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Jérǒme Lacaille, Valerio Gerez 579
Proficy Advanced Analytics: a Case Study for Real World PHM Application in Energy
Subrat Nanda, Xiaohui Hu 588

Author Index 595

v



Annual Conference of the Prognostics and Health Management Society, 2011

vi



  

A Bayesian Probabilistic Approach to Improved Health 

Management of Steam Generator Tubes 

Kaushik Chatterjee
 
and Mohammad Modarres

 

Center for Risk and Reliability, University of Maryland, College Park, MD, 20742, USA 

kaushikc@umd.edu   

modarres@umd.edu  

ABSTRACT 

Steam generator tube integrity is critical for the safety and 

operability of pressurized water reactors. Any degradation 

and rupture of tubes can have catastrophic consequences, 

e.g., release of radioactivity into the atmosphere. Given the 

risk significance of steam generator tube ruptures, it is 

necessary to periodically inspect the tubes using 

nondestructive evaluation methods to detect and 

characterize unknown existing defects. To make accurate 

estimates of defect size and density, it is essential that 

detection uncertainty and measurement errors associated 

with nondestructive evaluation methods are characterized 

properly and accounted for in the evaluation. In this paper 

we propose a Bayesian approach that updates prior 

knowledge of defect size and density with nondestructive 

evaluation data, accounting for detection uncertainty and 

measurement errors. An example application of the 

proposed approach is then demonstrated for estimating 

defect size and density in steam generator tubes using eddy 

current evaluation data. The proposed Bayesian probabilistic 

approach helps improve health management of steam 

generator tubes, thereby enhancing the overall safety and 

operability of pressurized water reactors.  

 

1. INTRODUCTION 

Pressurized water reactors (PWR) use heat produced from 

nuclear fission in the reactor core to generate electricity. In 

the process of generating electricity, steam generators (SG) 

play an important role by keeping the reactor core at a safe 

temperature and acting as the primary barrier between 

radioactive and non-radioactive sides of a nuclear power 

plant. Since SG tubes play such an important role, any 

degradation and rupture in the tubes can be catastrophic 

(Chatterjee & Modarres, 2011). According to the US 

Nuclear Regulatory Commission (2010), there have been 10 

steam generator tube rupture (SGTR) occurrences in the US 

between 1975 and 2000. One such incident occurred in the 

North Anna power station in 1987 when the plant reached 

its 100% capacity (US Nuclear Regulatory Commission, 

1988). The cause of tube rupture was found to be fatigue, 

caused by combination of alternating stresses resulting from 

flow-induced tube vibration and flaws resulting from 

denting of tubes at support plates. 

Given the risk significance of SGTRs, it is absolutely 

necessary to periodically inspect the tubes using 

nondestructive evaluation methods in order to detect and 

quantify the severity of unknown existing defects.
1
 All 

nondestructive evaluation methods have detection 

uncertainty and measurement errors associated with them 

that are a result of test equipment complexity, defect 

attributes, as well as human error. These uncertainties and 

errors need to be characterized properly and accounted for 

while estimating the size and density of defects.  

A defect of a given size might be detected only a certain 

percentage of the time (out of total attempts during 

nondestructive testing) depending on factors such as, noise 

level, test probe sensitivity, test equipment repeatability and 

human error. Hence, a defect has an associated probability 

of detection, which can be defined as the probability the 

inspection will detect the defect of true size, �, and is 

denoted by POD��� (Kurtz, Heasler, & Anderson, 1992). 

The data from which POD curves are generated can be 

categorized into two types: qualitative data, i.e., hit/miss; 

and quantitative data, i.e., signal response amplitude 

(�� ��. �), where ��  is signal response. The hit/miss data type 

is based on a binary process, i.e., whether a defect is 

detected or not detected. The POD for this data type is 

calculated as the ratio of the number of successful detection 

over the total number of inspections performed for a 

particular defect size, and is called the averaged POD. 

Hit/miss data are obtained from test equipments such as 

Sonic IR, and are very subjective in nature depending on 

operator experience (Li & Meeker, 2008), which induces 

uncertainty in the values of the POD. A logistic function is 

                                                           
1 In this paper defect may indicate a crack, flaw, pit, or any other 

degradation in a structural component. Size may refer to either through-

wall depth or surface length of a defect, unless specified. Density refers to 

number of defects observed per unit volume. 

Chatterjee, K. et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 
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found to best-fit hit/miss data for modeling POD (Jenson, 

Mahaut, Calmon & Poidevin, 2010).  

The other type of POD data is more continuous in nature 

and is a measure of the amplitude of signal response 

recorded by the nondestructive test equipment, e.g., 

ultrasonic or eddy current. In the signal response data-based 

POD estimation method, the most important parameters are 

the inspection threshold (noise level) and the decision 

threshold. The inspection threshold is chosen to account for 

the noise indications by test equipment, and responses 

above this threshold are considered for detection/non-

detection decisions. Decision threshold is often based on 

previous field inspections and knowledge of the noise 

distribution, laboratory experience, and operator experience. 

The POD curve for signal response data type is modeled 

using a cumulative log-normal distribution function 

(Department of Defense, 1999; Jenson, et al., 2010), by 

determining the cumulative probability of responses (defect 

signals) greater than the decision threshold. The selection of 

decision threshold also determines the probability of false 

call (or false positive).
2
 Hence, there is lot of uncertainty 

associated with the values chosen for inspection and 

decision threshold, which lead to uncertainties in the values 

of the POD. In some cases, the signal response data is also 

converted into hit/miss data (Jenson et al., 2010) by using 

the decision threshold and averaged POD values are 

estimated, which are then fitted into a logistic function. 

The precision and accuracy of nondestructive test 

equipment, and also the techniques used to analyze and 

process the test results can contribute to measurement 

errors. For example, large volume of sensor data (such as 

ultrasound or digital images) are filtered, smoothed, 

reduced, and censored into another form by subjectively 

accounting for only certain features of the data. Also, often 

measurement models are used to convert the form of a 

measured or observed data into the corresponding value of 

the reality of interest (i.e., defect size). Uncertainties 

associated with data processing, model selection and human 

error can contribute to measurement errors. Measurement 

error is defined as the difference between the measured and 

the true value of a defect size. There are two components of 

measurement error: systematic (bias) error and random 

(stochastic) error (Jaech, 1964; Hofmann, 2005). Systematic 

error or bias is a consistent and permanent deflection in the 

same direction from the true value (Hofmann, 2005). 

Systematic error (bias) may indicate overestimation 

(positive bias) or underestimation (negative bias). In most 

nondestructive measurements, small defects are oversized 

and large defects are undersized (Kurtz et al., 1992; Wang 

& Meeker, 2005). Random error arises due to the scattering 

                                                           
2 A nondestructive test equipment response interpreted as having detected a 

flaw but associated with no known flaw at the inspection location 

(Department of Defense, 1999). 

or random variation in measured values (measurement 

uncertainty). 

In the past, there have been efforts to model defect severity 

in structural components considering nondestructive 

evaluation uncertainties. Celeux, Persoz, Wandji, and Perrot 

(1999) describe a method to model defects in PWR vessels 

considering the POD and random error in measurements. 

Yuan, Mao, and Pandey (2009) followed the idea of Celeux 

et al. (1999), to propose a probabilistic model for pitting 

corrosion in SG tubes considering the POD and random 

error of the eddy current measurements. However, both 

Celeux et al. (1999) and Yuan et al. (2009) did not consider 

the effect of systematic error or bias in measured defect 

sizes. Also, the POD has not been adjusted for measurement 

errors in their models. Further, they did not consider 

uncertainties in the values of the POD, which can affect the 

defect severity estimates considerably. 

This paper addresses some of the shortcomings of existing 

literature and develops a Bayesian probabilistic approach for 

modeling defect severity (size and density) in structural 

components considering the detection uncertainty (i.e., POD 

and associated uncertainty) and measurement errors (and 

associated uncertainty) associated with nondestructive 

evaluation methods. The paper then presents example 

application of the proposed approach for estimating defect 

severity in SG tubes using eddy current evaluation data. 

 

2. PROPOSED BAYESIAN APPROACH 

The proposed Bayesian approach updates prior knowledge 

of defect size and density with nondestructive evaluation 

data, considering the POD, measurement errors (systematic 

and random), and associated uncertainties, to infer the 

posterior distributions of defect size and density. The 

combined effect of POD, measurement errors, and 

associated uncertainties on measured defect sizes is captured 

by a likelihood function. In this section, models for 

measurement errors and POD function will be first defined; 

then the defect severity models will be presented, followed 

by the likelihood functions and Bayesian inference 

equations. 

The analysis of measurement error is based on assessing the 

deviation of the measured defect size from the actual or true 

defect size, as shown in Eq. (1): 

                      	
 � ��  �                                        �1� 
        

where, 	
 is the measurement error, �� is measured and � is 

the true defect size. Generally a linear regression 

relationship of the form shown in Eq. (2) is used to model 

measurement error (Kurtz et al., 1992; Jaech, 1964).   

 �� � �� � � � ��0, ���                               �2� 
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where, � and � are regression coefficients obtained through 

a regression analysis of �� ��. �, and � is the random error 

in measurement (scattering of the data), which is assumed to 

follow a normal distribution with mean zero and standard 

deviation �� (function of defect size). The regression 

coefficients (� & �) are jointly measure of systematic error 

or bias in measurements. Distributions of bias parameters 

represent epistemic uncertainty in the chosen measurement 

error model. From Eqs. (1) and (2), the measurement error 

can be expressed as: 

  

	
 � ��  1�� � �������������� � ��0, �������� �!"#
 $%%#%                �3� 
                  

Measurement error can then be expressed as a function of 

measured defect size using Eqs. (1) and (3) as: 

  

	
 � '�  1� (�� � �����������������
� ��0, ��������� �!"#
 $%%#%

             �4� 
     

The probability density function (PDF) of the measurement 

error can then be defined using a normal distribution with 

mean as the bias, *�, standard deviation as that of random 

error, 
+,
 , and measurement error as random variable. 

 -�	
� � . /*�, ���0                             �5� 
 

Assume that true defect size, �, is treated as random 

variable with the PDF, 2��|4�, where 4 is the vector of the 

PDF parameters. Defect size PDF considering measurement 

error can then be expressed as shown in Eq. (6). 

    2��|4� � 526���  	
�7489:
-�	
�;	
            �6� 

      
All the defects in a structure are not detected during 

nondestructive testing. The detection of a defect depends on 

its size and is represented by the POD curve. The POD of a 

defect of size, �, can be represented by a function as shown 

in Eq. (7): 

    =>?��|@, �ABC� � D��, @, �EF� � �ABC�0, �ABC�        �7� 
         

where, D��, @, �EF� is the POD function, �EF is the detection 

threshold, @ is vector of parameters of the POD function, 

and �ABC  is the random error, which represents uncertainty 

in the POD data and is assumed to follow a normal 

distribution with mean zero and standard deviation �ABC 

(function of true defect size). The POD function is selected 

based on the type of data, e.g., hit/miss or signal response as 

discussed in Section 1. Joint distribution of the parameters 

of the POD function, H�@�, represents the epistemic 

uncertainty associated with the choice of the POD function. 

The marginal POD independent of random variables, @ and �ABC, can be expressed as shown in Eq. (8), where, ���ABC� represents the PDF of random variable, �ABC. 

 =>?��� � 5 5=>?��|@, �ABC�H�@����ABC�;@;�ABCI+JKL
   �8� 

 

The likelihood function for detecting defect of true size, �, 

given that the defect is detected �? � 1�, can then be 

expressed as shown in Eq. (9) (Celeux et al., 1999): 

         

N��|? � 1� � 2��|4� O =>?���="�4�                       �9� 
                     

where, ="�4� is the marginal POD that is a function of 

defect size distribution parameters only (independent of 

defect size), and can be expressed as: 

        

="�4� � Pr�? � 1� � 5 =>?���2��|4�;�         �10�S
T

 

 

During nondestructive measurements true defect sizes are 

unknown, while the only known quantities are the measured 

defect sizes and number of detections. The likelihood 

function of true defect sizes corresponding to measurements 

consisting of U$�  
exact defect sizes (using Eq. 9) considering 

measurement errors can be represented as: 

 

N��$V�WE|4� � 1X="�4�Y!Z�[ 5=>?����  	
�26����  	
�|48-�	
�;	
9:

!Z�

�\]
 

                              (11) 

Nondestructive measurements are in most cases interval or 

left censored, in which case the likelihood function of true 

defect sizes corresponding to measurements consisting of U�!E,^�  defects within the _EF interval (or in a left censored 

interval) (Cook, Duckworth, Kaiser, Meeker & Stephenson, 

2003), can be expressed as shown in Eq. (12).  

 

N̂ ���!E|4� � ` 1="�4�5 5=>?���  	
�26���  	
�|48-�	
�;	
9:
�a�
�abc� ;��d

!efg,a�
 

          (12) 

Therefore, the likelihood function of true defect sizes 

corresponding to total measurements consisting of � defect 

size intervals each with certain number of defects (U�!E,^ �  in _EF interval), and U$�   
exact defect sizes can then be expressed 

as shown in Eq. (13). 

 

N��|4� � ∏ i ]Aj�k�l l =>?���  	
�26���  	
�|48-�	
�;	
9:�a��abc� ;��m!efg,a�
̂\]  

             

 O 1X=;�4�YUn�∏ l =>?��o� 	��26��o�  	��|48-�	��;	�	�Un�o�1    (13) 
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The posterior defect size distribution parameters can then be 

estimated using Bayesian inference as: 

  

p]�4|?�q�� � N�?�q�|4�pT�4�l N�?�q�|4�pT�4�;4k             �14� 
                   

where, p]�4|?�q�� is posterior distribution of defect size 

parameters and pT�4� is prior distribution of the 

parameters. The posterior defect size parameters obtained 

from Bayesian inference can then be used to estimate the 

corresponding marginal POD values (Eq. 10).  

