
Tutorial on
Runtime Verification and Runtime Reflection

Martin Leucker

Institute for Software Engineering

Universität zu Lübeck

Dresden, Tuesday 3rd of July 2012

Martin Leucker Dresden, 07/03/12 1/74

Runtime Verification (RV)

S1

S2

S3

S4

Martin Leucker Dresden, 07/03/12 2/74

Runtime Verification (RV)

S1

S2

S3

S4

M

Martin Leucker Dresden, 07/03/12 2/74

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Martin Leucker Dresden, 07/03/12 2/74

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation
◮ Verifies (partially)

correctness properties

based on actual executions

Martin Leucker Dresden, 07/03/12 2/74

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation
◮ Verifies (partially)

correctness properties

based on actual executions

◮ Simple verification technique

Martin Leucker Dresden, 07/03/12 2/74

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation
◮ Verifies (partially)

correctness properties

based on actual executions

◮ Simple verification technique

◮ Complementing

Martin Leucker Dresden, 07/03/12 2/74

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation
◮ Verifies (partially)

correctness properties

based on actual executions

◮ Simple verification technique

◮ Complementing
◮ Model Checking

Martin Leucker Dresden, 07/03/12 2/74

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation
◮ Verifies (partially)

correctness properties

based on actual executions

◮ Simple verification technique

◮ Complementing
◮ Model Checking
◮ Testing

Martin Leucker Dresden, 07/03/12 2/74

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation
◮ Verifies (partially)

correctness properties

based on actual executions

◮ Simple verification technique

◮ Complementing
◮ Model Checking
◮ Testing

◮ Formal: w ∈ L(ϕ)

Martin Leucker Dresden, 07/03/12 2/74

Model Checking

◮ Specification of System

Martin Leucker Dresden, 07/03/12 3/74

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)

Martin Leucker Dresden, 07/03/12 3/74

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)
◮ with models L(ϕ)

Martin Leucker Dresden, 07/03/12 3/74

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)
◮ with models L(ϕ)

◮ Model of System

Martin Leucker Dresden, 07/03/12 3/74

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)
◮ with models L(ϕ)

◮ Model of System
◮ as transition system S with runs L(S)

Martin Leucker Dresden, 07/03/12 3/74

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)
◮ with models L(ϕ)

◮ Model of System
◮ as transition system S with runs L(S)

◮ Model Checking Problem:
Do all runs of the system satisfy the specification

Martin Leucker Dresden, 07/03/12 3/74

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)
◮ with models L(ϕ)

◮ Model of System
◮ as transition system S with runs L(S)

◮ Model Checking Problem:
Do all runs of the system satisfy the specification

◮ L(S) ⊆ L(ϕ)

Martin Leucker Dresden, 07/03/12 3/74

Model Checking versus RV

◮ Model Checking: infinite words

Martin Leucker Dresden, 07/03/12 4/74

Model Checking versus RV

◮ Model Checking: infinite words

◮ Runtime Verification: finite words

Martin Leucker Dresden, 07/03/12 4/74

Model Checking versus RV

◮ Model Checking: infinite words

◮ Runtime Verification: finite words
◮ yet continuously expanding words

Martin Leucker Dresden, 07/03/12 4/74

Model Checking versus RV

◮ Model Checking: infinite words

◮ Runtime Verification: finite words
◮ yet continuously expanding words

◮ In RV: Complexity of monitor generation is of less importance than

complexity of the monitor

Martin Leucker Dresden, 07/03/12 4/74

Model Checking versus RV

◮ Model Checking: infinite words

◮ Runtime Verification: finite words
◮ yet continuously expanding words

◮ In RV: Complexity of monitor generation is of less importance than

complexity of the monitor

◮ Model Checking: White-Box-Systems

Martin Leucker Dresden, 07/03/12 4/74

Model Checking versus RV

◮ Model Checking: infinite words

◮ Runtime Verification: finite words
◮ yet continuously expanding words

◮ In RV: Complexity of monitor generation is of less importance than

complexity of the monitor

◮ Model Checking: White-Box-Systems

◮ Runtime Verification: also Black-Box-Systems

Martin Leucker Dresden, 07/03/12 4/74

Testing

Testing: Input/Output Sequence
◮ incomplete verification technique

Martin Leucker Dresden, 07/03/12 5/74

Testing

Testing: Input/Output Sequence
◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

Martin Leucker Dresden, 07/03/12 5/74

Testing

Testing: Input/Output Sequence
◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

Martin Leucker Dresden, 07/03/12 5/74

Testing

Testing: Input/Output Sequence
◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Martin Leucker Dresden, 07/03/12 5/74

Testing

Testing: Input/Output Sequence
◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Martin Leucker Dresden, 07/03/12 5/74

Testing

Testing: Input/Output Sequence
◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Testing: with Oracle
◮ test case: finite sequence of input actions

