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Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation
◮ Verifies (partially)

correctness properties

based on actual executions

◮ Simple verification technique

◮ Complementing
◮ Model Checking
◮ Testing

◮ Formal: w ∈ L(ϕ)
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Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)
◮ with models L(ϕ)

◮ Model of System
◮ as transition system S with runs L(S)

◮ Model Checking Problem:
Do all runs of the system satisfy the specification

◮ L(S) ⊆ L(ϕ)
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Model Checking versus RV

◮ Model Checking: infinite words

◮ Runtime Verification: finite words
◮ yet continuously expanding words

◮ In RV: Complexity of monitor generation is of less importance than

complexity of the monitor

◮ Model Checking: White-Box-Systems

◮ Runtime Verification: also Black-Box-Systems
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Testing

Testing: Input/Output Sequence
◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Testing: with Oracle
◮ test case: finite sequence of input actions

◮ test oracle: monitor

◮ test execution: send test cases, let oracle report violations

◮ similar to runtime verification
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Testing versus RV

◮ Test oracle manual

◮ RV monitor from high-level specification (LTL)

◮ Testing:

How to find good test suites?

◮ Runtime Verification:

How to generate good monitors?

Martin Leucker Dresden, 07/03/12 6/74



Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 7/74



Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 8/74



Runtime Verification

Definition (Runtime Verification)

Runtime verification is the discipline of computer science that deals with the

study, development, and application of those verification techniques that

allow checking whether a run of a system under scrutiny (SUS) satisfies or

violates a given correctness property.

Its distinguishing research effort lies in synthesizing monitors from high level

specifications.
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Runtime Verification

Definition (Runtime Verification)

Runtime verification is the discipline of computer science that deals with the

study, development, and application of those verification techniques that

allow checking whether a run of a system under scrutiny (SUS) satisfies or

violates a given correctness property.

Its distinguishing research effort lies in synthesizing monitors from high level

specifications.

Definition (Monitor)

A monitor is a device that reads a finite trace and yields a certain verdict.

A verdict is typically a truth value from some truth domain.
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Runtime Verification for LTL

Observing executions/runs

Idea

Specify correctness properties in LTL

Commercial

Specify correctness properties in Regular LTL
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Runtime Verification for LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.

The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

ϕ ::= true | p | ϕ ∨ ϕ | ϕ U ϕ | Xϕ |
false | ¬p | ϕ ∧ ϕ | ϕ R ϕ | X̄ϕ |
¬ϕ
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Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

X
√
√

Abbreviation
Fϕ ≡ trueUϕ Gϕ ≡ ¬F¬ϕ

Example

G¬(critic1 ∧ critic2), G(¬alive → Xalive)
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LTL for the working engineer??

Simple??

“LTL is for theoreticians—but for practitioners?”

SALT

Structured Assertion Language for Temporal Logic

“Syntactic Sugar for LTL” [Bauer, L., Streit@ICFEM’06]
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SALT – http://www.isp.uni-luebeck.de/salt
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Runtime Verification for LTL

Idea

Specify correctness properties in LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.

The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

ϕ ::= true | p | ϕ ∨ ϕ | ϕ U ϕ | Xϕ |
false | ¬p | ϕ ∧ ϕ | ϕ R ϕ | X̄ϕ |
¬ϕ
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Truth Domains

Lattice
◮ A lattice is a partially ordered set (L,⊑) where for each x, y ∈ L, there

exists

1. a unique greatest lower bound (glb), which is called the meet of x and y, and

is denoted with x ⊓ y, and

2. a unique least upper bound (lub), which is called the join of x and y, and is

denoted with x ⊔ y.

◮ A lattice is called finite iff L is finite.

◮ Every finite lattice has a well-defined unique least element, called

bottom, denoted with ⊥,

◮ and analogously a greatest element, called top, denoted with ⊤.
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Truth Domains (cont.)

Lattice (cont.)
◮ A lattice is distributive, iff x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z), and, dually,

x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z).

◮ In a de Morgan lattice, every element x has a unique dual element x,

such that x = x and x ⊑ y implies y ⊑ x.