The likelihood of observing U� �� U$� � ∑ U�!E,^�
̂\] � number 

of defects given U actual number of defects can be 

expressed by a binomial function (detection process is 

binary, i.e., either detection or no detection), as shown by 

Eq. (15): 

  N�U�|U� � / UU�0 X="�4�Y!�X1  ="�4�Y!s!�         �15� 
 

where, ="�4�  is the marginal POD value corresponding to 

posterior defect size parameters. In Eq. (15), the actual 

number of defects, U, is unknown whereas U� and ="�4� are 

known. The actual number of defects can be estimated using 

Bayesian inference as shown in Eq. (16): 

 

p]�U|U�� � N�U�|U�pT�U�∑ N�U�|U�pT�U�!                    �16� 
 

where, p]�U|U�� is posterior distribution of actual number 

of defects given the observation, U�, and pT�U� is the prior 

distribution of number of defects. The prior distribution of 

number of defects can be estimated from a Poisson function, 

which gives the likelihood of observing U total number of 

defects in a volume t, given prior defect density u as shown 

in Eq. (17). Here Poisson distribution is used because 

defects are assumed to occur with the same average 

intensity and independent of each other. 

   

pT�U� � nsvw �ut�!U!                             �17� 
                            

The posterior distribution of actual number of defects (Eq. 

16) can then be used to obtain the posterior defect density. 

The standard conjugate prior employed for Poisson 

distribution likelihood (Eq. 17) is a two-parameter gamma 

distribution (Simonen, Doctor, Schuster, & Heasler, 2003), 

in which case the posterior has the same functional form as 

the gamma distribution. Assume that prior distribution of 

defect density is: 

 pT�u� � -�����u|y], yz�                      �18� 
      

where, y] and yz are parameters of gamma distribution. 

Then the posterior distribution of defect density can be 

expressed as shown in Eq. (19).  

    p]�u� � -�����u|t � y], U � yz�              �19� 
           

A MATLAB routine was developed to implement this entire 

Bayesian approach for estimating defect severity in 

structural components. The proposed Bayesian approach 

considers systematic (bias) and random error in 

nondestructive measurements; suitably adjusts measurement 

errors in POD; considers uncertainty in POD values; 

incorporates prior knowledge of defect size and density; 

provides a framework for updating probability distributions 

of defect model parameters when new data become 

available; and is applicable to exact, interval, and censored 

measurements. 

 

3. APPLICATION OF PROPOSED BAYESIAN 

APPROACH TO EDDY CURRENT DATA 

An example application of the proposed Bayesian approach 

is presented in this section for estimating flaw severity in 

SG tubes using eddy current measurements of flaw sizes 

(through-wall depth). In this section, we first model POD 

and measurement error for eddy current evaluation using 

available data from literature, and then use the proposed 

Bayesian approach to estimate the posterior distributions of 

flaw size and density.  

The eddy current measurement error is assessed in this 

paper by a Bayesian regression approach (Azarkhail & 

Modarres, 2007) in light of available data from literature 

(Kurtz, Clark, Bradley, Bowen, Doctor, Ferris & Simonen, 

1990). The regression result is illustrated by Figure 1 with 

the 50% regression line representing the bias corresponding 

to mean values of the parameters � and � of Eq. (3). The 

95% uncertainty bounds of Figure 1 corresponds to the 

random error with a constant standard deviation, �. The 

parameters �, � and � obtained through Bayesian regression 

were then used in Eq. (5) to estimate the PDF of 

measurement error as a function of measured flaw size.  

In order to derive the POD model, it was assumed in this 

paper that eddy current signal response data were converted 

into equivalent hit/miss. The POD curve can then be 

expressed by a logistic function of the form as shown in Eq. 

(20) (Yuan et al., 2009): 

 

=>?��|{], {z, �EF� � |1  ]}$b~c~�]}$~c�,b~�b,g�� � �ABC�0, �ABC�   2��  � � �EF0                                                                   �qDn��o�n  �
          (20) 

where, � is flaw size, �EF is threshold size for detection, {] 

and {z are logistic function parameters, and �ABC  is the 

random error, which is assumed to follow a normal 

distribution with mean zero and standard deviation �ABC. A 
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flaw of size less than detection threshold will not be 

detected. Distributions of the POD model parameters {], {z, 

and �ABC were estimated using Bayesian regression 

approach in light of POD data available from literature 

(Kurtz et al., 1992). Figure 2 illustrates a sample logistic 

function curve and associated uncertainties fitted on POD 

data through Bayesian regression, with �EF � 0. 

Flaws in nuclear reactor vessel and piping are in most cases 

best fitted with an exponential distribution, with smaller size 

flaws having higher probability density and larger size flaws 

having lower probability density. Here we define the PDF of 

random variable �, i.e., true flaw size in SG tubes, assuming 

exponential distribution as: 

    2��|�� � �ns��                                   �21� 
                   

where, � is flaw size intensity. Flaw size distribution 

considering measurement errors can then be expressed as 

shown in Eq. (22).  

    2��|�� � 5�ns ����s9:�-�	
�;	
9:
               �22� 

            

Eddy current measurements for SG tubes (Dvorsek & 

Cizelj, 1993) used in our paper to demonstrate the 

application of the proposed Bayesian approach, were left 

and interval censored. The likelihood function of true flaw 

sizes corresponding to eddy current measurements was 

defined using Eq. (13), with measurement error limits set as 

-1 and 1 (to cover the extremes of bias and random error). 

The Bayesian posterior inference of the flaw size intensity 

was carried out using the MATLAB routine (Section 2). 

Prior distribution for flaw size intensity was generated using 

available data from literature (Liao & Guentay, 2009). 

Figure 3 illustrates the posterior and prior flaw size intensity 

distributions. Flaw size intensity values were sampled from 

the posterior distribution (Figure 3), and the corresponding 

marginal POD values, ="�4�, were estimated (Eq. 10). 

 

Figure 1. Measurement error and uncertainty bounds (95%) 

 

Figure 2. POD curve and uncertainty bounds (95%) 

The likelihood function of observed number of flaws was 

then defined using Eq. (15), and the Bayesian posterior 

inference of the actual number of flaws (Eq. 16) computed. 

The prior flaw density distribution used to obtain prior 

information on number of flaws (Eq. 17) was obtained from 

the available data in the literature (Liao & Guentay, 2009). 

Figure 4 illustrates the distribution of actual number of 

flaws for mean, 2.5% and 97.5% values of posterior flaw 

size intensity. Posterior distribution of flaw density was then 

estimated using Eq. (19) for a given volume corresponding 

to the tube-support plate 9. Figure 5 presents a box and 

whisker plot showing the distribution of actual number of 

flaws at tube support plate 9 for different flaw size intervals. 

 

Figure 3. Posterior and prior flaw size intensity 

 
Figure 4. Distributions of actual number of flaws 
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A comparison between the eddy current measurements and 

mean of estimated actual number of flaws is presented in 

Table 1 for different flaw size intervals. It is evident from 

Table 1 that nondestructive evaluation methods cannot 

detect and measure all the defects existing in a structure due 

to associated detection uncertainty and measurement errors. 

In Table 1, the mean number of flaws estimated using the 

proposed Bayesian approach (column 3) after considering 

all uncertainties and prior information, is substantially 

higher than eddy current measurements (column 2), 

especially for very small sizes.  

As illustrated by the example application, it is critical to 

consider detection uncertainty and measurement errors 

associated with nondestructive evaluation methods, in order 

to estimate the actual defect size and density distributions in 

critical structures. This is important because the defect size 

and density distributions estimated during in-service 

inspections can help in making appropriate and timely 

replacement/repair decisions, thereby preventing 

unanticipated failures. 

 

Figure 5. Box and whisker plot of actual number of flaws by 

size intervals at support plate 9 

 
Table 1. Measured vs. actual number of flaws 

 

4. CONCLUSIONS 

It is imperative to assess the health condition of SG tubes 

periodically during their operating life in order to prevent 

the occurrence of SGTR failures. Estimating defect size and 

density in SG tubes require appropriate methods to account 

for all uncertainties associated with nondestructive 

evaluation methods. This paper presents a Bayesian 

approach for estimating defect size and density in structural 

components considering detection uncertainty and 

measurement errors. The proposed Bayesian approach 

updates prior knowledge of defect size and density with 

nondestructive evaluation data, considering the POD, 

measurement errors, and associated uncertainties, to give the 

posterior distributions of defect size and density. The 

proposed approach considers both systematic and random 

error in nondestructive measurements, suitably adjusts 

measurement errors in POD, considers uncertainties in POD 

values, and captures the combined effect of POD and 

measurement errors (including associated uncertainties) on 

measured defect sizes by a likelihood function. The 

approach is applicable to exact, interval, and censored 

measurements; and also provides a framework for updating 

defect model parameter distribution as and when new 

information becomes available. An application of this 

proposed approach is demonstrated for estimating defect 

size and density in SG tubes using eddy current 

nondestructive evaluation data. This developed Bayesian 

probabilistic approach not only fills a critical gap in health 

management and prognosis of SG tubes, but can also help 

improve reliability of safety-critical structures in a broad 

range of application areas, including medical, avionics, and 

nuclear.  
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ABSTRACT 

Failure prognosis and uncertainty representation in long-

term predictions are topics of paramount importance when 

trying to ensure safety of the operation of any system. In 

this sense, the use of particle filter (PF) algorithms -in 

combination with outer feedback correction loops- has 

contributed significantly to the development of a robust 

framework for online estimation of the remaining useful 

equipment life. This paper explores the advantages of using 

a combination of PF-based anomaly detection and prognosis 

approaches to isolate rare events that may affect the 

understanding about how the fault condition evolves in 

time. The performance of this framework is thoroughly 

compared using a set of ad hoc metrics. Actual data 

illustrating aging of an energy storage device (specifically 

battery state-of-health (SOH) measurements [A-hr]) are 

used to test the proposed framework. 

1. INTRODUCTION 

Particle-filtering (PF) based prognostic algorithms (Orchard, 

2009; Orchard and Vachtsevanos, 2009; Orchard et al., 

2009) have been established as the de facto state of the art in 

failure prognosis. PF algorithms allow avoiding the 

assumption of Gaussian (or log-normal) probability density 

function (pdf) in nonlinear processes, with unknown model 

parameters, and simultaneously help to consider non-

uniform probabilities of failure for particular regions of the 

state domain. Particularly, the authors in (Orchard et al. 

2008) have proposed a mathematically rigorous method 

(based on PF, function kernels, and outer correction loops) 

to represent and manage uncertainty in long-term 

predictions. However, there are still unsolved issues 

 

 

regarding the proper representation for the probability of 

rare events and highly non-monotonic phenomena, since 

these events are associated to particles located at the tails of 

the predicted probability density functions. 

This paper presents a solution for this problem that is based 

on a combination of a PF-based anomaly detection modules 

(which are in charge of detecting rare events within the 

evolution of the fault condition under analysis) and PF-

prognostic schemes to estimate the remaining useful life of a 

piece of equipment. The paper is structured as follows: 

Section 2 introduces the basics of particle filtering (PF) and 

its application to the field of anomaly detection and failure 

prognostics. Section 3 presents a combined framework 

using actual failure data measuring battery state-of-health 

(SOH, [A hr]), where it is of interest to detect capacity 

regeneration phenomena in an online fashion. Section 4 

utilizes performance metrics to assess prognostic results and 

evaluates the proposed scheme, when compared to the 

classic PF prognosis framework (Orchard, 2009; Orchard 

and Vachtsevanos, 2009; Vachtsevanos et al., 2006). 

Section 5 states the main conclusions.  

2. PARTICLE FILTERING, ANOMALY DETECTION AND 

FAILURE PROGNOSIS 

Nonlinear filtering is defined as the process of using noisy 

observation data to estimate at least the first two moments 

of a state vector governed by a dynamic nonlinear, non-

Gaussian state-space model. From a Bayesian standpoint, a 

nonlinear filtering procedure intends to generate an estimate 

of the posterior probability density function )|( :1 tt yxp  for 

the state, based on the set of received measurements. 

Particle Filtering (PF) is an algorithm that intends to solve 

this estimation problem by efficiently selecting a set of N 

particles ( )

1{ }i

i N
x =�

 and weights ( )

1{ }i

t i N
w = �

, such that the 
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state pdf may be approximated (Doucet, 1998; Doucet et al., 

2001; Andrieu et al, 2001; Arulampalam et al., 2002) by: 

( ) ( )

1

0: 0: 1
0:

0: 0: 1

( ) ( )

( ) ( | ) ( | )
( )

( ) ( | )

N
N i i

t t t t t

i

t t t t t t
t

t t t t t

x w x x

x p y x p x x
w x

q x q x x

π δ

π

=

−

−

= −

= ∝

∑�

,       (1) 

where 
0:( )

t t
q x is referred to as the importance sampling 

density function (Arulampalam et al., 2002; Doucet et al., 

2001). The choice of this importance density function is 

critical for the performance of the particle filter scheme. In 

the particular case of nonlinear state estimation, the value of 

the particle weights ( )

0:

i

tw  is computed by setting the 

importance density function equal to the a priori pdf for the 

state, i.e., 
0: 0: 1 1( | ) ( | )

t t t t t
q x x p x x− −=  (Arulampalam et al., 

2002). Although this choice of importance density is 

appropriate for estimating the most likely probability 

distribution according to a particular set of measurement 

data, it does not offer a good estimate of the probability of 

events associated to high-risk conditions with low 

likelihood. This paper explores the possibility of using a PF-

based detection scheme to isolate those types of events. 