Martin Leucker Dresden, 07/03/12 5/74

Testing

Testing: Input/Output Sequence
◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Testing: with Oracle
◮ test case: finite sequence of input actions

◮ test oracle: monitor

Martin Leucker Dresden, 07/03/12 5/74

Testing

Testing: Input/Output Sequence
◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Testing: with Oracle
◮ test case: finite sequence of input actions

◮ test oracle: monitor

◮ test execution: send test cases, let oracle report violations

Martin Leucker Dresden, 07/03/12 5/74

Testing

Testing: Input/Output Sequence
◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Testing: with Oracle
◮ test case: finite sequence of input actions

◮ test oracle: monitor

◮ test execution: send test cases, let oracle report violations

◮ similar to runtime verification

Martin Leucker Dresden, 07/03/12 5/74

Testing versus RV

◮ Test oracle manual

Martin Leucker Dresden, 07/03/12 6/74

Testing versus RV

◮ Test oracle manual

◮ RV monitor from high-level specification (LTL)

Martin Leucker Dresden, 07/03/12 6/74

Testing versus RV

◮ Test oracle manual

◮ RV monitor from high-level specification (LTL)

◮ Testing:

How to find good test suites?

Martin Leucker Dresden, 07/03/12 6/74

Testing versus RV

◮ Test oracle manual

◮ RV monitor from high-level specification (LTL)

◮ Testing:

How to find good test suites?

◮ Runtime Verification:

How to generate good monitors?

Martin Leucker Dresden, 07/03/12 6/74

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 7/74

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 8/74

Runtime Verification

Definition (Runtime Verification)

Runtime verification is the discipline of computer science that deals with the

study, development, and application of those verification techniques that

allow checking whether a run of a system under scrutiny (SUS) satisfies or

violates a given correctness property.

Its distinguishing research effort lies in synthesizing monitors from high level

specifications.

Martin Leucker Dresden, 07/03/12 9/74

Runtime Verification

Definition (Runtime Verification)

Runtime verification is the discipline of computer science that deals with the

study, development, and application of those verification techniques that

allow checking whether a run of a system under scrutiny (SUS) satisfies or

violates a given correctness property.

Its distinguishing research effort lies in synthesizing monitors from high level

specifications.

Definition (Monitor)

A monitor is a device that reads a finite trace and yields a certain verdict.

A verdict is typically a truth value from some truth domain.

Martin Leucker Dresden, 07/03/12 9/74

Taxonomy

runtime

verification

trace

finite

finite non-

completed

infinite

integration

inline

outline

stage

online

offline

interference

invasive

non-invasive

steering

activepassive

monitoring

input/

output

behavior

state se-

quence

event

sequence

application

area

safety

checking

security

information

collection

performance

evaluation

Martin Leucker Dresden, 07/03/12 10/74

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 11/74

Runtime Verification for LTL

Observing executions/runs

Martin Leucker Dresden, 07/03/12 12/74

Runtime Verification for LTL

Observing executions/runs

Idea

Specify correctness properties in LTL

Martin Leucker Dresden, 07/03/12 12/74

Runtime Verification for LTL

Observing executions/runs

Idea

Specify correctness properties in LTL

Commercial

Specify correctness properties in Regular LTL

Martin Leucker Dresden, 07/03/12 12/74

Runtime Verification for LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.

The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

ϕ ::= true | p | ϕ ∨ ϕ | ϕ U ϕ | Xϕ |
false | ¬p | ϕ ∧ ϕ | ϕ R ϕ | X̄ϕ |
¬ϕ

Martin Leucker Dresden, 07/03/12 13/74

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

Martin Leucker Dresden, 07/03/12 14/74

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

Martin Leucker Dresden, 07/03/12 14/74

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

Martin Leucker Dresden, 07/03/12 14/74

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

Martin Leucker Dresden, 07/03/12 14/74

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

X

Martin Leucker Dresden, 07/03/12 14/74

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

X
√

Martin Leucker Dresden, 07/03/12 14/74

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

X
√
√

Martin Leucker Dresden, 07/03/12 14/74

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

X
√
√

Abbreviation
Fϕ ≡ trueUϕ Gϕ ≡ ¬F¬ϕ

Martin Leucker Dresden, 07/03/12 14/74

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

X
√
√

Abbreviation
Fϕ ≡ trueUϕ Gϕ ≡ ¬F¬ϕ

Example

G¬(critic1 ∧ critic2), G(¬alive → Xalive)

Martin Leucker Dresden, 07/03/12 14/74

LTL for the working engineer??

Simple??

“LTL is for theoreticians—but for practitioners?”

Martin Leucker Dresden, 07/03/12 15/74

LTL for the working engineer??

Simple??

“LTL is for theoreticians—but for practitioners?”

