

w
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Predict Evolution
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w
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Hybrid Models 

• In practice, many implementations pull from both Data-

Driven and Physics-Based Model methods 

– Use data to learn model parameters 

– Use knowledge about the physical process to determine the type 

of regression analysis to apply (linear, polynomial, exponential, 

etc.) 

– Data-Driven System Model in conjunction with a Physics-Based 

Fault Model (or vice-versa) 

– Identify potential correlations physics model and correlate using 

a data-based approach 

– Data fusion – have one of each! 

The best of both worlds 
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Hybrid Example 

• Regression analysis used to trend circuit parameters (R1, R2, 
C) 

• Battery State of Health (SOH) Model 
– Correlates total charge capacity to SOH 

• Battery State of Charge (SOC) Model 
– Correlates voltage, current, and temperature to SOC 

• Together they can yield both the life remaining on the current 
charge as well as when the battery will need to be replaced 

 

Lithium Ion Battery Revisited 

SOC 

V
B

at
 

0 1 

I 

V 

T 

SOC 

Battery SOC Model Battery SOH Model 

Total Capacity 

Remaining 

Charge 
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Hybrid Models 

• Pros 
– Combines the strengths of each approach 

– Robustness in design 
• Use data where system knowledge is lacking 

• Use physics where data is lacking 

– Results are both intuitive and match observations 

– Can “mix and match” approaches to customize for the current situation 

 

• Cons 
– Though the goal of a hybrid approach is to pull the best from each approach, 

where each approach is used, it still carries its disadvantages 
• Need for data 

• Portions may still be computationally intensive 

• Need for in-depth system knowledge 

 

• Examples 
– Particle Filters 

– Kalman Filters 

– etc. 

Pros & Cons 
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Application Example 

Putting it al together 
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Prognostics for Electric UAV 

• Flight Tests with unmanned electric aircraft 

– Battery performance not as anticipated 

– SOC and remaining life information desirable during 

operations 
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Edge 540 Electric UAV 

• 2 motors 

• 4 batteries (each with 5 cells in series) 

• 2 batteries in series power each motor 
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Flight Profile 
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Model Adaptation 

• Modified system model: 
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Model parameters 

Future load profile is known 

Prediction before model adaptation to changing load 

Future load profile is known 

Prediction after model adaptation to changing load 
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Adapting Model Parameters 

• Easy solution: is to pick a Gaussian random walk 

• Update model/system noise variance based on 

convergence 

• Have rules to update model parameters instead of just a 

random walk 

– May be based on sensitivity analysis of parameters 

• The more complicated the parameter update scheme, 

the higher the computational load 

– Needs to be justified by performance requirements 

• Need to explore the model design space 
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Modeling SOC 

• IR drop 

– Effect of lumped passive 

elements, R, C 

– Temperature effect on ion-

mobility and hence R 

 

• Activation polarization 

(AP) 

– Affects initial discharge 

curve 

 

• Concentration 

polarization (CP) 

– Affects final discharge 

curve 
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Empirical Model 

• This level of granularity takes various types of battery 

behavior into account 

– Parameters of the model are load dependent  

– The R-C response characteristic for changes in load is modeled 

• Compared to simpler models, this gives higher accuracy 

in model output  

– but a corresponding increase in the number of parameters 

Cell voltage 

 

where 
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Results 

• For statistical validation, we ran model 100 times 

over the same data 

• Parameters chosen 
•  value is chosen to be 0.1  

•  is chosen to be 0.5 

• i.e. prediction trajectories need to be within 90% accuracy 

with 50% battery life left). 
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Other Considerations 
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Requirements 

• Specifications for prognostics 

– Algorithm developers need specifications to which they can build 

their solution  

– Such specifications require metrics that allow acceptance 

checking 

• Some possible parameters (engineering perspective) 

– Lead time to specify the amount of advanced warning needed for 

appropriate actions 

– Maximum tolerable probability of proactive maintenance to 

bound unnecessary maintenance 

– Maximum allowable Probability of Failure (PoF) to bound risk 
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Deriving Requirements for PHM 

Prognostic 

Specifications 
Requirements 

 

Cost-

Benefit-Risk 

Integrate from various levels 

• Mission planning level 

• Maintenance level 

• Operation (runtime) level 

• Fleet vs. system levels 

• … 

Process 

• Requirement gathering  

• Requirement analysis & 

conflict resolution 

• Requirement prioritization 

• Requirement flow down 

 