Definition (Truth domain)

We call L a truth domain, if it is a finite de Morgan lattice.
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LTL’s semantics using truth domains

Definition (LTL semantics (common part))
Semantics of LTL formulae over a finite or infinite word w = a0a1 . . . ∈ Σ∞

Boolean constants

[w |= true]L = ⊤

[w |= false]L = ⊥

Boolean combinations

[w |= ¬ϕ]L = [w |= ϕ]L

[w |= ϕ ∨ ψ]L = [w |= ϕ]L ⊔ [w |= ψ]L

[w |= ϕ ∧ ψ]L = [w |= ϕ]L ⊓ [w |= ψ]L

atomic propositions

[w |= p]L =







⊤ if p ∈ a0

⊥ if p /∈ a0

[w |= ¬p]L =







⊤ if p /∈ a0

⊥ if p ∈ a0

next X/weak next X TBD

until/release

[w |= ϕ U ψ]L =















⊤ there is a k, 0 ≤ k < |w| : [wk |= ψ]L = ⊤ and

for all l with 0 ≤ l < k : [wl |= ϕ] = ⊤

TBD else

[w |= ϕ R ψ]L ≡ ¬(¬ϕ U ¬ψ)
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LTL on finite words

Application area: Specify properties of finite word
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LTL on finite words

Definition (FLTL)

Semantics of FLTL formulae over a word u = a0 . . . an−1 ∈ Σ∗

next

[u |= Xϕ]F =







[u1 |= ϕ]F if u1 6= ǫ

⊥ otherwise

weak next

[u |= X̄ϕ]F =







[u1 |= ϕ]F if u1 6= ǫ

⊤ otherwise
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Monitoring LTL on finite words

(Bad) Idea

just compute semantics. . .
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Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 25/74



LTL on finite, but not completed words

Application area: Specify properties of finite but expanding word
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LTL on finite, but not completed words

Be Impartial!
◮ go for a final verdict (⊤ or ⊥) only if you really know
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LTL on finite, but not completed words

Be Impartial!
◮ go for a final verdict (⊤ or ⊥) only if you really know

◮ be a man: stick to your word
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LTL on finite, but not complete words

Impartiality implies multiple values

Every two-valued logic is not impartial.

Definition (FLTL)

Semantics of FLTL formulae over a word u = a0 . . . an−1 ∈ Σ∗

next

[u |= Xϕ]F =







[u1 |= ϕ]F if u1 6= ǫ

⊥p otherwise

weak next

[u |= X̄ϕ]F =







[u1 |= ϕ]F if u1 6= ǫ

⊤p otherwise
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Monitoring LTL on finite but expanding words

Left-to-right!
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Monitoring LTL on finite but expanding words

Rewriting

Idea: Use rewriting of formula

Evaluating FLTL4 for each subsequent letter
◮ evaluate atomic propositions

◮ evaluate next-formulas

◮ that’s it thanks to

ϕ U ψ ≡ ψ ∨ (ϕ ∧ Xϕ U ψ)

and

ϕ R ψ ≡ ψ ∧ (ϕ ∨ X̄ϕ R ψ)

◮ and remember what to evaluate for the next letter
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Evaluating FLTL4 for each subsequent letter

Pseudo Code

evalFLTL4 true a = (⊤,⊤)

evalFLTL4 false a = (⊥,⊥)

evalFLTL4 p a = ((p in a),(p in a))

evalFLTL4 ¬ϕ a = let (valPhi,phiRew) = evalFLTL4 ϕ a

in (valPhi,¬phiRew)

evalFLTL4 ϕ ∨ ψ a = let

(valPhi,phiRew) = evalFLTL4 ϕ a

(valPsi,psiRew) = evalFLTL4 ψ a

in (valPhi ⊔ valPsi,phiRew ∨ psiRew)

evalFLTL4 ϕ ∧ ψ a = let

(valPhi,phiRew) = evalFLTL4 ϕ a

(valPsi,psiRew) = evalFLTL4 ψ a

in (valPhi ⊓ valPsi,phiRew ∧ psiRew)

evalFLTL4 ϕ U ψ a = evalFLTL4 ψ ∨ (ϕ ∧ X(ϕ U ψ)) a

evalFLTL4 ϕ R ψ a = evalFLTL4 ψ ∧ (ϕ ∨ X̄(ϕ R ψ)) a

evalFLTL4 Xϕ a = (⊥p,ϕ)

evalFLTL4 X̄ϕ a = (⊤p,ϕ)
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Monitoring LTL on finite but expanding words

Automata-theoretic approach
◮ Synthesize automaton

◮ Monitoring = stepping through automaton
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Rewriting vs. automata