SALT

Structured Assertion Language for Temporal Logic

“Syntactic Sugar for LTL” [Bauer, L., Streit@ICFEM’06]

Martin Leucker Dresden, 07/03/12 15/74

SALT – http://www.isp.uni-luebeck.de/salt

Martin Leucker Dresden, 07/03/12 16/74

http://www.isp.uni-luebeck.de/salt

Runtime Verification for LTL

Idea

Specify correctness properties in LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.

The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

ϕ ::= true | p | ϕ ∨ ϕ | ϕ U ϕ | Xϕ |
false | ¬p | ϕ ∧ ϕ | ϕ R ϕ | X̄ϕ |
¬ϕ

Martin Leucker Dresden, 07/03/12 17/74

Truth Domains

Lattice
◮ A lattice is a partially ordered set (L,⊑) where for each x, y ∈ L, there

exists

1. a unique greatest lower bound (glb), which is called the meet of x and y, and

is denoted with x ⊓ y, and

2. a unique least upper bound (lub), which is called the join of x and y, and is

denoted with x ⊔ y.

◮ A lattice is called finite iff L is finite.

◮ Every finite lattice has a well-defined unique least element, called

bottom, denoted with ⊥,

◮ and analogously a greatest element, called top, denoted with ⊤.

Martin Leucker Dresden, 07/03/12 18/74

Truth Domains (cont.)

Lattice (cont.)
◮ A lattice is distributive, iff x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z), and, dually,

x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z).

◮ In a de Morgan lattice, every element x has a unique dual element x,

such that x = x and x ⊑ y implies y ⊑ x.

Definition (Truth domain)

We call L a truth domain, if it is a finite de Morgan lattice.

Martin Leucker Dresden, 07/03/12 19/74

LTL’s semantics using truth domains

Definition (LTL semantics (common part))
Semantics of LTL formulae over a finite or infinite word w = a0a1 . . . ∈ Σ∞

Boolean constants

[w |= true]L = ⊤

[w |= false]L = ⊥

Boolean combinations

[w |= ¬ϕ]L = [w |= ϕ]L

[w |= ϕ ∨ ψ]L = [w |= ϕ]L ⊔ [w |= ψ]L

[w |= ϕ ∧ ψ]L = [w |= ϕ]L ⊓ [w |= ψ]L

atomic propositions

[w |= p]L =

⊤ if p ∈ a0

⊥ if p /∈ a0

[w |= ¬p]L =

⊤ if p /∈ a0

⊥ if p ∈ a0

next X/weak next X TBD

until/release

[w |= ϕ U ψ]L =

⊤ there is a k, 0 ≤ k < |w| : [wk |= ψ]L = ⊤ and

for all l with 0 ≤ l < k : [wl |= ϕ] = ⊤

TBD else

[w |= ϕ R ψ]L ≡ ¬(¬ϕ U ¬ψ)

Martin Leucker Dresden, 07/03/12 20/74

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 21/74

LTL on finite words

Application area: Specify properties of finite word

Martin Leucker Dresden, 07/03/12 22/74

LTL on finite words

Definition (FLTL)

Semantics of FLTL formulae over a word u = a0 . . . an−1 ∈ Σ∗

next

[u |= Xϕ]F =

[u1 |= ϕ]F if u1 6= ǫ

⊥ otherwise

weak next

[u |= X̄ϕ]F =

[u1 |= ϕ]F if u1 6= ǫ

⊤ otherwise

Martin Leucker Dresden, 07/03/12 23/74

Monitoring LTL on finite words

(Bad) Idea

just compute semantics. . .

Martin Leucker Dresden, 07/03/12 24/74

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 25/74

LTL on finite, but not completed words

Application area: Specify properties of finite but expanding word

Martin Leucker Dresden, 07/03/12 26/74

LTL on finite, but not completed words

Be Impartial!
◮ go for a final verdict (⊤ or ⊥) only if you really know

Martin Leucker Dresden, 07/03/12 27/74

LTL on finite, but not completed words

Be Impartial!
◮ go for a final verdict (⊤ or ⊥) only if you really know

◮ be a man: stick to your word

Martin Leucker Dresden, 07/03/12 27/74

LTL on finite, but not complete words

Impartiality implies multiple values

Every two-valued logic is not impartial.

Definition (FLTL)

Semantics of FLTL formulae over a word u = a0 . . . an−1 ∈ Σ∗

next

[u |= Xϕ]F =

[u1 |= ϕ]F if u1 6= ǫ

⊥p otherwise

weak next

[u |= X̄ϕ]F =

[u1 |= ϕ]F if u1 6= ǫ

⊤p otherwise

Martin Leucker Dresden, 07/03/12 28/74

Monitoring LTL on finite but expanding words

Left-to-right!