Objectives 

• Cost-value proposition of PHM 

• PHM Design 

• Optimal maintenance policy 

• Comparison of PHM 

approaches 

• Determine tolerance limits on 

input uncertainty for desired 

performance 

• Optimal life cycle cost 

Inputs 

• Mission goals and objectives 

• Constraints on resources and 

time 

• Cost function 

 

Methods 

• Simulation techniques 

• Cost-value optimization 

• Sensitivity & Pareto 

frontiers 

• Use of prognostics metrics 

• Requirements flow down 

methodology suitably 

adapted for PHM 

• Techniques for uncertainty 
– Representation  

– Management 

– Quantification 

Feedback and fine tuning 
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Cost Benefit Analysis 

Savings due to reduced 

• Spare components 

• Manpower (direct/indirect) 

• Training costs 

• Rate of major accidents 

• Footprints 

• System downtime 

• … 

Non-recurring cost factors 

• Algorithm development 

• Hardware/Software design 

• Engineering 

• V&V and testing 

• Qualification/certification 

• … 

Cost of Extra 

Inventory 

Loss of 

system/life 

Downtime 

Cascaded 

Contingencies 

Cost of 

Contingencies 

Cost incurred 

due to PHM 

Cost of PHM 

Implementation 

Cost w/o 

PHM 

Cost with 

PHM 

Savings due to 

PHM 

Deployment 

(recurring) 

Development 

(non-recurring) 

Recurring cost factors 

• Support and maintenance 

• Equipment and personnel 

• … 

Cons of PHM 

• Unused component life 

• False positives 

Situational Cost Factors 

• Usage profile 

• Type of system 

• Type of mission 

• Operational environment 

• Maintenance structure 

• … 

Size and Time Scalability 

• Fleet size 

• Period of monitoring 

• Capital discount rates 

• … 

Computation Basis 

• Cost per unit 

• Cost for fleet 

• Life Cycle Cost 

• Cost per contract period 

• Annual cost 

• Cost per operational hour 

• … 

Cost / 

Savings 

Prognostic 

Performance 

• Prediction horizon 

• Prediction accuracy 

• Prediction precision 

• Algorithm coverage 

• Misdiagnosis rate 

• … 
Risk and Uncertainty 

• Failure rates 

• Future loading 

conditions 

• Logistics efficiency 

• … 

Other Contextual 

Factors 

PHM Attributes 
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Cost Benefit Analysis 

• Main ideas 

– Return on Investment (ROI) 

• ROI = (Return – Investment) / Investment 

– Cost Savings by Implementing PHM 

• SavingsPHM = Costwithout PHM – Costwith PHM 

– Cost assignments based on past maintenance records, account logs etc. 

• Cost incurred due to similar components in legacy systems 

• Cost of man hours based on direct/indirect staffing requirements in the past 

• Inflation adjustments, etc. 

• Formulate as multi-objective optimization problem 

• Factor usually not considered: “when to take an action” 

– Cost of early replacement – function of Prediction Horizon 

– Confidence in prognostic algorithm – function of uncertainty management 

– Risk absorbing capacity – function of criticality & confidence in prognostic 

algorithm 
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Requirement Flowdown 
Translate broad customer requirements into more easily quantified requirements 

 

• Customer oriented view 

– E.g. CTQ and QFD 

• Designer/developer oriented view 

– E.g. “Vee” Model and NASA’s System Engineering Engine 

• Most popular methods 

– CTQ Tree: Critical-to-Quality tree for quality focused methodology e.g. 

six-sigma 

– QFD: Quality Function Deployment to translate customer requirement 

into engineering specifications 

QFD Tools 
• Affinity diagrams 
• Relations diagrams 
• Hierarchy trees 
• Process decision program diagrams 
• Analytic hierarchy process 
• Blueprinting 
• House of quality 

House of Quality 
• Customer requirements 
• Technical requirements 
• Planning matrix 
• Interrelationship matrix 
• Technical correlation (roof) matrix 
• Technical priorities, benchmarks, and targets 
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UAV Example: High-Level Considerations 

• Performance requirements 
– Run mission safely for 20 minutes 

– Risk of loss < 4% 

• Cost Requirements  
– Overall budget 

– Acceptable monetary loss due to incomplete mission (tests) or 
loss of equipment 

• Schedule Requirements 
– Implementation schedule 

– other 

 

 

Performance 

Cost Schedule 
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Prognostic Performance Metrics 

• Metrics Hierarchy 
 

I. Prognostic Horizon 
• Does the algorithm predict within desired accuracy around EoL and sufficiently in 

advance? 