2.1 PF-based Anomaly Detection 

A PF-based anomaly detection procedure (Orchard and 

Vachtsevanos, 2009; Verma et al., 2004) aims at the 

identification of abnormal conditions in the evolution of the 

system dynamics, under assumptions of non-Gaussian noise 

structures and nonlinearities in process dynamic models, 

using a reduced particle population to represent the state 

pdf. The method also allows fusing and utilizing 

information present in a feature vector (measurements) to 

determine not only the operating condition (mode) of a 

system, but also the causes for deviations from desired 

behavioral patterns. This compromise between model-based 

and data-driven techniques is accomplished by the use of a 

PF-based module built upon the nonlinear dynamic state 

model (2): 

( )( 1) ( ) ( )

( 1) ( ( ), ( ), ( ))

Features( ) ( ( ), ( ), ( ))

d b d

c t d c

t d c

x t f x t n t

x t f x t x t t

t h x t x t v t

ω

 + = +


+ =
 =

,        (2) 

where fb, ft and ht are non-linear mappings, xd(t) is a 

collection of Boolean states associated with the presence of 

a particular operating condition in the system (normal 

operation, fault type #1, #2), xc(t) is a set of continuous-

valued states that describe the evolution of the system given 

those operating conditions, ω(t) and v(t) are non-Gaussian 

distributions that characterize the process and feature noise 

signals respectively. Since the noise signal n(t) is a measure 

of uncertainty associated with Boolean states, it is 

recommendable to define its probability density through a 

random variable with bounded domain. For simplicity, n(t) 

may be assumed to be zero-mean i.i.d. uniform white noise.  

A particle filtering approach based on model (2) allows 

statistical characterization of both Boolean and continuous-

valued states, as new feature data are received. As a result, 

at any given instant of time, this framework provides an 

estimate of the probability masses associated with each fault 

mode, as well as a pdf estimate for meaningful physical 

variables in the system. Once this information is available 

within the anomaly detection module, it is conveniently 

processed to generate proper fault alarms and to inform 

about the statistical confidence of the detection routine. 

Furthermore, pdf estimates for the system continuous-

valued states (computed at the moment of fault detection) 

may be also used as initial conditions in failure prognostic 

routines, giving an excellent insight about the inherent 

uncertainty in the prediction problem. As a result, a swift 

transition between the two modules (anomaly detection and 

prognosis) may be performed, and moreover, reliable 

prognosis can be achieved within a few cycles of operation 

after the fault is declared. 

2.2 PF-based Failure Prognosis 

Prognosis, and more generally, the generation of long-term 

predictions, is a problem that goes beyond the scope of 

filtering applications since it involves future time horizons. 

Hence, if PF-based algorithms are to be used for prognosis, 

a procedure is required that has the capability to project the 

current particle population into the future in the absence of 

new observations (Orchard, 2009; Orchard and 

Vachtsevanos, 2009).  

Any prognosis scheme requires the existence of at least one 

feature providing a measure of the severity of the fault 

condition under analysis (fault dimension). If many features 

are available, they can in principle be combined to generate 

a single signal. In Therefore, it is possible to describe the 

evolution in time of the fault dimension through the 

nonlinear state equation (Orchard et al., 2008): 

 
1 1 2 1

2 2 2

1

( 1) ( ) ( ) ( ( ), , ) ( )

( 1) ( ) ( )

( ) ( ) ( )

x t x t x t F x t t U t

x t x t t

y t x t v t

ω

ω

+ = + ⋅ +


+ = +

= +

,       (3) 

where x1(t) is a state representing the fault dimension under 

analysis, x2(t) is a state associated with an unknown model 

parameter, U are external inputs to the system (load profile, 

etc.), ( ( ), , )F x t t U  is a general time-varying nonlinear 

function, and 
1
( )tω , 

2
( )tω , v(t) are white noises (not 

necessarily Gaussian). The nonlinear function ( ( ), , )F x t t U  

may represent a model, for example a model based on first 

principles, a neural network, or model based on fuzzy logic. 
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By using the aforementioned state equation to represent the 

evolution of the fault dimension in time, one can generate 

long term predictions using kernel functions to reconstruct 

the estimate of the state pdf in future time instants (Orchard 

et al., 2008): 

 

( )

1: 1

( ) ( ) ( )

1 1

1

ˆ ˆ( | )

ˆ|

t k t k

N
i i i

t k t k t k t k

i

p x x

w K x E x x

+ + −

+ − + + + −
=

≈

 −  ∑
,       (4) 

where ( )K ⋅  is a kernel density function, which may 

correspond to the process noise pdf, a Gaussian kernel or a 

rescaled version of the Epanechnikov kernel. 

The resulting predicted state pdf contains critical 

information about the evolution of the fault dimension over 

time. One way to represent that information is through the 

expression of statistics (expectations, 95% confidence 

intervals), either the End-of-Life (EOL) or the Remaining 

Useful Life (RUL) of the faulty system. A detailed 

procedure to obtain the RUL pdf from the predicted path of 

the state pdf is described and discussed in (Orchard, 2009; 

Patrick et al., 2007; Zhang et al., 2009). Essentially, the 

RUL pdf can be computed from the function of probability-

of-failure at future time instants. This probability is 

calculated using both the long-term predictions and 

empirical knowledge about critical conditions for the 

system. This empirical knowledge is usually incorporated in 

the form of thresholds for main fault indicators (also 

referred to as the hazard zones). 

In real applications, hazard zones are expected to be 

statistically determined on the basis of historical failure 

data, defining a critical pdf with lower and upper bounds for 

the fault indicator (Hlb and Hub, respectively). Let the hazard 

zone specify the probability of failure for a fixed value of 

the fault indicator, and the weights{ }( )

1

i

t k
i N

w +
=�

 represent the 

predicted probability for the set of predicted paths, then the 

probability of failure at any future time instant (namely the 

RUL pdf) by applying the law of total probabilities, as 

shown in Eq. (5). 

 ( )( ) ( )

1

ˆ ˆ( ) Pr | , ,
N

i i

TTF t lb ub t

i

p t Failure X x H H w
=

= = ⋅∑        (5) 

Once the RUL pdf has been computed by combining the 

weights of predicted trajectories with the hazard zone 

specifications, prognosis confidence intervals, as well as the 

RUL expectation can be extracted. 

3. A COMBINED ANOMALY DETECTION AND FAILURE 

PROGNOSIS APPROACH: CASE STUDY DEFINITION 

An appropriate case study has been selected to demonstrate 

the efficacy of a scheme that includes a PF-based anomaly 

detection module working in combination with a PF-based 

prognostic algorithm. Consider the case of energy storage 

devices, particularly of Li-Ion batteries, where continuous 

switching between charge and discharge cycles may cause 

momentary increments in the battery SOH (capacity 

regeneration). These sudden increments directly affect RUL 

estimates in a classic PF-based prognostic scheme since the 

state pdf estimate has to be adjusted to according to new 

measurements (thus modifying long-term predictions), 

while the observed phenomenon typically disappears after a 

few cycles of operation. Particularly in the case of Li-Ion 

batteries, the regeneration phenomena can produce an 

unexpected short-term increment of the battery SOH of 

about 10% of the nominal capacity. 

The analysis of the aforementioned phenomena will be done 

using data registering two different operational profiles 

(charge and discharge) at room temperature. On the one 

hand, charging is carried out in a constant current (CC) 

mode at 1.5[A] until the battery voltage reached 4.2[V] and 

then continued in a constant voltage mode until the charge 

current dropped to 20[mA]. On the other hand, discharge is 

carried out at a constant current (CC) level of 2[A] until the 

battery voltage fell to 2.5[V]. Impedance measurements 

provide insight into the internal battery parameters that 

change as aging progresses. Repeated charge and discharge 

cycles result in aging of the batteries.  Impedance 

measurements were done through an electrochemical 

impedance spectroscopy (EIS) frequency sweep from 

0.1[Hz] to 5[kHz]. The experiments were stopped when the 

batteries reached end-of-life (EOL) criteria, which was a 

40% fade in rated capacity (from 2[A-hr] to 1.2[A-hr]). This 

dataset can be used both for the prediction of both 

remaining charge (for a given discharge cycle) and 

remaining useful life (RUL). 

Two main operating conditions are thus distinguished: the 

normal condition reflects the fact that the battery SOH is 

slowly diminishing as a function of the number of 

charge/discharge cycles; while the anomalous condition 

indicates an abrupt increment in the battery SOH 

(regeneration phenomena). To detect the condition of 

interest, a PF-based anomaly detection module is 

implemented using nonlinear model (6), where xd,1 and xd,2 

are Boolean states that indicate normal and anomalous 

conditions respectively, xc1 is the continuous-valued state 

that represents the battery SOH, β is a positive time-varying 

model parameter, xc2 is the added SOH because of the 

capacity regeneration phenomena, and where ω(t) and v(t) 

have been selected as zero mean Gaussian noises for 

simplicity. The initial battery SOH in the data set used for 

this analysis is 2[A-hr.], which determines the initial 

condition of (6). 

Besides detecting the regeneration condition, it is desired to 

obtain some measure of the statistical confidence of the 

alarm signal. For this reason, two outputs can be extracted 

from the anomaly detection module. The first output is the 

expectation of the Boolean state xd,2, which constitutes an 
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estimate of the probability of regeneration. The second 

output is the statistical confidence needed to declare the 

condition via hypothesis testing (H0: “no anomaly is being 

detected” vs. H1: “capacity regeneration is being detected”). 

The latter output needs another pdf to be considered as the 

baseline. In this case, that pdf could be the filtering estimate 

of state xc1. 
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Moreover, since this is a PF-based module, one way to 

generate an on-line indicator of statistical confidence for the 

detection procedure is to consider the sum of the weights of 

all particles i such that 
2

( )

1 , ,
( )

i

cx T z
α µ σ−

≥ , where α is the 

desired test confidence and T is the detection time, which is 

essentially equivalent to an estimate of (1 – type II error), or 

equivalently the probability of detection. If additional 

information is required, it is possible to compute the value 

of the Fisher’s Discriminant Ratio, as in (7). 
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∑

∑ ∑

       (7) 

It must be noted that, in this approach, no particular 

specification about the detection threshold has to be made 

prior to the actual experiment. Customer specifications are 

translated into acceptable margins for the type I and II errors 

in the detection routine. The algorithm itself will indicate 

when the type II error (false negatives) has decreased to the 

desired level. 

Once the regeneration phenomena have been adequately 

isolated, it is the task of the PF-based prognosis framework 

to come up with a pdf estimate of the remaining useful life 

of the Li-Ion battery. For this purpose, instead of a physics-

based model we will employ here a population-growth-

based model (Patrick et al., 2007; Orchard et al., 2008, 

Zhang et al., 2009) that has been trained using online SOH 

measurements (fault dimension in [A-hr]), where x1(t) is a 

state representing the fault dimension, x2(t) is a state 

associated with an unknown model parameter, x3(t) is a state 

associated with the capacity regeneration phenomena, a, b, 

C and m are constants associated to the duration and 

intensity of the battery load cycle (external input U), and 

0 1α≤ ≤  is a parameter that characterizes the regeneration. 
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The objective of a prognostic routine applied to the system 

defined by (8), and particularly for the ones based on PF 

algorithms, is to estimate (preferably in an online fashion) 

the current battery SOH, isolating the effect of the 

regeneration phenomena, and to use that information to 

estimate the amount of cycles remaining until this quantity 

falls below the threshold of 1.2[A-hr]. 

The analysis will focus on the quality of the estimate for the 

state components x1 and x3, after each capacity regeneration 

phenomena and on the accuracy exhibited by the 

corresponding End-of-Life (EOL) pdf estimate. 

Performance comparison is done with respect to a classic 

(SIR) PF-based prognostic framework (Orchard et al., 

2009), given same initial conditions. It should be noted that 

the implementation chosen here considers a correction loop 

that simultaneously updates the variance of kernel 

associated to the white noise ω2(t) according to the short-

term prediction (Orchard, Tobar and Vachtsevanos, 2010). 

The implementation of the aforementioned scheme has been 

performed using MATLAB® environment. A complete 

description of the results obtained, and a comparison with 

classic PF-based routines, follows in Section 4. 

4. ASSESSMENT AND EVALUATION OF THE PROPOSED 

FRAMEWORK USING PERFORMANCE METRICS 

Estimates obtained from a Particle Filtering algorithm are 

based on the realization of a stochastic process and 

measurement data. Assessment or comparison between 

different strategies should consider performance statistics 

rather than a performance assessment based on a single 

experiment or realization. For that reason, all results 

presented in this paper consider the statistical mean of 30 

realizations for the particle filter algorithm and a single 

measurement data set (no major differences were found 

when considering more realizations). 

In addition, the assessment and evaluation of prognostic 

algorithms require appropriate performance metrics capable 

of incorporating concepts such as “accuracy” and 

“precision” of the RUL pdf estimate (Vachtsevanos et al., 

2006). “Accuracy” is defined as the difference between the 

actual failure time and the estimate of its expectation, while 
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“precision” is an expression of the spread (e.g., standard 

deviation). These indicators should also consider the fact 

that both the RUL and Et{RUL} (estimate, at time t, of the 

expectation of the equipment RUL) are random variables. 

Moreover, it is desirable that all indicators assume that, at 

any time t, it is possible to compute an estimate of the 95% 

confidence interval (CIt) for the EOL. 

In particular this paper uses three indicators to evaluate 

prognostic results, which are presented and detailed in 

(Orchard, Tobar and Vachtsevanos, 2009): (1) RUL 

precision index (RUL-OPI), (2) RUL accuracy-precision 

index, and (3) RUL online steadiness index (RUL-OSI). 

RUL-OPI considers the relative length of the 95% 

confidence interval computed at time t (CIt), when 

compared to the RUL estimate. It is expected that the more 

data the algorithm processes, the more precise the 

prognostic becomes: 

 { }

{ }

sup( ) inf( )

RUL-OPI( )

0 RUL-OPI( ) 1, [1, ), .

t t

t

CI CI

E EOL t

t

t e

t t E EOL t

 −
−  − =

< ≤ ∀ ∈ ∈�

       (9) 

The RUL accuracy-precision index, measures the error in 

EOL estimates relative to the width of its 95% confidence 

interval (CIt). It also penalizes late predictions, i.e., 

whenever Et{EOL}  (the expected EOL) is bigger than 

GroundTruth{EOL} (actual failure happens before the 

expected time). This indicator can be computed only after 

the end of the simulation.  Finally, the RUL-OSI considers 

the variance of the EOL conditional expectation, computed 

with measurement data available at time t. Good prognostic 

results are associated to small values for the RUL-OSI. All 

performance metrics will be evaluated at all time instants. 