Martin Leucker Dresden, 07/03/12 29/74

Monitoring LTL on finite but expanding words

Rewriting

Idea: Use rewriting of formula

Evaluating FLTL4 for each subsequent letter
◮ evaluate atomic propositions

◮ evaluate next-formulas

◮ that’s it thanks to

ϕ U ψ ≡ ψ ∨ (ϕ ∧ Xϕ U ψ)

and

ϕ R ψ ≡ ψ ∧ (ϕ ∨ X̄ϕ R ψ)

◮ and remember what to evaluate for the next letter

Martin Leucker Dresden, 07/03/12 30/74

Evaluating FLTL4 for each subsequent letter

Pseudo Code

evalFLTL4 true a = (⊤,⊤)

evalFLTL4 false a = (⊥,⊥)

evalFLTL4 p a = ((p in a),(p in a))

evalFLTL4 ¬ϕ a = let (valPhi,phiRew) = evalFLTL4 ϕ a

in (valPhi,¬phiRew)

evalFLTL4 ϕ ∨ ψ a = let

(valPhi,phiRew) = evalFLTL4 ϕ a

(valPsi,psiRew) = evalFLTL4 ψ a

in (valPhi ⊔ valPsi,phiRew ∨ psiRew)

evalFLTL4 ϕ ∧ ψ a = let

(valPhi,phiRew) = evalFLTL4 ϕ a

(valPsi,psiRew) = evalFLTL4 ψ a

in (valPhi ⊓ valPsi,phiRew ∧ psiRew)

evalFLTL4 ϕ U ψ a = evalFLTL4 ψ ∨ (ϕ ∧ X(ϕ U ψ)) a

evalFLTL4 ϕ R ψ a = evalFLTL4 ψ ∧ (ϕ ∨ X̄(ϕ R ψ)) a

evalFLTL4 Xϕ a = (⊥p,ϕ)

evalFLTL4 X̄ϕ a = (⊤p,ϕ)

Martin Leucker Dresden, 07/03/12 31/74

Monitoring LTL on finite but expanding words

Automata-theoretic approach
◮ Synthesize automaton

◮ Monitoring = stepping through automaton

Martin Leucker Dresden, 07/03/12 32/74

Rewriting vs. automata

Rewriting function defines transition function

evalFLTL4 true a = (⊤,⊤)

evalFLTL4 false a = (⊥,⊥)

evalFLTL4 p a = ((p in a),(p in a))

evalFLTL4 ¬ϕ a = let (valPhi,phiRew) = evalFLTL4 ϕ a

in (valPhi,¬phiRew)

evalFLTL4 ϕ ∨ ψ a = let

(valPhi,phiRew) = evalFLTL4 ϕ a

(valPsi,psiRew) = evalFLTL4 ψ a

in (valPhi ⊔ valPsi,phiRew ∨ psiRew)

evalFLTL4 ϕ ∧ ψ a = let

(valPhi,phiRew) = evalFLTL4 ϕ a

(valPsi,psiRew) = evalFLTL4 ψ a

in (valPhi ⊓ valPsi,phiRew ∧ psiRew)

evalFLTL4 ϕ U ψ a = evalFLTL4 ψ ∨ (ϕ ∧ X(ϕ U ψ)) a

evalFLTL4 ϕ R ψ a = evalFLTL4 ψ ∧ (ϕ ∨ X̄(ϕ R ψ)) a

evalFLTL4 Xϕ a = (⊥p,ϕ)

evalFLTL4 X̄ϕ a = (⊤p,ϕ)

Martin Leucker Dresden, 07/03/12 33/74

Automata-theoretic approach

Further developments possible
◮ alternating Mealy machines

Martin Leucker Dresden, 07/03/12 34/74

Automata-theoretic approach

Further developments possible
◮ alternating Mealy machines

◮ Moore machines

Martin Leucker Dresden, 07/03/12 34/74

Automata-theoretic approach

Further developments possible
◮ alternating Mealy machines

◮ Moore machines

◮ alternating machines

Martin Leucker Dresden, 07/03/12 34/74

Automata-theoretic approach

Further developments possible
◮ alternating Mealy machines

◮ Moore machines

◮ alternating machines

◮ non-deterministic machines

Martin Leucker Dresden, 07/03/12 34/74

Automata-theoretic approach

Further developments possible
◮ alternating Mealy machines

◮ Moore machines

◮ alternating machines

◮ non-deterministic machines

◮ deterministic machines

Martin Leucker Dresden, 07/03/12 34/74

Automata-theoretic approach

Further developments possible
◮ alternating Mealy machines

◮ Moore machines

◮ alternating machines

◮ non-deterministic machines

◮ deterministic machines

◮ state sequence for an input word

Martin Leucker Dresden, 07/03/12 34/74

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 35/74

Anticipatory Semantics

Consider possible extensions of the non-completed word

Martin Leucker Dresden, 07/03/12 36/74

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 37/74

LTL for RV [BLS@FSTTCS’06]