Rewriting function defines transition function

evalFLTL4 true a = (⊤,⊤)

evalFLTL4 false a = (⊥,⊥)

evalFLTL4 p a = ((p in a),(p in a))

evalFLTL4 ¬ϕ a = let (valPhi,phiRew) = evalFLTL4 ϕ a

in (valPhi,¬phiRew)

evalFLTL4 ϕ ∨ ψ a = let

(valPhi,phiRew) = evalFLTL4 ϕ a

(valPsi,psiRew) = evalFLTL4 ψ a

in (valPhi ⊔ valPsi,phiRew ∨ psiRew)

evalFLTL4 ϕ ∧ ψ a = let

(valPhi,phiRew) = evalFLTL4 ϕ a

(valPsi,psiRew) = evalFLTL4 ψ a

in (valPhi ⊓ valPsi,phiRew ∧ psiRew)

evalFLTL4 ϕ U ψ a = evalFLTL4 ψ ∨ (ϕ ∧ X(ϕ U ψ)) a

evalFLTL4 ϕ R ψ a = evalFLTL4 ψ ∧ (ϕ ∨ X̄(ϕ R ψ)) a

evalFLTL4 Xϕ a = (⊥p,ϕ)

evalFLTL4 X̄ϕ a = (⊤p,ϕ)
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Automata-theoretic approach

Further developments possible
◮ alternating Mealy machines
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Automata-theoretic approach

Further developments possible
◮ alternating Mealy machines

◮ Moore machines

◮ alternating machines

◮ non-deterministic machines

◮ deterministic machines

◮ state sequence for an input word

Martin Leucker Dresden, 07/03/12 34/74
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Anticipatory Semantics

Consider possible extensions of the non-completed word
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LTL for RV [BLS@FSTTCS’06]

Basic idea
◮ LTL over infinite words is commonly used for specifying correctness

properties

◮ finite words in RV:

prefixes of infinite, so-far unknown words

◮ re-use existing semantics
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LTL for RV [BLS@FSTTCS’06]

Basic idea
◮ LTL over infinite words is commonly used for specifying correctness

properties

◮ finite words in RV:

prefixes of infinite, so-far unknown words

◮ re-use existing semantics

3-valued semantics for LTL over finite words

[u |= ϕ] =



















⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else
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Impartial Anticipation
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◮ Stay with ⊤ and ⊥
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Impartial Anticipation

Impartial
◮ Stay with ⊤ and ⊥

Anticipatory
◮ Go for ⊤ or ⊥
◮ Consider XXXfalse

ǫ |= XXXfalse

a |= XXfalse

aa |= Xfalse

aaa |= false

[ǫ |= XXXfalse] =



















⊤ if ∀σ ∈ Σω : ǫσ |= XXXfalse

⊥ if ∀σ ∈ Σω : ǫσ 6|= XXXfalse

? else
Martin Leucker Dresden, 07/03/12 39/74
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Büchi automata (BA)

0 1

2

3 4

aa

b

a

a, b

b
a

b

a b a

Martin Leucker Dresden, 07/03/12 40/74
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Büchi automata (BA)

Emptiness test:
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Büchi automata (BA)

Emptiness test: SCCC, Tarjan
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LTL to BA

[Vardi & Wolper ’86]
◮ Translation of an LTL formula ϕ into Büchi automata Aϕ with

L(Aϕ) = L(ϕ)

◮ Complexity: Exponential in the length of ϕ

Martin Leucker Dresden, 07/03/12 41/74



Monitor construction – Idea I

[u |= ϕ] =
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? else
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Monitor construction – Idea I

[u |= ϕ] =



















⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else
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monitor construction – Idea II
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monitor construction – Idea II
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NFA

Fϕ : Qϕ → {⊤,⊥} Emptiness per state
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The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

Lemma

[u |= ϕ] =



















⊤

⊥ if u /∈ L(NFAϕ)

?
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The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ

Lemma

[u |= ϕ] =



















⊤

⊥ if u /∈ L(NFAϕ)

?
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The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

Lemma

[u |= ϕ] =



















⊤ if u /∈ L(NFA¬ϕ)

⊥ if u /∈ L(NFAϕ)

? else
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Complexity
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Complexity

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Complexity

|M| ≤ 22|ϕ|

Optimal result!

FSM can be minimised (Myhill-Nerode)
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On-the-fly Construction

The construction
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Intermediate Summary

Semantics
◮ completed traces

◮ two valued semantics

◮ non-completed traces
◮ Impartiality

◮ at least three values

◮ Anticipation
◮ finite traces
◮ infinite traces
◮ . . .

◮ monitorability

Monitors
◮ left-to-right

◮ time versus space trade-off
◮ rewriting
◮ alternating automata
◮ non-deterministic automata
◮ deterministic automata
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Extensions

LTL is just half of the story
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Extensions

LTL with data
◮ J-LO
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Further “rich” approaches
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◮ Eagle (etc.)

Further dimensions
◮ real-time

◮ concurrency
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Monitoring Systems/Logging: Overview

monitoring systems

/logging
instru-

mentation

source code

byte code

binary code

logging APIs

trace tools

dedicated

tracing/-

monitoring

hardware
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Monitoring Systems/Logging: Overview

monitoring results/

steering

print

exception

steer

manual

automatically
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React!