In the case study presented in this paper (RUL/EOL 

estimation of a Li-Ion battery) the time is measured in 

cycles of operation. A cycle of operation consists of two 

different operational states applied to the battery at room 

temperature (charge and discharge).  

It is essential to note that algorithm assessment only 

considered RUL estimates generated until the 120
th

 cycle of 

operation, which corresponded to about 75% of the actual 

useful life of the battery (actual EOL of the experiment is 

159 cycles), since it is of more interest to evaluate the 

algorithm’s performance when the size of the prediction 

window is large enough to allow for corrective actions. 

Moreover, given that PF-based prognostic algorithms tend 

to improve their performance as the amount of available 

data increases (Orchard and Vachtsevanos, 2009), the closer 

the system is to the actual EOL, the more accurate the 

resulting EOL estimate. This needs to be kept in mind when 

analyzing results presented both in Figure 1 and Figure 2. 

Figure 1 (a) shows online tracking for the battery SOH 

(coarse trace) using a classic PF-based prognostic approach 

until the 120
th

 cycle of operation, the hazard zone around 

1.2 [A-hr] (marked as a horizontal band), and the 95% 

confidence interval of EOL (coarse vertical dashed lines) 

computed at the 120
th

 cycle. Figure 1 (b) only shows the 

EOL pdf estimate computed at the end of the 120
th

 cycle of 

operation. The result of the classic PF-based prognostic 

approach is accurate to two cycles (the expected value of the 

EOL pdf is 161 cycles, while the ground truth data for the 

EOL is 159 cycles). However, the state estimate, in this 

case, does not exhibit the same level of accuracy when 

describing capacity regeneration phenomena registered at 

the 19
th

, 30
th

, and 47
th

 cycles of operation; see Table 1. In 

fact, regeneration phenomena momentarily affect the 

algorithm performance, in particular in terms of steadiness 

of the solution (Orchard, Tobar and Vachtsevanos, 2009) as 

the analysis based on performance metrics will corroborate 

shortly. 
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Figure 1. Case study. (a) Measurement data (fine trace), PF-

based estimate (coarse trace), and 95% confidence interval 

(vertical read dashed lines). (b) EOL pdf estimate using 

classic PF-based prognosis framework and its expectation 

 
Table 1. Estimates for system output y(t) 

Cycle 
Measured 

data 

Et{y(t)} 

Classic PF-based 

routine 

Et{y(t)} 

PF-based Anomaly 

detection and 

prognosis scheme 

19
th
 1.98 1.77 1.80 

30
th
 1.92 1.70 1.78 

47
th
 1.82 1.62 1.69 

 

Figure 2 (a) shows online tracking for the battery SOH 

(coarse trace) using the proposed scheme that combines a 

PF-based anomaly detection module to identify regeneration 

phenomena and a PF-based prognosis framework for the 

estimation of the battery EOL. This figure also illustrates 

the hazard zone around 1.2 [A-hr], and the 95% confidence 

interval of EOL computed at the 120
th

 cycle. Figure 2 (b) 

a) 

b) 
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shows the EOL pdf estimate computed at the end of the 

120
th

 cycle of operation. 

Figure 2 shows that the proposed scheme is equally capable 

of providing an accurate estimate of the battery RUL with 

an expected value of the EOL pdf (computed at the 120
th

 

cycle of operation) of 158 cycles, while the ground truth 

data for the EOL is 159 cycles). However, it is more 

interesting to note that the information provided by the 

anomaly detection module noticeably improves the state 

estimate at early stages of the test, particularly between the 

20
th

 and the 60
th

 cycle of operation (see Table 1), allowing a 

better description of the regeneration phenomena that affect 

the Li-Ion battery. This demonstrates how the existence of 

particles in areas of low likelihood can help to improve the 

state estimate when rare, unlikely events or highly non-

monotonic phenomena occur. 
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Figure 2. (a) Measurement data (fine trace), PF-based 

estimate (coarse trace), and 95% confidence interval. (b) 

EOL pdf estimate, using a combination of PF-based 

anomaly detection and prognosis approaches, and its 

expectation  

Even more compelling, similar conclusions can be drawn 

when using prognostic performance metrics to assess the 

performance of the classic PF and the proposed scheme that 

includes an anomaly detection module; Figure 3 summarizes 

tracking and prediction with all tracking estimates generated 

until the 120
th

 cycle. 

Figure 3 (a) shows the evaluation of RUL-OPI as 

measurement data are included in a sequential manner into 

the prediction algorithm. One of the main characteristics of 

this indicator is that it penalizes the width of the 95
th

% 

confidence interval as the system approaches EOL. The 

value of this indicator is comparable for both algorithms 

(around 0.5 near the end of the experiment). 

However, both the accuracy-precision and the RUL-OSI 

indices indicate noticeable advantages of the combination of 

PF-based anomaly detection and prognosis routines when 

compared to its classic version as illustrated in Figure 3 (b) 

and Figure 3 (c). The evaluation of the accuracy-precision 

index clearly shows improved performance in the case of 

the proposed framework, which translates into better 

estimates for the EOL conditional expectation. Similar 

conclusions can be obtained from Figure 3 (c), where the 

steadiness RUL-OSI index shows that the impact of 

detecting regenerating phenomena (and adjusting state 

estimates accordingly) is limited to bounded periods of 

time. 
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Figure 3. Performance metric evaluation in case study. 

Comparison between classic PF (green trace) and a 

combined PF-based anomaly detection/prognostic module 

(blue trace) 

Previous research work (Orchard, 2009; Orchard and 

Vachtsevanos, 2009) has already shown better results when 

using classic PF-based prognostic framework, compared to 

other approaches. For this reason, this performance analysis 

did not consider other methods such as the extended Kalman 

filter in its formulation. 

5. CONCLUSION 

This paper presents a case study where a combined version 

of PF-based anomaly detection and classic PF-based 

prognosis algorithms is applied to estimate the remaining 

useful life of an energy storage device (Li-Ion battery). A 

comparison based on prognosis performance metrics 

indicates that the proposed anomaly detection/prognostic 

approach is more suitable than classic PF methods to 

represent highly non-monotonic phenomena such as 

capacity regeneration phenomena between charging periods, 

in terms of accuracy of the state estimate and steadiness of 

the RUL estimate. We surmise that the information provided 

by the anomaly detection module, in an online fashion, 

allow providing a more conservative estimate of the RUL of 

the faulty piece of equipment. We surmise that it also helps 

to incorporate the probability of rare and costly events in the 

evolution of the fault condition in time. 

a) 

b) 

a) 

b) 

c) 
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ABSTRACT 

The ability to utilize prognostic system health information 

in operational decision making, especially when fused with 

information about future operational, environmental, and 

mission requirements, is becoming desirable for both 

manned and unmanned aerospace vehicles.  A vehicle 

capable of evaluating its own health state and making (or 

assisting the crew in making) decisions with respect to its 

system health evolution over time will be able to go further 

and accomplish more mission objectives than a vehicle fully 

dependent on human control. This paper describes the 

development of a hardware testbed for integration and 

testing of prognostics-enabled decision making 

technologies. Although the testbed is based on a planetary 

rover platform (K11), the algorithms being developed on it 

are expected to be applicable to a variety of aerospace 

vehicle types, from unmanned aerial vehicles and deep 

space probes to manned aircraft and spacecraft. A variety of 

injectable fault modes is being investigated for electrical, 

mechanical, and power subsystems of the testbed.  A 

software simulator of the K11 has been developed, for both 

nominal and off-nominal operating modes, which allows 

prototyping and validation of algorithms prior to their 

deployment on hardware. The simulator can also aid in the 

decision-making process. The testbed is designed to have 

interfaces that allow reasoning software to be integrated and 

tested quickly, making it possible to evaluate and compare 

algorithms of various types and from different sources. 

Currently, algorithms developed (or being developed) at 

NASA Ames - a diagnostic system, a prognostic system, a 

decision-making module, a planner, and an executive - are 

being used to complete the software architecture and 

validate design of the testbed. 

1. INTRODUCTION 

Over the last several years, testbeds have been constructed 

at NASA and elsewhere for the purpose of diagnostic and 

prognostic research on components important to aerospace 

vehicles: electronics, actuators, batteries, and others. For 

examples, please refer to (Poll, et al., 2007), (Smith, et al., 

2009), (Balaban, Saxena, Narasimhan, Roychoudhury, 

Goebel, & Koopmans, 2010),  However, there still remained 

a need for a testbed that supported development of 

algorithms performing reasoning on both the component 

and system levels, and optimizing decision-making with 

system health information taken into account. Such a testbed 

would also, ideally, be inexpensive to operate and not 

require lengthy experiment setup times. The main categories 

of tasks to be performed on the testbed were defined as the 

following: (1) development of system-level prognostics-

enabled decision making (PDM) algorithms; (2) maturation 

Balaban et al. This is an open-access article distributed under the terms 

of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 
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and standardization of interfaces between various reasoning 

algorithms; (3) performance comparison among the 

algorithms from different organizations; and (4) generation 

of publicly available datasets for enabling further research 

in PDM. 

Adding decision optimization capability to a 

diagnostic/prognostic health management system will allow 

to not only determine if a vehicle component is failing and 

how long would it take for it to fail completely, but also to 

use that information to take (or suggest) actions that can 

optimize vehicle maintenance, ensure mission safety, or 

extend mission duration. Depending on the prediction time 

horizon for the fault, the character of these actions can vary. 

If a fault is expected to develop into a complete failure in a 

matter of seconds, a rapid controller reconfiguration, for 

example, may be required. If the fault progression takes 

minutes then, perhaps, reconfiguration of the vehicle (such 

as switching from the low gain antenna to the high gain 

antenna) can help remedy the situation. Finally, if the 

remaining useful life (RUL) for the faulty component is 

measured in hours, days, weeks, or longer, a new mission 

plan or adjustments to the logistics chain may be warranted 

(often in conjunction with lower level actions). 

While eventually an aerial test vehicle, such as an 

unmanned fixed wing airplane or a helicopter, would allow 

testing of the aforementioned technologies on complex 

scenarios and with motion in three-dimensional space, 

operating such a testbed is often expensive. A single flight 

hour often requires many days of preparation. Safety 

requirements for an aerial test vehicle, even without a 

human onboard, are also usually quite stringent. In contrast, 

a rover whose movement is restricted to two dimensions can 

operate at low speeds in a controlled environment, making 

experiments easier and safer to set up. The experiments can 

still involve motion, complex subsystems interactions, and 

elaborate mission plans, but the possibility of a dangerous 

situation occurring is reduced significantly.  For 

technologies in early phases of development in particular, a 

land vehicle platform could provide a suitable initial test 

environment for the majority of development goals at a 

fraction of the cost of an aerial vehicle, usually with a clear 

transition path to the latter. 

Guided by the above reasons and requirements, an effort 

was started to develop such a platform on the basis of the 

K11, a rover originally slated to serve as a robotic 

technologies test vehicle in the Antarctic (Lachat, Krebs, 

Thueer, & Siegwart, 2006).  The rover equipment (such as 

its batteries) was updated and its sensor suite was expanded. 

A key distinction from other planetary rover development 

efforts should be stressed, however. The focus of this 

research is not to develop next-generation planetary rover 

hardware, but rather to use the K11 rover platform to create 

a realistic environment for testing novel PDM algorithms. 

These algorithms would then be used as blueprints by other 

organizations in order to create PDM functionality for their 

particular applications. 

Fault modes in components that are common to various 

types of vehicles (such as electric motors, batteries, or 

control electronics) were identified and injection methods 

for some of them were developed – with as much realism as 

practical. A software simulator, meant for allowing rapid 

validation of autonomy algorithms and for providing 

optimization guidance during hardware-in-the-loop 

experiments, was developed as well. While for the time 

being algorithms developed at NASA Ames are being used 

to populate the autonomy architecture on the K11, 

algorithms from other sources could be tested and evaluated 

in the future.  

The next section of the paper, Section 2 focuses on the 

testbed hardware, while Section 3 summarizes work on the 

simulator to date, including experimental validation of the 

models. Section 4 describes the current reasoning software 

suite being deployed on the testbed and Section 5 provides a 

summary of the accomplishments and outlines potential 

future work. 

2. TESTBED 

The following section consists of three main parts: the first 

part describes the hardware of the testbed, including its 

sensor suite; the second focuses on the testbed (core) 

software; and the third one describes the methods used for 

fault injection. It should be noted that there is a distinction 

made in this work between core software and reasoning 

(including PDM) software. Examples in the former category 

include the operating system, the middleware providing 

communication between components, the data acquisition 

software, the low-level drivers – essentially the elements 

that enable the K11 to perform all of its functions under 

direct human control. The reasoning package, on the other 

hand, is the software that lessens or completely removes the 

dependence on a human operator.  PDM software is what 

constitutes the test article for this testbed and its elements 

will be swapped in and out depending on the test plan.  The 

current set of PDM elements is described in Section 3. 

2.1. Hardware 

The K11 is a four-wheeled rover (Figure 5) that was initially 

developed by the Intelligent Robotics Group (IRG) at 

NASA Ames to be an Antarctic heavy explorer. It had a 

design capacity to transport 100 kilograms of payload across 

ice and frozen tundra (Lachat, Krebs, Thueer, & Siegwart, 

2006). 