Basic idea
◮ LTL over infinite words is commonly used for specifying correctness

properties

◮ finite words in RV:

prefixes of infinite, so-far unknown words

◮ re-use existing semantics

Martin Leucker Dresden, 07/03/12 38/74

LTL for RV [BLS@FSTTCS’06]

Basic idea
◮ LTL over infinite words is commonly used for specifying correctness

properties

◮ finite words in RV:

prefixes of infinite, so-far unknown words

◮ re-use existing semantics

3-valued semantics for LTL over finite words

[u |= ϕ] =

⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else

Martin Leucker Dresden, 07/03/12 38/74

Impartial Anticipation

Impartial
◮ Stay with ⊤ and ⊥

Martin Leucker Dresden, 07/03/12 39/74

Impartial Anticipation

Impartial
◮ Stay with ⊤ and ⊥

Anticipatory
◮ Go for ⊤ or ⊥
◮ Consider XXXfalse

ǫ |= XXXfalse

Martin Leucker Dresden, 07/03/12 39/74

Impartial Anticipation

Impartial
◮ Stay with ⊤ and ⊥

Anticipatory
◮ Go for ⊤ or ⊥
◮ Consider XXXfalse

ǫ |= XXXfalse

a |= XXfalse

Martin Leucker Dresden, 07/03/12 39/74

Impartial Anticipation

Impartial
◮ Stay with ⊤ and ⊥

Anticipatory
◮ Go for ⊤ or ⊥
◮ Consider XXXfalse

ǫ |= XXXfalse

a |= XXfalse

aa |= Xfalse

Martin Leucker Dresden, 07/03/12 39/74

Impartial Anticipation

Impartial
◮ Stay with ⊤ and ⊥

Anticipatory
◮ Go for ⊤ or ⊥
◮ Consider XXXfalse

ǫ |= XXXfalse

a |= XXfalse

aa |= Xfalse

aaa |= false

[ǫ |= XXXfalse] =

⊤ if ∀σ ∈ Σω : ǫσ |= XXXfalse

⊥ if ∀σ ∈ Σω : ǫσ 6|= XXXfalse

? else
Martin Leucker Dresden, 07/03/12 39/74

Büchi automata (BA)

0 1

2

3 4

a

b

a

a, b

b
a

b

Martin Leucker Dresden, 07/03/12 40/74

Büchi automata (BA)

00 1

2

3 4

a

b

a

a, b

b
a

b

Martin Leucker Dresden, 07/03/12 40/74

Büchi automata (BA)

0 1

2

3 4

aa

b

a

a, b

b
a

b

a

Martin Leucker Dresden, 07/03/12 40/74

Büchi automata (BA)

0 11

2

3 4

a

b

a

a, b

b
a

b

a

Martin Leucker Dresden, 07/03/12 40/74

Büchi automata (BA)

0 1

2

3 4

a

bb

a

a, b

b
a

b

a b

Martin Leucker Dresden, 07/03/12 40/74

Büchi automata (BA)

00 1

2

3 4

a

b

a

a, b

b
a

b

a b

Martin Leucker Dresden, 07/03/12 40/74

Büchi automata (BA)

0 1

2

3 4

aa

b

a

a, b

b
a

b

a b a

Martin Leucker Dresden, 07/03/12 40/74

Büchi automata (BA)

0 11

2

3 4

a

b

a

a, b

b
a

b

a b a

Martin Leucker Dresden, 07/03/12 40/74

Büchi automata (BA)

0 1

2

3 4

a

bb

a

a, b

b
a

b

a b a b

Martin Leucker Dresden, 07/03/12 40/74

Büchi automata (BA)

0 1

2

3 4

a

b

a

a, b

b
a

b

a b a b . . .

Martin Leucker Dresden, 07/03/12 40/74

Büchi automata (BA)

0 1

2

3 4

a

b

a

a, b

b
a

b

a b a b . . .

(ab)ω ∈ L(A)

Martin Leucker Dresden, 07/03/12 40/74

Büchi automata (BA)

0 1

2

3 4

a

b

a

a, b

b
a

b

a b a b . . .

(ab)ω ∈ L(A)

(ab)∗aa{a, b}ω ⊆ L(A)

Martin Leucker Dresden, 07/03/12 40/74

Büchi automata (BA)

Emptiness test:

0 1

2

3 4

a

b

a

a, b

b
a

b

a b a b . . .

(ab)ω ∈ L(A)

(ab)∗aa{a, b}ω ⊆ L(A)

Martin Leucker Dresden, 07/03/12 40/74

Büchi automata (BA)

Emptiness test: SCCC, Tarjan

0 1

2

3 4

a

b

a

a, b

b
a

b

a b a b . . .