Runtime Verification

Observe—do not react

Realising dynamic systems
◮ self-healing systems

◮ adaptive systems, self-organising systems

◮ . . .
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React!

Runtime Verification

Observe—do not react

Realising dynamic systems
◮ self-healing systems

◮ adaptive systems, self-organising systems

◮ . . .

◮ use monitors for observation—then react

Martin Leucker Dresden, 07/03/12 56/74



jMOP [Rosu et al.]

Java Implementation
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Runtime Reflection [Bauer, L., Schallhart@ASWEC’06]

Monitor-based Runtime Reflection

Software Architecture Pattern
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Diagnosis

Main Ideas
◮ Knowledge base

◮ Knowledge

◮ Explanation of Knowledge with Respect to the Knowledge base
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Diagnosis

Main Ideas
◮ Knowledge base

◮ Knowledge

◮ Explanation of Knowledge with Respect to the Knowledge base

Here
◮ System description

◮ Observations

◮ Diagnosis: Explanation of the Observations with respect to the System

description
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System Description in First-Order Logic

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2
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System Description in First-Order Logic

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Formally

SD = ok(i1) ∧ ¬AB(C1) → l1 = C1(i1)

∧ ok(i2) ∧ ¬AB(C2) → l2 = C2(i2)

∧ ok(l1) ∧ ok(l2) ∧ ¬AB(C3) → o1 = C3(l1, l2)

∧ ok(l1) ∧ ok(l2) ∧ ¬AB(C4) → o2 = C4(l1, l2)
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Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Propositional Logic

SD = i1 ∧ ¬C1 → l1

∧ i2 ∧ ¬C2 → l2

∧ l1 ∧ l2 ∧ ¬C3 → o1

∧ l1 ∧ l2 ∧ ¬C4 → o2
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Observation

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Observation

(Truth) values for (some of) the propositions involved

Formally: a formula OBS

Observation
¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker Dresden, 07/03/12 64/74



Diagnosis

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Diagnosis

A minimal set of components such that SD ∧ OBS ∧∆ is satisfiable, where ∆

encodes the chosen components.
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∧ i2 ∧ ¬C2 → l2
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Example

Propositional Logic

SD = i1 ∧ ¬C1 → l1

∧ i2 ∧ ¬C2 → l2

∧ l1 ∧ l2 ∧ ¬C3 → o1

∧ l1 ∧ l2 ∧ ¬C4 → o2

Observations
¬o1 ∧ i1 ∧ i2 ∧ o2

CNF

SD = ¬i1 ∨ C1 ∨ l1

∧ ¬i2 ∨ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3 ∨ o1

∧ ¬l1 ∨ ¬l2 ∨ C4 ∨ o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧
∧ ¬o1 ∧ i1 ∧ i2 ∧ o2
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∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Diagnoses
◮ ∆1 = {C1}
◮ ∆2 = {C2}
◮ ∆3 = {C3}

Martin Leucker Dresden, 07/03/12 68/74



Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion

Martin Leucker Dresden, 07/03/12 69/74



Monitors yield Obervations

We have. . .
◮ Monitor reports ⊥ line is false

Martin Leucker Dresden, 07/03/12 70/74



Monitors yield Obervations

We have. . .
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

Martin Leucker Dresden, 07/03/12 70/74



Monitors yield Obervations

We have. . .
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Martin Leucker Dresden, 07/03/12 70/74



Monitors yield Obervations

We have. . .
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Martin Leucker Dresden, 07/03/12 70/74



Monitors yield Obervations

We have. . .
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Omniscent Monitors

A monitor is called omnicscent if its output ⊤ implies that the results on the

monitored output are indeed correct.

Martin Leucker Dresden, 07/03/12 70/74



Monitors yield Obervations

We have. . .
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Omniscent Monitors

A monitor is called omnicscent if its output ⊤ implies that the results on the

monitored output are indeed correct.

For Omniscent Monitors
◮ Monitor reports ⊥ line is false

Martin Leucker Dresden, 07/03/12 70/74



Monitors yield Obervations

We have. . .
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Omniscent Monitors

A monitor is called omnicscent if its output ⊤ implies that the results on the

monitored output are indeed correct.

For Omniscent Monitors
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

Martin Leucker Dresden, 07/03/12 70/74



Monitors yield Obervations

We have. . .
◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Omniscent Monitors
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 notion of omniscent diagnoses
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Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words
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LTL wrap-up
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Conclusion

Summary
◮ RV for Failure detection

◮ various, multi-valued approaches
◮ various existing systems
◮ does generally identifies failure detection and identification

◮ Diagonis for Failure identification?

Future work

What is the right combination?
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That’s it!

Thanks! - Comments?
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