The rover was also previously used in experiments to test 

power consumption models and in a gearing optimization 

study. It has been tested on various types of terrain, 

including snow. The lightweight chassis was designed and 

built by BlueBotics SA. It consists of an H-structure and a 
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joint around the roll axis to ensure that the wheels stay in 

contact with the ground on uneven terrain. The mass of the 

rover without the payload is roughly 140 kg. Its dimensions 

are approximately 1.4m x 1.1m x 0.63m.Each wheel on the 

K11 is driven by an independent 250 Watt graphite-brush 

motor from Maxon Motors equipped with an optical 

encoder. The wheels are connected to the motors through a 

bearing and gearhead system (gearhead ratio r = 308). 

Motors are controlled by Maxon Epos 70/10 single-axis 

digital motion controllers, capable of operating in velocity, 

position, homing, and current modes. 

After considering various alternatives, LiFePO4 (lithium 

iron phosphate) batteries, commonly used in modern electric 

vehicles, were selected to power the rover. LiFePO4 

batteries have a high charge density, perform well in high 

temperatures, and are not prone to combustion or explosion. 

Furthermore, they can withstand a high number 

(approximately 500) of charge/discharge cycles before 

needing to be replaced. There are four 12.8V 3.3 Ah 

LiFePO4 batteries on the K11, connected in series. Each 

battery contains 4 cells. 

The philosophy in developing the sensor suite on the K11 

(summarized in Table 1) was to employ only those sensors 

or data acquisition hardware that are commonly available on 

a variety of vehicles or can be added at a reasonable cost, 

while also providing sufficient data for a PDM system. Each 

component is utilized to the maximum extent possible. For 

instance, the motor controllers are not only used for their 

primary purpose of operating the motors and giving 

feedback on their velocity and current consumption, but are 

also used to support external sensors. The unused controller 

analog input channels are called upon to read battery voltage 

and current sensors and will be used for collecting 

temperature readings. In a similar vein, a decision was made 

to utilize a modern off-the-shelf smartphone for part of the 

instrumentation suite instead of, for example, a dedicated 

GPS receiver and a gyroscope.  The smartphone also 

provides a still/video camera, a compass, and data 

processing and storage resources. It has a built-in wireless 

capability for communicating with other on-board 

components and directly with the ground station (as a back-

up to the main communication link through the on-board 

computer). The current phone used on the K11 is a Google 

Nexus S. 

The bulk of the computational resources needed to operate 

the rover are provided by the onboard computer (an Intel 

Core 2 Duo laptop).  Its responsibilities include executing 

the motor control software, performing data acquisition, as 

well as running all of the reasoning algorithms. A second 

laptop computer currently serves as a ground control station. 

2.2. Software 

Several of the core software elements on K11 are adopted, 

or being adopted, from the Service-Oriented Robotic 

Architecture (SORA) developed by the Intelligent Robotics 

Group (Fluckiger, To, & Utz, 2008). This includes the 

navigation software; the middleware, based on Common 

Object Request Broker Architecture (CORBA) (Object 

Management Group, 2004) and Adaptive Communication 

Environment (ACE) (Schmidt, 1994); and the telemetry 

software, the Robot Application Programming Interface 

Delegate (RAPID) (NASA Ames Research Center, 2011). 

The smartphone (running Google Android 2.2 operating 

system) hosts a data acquisition module written in Java.  

That module collects data from the phone‟s sensors 

(described in the previous section) and sends it over a User 

Datagram Protocol (UDP) socket to the onboard computer.  

The central data acquisition software running on the 

computer receives the phone data, merges it with data 

received from other sources (e.g., voltage sensors, current 

Measurement 

Type Manufacturer Location/comments 

GPS (longitude 

and latitude) 

Motorola On the smartphone 

Gyroscope (roll, 

pitch, yaw) 

Motorola On the smartphone 

Motor temperature Omega On each motor (to be 

implemented) 

Battery 

temperature  

Omega On each battery pack 

(to be implemented) 

Position encoder Maxon On each drive motor 

Battery voltage custom On a custom PCB 

board measuring 

individual battery 

pack voltages 

Total current custom On a custom PCB 

board measuring 

individual battery 

pack voltages 

Individual motor 

current 

Maxon Part of motor 

controller 

Table 1: Measurements available on the K11 

 

Figure 1: The K11 rover 
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sensors, controller state, etc) and records it into a unified 

data file, which can then be transmitted to the ground 

control station. The central data acquisition software on the 

K11 is based on LabView from National Instruments.   

The ground station graphical user interface (GUI) software 

is also written in LabView. It allows the operator to take 

manual control of the rover (via on-screen commands or a 

joystick) and to set data recording preferences.  The 

operator can switch the GUI from interacting with the K11 

hardware to interacting with the K11 simulator. One of the 

goals in developing the simulator (described further in 

Section 3) is to make the difference in interacting with it 

versus the rover hardware as minimal as possible. The 

operating system currently used on both the onboard 

computer and the ground station is Microsoft Windows XP.  

It will be replaced by a UNIX-based operating system in the 

near future. 

2.3. Fault Modes 

A number of fault modes have been identified so far for 

implementation on the testbed (Table 2).  The criteria for 

their selection include relevance to a variety of aerospace 

vehicles (not just rovers), feasibility of implementation, and 

progression time from fault to failure.  The last criterion is 

important because if the progression time is too brief (e.g. 

microseconds), then likely no useful action can be taken in 

the prognostic context to predict the remaining useful life of 

the component and remedy the situation. On the other hand, 

if the fault-to-failure progression time is measured in years, 

then running experiments on those fault modes may become 

impractical. Faults in both of the above categories could still 

be handled by diagnostic systems, however. Out of the fault 

modes described in Table 2, a few were selected for the 

initial phase of the project. The methods for their injection 

on the K11 are covered in more detail next. The methods for 

modeling progression of these faults in the simulator are 

described in Section 3. 

2.3.1. Mechanical Jam and Motor Windings 

Deterioration 

The first fault mode selected for implementation is a 

mechanical jam on the motor axle which leads to increased 

current, overheating of motor windings, deterioration of 

their insulation, and eventual failure of the motor due to a 

short in the motor windings. To maintain realism, a 

performance region for the motor is chosen (using 

manufacturer‟s specifications) where a healthy motor would 

have no problems keeping up with either speed or load 

requirements. In the presence of increased friction, however, 

the amount of current needed to satisfy the same speed and 

load demands is higher, leading to overheating. Unless 

speed and/or load are reduced or duty cycle (the proportion 

of time the motor is on versus duration of cool-down 

intervals) is adjusted, the heat build-up will eventually 

destroy the insulation of the motor windings and lead to 

motor failure. This fault mode was first implemented in the 

simulator and its model verified using experimental data 

collected on smaller-sized motors that were run to failure 

under similar conditions (please see section 3.2, Motor 

Modeling). A hardware fault injection using a mechanical 

brake on one of the rover motors will be implemented next. 

The rover motor will not be run to complete failure initially; 

instead the simulator model parameters and prognostic 

algorithms will be validated in experiments stopping short 

of creating permanent damage. Eventually, experiments that 

will take motors all the way to failure will be performed. 

2.3.2. Parasitic Load 

A parasitic electrical load will be injected on the main 

power distribution line via a remotely controlled rheostat. 

The rheostat can be set for resistance from 0 to 100 Ohms 

and can dissipate up to 600 Watts of power. The rheostat 

will simulate a situation where, for example, an accessory 

motor is continuously engaged due to a failed limit 

microswitch. 

2.3.3. Electronics Faults  

The systems on the K11 provide several opportunities for 

fault injection in electronics subsystems. Power electronics 

in the motor drivers allow fault injection in power-switching 

devices such as Metal–Oxide–Semiconductor Field-Effect 

Transistors (MOSFETs), Insulated Gate Bipolar Transistors 

(IGBTs) and electrolytic capacitors used for voltage 

filtering. These devices have a key role in providing current 

Fault Mode Injection method Subsystem 

battery capacity 

degradation accelerated aging power 

battery charge 

tracking normal operations power 

parasitic electric 

load programmable power distribution 

motor failure software 

electro-

mechanical 

increased motor 

friction mechanical brake 

electro-

mechanical 

bearing spalls machined spalls 

electro-

mechanical 

sensor 

bias/drift/failure software sensors 

motor driver faults 

MOSFET 

replacement in the 

controller with an 

aged component power distribution 

 

Table 2: Potential fault modes 
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to the motors, but are known for relatively high failure rates. 

Fault injection will also be implemented on the power 

switches of the motor winding H-bridges, where current will 

be routed to degraded power transistors during rover 

operation. In addition, some of the symptoms of power 

transistors failing will be replicated programmatically by 

varying the gate voltage. The premise of the fault injection 

in the H-bridge transistor is that it will diminish the 

performance of a motor winding, reducing torque and 

altering motor performance characteristics, making control 

difficult. 

Efforts on accelerated aging of IGBTs and power 

MOSFETs are presented in (Celaya, Saxena, Wysocki, 

Saha, & Goebel, 2010). Accelerated aging methodologies 

for electrolytic capacitors under nominal loading and 

environmental conditions are presented in (Kulkarni, 

Biswas, Koutsoukos, Celaya, & Goebel, 2010); 

methodologies for accelerated aging via electrical overstress 

are presented in (Kulkarni, Biswas, Celaya, & Goebel, 

2011). MOSFETs, IGBTs, and electrolytic capacitors at 

various levels of degradation will be used to inject 

component-level electronic faults, with some of the faults 

expected to have a cascading effect on other electronic 

and/or mechanical subsystems. 

2.3.4. Battery Capacity Degradation 

As the rover batteries go through charge/discharge cycles, 

their capacity to hold charge will diminish. The degradation 

rate will depend on several factors such as imposed loads, 

environmental conditions, and charge procedures. For 

example, Li-Ion chemistry batteries undergo higher rates of 

capacity fade with higher current draw and operational 

temperatures. Even at rest, this type of battery has chemical 

processes occurring that have long-term effects - for 

instance, latent self-discharge and transient recovery during 

relaxation. The depth-of-discharge (DoD) and even the 

storage temperature have major influences on the overall 

life of the battery as well. There is no specific mechanism 

required for injecting this fault – the batteries will age 

naturally in the course of rover operations. Some 

experiments will, however, utilize battery cells aged to a 

desired point in their life cycle on the battery aging test 

stand (Saha & Goebel, 2009) 

2.3.5. Remaining Battery Charge Tracking 

While not being, in the strict sense, a fault, tracking the 

remaining battery charge will be one of the main tasks of the 

prognostic system. End of charge is an end-of-life criterion, 

so the remaining charge estimate is expected to be a factor 

in most of actions undertaken by PDM software. Most 

battery-powered devices have some form of battery state-of-

charge (SOC) monitoring onboard. This is mostly based on 

Coulomb counting, i.e. integrating the current drawn over 

time, divided by the rated capacity of the battery. The 

definition used in this work is the following: 

       
       

           

   

                         
      

It should be noted that both the numerator and denominator 

of the fraction are predictions, not the actual measurements: 

battery voltage prediction for the former and capacity 

prediction for the latter. Further details are discussed in 

(Saha and Goebel 2009). 

3. TESTBED SIMULATOR 

As mentioned previously, a simulator has been developed to 

aid in the design of PDM algorithms for the testbed. It 

captures both nominal and faulty behavior, with the 

controlled ability to inject faults. In this way, it serves as a 

virtual testbed through which algorithms can be initially 

tested and validated.  Faults in the simulator are modeled as 

undesired changes in system parameters or configuration. In 

addition to serving as a virtual testbed, the simulator will 

also be utilized in guiding the decision making process. A 

graphical user interface was developed for interacting with 

the simulator, and is shown in Figure 2. In this section, the 

models used by the simulator are reviewed and some model 

validation results are presented. 

3.1. Rover Dynamics Modeling 

The rover consists of a symmetric rigid frame with four 

independently-driven wheels. Generalized rover coordinates 

are shown in Figure 3. The F subscript stands for “front”, 

the B subscript for “back”, the L subscript for “left”, and the 

R subscript for “right”. The rover pose is given by        . 

The independent dynamic variables describing the motion 

include the body longitudinal velocity  , the body rotational 

velocity  , and the wheel rotational velocities    ,    , 

   , and    . Note that the body velocities and wheel 

velocities are independent due to the presence of slip. 

Velocity in the lateral direction is negligible (Mandow, 

2007). 
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Since the rover exhibits both longitudinal and rotational 

velocity, it will experience forces opposing both of these 

movements. The rover forces are shown in Figure 4. Each 

motor produces a torque that drives its wheel. When the 

longitudinal velocity of the rover is equal to the rotational 

velocity of the wheel times its radius, then there is no slip 

and no force. Otherwise, some amount of slip will be 

present and the difference in the relative velocities of the 

wheel and the ground produce a ground force     that 

pushes the wheel along the ground. These forces are 

transmitted to the rover body, moving it in the longitudinal 

direction. The    forces produce torques on the rover body, 

producing a rotation. The rotation is opposed by additional 

friction forces    . The friction forces are defined as: 

               

         

Note that    and    are not in the same units. The     

forces, opposing the rotation, act at a right angle from the 

diagonal going from the robot center to the wheel, and in the 

direction that opposes the rotation. The forward component 

of this force affects the forward velocity of the rover, just as 

the component of a     force perpendicular to the diagonal 

affects the rotational velocity. The angle   is of interest 

here, given by 

               

 

Figure 2: Rover simulation GUI 
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Figure 3: Generalized rover coordinates 
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For a given wheel  , the rotational velocity is described by 

    
 

  
                            , 

where    is the wheel inertia,     is the motor torque, and 

    is the friction torque: 

         . 

The forward velocity is described by 

   
 

 
                           , 

assuming that   are the same for all wheels so that the 

contributions from the     forces cancel out. The rotational 

velocity is described by 

   
 

 
                                         

                    

We note that the     forces are at distance   from the rover 

center with the perpendicular component at angle  . The 

     factor projects the force onto the tangent of the 

rotation. 

3.2. Motor Modeling 

The wheel motors are DC motors with PID control. The DC 

motor model is given by 

     
 

 
                

where    is the motor voltage,   is the winding inductance, 

  is the winding resistance, and    is an energy 

transformation term. The motor torque given by 

        

where    is an energy transformation term. 