(ab)ω ∈ L(A)

(ab)∗aa{a, b}ω ⊆ L(A)

Martin Leucker Dresden, 07/03/12 40/74

LTL to BA

[Vardi & Wolper ’86]
◮ Translation of an LTL formula ϕ into Büchi automata Aϕ with

L(Aϕ) = L(ϕ)

◮ Complexity: Exponential in the length of ϕ

Martin Leucker Dresden, 07/03/12 41/74

Monitor construction – Idea I

[u |= ϕ] =

⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else

0 1

2

3 4

a

b

a

a, b

b
a

b

Martin Leucker Dresden, 07/03/12 42/74

Monitor construction – Idea I

[u |= ϕ] =

⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

Martin Leucker Dresden, 07/03/12 42/74

Monitor construction – Idea I

[u |= ϕ] =

⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

⊤

Martin Leucker Dresden, 07/03/12 42/74

Monitor construction – Idea I

[u |= ϕ] =

⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

⊤
?

Martin Leucker Dresden, 07/03/12 42/74

monitor construction – Idea II

0 1

2

3 4

a

b

a

a, b

b
a

b

Martin Leucker Dresden, 07/03/12 43/74

monitor construction – Idea II

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

Martin Leucker Dresden, 07/03/12 43/74

monitor construction – Idea II

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

6= ⊥

Martin Leucker Dresden, 07/03/12 43/74

monitor construction – Idea II

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

6= ⊥

NFA

Fϕ : Qϕ → {⊤,⊥} Emptiness per state

Martin Leucker Dresden, 07/03/12 43/74

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

Lemma

[u |= ϕ] =

⊤

⊥ if u /∈ L(NFAϕ)

?

Martin Leucker Dresden, 07/03/12 44/74

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ

Lemma

[u |= ϕ] =

⊤

⊥ if u /∈ L(NFAϕ)

?

Martin Leucker Dresden, 07/03/12 44/74

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

Lemma

[u |= ϕ] =

⊤ if u /∈ L(NFA¬ϕ)

⊥ if u /∈ L(NFAϕ)

? else

Martin Leucker Dresden, 07/03/12 44/74

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ

Martin Leucker Dresden, 07/03/12 44/74

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

Martin Leucker Dresden, 07/03/12 44/74

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

M

Martin Leucker Dresden, 07/03/12 44/74

Complexity

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Martin Leucker Dresden, 07/03/12 45/74

Complexity

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Martin Leucker Dresden, 07/03/12 45/74

Complexity

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Martin Leucker Dresden, 07/03/12 45/74

Complexity

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Complexity

|M| ≤ 22|ϕ|

Martin Leucker Dresden, 07/03/12 45/74

Complexity

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Complexity

|M| ≤ 22|ϕ|

Optimal result!

FSM can be minimised (Myhill-Nerode)

Martin Leucker Dresden, 07/03/12 45/74

On-the-fly Construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Martin Leucker Dresden, 07/03/12 46/74

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 47/74

Intermediate Summary

Semantics
◮ completed traces

◮ two valued semantics

◮ non-completed traces
◮ Impartiality

◮ at least three values

◮ Anticipation
◮ finite traces
◮ infinite traces
◮ . . .

◮ monitorability

Monitors
◮ left-to-right

◮ time versus space trade-off
◮ rewriting
◮ alternating automata
◮ non-deterministic automata
◮ deterministic automata

Martin Leucker Dresden, 07/03/12 48/74

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 49/74

Extensions

LTL is just half of the story

Martin Leucker Dresden, 07/03/12 50/74

Extensions

LTL with data
◮ J-LO

Martin Leucker Dresden, 07/03/12 51/74

Extensions

LTL with data
◮ J-LO

◮ MOP (parameterized LTL)

Martin Leucker Dresden, 07/03/12 51/74

Extensions

LTL with data
◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Martin Leucker Dresden, 07/03/12 51/74

Extensions

LTL with data
◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Martin Leucker Dresden, 07/03/12 51/74

Extensions

LTL with data
◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches
◮ LOLA

Martin Leucker Dresden, 07/03/12 51/74

Extensions

LTL with data
◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches
◮ LOLA

◮ Eagle (etc.)

Martin Leucker Dresden, 07/03/12 51/74

Extensions

LTL with data
◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches
◮ LOLA

◮ Eagle (etc.)

Martin Leucker Dresden, 07/03/12 51/74

Extensions

LTL with data
◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches
◮ LOLA

◮ Eagle (etc.)

Further dimensions
◮ real-time

Martin Leucker Dresden, 07/03/12 51/74

Extensions

LTL with data
◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches
◮ LOLA

◮ Eagle (etc.)

Further dimensions
◮ real-time

◮ concurrency

Martin Leucker Dresden, 07/03/12 51/74

Extensions

LTL with data
◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches
◮ LOLA

◮ Eagle (etc.)