II. α-λ Performance 
• Further does the algorithm stay within desired performance levels relative to RUL at a 

given time? 

III. Relative Accuracy 
• Quantify how well an algorithm does at a 

given time relative to RUL 

IV. Convergence Rate 
• If the performance converges (i.e. satisfies above 

metrics) quantify how fast does it converge 

EoL 

α*EoL 

r*(tλ) 

α*r*(tλ) 
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Prognostic Performance Metrics 

 

 

 

 

• Prognostics horizon 

• α-λ performance 

• Relative accuracy 

• Cumulative relative accuracy 

• Convergence 

• Metrics have been developed specific to Prognostics for ISHM 

• These metrics were applied to  
• A combination of different algorithms and different datasets 

• Metrics were evaluated and refined 
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Prognostic Horizon (PH) 
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p     is the set of all time indexes when predictions are made 

l      is the index for lth unit under test (UUT) 

β     is the minimum acceptable probability mass 

i is the first time index when predictions satisfy β-criterion 

for a given α 

r(j)    is the predicted RUL distribution at time tj 

is the probability mass of the prediction between α-bounds 

given by  

tEoL   is the predicted End-of-Life  
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• Prognostic Horizon is defined as the difference between the time index i when the 

predictions first meet the specified performance criteria (based on data accumulated 

until time index i) and the time index for End-of-Life (EoL). The performance 

specification may be specified in terms of allowable error bound (α) around true EoL. 

The range of PH is between (tEoL-tP) and max[0, tEoL-tEoP] 
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α-λ Accuracy 

• α-λ Accuracy  determines whether at given point in time (specified by λ) prediction 

accuracy is within desired accuracy levels (specified by α). Desired accuracy levels 

for any time t are expressed a percentage of true RUL at time t. 
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λ     is the time window modifier such that 
  

β     is the minimum acceptable probability mass 

 ir is the predicted RUL at time tλ     

is the probability mass of the prediction between α-bounds 

given by  
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Case Study 

Electric UAV 
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Requirement Dependencies 
(for Prognostic Algorithms) 

Requirement Customer/ 
User 

Vendor/ Alg. 
Developer 

• Run mission safely for 20 minutes 
• Risk of loss < 4% 
• Cost Requirements 

X 

• Ensure safe landing when battery runs low 
• Proportion of battery problems = 20% 
• Maximize battery cycle life 

X 

• 60% battery issues covered by maint , rest 40% need ISHM X 

• Determine time to remaining battery cutoff with at least 2 
minutes lead time (needed for landing)  

• but no more than 0.4 minutes too early 

X 

• Develop prognostics algorithm with  = 2 minutes  
•  = 0.2 
•  = 99.68% 

X 
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Deriving Parameters for Metrics 

RUL 
2 

Time [min] 

 99.68% 

0 

2 

2.4 

 0.2 
LUR ˆ

0 

No more than 0.4 minutes early 

=> (2.4-2)/2 =  

Area outside cone: 

=> 0.04*0.2*0.4=1- 

 202/200.9 
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Key Parameters 

•  

– Maximum allowable Probability of Failure (PoF) of the system to 

bound risk 

•  

– Lead time to specify the amount of advanced warning needed for 

appropriate actions 

•  

– Maximum tolerable probability of proactive maintenance to 

bound unnecessary maintenance 
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Current Challenges in Prognostics 

Where do we go from here? 
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Some Open Questions 

• Design for PHM 
– Take health management into consideration during the design stage of the 

system 
– Assess life cycle cost 

• Cost-Benefit Models 
• Quantify the ROI 

• Validation and Verification (V&V) 
– In order for a requirement statement to be valid (or at least realistic), you must be 

able to apply a rigorous V&V methodology to show that the requirement is met 

– However, in a perfect prognostic system, parts are always replaced before they 
fail 

– Though limited post-mortem analyses may be made, it is infeasible to determine 
the actual SOH of all pulled components 

– Even if you did know the actual SOH of all pulled components, its difficult to 
know the RUL pdf of the pulled component 

– Certification 
– Towards Maintenance credits 

• Uncertainty Management 
– Quantification, representation, propagation, and management 

• We’ve come a long way, but there’s still more to be achieved! 
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Questions? 

Thank you! 