Increased motor/wheel friction for wheel   is captured by 

an increase in   . A change in motor resistance is captured 

by a change in  . The motors windings are designed to 

withstand temperatures up to a certain point, after which, the 

insulation breaks down, the windings short, and the motor 

fails. It is therefore important to model the temperature 

behavior of the motor. 

The motor thermocouple is located on the motor surface. 

The surface loses heat to the environment and is heated 

indirectly by the windings, which, in turn, are heated up by 

the current passing through them. The temperature of the 

windings is given by 

    
 

  
                , 

where    is the thermal inertia of the windings,    is a heat 

transfer coefficient, and    is the motor surface temperature 

(Balaban, et al., 2009). It is assumed that heat is lost only to 

the motor surface, and that winding resistance   is 

approximately constant for the temperature range 

considered. The surface temperature is given by 

    
 

  
                       

where     is the thermal inertia of the motor surface,    is a 

heat transfer coefficient, and    is the ambient temperature. 

Heat is transferred from the windings to the surface and lost 

to the environment. 

This model was validated for DC motors using experimental 

data collected on the Flyable Electro-Mechanical Actuator 

(FLEA) testbed (Balaban, Saxena, Narasimhan, 

Roychoudhury, Goebel, & Koopmans, 2010). The unknown 

parameters              and   were identified to match 

data acquired from a scenario where the motor was 

overloaded and, as a result, heated up considerably. The 

motor current and surface temperatures were measured. A 

comparison of predicted vs. measured temperature is shown 

in Figure 5. 

FglFL FglFR

FglBL FglBR

ω

FgrBL

FgrFR

FgrBR

γ
FgrFL

 

Figure 4: Rover forces 
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Figure 5: Comparison of measured and model-predicted 

motor surface temperature for a DC motor 

3.3. Sensor Fault Modeling 

Sensor faults are captured with bias, drift, gain, and scaling 

terms. Ranges for typical fault magnitude values have been 

identified through a literature search and discussions with 

manufacturers (Balaban, Saxena, Bansal, Goebel, & Curran, 

2009). Faults in common sensors such as current, voltage, 

temperature, and position will be modeled. 

3.4. Battery Modeling 

The key challenge in modeling a battery is estimating its 

open-circuit voltage,   . The theoretical open-circuit 

voltage of a battery is traditionally assessed when all 

reactants are at      and at 1M concentration (or 1 atm 

pressure). However, this voltage cannot be measured 

directly during battery use due to the influence of internal 

passive components such as the electrolyte, the separator, 

and the terminal leads. The measured voltage will be lower; 

the factors contributing to the voltage drop are characterized 

in the following paragraphs. 

The first factor considered is the ohmic drop. The term 

refers to the diffusion process through which Li-ions 

migrate to the cathode via the electrolytic medium. The 

internal resistance to this ionic diffusion process can also be 

referred to as the IR drop. For a given load current, this drop 

usually decreases with time due to the increase in internal 

temperature, which results in increased ion mobility. 

The next factor is self-discharge, which is caused by the 

residual ionic and electronic flow through a cell even when 

there is no external current being drawn. The resulting drop 

in voltage has been modeled to represent the activation 

polarization of the battery. All chemical reactions have a 

certain activation barrier that must be overcome in order for 

the reaction to proceed and the energy needed to overcome 

this barrier leads to the activation polarization voltage drop. 

The dynamics of this process are described by the Butler–

Volmer equation, which, in this work, is approximated by a 

logarithmic function. 

Concentration polarization is the voltage loss due to spatial 

variations in reactant concentration at the electrodes. This 

occurs primarily when the reactants are consumed faster by 

the electrochemical reaction than they can diffuse into the 

porous electrode. The phenomenon can also occur due to 

variations in bulk flow composition. The consumption of 

Li-ions causes a drop in their concentration along the cell, 

which causes a drop in the local potential near the cathode. 

The magnitude of concentration polarization is usually low 

during the initial part of the discharge cycle, but grows 

rapidly towards the end of it or when the load current 

increases. 

Finally, the degradation of battery capacity with aging, as 

encapsulated by the cycle life parameter, can be modeled by 

the concept of Coulombic efficiency,   , defined as the 

fraction of the prior charge capacity that is available during 

the following discharge cycle (Huggins, 2008). As 

mentioned previously, this depends upon a number of 

factors, particularly on current and depth of discharge in 

each cycle. The temperature at which the batteries are stored 

and operated under also has a significant effect on the 

Coulombic efficiency. For further details on battery 

modeling, please refer to (Saha and Goebel 2009).  

3.5. Electronics Fault Modeling  

The field of electronics prognostics is relatively new 

compared to prognostics for mechanical systems. As a 

result, research efforts to develop physics-based degradation 

models that take into account loading and operational 

conditions are in their early stages. There are several well-

known electronics reliability models that deal with failure 

rates under specific stress factors and corresponding failure 

mechanisms. However, such models do not take into 

account usage time, thus making them less suitable for 

prediction of remaining useful life.  

Empirical degradation models of IGBTs, based on the turn-

off tail of the drain current, have recently been used for 

prediction of their future health state (Saha B., Celaya, 

Wysocki, & Goebel, 2009). Their collector-emitter voltage 

has been used as precursor of failure as well (Patil, 2009). 

In the case of power MOSFETs, the on-state drain to source 

resistance has been identified as a precursor to failure for 

the die-attach failure mechanism (Celaya, Saxena, Wysocki, 

Saha, & Goebel, 2010). For gate-related failure, empirical 

degradation models based on the exponential function have 

also been developed (Saha S., Celaya, Vashchenko, 

Mahiuddin, & Goebel, 2011). 
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For electrolytic capacitors, an empirical degradation model, 

also based on an exponential function is presented in 

(Celaya, Saxena, Vaschenko, Saha, & Goebel, 2011). This 

model is built based on accelerated degradation data. Details 

on its physical foundations are presented in (Kulkarni, 

Biswas, Celaya, & Goebel, 2011). 

4. PROGNOSTICS-ENABLED DECISION MAKING 

ALGORITHM DEVELOPMENT 

This section describes the reasoning architecture currently 

being deployed on the K11 and is meant to mainly provide 

an overview of the types of algorithms that can be plugged 

into it for testing and comparison. The current set of 

algorithms is expected to evolve as this research progresses 

and other organizations become involved. Figure 6 outlines 

the architecture and depicts the information flow among its 

components. The Prognostic Health Management (PHM) 

element on the figure combines diagnostic and prognostic 

reasoning engines. If a system fault occurs, the diagnostic 

engine is tasked with detecting it and identifying what it is, 

followed by invocation of an appropriate prognostic 

algorithm to track fault progression. Once a prognosis of the 

remaining useful life is made, the information is passed to 

the decision optimization module, which identifies the best 

way to respond. The K11 simulator, with its nominal and 

fault-progression models, is used to guide the decision 

optimization process in some of the cases. The response 

chosen may involve reconfiguration of low-level controllers 

or requesting the planner to come up with a new mission 

plan. Planner output is used to generate action schedules and 

then, through the executive module, time-ordered 

commands for individual components. 

4.1. Diagnostics 

Diagnosis can be defined as the process of detecting, 

isolating, and identifying faults in the system. A fault is 

defined as an undesired change in the system that causes the 

system to deviate from its nominal operation regime. 

Diagnostic approaches can be broadly divided into two 

types: model-based and data-driven (Gertler, 1998). Model-

based methods rely on a system model built from a priori 

knowledge about the system. Data-driven methods, on the 

other hand, do not require such models but instead require 

large, diverse sets of exemplar failure data, which are often 

not available. The decision of whether to adopt a model-

based or a data-driven diagnostic approach depends on the 

sensor suite properties and the fault modes of interest, 

among other factors. 

Currently a model-based approach is adopted for providing 

a diagnostic system for the rover, as the sensors (Table 1) 

and fault modes (Table 2) lend themselves to physics-based 

modeling. Once sensors measuring more complex dynamics 

(e.g. accelerometers) are added to the system, data-driven 

diagnosis methods may be required.  Additionally, model-

based and data-driven algorithms can be synergistically 

combined to improve upon either approach implemented 

individually (Narasimhan, Roychoudhury, Balaban, & 

Saxena, 2010). 

 

 

Figure 6: Autonomy architecture 
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Typically, model-based methods require a nominal system 

model, as well as a model that captures the relations 

between faults and symptoms. The overall goal is to use the  

model to generate estimates of nominal system behavior, 

then compare them with observed system behavior. If any 

deviation from nominal, i.e., a symptom, is observed, the 

fault-symptom model is used to isolate the fault modes that 

explain the symptoms.  

A model-based diagnosis approach is generally split into 

three tasks: fault detection, fault isolation, and fault 

identification, with the following event flow: 

 Fault detection involves determining if the system 

behavior has deviated from nominal due to the 

occurrence of one or more faults. The fault detector 

takes as inputs the measurement readings,  , and 

the expected nominal measurement values,   , 

generated by the nominal system observer. The 

detector indicates a fault if the residual,       , 

is statistically significant.  

 Once a fault is detected, the fault isolation module 

generates a set of fault hypotheses,  , and, at every 

time step, reasons about what faults are consistent 

with the sequence of observed measurements in 

order to reduce  . The goal of fault isolation is to 

reduce   to as small a set as possible. If only single 

faults are assumed then, ideally, the goal of fault 

isolation is to reduce   to a singleton set. 

 Once the fault (or faults) are isolated, fault 

identification is invoked. It involves quantitatively 

evaluating the magnitude of each fault,    .  

Once the fault magnitude is identified, prognostic 

algorithms can be invoked to predict how the damage grows 

over time and estimate the remaining useful life of the 

affected component and the overall system. 

4.2. Prognostics 

For the purposes of this research, prognostics is defined as 

the process which predicts the time when a system variable 

or vector indicating system health no longer falls within the 

limits set forth by the system specifications (End-of-Life or 

EOL). The prediction is based on proposed future usage. In 

some cases the trajectory of the aforementioned variable or 

vector through time is predicted as well. Similarly to 

diagnostic methods, prognostics methods are generally 

classified as either data-driven or model-based: 

(Schwabacher, 2005); (Saha and Goebel 2009); (Daigle & 

Goebel, 2011). 

Generally, the inputs to a prognostic algorithm include 

information on the fault provided by the diagnostic 

algorithm (e.g. fault type, time and magnitude).  Output of a 

prognostic algorithm could be then presented to a PDM 

algorithm in one of the following ways:  

a. as an estimate   
        

 of the variable of interest 

(e.g. accumulated damage or remaining life) at a  

specific time    given the information up to time    

for a component  , where       . L is the 

anticipated average load up to tj.  

b. As a discrete point trajectory     
 

    given 

information up to the point i, where L={l1, l2, …, lEoP} 

are the anticipated load values for each point on the 

 
Figure 7. Prognostic prediction example 
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prediction trajectory, EOP is the end of prediction 

index, and I < j < EOP. 

c. As a continuous function       
 

    given 

information up to a time    and an anticipated load 

function L(t) 

The estimate produced in all of the above cases may be 

expressed as a probability density function (pdf) or as 

moments derived from the probability distribution. Each of 

the three options assumes time-variability of the prognostic 

function, which is one of the main factors that make PDM 

an interesting and challenging research problem.  The 

function may change from one time of prediction to the next 

as more information about the behavior of the system 

becomes available. 

Figure 7 shows the important features of an example 

prediction curve produced at a specific time t. The points on 

the time axis are relative to the moment of prediction. The 

health index values are normalized to be in the [0, 1] 

interval. Probability density of health index values for each 

point in time is illustrated using a grayscale map (shown on 

the right side of the figure). The solid black bars are drawn 

to show one standard deviation of probability distributions 

at different time points into the future. End-of-Life is a time 

value corresponding to the health index chosen to indicate 

that the component or a system can no longer provide useful 

performance. In this example EOL corresponds to health 

index of 0, however the threshold can be defined as any 

other value in the [0, 1] interval. 

The prediction step requires knowledge of the future usage 

of the system. For the rover, this involves the expected 

future trajectory and environmental inputs, such as the 

terrain and the ambient temperature. The physics models 

developed for the simulator can be utilized in both the 

estimation and prediction phases. Damage progression 

processes that are difficult to model may require use of data-

driven prognostics methods. In the remainder of this section, 

more details are provided on the prognostic methods 

currently investigated for the fault modes of interest. 

4.2.1. Mechanical Jam/Windings Insulation 

Deterioration 

The thermal build-up model as described in the simulator 

section will be used to predict when the interior of a motor 

would reach the temperature at which insulation of the 

windings is likely to melt, thus disabling the motor. A 

machine-learning prediction method will also be utilized for 

comparison. The method is based on the Gaussian Process 

Regression (GPR) principles and was previously tested on 

another testbed developed at NASA Ames, the FLEA 

(Balaban, Saxena, Narasimhan, Roychoudhury, & Goebel, 

Experimental Validation of a Prognostic Health 

Management System for Electro-Mechanical Actuators, 

2011). The FLEA was used to inject and collect data 

progression of the same type of fault in the motors of 

electro-mechanical actuators.  Several motors were run to 

complete failure and GPR demonstrated a high accuracy in 

predicting their remaining useful life.  

GPR does not need explicit fault growth models and can be 

made computationally less expensive by sampling 

techniques. Further, it provides variance bounds around the 

predicted trajectory to represent the associated confidence 

(Rasmussen & Williams, 2006). Domain knowledge 

available from the process is encoded by the covariance 

function that defines the relationship between data points in 

a time series. In the present implementation, a Neural 

Network type covariance function is used. 