Further dimensions
◮ real-time

◮ concurrency

◮ distribution

Martin Leucker Dresden, 07/03/12 51/74

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 52/74

Monitoring Systems/Logging: Overview

monitoring systems

/logging
instru-

mentation

source code

byte code

binary code

logging APIs

trace tools

dedicated

tracing/-

monitoring

hardware

Martin Leucker Dresden, 07/03/12 53/74

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 54/74

Monitoring Systems/Logging: Overview

monitoring results/

steering

print

exception

steer

manual

automatically

Martin Leucker Dresden, 07/03/12 55/74

React!

Runtime Verification

Observe—do not react

Realising dynamic systems
◮ self-healing systems

◮ adaptive systems, self-organising systems

◮ . . .

Martin Leucker Dresden, 07/03/12 56/74

React!

Runtime Verification

Observe—do not react

Realising dynamic systems
◮ self-healing systems

◮ adaptive systems, self-organising systems

◮ . . .

◮ use monitors for observation—then react

Martin Leucker Dresden, 07/03/12 56/74

jMOP [Rosu et al.]

Java Implementation

Martin Leucker Dresden, 07/03/12 57/74

Runtime Reflection [Bauer, L., Schallhart@ASWEC’06]

Monitor-based Runtime Reflection

Software Architecture Pattern

Martin Leucker Dresden, 07/03/12 58/74

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 59/74

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 60/74

Diagnosis

Main Ideas
◮ Knowledge base

◮ Knowledge

◮ Explanation of Knowledge with Respect to the Knowledge base

Martin Leucker Dresden, 07/03/12 61/74

Diagnosis

Main Ideas
◮ Knowledge base

◮ Knowledge

◮ Explanation of Knowledge with Respect to the Knowledge base

Here
◮ System description

◮ Observations

◮ Diagnosis: Explanation of the Observations with respect to the System

description

Martin Leucker Dresden, 07/03/12 61/74

System Description in First-Order Logic

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Martin Leucker Dresden, 07/03/12 62/74

System Description in First-Order Logic

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Formally

SD = ok(i1) ∧ ¬AB(C1) → l1 = C1(i1)

∧ ok(i2) ∧ ¬AB(C2) → l2 = C2(i2)

∧ ok(l1) ∧ ok(l2) ∧ ¬AB(C3) → o1 = C3(l1, l2)

∧ ok(l1) ∧ ok(l2) ∧ ¬AB(C4) → o2 = C4(l1, l2)

Martin Leucker Dresden, 07/03/12 62/74

System Description in Propositional Logic

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Martin Leucker Dresden, 07/03/12 63/74

System Description in Propositional Logic

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Propositional Logic

SD = i1 ∧ ¬C1 → l1

∧ i2 ∧ ¬C2 → l2

∧ l1 ∧ l2 ∧ ¬C3 → o1

∧ l1 ∧ l2 ∧ ¬C4 → o2

Martin Leucker Dresden, 07/03/12 63/74

Observation

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Observation

(Truth) values for (some of) the propositions involved

Formally: a formula OBS

Observation
¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker Dresden, 07/03/12 64/74

Diagnosis

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Diagnosis

A minimal set of components such that SD ∧ OBS ∧∆ is satisfiable, where ∆

encodes the chosen components.

Martin Leucker Dresden, 07/03/12 65/74

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Propositional Logic

SD = i1 ∧ ¬C1 → l1

∧ i2 ∧ ¬C2 → l2

∧ l1 ∧ l2 ∧ ¬C3 → o1

∧ l1 ∧ l2 ∧ ¬C4 → o2

Observations
¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker Dresden, 07/03/12 66/74

Example

Propositional Logic

SD = i1 ∧ ¬C1 → l1

∧ i2 ∧ ¬C2 → l2

∧ l1 ∧ l2 ∧ ¬C3 → o1

∧ l1 ∧ l2 ∧ ¬C4 → o2

Observations
¬o1 ∧ i1 ∧ i2 ∧ o2

CNF

SD = ¬i1 ∨ C1 ∨ l1

∧ ¬i2 ∨ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3 ∨ o1

∧ ¬l1 ∨ ¬l2 ∨ C4 ∨ o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧
∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker Dresden, 07/03/12 67/74

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker Dresden, 07/03/12 68/74

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker Dresden, 07/03/12 68/74

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker Dresden, 07/03/12 68/74

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker Dresden, 07/03/12 68/74

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker Dresden, 07/03/12 68/74

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker Dresden, 07/03/12 68/74

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Diagnoses
◮ ∆1 = {C1}

Martin Leucker Dresden, 07/03/12 68/74

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Diagnoses
◮ ∆1 = {C1}
◮ ∆2 = {C2}

Martin Leucker Dresden, 07/03/12 68/74

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Diagnoses
◮ ∆1 = {C1}
◮ ∆2 = {C2}
◮ ∆3 = {C3}