Sensor data is processed in real-time to extract relevant 

features, which are used by the GPR algorithm for training 

during the initial period. The longer is the training period, 

the better are the chances for the algorithm to learn the true 

fault growth characteristics. However, to strike a balance 

between the length of the training period and the risk of 

producing an insufficient prediction horizon, a limit for the 

training period is set. Once this limit is reached, the 

algorithm starts predicting fault growth trajectories. EOL is 

subsequently determined by where these trajectories 

intersect the predetermined fault level threshold. As time 

progresses, the GPR model is updated with new 

observations and, subsequently, the predictions are updated 

as well. Best fitting hyper-parameters for the covariance 

function are determined via a maximum-likelihood 

optimization. The uncertainty created by this process is 

handled by drawing a large (p~50) number of samples from 

the observed data at each prediction instance (tp) and 

training p different Gaussian Process models on these 

distinct data sets. Their prediction results are then averaged. 

4.2.2. Battery Capacity Deterioration and Charge 

Tracking 

There are several methods widely in use for batteries that 

relate capacity and SOC to the number of cycles a battery 

has undergone and its open circuit voltage. Most such 

methods, however, are reliability based, i.e. they assume 

certain usage profiles are maintained throughout the cycle 

life of the battery. Such assumptions (for instance that the 

battery undergoes full discharge followed by full charge 

repeatedly until its end-of-life) are not always realistic. This 

is especially true for a platform such as the K11, where 

individual missions may have different goals with different 

load profiles. Under such circumstances, it is advantageous 

to model the internal processes of the battery and let a 

Bayesian inference framework, such as the Particle Filter 

(Arulampalam, Maskell, Gordon, & Clapp, 2002) manage 

the uncertainty in the model (Saha & Goebel, 2009) 
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In the remaining battery charge prediction application, the 

main state variable is the battery voltage, E, and in the 

objective is to predict when E reaches the low-voltage 

cutoff. During the prognostic process a tracking routine is 

run until a long-term prediction is required, at which point 

the state model is used to propagate the last updated 

particles until the end-of-discharge (EOD) voltage cutoff is 

reached. The RUL pdf is computed from the weighted RUL 

predictions of the particles in the last tracking step. Figure 8 

shows the flow diagram of the prediction process. 

In the case of the overall battery life cycle, the main variable 

that needs to be tracked is the capacity of the battery itself, 

and the goal is to predict when the battery capacity will fade 

by more than 20% from when it was new. At that point the 

battery is said to have reached its EOL. For a description of 

the main physical phenomena behind these processes, please 

refer to Section 3.2. A battery lifecycle model and a Particle 

Filter algorithm utilizing it are presented in (Saha & Goebel, 

2009) and (Saha, et al., 2011). 

4.2.3. Electronics Faults 

Previously researched data-driven and model-based (direct 

physics and empirical/Bayesian) techniques are being 

utilized for addressing electronics faults. The particle filter 

approach has been used in conjunction with an empirical 

degradation model for IGBTs experiencing failures related 

to thermal overstress (Saha B. , Celaya, Wysocki, & Goebel, 

2009). For power MOSFETs, a data-driven prognostics 

approach based on Gaussian Process Regression has 

recently been implemented for die-attach degradation 

(Celaya, Saxena, Vaschenko, Saha, & Goebel, 2011). For 

electrolytic capacitors, a remaining useful life prediction 

based on  a Kalman filter has been developed using a 

degradation model based on an empirical exponential 

function (Celaya, Kulkarni, Biswas, & Goebel, 2011). It 

should be noted that the aforementioned efforts make the 

assumption of usage levels and operational conditions 

staying constant in the future. New accelerated aging 

experiments aimed at producing degradation models without 

these limitations are currently underway. 

4.3. Decision Making 

As stated previously, one of the main objectives of the K11 

testbed is to investigate PDM algorithms in order to enhance 

an aerospace vehicle‟s capability to achieve its high-level 

goals – be it under a faulty condition, degraded operation of 

a subsystem, or an anticipated catastrophic failure. There 

has been an increasing amount of research conducted over 

the last several years in prognostic methodologies for 

various types of components or systems. The effort 

described in this paper aims to bring more attention to the 

“management” aspect of prognostic health management, i.e. 

what could be done after a fault is detected and the 

trajectory of its progression is predicted. 

Several factors are being used to select the appropriate 

system level (or levels) on which to respond to an off-

nominal condition. These factors include the severity of a 

fault, its criticality, and predicted time-to-failure interval. A 

faulty electronic component in an electric motor driver 

could prompt the decision-making system to trigger a 

controller reconfiguration - so as to ensure the dynamic 

stability of the system and a certain level of retained 

performance. At a different level, a control effort 

reallocation can be triggered by a supervisory mid-level 

controller in order reduce the torque required from a faulty 

drive motor and compensate for the reduction with the other 

motors. Reallocating the load could, potentially, extend the 

remaining useful life of the affected component long enough 

to ensure achievement of the mission objectives. At the 

highest level, the rover mission can be re-planned based on 

prognostic health information so as to achieve maximum 

possible utility and safety. The above examples call on 

different system components in their response; there are, 

however, commonalities for all of them. There is always an 

objective (or a set of objectives) to be met and a series of 

actions to be selected by the decision making process in 

order the meet those objectives. Therefore, the decision 

making process is, essentially, an optimization process 

which tries to achieve specified objectives by considering 

system performance and health constraints. 

 

Figure 8: Prediction flowchart 

Start Prediction at tp

Estimate Initial Population , xp,wp

Propagate Particles using State 

Model , xp+k-1xp+k

EOL threshold 

exceeded?

Generate RUL pdf from {wp}
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The scope for the decision-making module in the current 

implementation is defined as the following: getting vehicle 

health information from the prognostic health reasoner and 

the simulator, the decision-making module evaluates the 

best course of action to take (e.g., controller reconfiguration 

or mission replanning), while stopping short of performing 

the actual reconfiguration or re-planning.  Instead, the 

decision-making module adjusts goals and constraints for 

other software components.  To use the planner as an 

example, the module could set a constraint on rover speed or 

on the total mission duration, then request the planner to 

come up with a detailed new plan. In the future, however, it 

may be necessary to consider whether making PDM-specific 

modifications to the planner or the adaptive controller, for 

instance, would improve performance. 

The rover is assumed to be an autonomous planetary 

vehicle, operating with only high level control from human 

operators (initial sets of goals and constraints). The 

following definitions and assumptions are used in the 

current phase of the work: 

 The initial sets of goals G={g1, g2, …, gN}  and 

constraint variables K={k1, k2, …, kM}  are provided 

as inputs. 

 The initial constraint ranges are:       , 

    
    

 ],       
    

 ], The constraint ranges are 

adjusted given information from the diagnostic, 

prognostic, and decision optimization routines. 

 Some elements of G may be eliminated as a result 

of the optimization process. The size of K (M) will 

remain constant. 

 Goal rewards:      ,            ]. rmax is the 

maximum possible value of goal reward. 

 Goal locations:                              , 

    . The preceding location definition is 
general for a three-dimensional space. In the 
case of a rover it simplifies to              . 

 Constraint ranges:      ,      
    

       

   
    

 ] 

 Transition cost:                               , 

                                                  

cost for the system. The former is calculated based 

on the distance between the goal locations, 

proposed velocity, and the load index (terrain 

difficulty). The later is estimated using the health 

prognostic function, which takes the distance, 

velocity, and the load index as its inputs. 

 Mission starts with energy amount E0 available 

 E(t) and H(t) are the energy and system health 

„amounts‟ at time t, respectively. E(t)=0 or H(t)=0 

constitutes an end-of-life (EOL) condition 

 The objective is to accumulate the maximum 

possible reward before energy and health budgets 

are exceeded 

 

 
 

Figure 9. Decision optimization solution space 
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Two PDM approaches are currently implemented and 

verified in a simulation involving a small number of goals: 

Dynamic Programming (DP) and a variant of Probability 

Collectives (PC) (Wolpert, 2006). A (more computationally 

expensive) exhaustive search method is used for verification 

of the DP and PC algorithms. A simple five-goal example is 

presented next for illustration purposes. 

Each of the nodes (goals) is associated with a reward value 

in the parenthesis ( 

Figure 9). The vehicle starts out at goal 1, but can choose to 

traverse the rest of the goal in any order. For some of the 

degradation modes system health cost may correlate to the 

energy cost (which, in turn, could be proportional to the sum 

of loads on the system, whether they are mechanical or 

electrical). Motor windings insulation deterioration due to 

increased friction in the system could be one such example. 

One the other hand, deterioration of an electronic 

component in one of the subsystems may be determined 

primarily by the amount of current flowing through that 

component, ambient temperature, and time. 

The implemented DP algorithm uses forward propagation, 

evaluating the best solution for transitioning from stage to 

stage, while assuming optimality of the previously made 

decisions. An „efficiency index‟ is used for guiding the 

stage-to-stage decision process: 

               

If either health or energy values become less or equal to 

zero (or all the nodes are visited), the forward propagation 

phase is stopped. After the forward traverse is completed, an 

optimal path popt is „backed-out‟ by traversing the stages in 

the opposite (right-to-left) direction, starting with the node 

associated with the highest accumulated reward. 

The algorithm based on Probabilities Collectives principles 

is structured in the following manner: 

• P is defined as the enumerated set of all possible paths 

p  

• An initial probability distribution f(p) for P is assigned 

• „Related‟ paths are defined as those that share   
      initial nodes, with n incremented progressively 

every m iterations of the algorithm 

• P is sampled using f(p), obtaining a sample path pi  The 

cumulative path reward is evaluated by „walking‟ the 

sampled path and taking into account energy and health 

budgets. If the reward is equal or greater than the 

current maximum, the probability of the sampled path 

and paths that are „related‟ to it are increased and P is 

re-normalized. 

Uncertainty in transition costs and node rewards is 

incorporated by associating them with probability 

distributions as well. These distributions are then sampled 

when „walking‟ a path during its evaluation. 

Experimenting with DP- and PC-based algorithms showed 

that both would work well on relatively uncomplicated 

problems, such as the one described in this section. 

Limitations of the two approaches started to become evident 

as well, however. A DP implementation will become more 

challenging if will multi-objective problems are posed (i.e. 

optimization over component(s) RUL in addition to 

cumulative mission reward is desired), unless the multiple 

optimization variables lend themselves to being aggregated 

into a single „composite‟ variable. The PC-based method, on 

the other hand, will likely have a lower limit on the size of 

the goal set it can practically process, at least in its current 

form.  Nevertheless, PC appears to be well-suited for the 

problem of optimizing system parameters and constraints 

for maximum RUL, which is being pursued next. 

4.4. Task Planning and Execution 

Once the high level goals and constraints are determined by 

the prognostics-enabled decision making module, the 

detailed task planning for the rover will be generated using 

NASA‟s Extensible Universal Remote Operations 

Architecture (EUROPA) (Frank & Jonsson, 2003). 

EUROPA provides the capability of solving task planning, 

scheduling, and constraint-programming problems.. In a 

complex system, such as a rover, scheduling specific tasks 

to be executed is often a non-trivial problem. There are 

resources that are shared by different processes that may not 

necessarily be available at all times, so EUROPA supports 

generation of a schedule of activities. Plans and schedules 

generated by EUROPA (either nominal or those generated 

in response to a fault) will be passed for automated 

execution via Plan Execution Interchange Language 

(PLEXIL) (Dalal, et al., 2007). 

5. CONCLUSIONS 

The work described in this paper is aimed at providing an 

inexpensive, safe platform for development, validation, 

evaluation, and comparison of prognostics-enabled decision 

making algorithms.  Technologies resulting from this 

research are planned to be transferred for further maturation 

on unmanned aerial vehicles and other complex systems. At 

present, the K11 testbed already constitutes a promising 

platform for PDM research. A list of fault modes of interest 

has been identified and a number of them have already been 

implemented in software and/or hardware.  A software 

simulator has been developed that incorporates models of 

both nominal and off-nominal behavior, with some of the 

models verified using experimental data. The software 

architecture for the testbed has been defined in such a way 

as to allow quick replacement of autonomy elements 
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depending on testing objectives and customers. The first set 

of reasoning algorithms, developed at NASA Ames, is being 

deployed. 

Plans for the near future include addition of further 

injectable fault modes, field experiments of greater 

complexity, simulator model refinement, and extension of 

PDM methods to handle more complex problems, including 

constraints adjustment for optimal RUL .  Data collected on 

the testbed is planned for distribution to other researchers in 

the field. 
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NOMENCLATURE 

ARMD Aeronautics Research Mission Directorate 

CORBA Common Object Request Broker Architecture 

DDS Data Distribution Service 

DM Decision Making 

EOD End Of Discharge 

EOL End Of (Useful) Life 

EUROPA Extensible Universal Remote Operations 

Architecture 

GPR Gaussian Progress Regression 

GPS Global Positioning System 

IGBT Insulated Gate Bi-polar Transistor 

LiFePO4 Lithium Iron Phosphate 

MOSFET Metal Oxide Semiconductor Field Effect 

Transistor 

PDM Prognostics-enabled Decision Making 

PHM Prognostics and Health Management 

PLEXIL Plan Execution Interchange Language 

RUL Remaining Useful Life 

SOC State Of Charge 

REFERENCES 

Arulampalam, M., Maskell, S., Gordon, N., & Clapp, T. 

(2002). A Tutorial on Particle Filters for Online 

Nonlinear/Non-Gaussian Bayesian Tracking. IEEE 

Transactions on Signal Processing , 50 (2), 174-189. 

Balaban, E., Saxena, A., Bansal, P., Goebel, K., & Curran, 

S. (2009). Modeling, Detection, and Disambiguation of 

Sensor Faults for Aerospace Applications. IEEE 

Sensors Journal , 9 (12), 1907 - 1917. 

Balaban, E., Saxena, A., Goebel, K., Byington, C., Watson, 

M., Bharadwaj, S., et al. (2009). Experimental Data 

Collection and Modeling for Nominal and Fault 

Conditions on Electro-Mechanical Actuators. Annual 

Conference of the Prognostics and Health Management 

Society. San Diego, CA. 