Martin Leucker Dresden, 07/03/12 68/74

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 69/74

Monitors yield Obervations

We have. . .
◮ Monitor reports ⊥ line is false

Martin Leucker Dresden, 07/03/12 70/74

Monitors yield Obervations

We have. . .
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

Martin Leucker Dresden, 07/03/12 70/74

Monitors yield Obervations

We have. . .
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Martin Leucker Dresden, 07/03/12 70/74

Monitors yield Obervations

We have. . .
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Martin Leucker Dresden, 07/03/12 70/74

Monitors yield Obervations

We have. . .
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Omniscent Monitors

A monitor is called omnicscent if its output ⊤ implies that the results on the

monitored output are indeed correct.

Martin Leucker Dresden, 07/03/12 70/74

Monitors yield Obervations

We have. . .
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Omniscent Monitors

A monitor is called omnicscent if its output ⊤ implies that the results on the

monitored output are indeed correct.

For Omniscent Monitors
◮ Monitor reports ⊥ line is false

Martin Leucker Dresden, 07/03/12 70/74

Monitors yield Obervations

We have. . .
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Omniscent Monitors

A monitor is called omnicscent if its output ⊤ implies that the results on the

monitored output are indeed correct.

For Omniscent Monitors
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

Martin Leucker Dresden, 07/03/12 70/74

Monitors yield Obervations

We have. . .
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Omniscent Monitors

A monitor is called omnicscent if its output ⊤ implies that the results on the

monitored output are indeed correct.

For Omniscent Monitors
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is true

Martin Leucker Dresden, 07/03/12 70/74

Oniscent Monitors

Example

C1 C2
i l o

Martin Leucker Dresden, 07/03/12 71/74

Oniscent Monitors

Example

C1 C2
i l o

SD = i ∧ ¬C1 → l

∧ l ∧ ¬C2 → o

SD = ¬i ∨ C1 ∨ l

∧ ¬l ∨ C2 ∨ o

Martin Leucker Dresden, 07/03/12 71/74

Oniscent Monitors

Example

C1 C2
i l o

SD = i ∧ ¬C1 → l

∧ l ∧ ¬C2 → o

SD = ¬i ∨ C1 ∨ l

∧ ¬l ∨ C2 ∨ o

Observation: i ∧ ¬o

SD = C1 ∨ l

∧ ¬l ∨ C2

Martin Leucker Dresden, 07/03/12 71/74

Oniscent Monitors

Example

C1 C2
i l o

SD = i ∧ ¬C1 → l

∧ l ∧ ¬C2 → o

SD = ¬i ∨ C1 ∨ l

∧ ¬l ∨ C2 ∨ o

Observation: i ∧ ¬o

SD = C1 ∨ l

∧ ¬l ∨ C2

Diagnoses: C2 or C1

Martin Leucker Dresden, 07/03/12 71/74

Oniscent Monitors

Example

C1 C2
i l o

SD = i ∧ ¬C1 → l

∧ l ∧ ¬C2 → o

SD = ¬i ∨ C1 ∨ l

∧ ¬l ∨ C2 ∨ o

Observation: i ∧ ¬o

SD = C1 ∨ l

∧ ¬l ∨ C2

Diagnoses: C2 or C1

If additionally l known to be correct, only C2 diagnosed.

Martin Leucker Dresden, 07/03/12 71/74

Oniscent Monitors

Example

C1 C2
i l o

SD = i ∧ ¬C1 → l

∧ l ∧ ¬C2 → o

SD = ¬i ∨ C1 ∨ l

∧ ¬l ∨ C2 ∨ o

Observation: i ∧ ¬o

SD = C1 ∨ l

∧ ¬l ∨ C2

Diagnoses: C2 or C1

If additionally l known to be correct, only C2 diagnosed.

 notion of omniscent diagnoses

Martin Leucker Dresden, 07/03/12 71/74

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 72/74

Conclusion

Summary
◮ RV for Failure detection

◮ various, multi-valued approaches
◮ various existing systems
◮ does generally identifies failure detection and identification

◮ Diagonis for Failure identification?

Future work

What is the right combination?

Martin Leucker Dresden, 07/03/12 73/74

That’s it!

Thanks! - Comments?

Martin Leucker Dresden, 07/03/12 74/74

That’s it!

Thanks! - Comments?

Martin Leucker Dresden, 07/03/12 74/74

	Runtime Verification
	Runtime Verification for LTL
	LTL over Finite, Completed Words
	LTL over Finite, Non-Completed Words: Impartiality
	LTL over Non-Completed Words: Anticipation
	LTL over Infinite Words: With Anticipation
	LTL wrap-up

	Extensions
	Monitoring Systems/Logging
	Steering
	Diagnosis
	Ideas
	RV and Diagnosis

	Conclusion