Balaban, E., Saxena, A., Narasimhan, S., Roychoudhury, I., 

& Goebel, K. (2011). Experimental Validation of a 

Prognostic Health Management System for Electro-

Mechanical Actuators. AIAA Infotech@Aerospace.  

Balaban, E., Saxena, A., Narasimhan, S., Roychoudhury, I., 

Goebel, K., & Koopmans, M. (2010). Airborne Electro-

Mechanical Actuator Test Stand for Development of 

Prognostic Health Management Systems. Annual 

Conference of the Prognostics and Health Management 

Society. San Diego, CA. 

Celaya, J., Kulkarni, C., Biswas, G., & Goebel, K. (2011). 

Towards Prognostics of Electrolytic Capacitors. AIAA 

Infotech@Aerospace. St. Louis, MO. 

Celaya, J., Saxena, A., Vaschenko, V., Saha, S., & Goebel, 

K. (2011). Prognostics of power MOSFETs. 23rd 

International Symposium on Power Semiconductor 

Devices and ICS. San Diego,CA. 

Celaya, J., Saxena, A., Wysocki, P., Saha, S., & Goebel, K. 

(2010). Towards Prognostics of Power MOSFETs: 

Accelerated Aging and Precursors of Failure. Annual 

Conference of the Prognostics and Health Management 

Society. Portland,OR. 

Daigle, M., & Goebel, K. (2011). Multiple Damage 

Progression Paths in Model-based Prognostics. IEEE 

Aerospace Conference. Big Sky, Montana. 

Dalal, M., Estlin, T., Fry, C., Iatauro, M., Harris, R., 

Jonsson, A., et al. (2007). Plan Exectution Interchange 

Language (PLEXIL). Moffett Field: NASA Ames 

Research Center. 

Fluckiger, L., To, V., & Utz, H. (2008). Service oriented 

robotic architecture supporting a lunar analog test. 

International Symposium on Artificial Intelligence, 

Robotics, and Automation in Space. Los Angeles, CA. 

Frank, J., & Jonsson, A. (2003). Constraint-Based Attribute 

and Interval Planning. ournal of Constraints, Special 

Issue on Constraints and Planning , 8 (4), 335-338. 

Gertler, J. (1998). Fault Detection and Diagnosis in 

Engineering Systems. New York: Marcel Dekker Inc. 

Huggins, R. (2008). Advanced Batteries: Materials Science 

Aspects (1st Edition ed.). Springer. 

Kulkarni, C., Biswas, G., Celaya, J., & Goebel, K. (2011). 

Prognostic Techniques for Capacitor Degradation and 

Annual Conference of the Prognostics and Health Management Society, 2011

29
[paper 3]



Annual Conference of the Prognostics and Health Management Society, 2011 

16 

Health Monitoring. Maintenance & Reliability 

Conference. Knoxville, TN. 

Kulkarni, C., Biswas, G., Koutsoukos, X., Celaya, J., & 

Goebel, K. (2010). Aging Methodologies and 

Prognostic Health Management for Electrolytic 

Capacitors. Annual Conference of the PHM Society. 

Portland, OR. 

Lachat, D., Krebs, A., Thueer, T., & Siegwart, R. (2006). 

Antarctica Rover Design and Optimization for Limited 

Power Consumption. MECHATRONICS - 4th IFAC-

Symposium on Mechatronic Systems.  

Mandow, A. M.-C. (2007). Experimental kinematics for 

wheeled skid-steer mobile robots. Intelligent Robots 

and Systems, 2007 (IROS 2007). IEEE/RSJ 

International Conference on, (pp. 1222-1227). 

Narasimhan, S., Roychoudhury, I., Balaban, E., & Saxena, 

A. (2010). Combining Model-based and Feature-driven 

Diagnosis Approaches - A Case Study on 

Electromechanic Actuators. 21st International 

Workshop on Prinicples of Diagnosis (DX 10). 

Portland, Oregon. 

NASA Ames Research Center. (2011). The Robot 

Application Programming Interface Delegate Project. 

Retrieved from http://rapid.nasa.gov/ 

Object Management Group. (2004). CORBA/IIOP 

specification. Framingham, MA: OMG. 

Patil, N. C. (2009). Precursor parameter identification for 

insulated gate bipolar transistor (IGBT) prognostics. 

IEEE Transactions on Reliability , 58(2), 271-276. 

Poll, S., Patterson-Hine, A., Camisa, J., Nishikawa, D., 

Spirkovska, L., Garcia, D., et al. (2007). Evaluation, 

Selection, and Application of Model-Based Diagnosis 

Tools and Approaches. AIAA Infotech@Aerospace 

Conference and Exhibit. Rohnert Park, CA. 

Rasmussen, C., & Williams, C. (2006). Gaussian Processes 

for Machine Learning. Boston, MA: The MIT Press. 

Saha, B., & Goebel, K. (2009). Modeling Li-ion Battery 

Capacity Depletion in a Particle Filtering Framework. 

Proceedings of Annual Conference of the PHM Society. 

San Diego, CA. 

Saha, B., Celaya, J., Wysocki, P., & Goebel, K. (2009). 

Towards Prognostics for Electronics Components. 

IEEE Aerospace, (pp. 1-7). Big Sky, MT. 

Saha, B., Koshimoto, E., Quach, C., Hogge, E., Strom, T., 

Hill, B., et al. (2011). Predicting Battery Life for 

Electric UAVs. AIAA Infotech@Aerospace.  

Saha, S., Celaya, J., Vashchenko, V., Mahiuddin, S., & 

Goebel, K. (2011). Accelerated Aging with Electrical 

Overstress and Prognostics for Power MOSFETs. IEEE 

EnergyTech, submitted . 

Schmidt, D. (1994). The ADAPTIVE Communication 

Environment: Object-Oriented network programming 

components for developng client/server applications. 

Proceedings of the 12 th Annual Sun Users Group 

Conference (pp. 214–225). San Francisco, CA: SUG. 

Schwabacher, M. (2005). A Survey of Data-drive 

Prognostics. AIAA Infotech @ Aerospace Conference.  

Smith, M., Byington, C., Watson, M., Bharadwaj, S., 

Swerdon, G., Goebel, K., et al. (2009). Experimental 

and Analytical Development of a Health Management 

System for Electro-Mechanical Actuators. IEEE 

Aerospace Conference. Big Sky, MT. 

Wolpert, D. (2006). Information Theory - The Bridge 

Connecting Bounded Rational Game Theory and 

Statistical Physics. (D. Braha, A. Minai, & Y. Bar-

Yam, Eds.) Complex Engineered Systems , 14, 262-290. 

 

 

 

Annual Conference of the Prognostics and Health Management Society, 2011

30
[paper 3]



A Model-based Prognostics Methodology for Electrolytic Capacitors Based on
Electrical Overstress Accelerated Aging
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ABSTRACT

A remaining useful life prediction methodology for elec-
trolytic capacitors is presented. This methodology is based
on the Kalman filter framework and an empirical degradation
model. Electrolytic capacitors are used in several applications
ranging from power supplies on critical avionics equipment to
power drivers for electro-mechanical actuators. These devices
are known for their comparatively low reliability and given
their criticality in electronics subsystems they are a good can-
didate for component level prognostics and health manage-
ment. Prognostics provides a way to assess remaining use-
ful life of a capacitor based on its current state of health and
its anticipated future usage and operational conditions. We
present here also, experimental results of an accelerated ag-
ing test under electrical stresses. The data obtained in this test
form the basis for a remaining life prediction algorithm where
a model of the degradation process is suggested. This prelim-
inary remaining life prediction algorithm serves as a demon-
stration of how prognostics methodologies could be used for
electrolytic capacitors. In addition, the use degradation pro-
gression data from accelerated aging, provides an avenue for
validation of applications of the Kalman filter based prognos-
tics methods typically used for remaining useful life predic-
tions in other applications.

1. INTRODUCTION

This paper proposes the use of a model based prognostics
approach for electrolytic capacitors. Electrolytic capacitors

Celaya et.al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

have become critical components in electronics systems in
aeronautics and other domains. This type of capacitors is
known for its low reliability and frequent breakdown in crit-
ical systems like power supplies of avionics equipment and
electrical drivers of electro-mechanical actuators of control
surfaces. The field of prognostics for electronics compo-
nents is concerned with the prediction of remaining useful
life (RUL) of components and systems. In particular, it fo-
cuses on condition-based health assessment by estimating the
current state of health. Furthermore, it leverages the knowl-
edge of the device physics and degradation physics to predict
remaining useful life as a function of current state of health
and anticipated operational and environmental conditions.

1.1 Motivation

The development of prognostics methodologies for the elec-
tronics field has become more important as more electrical
systems are being used to replace traditional systems in sev-
eral applications in fields like aeronautics, maritime, and au-
tomotive. The development of prognostics methods for elec-
tronics presents several challenges due to great variety of
components used in a system, a continuous development of
new electronics technologies, and a general lack of under-
standing of how electronics fail. Traditional reliability tech-
niques in electronics tend to focus on understanding the time
to failure for a batch of components of the same type. Just
until recently, there has been a push to understand, in more
depth, how a fault progresses as a function of usage, namely,
loading and environmental conditions. Furthermore, just until
recently, it was believed that there were no precursor of failure
indications for electronics systems. That is now understood to
be incorrect, since electronics systems, similar to mechanical
systems, undergo a measurable wear process from which one
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can derive features that can be used to provide early warnings
to failure. These failures can be detected before they happen
and one can potentially predict the remaining useful life as a
function of future usage and environmental conditions.
Avionics systems in on-board autonomous aircraft perform
critical functions greatly escalating the ramification of an in-
flight malfunction (Bhatti & Ochieng, 2007; Kulkarni et al.,
2009). These systems combine physical processes, computa-
tional hardware and software; and present unique challenges
for fault diagnosis. A systematic analysis of these conditions
is very important for analysis of aircraft safety and also to
avoid catastrophic failures during flight.
Power supplies are critical components of modern avionics
systems. Degradations and faults of the DC-DC converter
unit propagate to the GPS (global positioning system) and
navigation subsystems affecting the overall operation. Ca-
pacitors and MOSFETs (metal oxide field effect transistor)
are the two major components, which cause degradations and
failures in DC-DC converters (Kulkarni, Biswas, Bharadwaj,
& Kim, 2010). Some of the more prevalent fault effects, such
as a ripple voltage surge at the power supply output can cause
glitches in the GPS position and velocity output, and this in
turn, if not corrected can propagate and distort the navigation
solution.
Capacitors are used as filtering elements on power electronics
systems. Electrical power drivers for motors require capac-
itors to filter the rail voltage for the H-bridges that provide
bidirectional current flow to the windings of electrical mo-
tors. These capacitors help to ensure that the heavy dynamic
loads generated by the motors do not perturb the upstream
power distribution system. Electrical motors are an essen-
tial element in electro-mechanical actuators systems that are
being used to replace hydro-mechanical actuation in control
surfaces of future generation aircrafts.

1.2 Methodology

The process followed in the proposed prognostics method-
ology is presented in the block-diagram in Figure 1. This
prognostics methodology is based on results from an acceler-
ated life test on real electrolytic capacitors. This test applies
electrical overstress to commercial-off-the-shelf capacitors in
order to observe and record the degradation process and iden-
tify performance conditions in the neighborhood of the failure
criteria in a considerably reduced time frame.
Electro-impedance spectroscopy is used periodically during
the test to characterize the frequency response of the capaci-
tor. These measurements along a reduced order model based
on passive electrical elements are used to identify the capaci-
tance and parasitic resistance element.
We present here an empirical degradation model that is based
on the observed degradation process during the accelerated
life test. A model structure is suggested based on the ob-
served degradation curves. Model parameters are estimated

using nonlinear least-squares regression. A Bayesian frame-
work is employed to estimate (track) the state of health of
the capacitor based on measurement updates of key capaci-
tor parameters. The Kalman filter algorithm is used to track
the state of health and the degradation model is used to make
predictions of remaining useful life once no further measure-
ments are available. A discussion and physical interpretation
of the degradation model is presented. An analysis of the
frequency response guides the selection of the precursor of
failure variable used in the RUL prediction framework. A
first order capacitance and equivalent series resistance (ESR)
model is employed and the capacitance value is used in the
development of the algorithm.

Figure 1. Model-based prognostics methodology for elec-
trolytic capacitor.

1.3 Previous work

In earlier work (Kulkarni, Biswas, Koutsoukos, Goebel, &
Celaya, 2010b), we studied the degradation of capacitors un-
der nominal operation. There, work capacitors were used in
a DC-DC converter and their degradation was monitored over
an extended period of time. The capacitors were characterized
every 100-120 hours of operation to capture degradation data
for ESR and capacitance. The data collected over the period
of about 4500 hours of operation were then mapped against
an Arrhenius inspired ESR degradation model (Kulkarni,
Biswas, Koutsoukos, Goebel, & Celaya, 2010a).
In following experimental work, we studied accelerated
degradation in capacitors (Kulkarni, Biswas, Koutsoukos,
Celaya, & Goebel, 2010). In that experiment the capaci-
tors were subjected to high charging/discharging cycles at a
constant frequency and their degradation progress was mon-
itored. A preliminary approach to remaining useful life pre-
diction of electrolytic capacitors was presented in (Celaya et
al., 2011). This paper here builds upon the work presented in
the preliminary remaining useful life prediction in (Celaya et
al., 2011).

1.4 Other related work and current art in capacitor
prognostics

The output filter capacitor has been identified as one of the el-
ements of a switched mode power supply that fails more fre-
quently and has a critical impact on performance (Goodman
et al., 2007; Judkins et al., 2007; Orsagh et al., 2005). A prog-
nostics and health management approach for power supplies
of avionics systems is presented in (Orsagh et al., 2005). Re-
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sults from accelerated aging of the complete supply were pre-
sented and discussed in terms of output capacitor and power
MOSFET failures; but there is no modeling of the degrada-
tion process or RUL prediction for the power supply. Other
approaches for prognostics for switched mode power supplies
are presented in Goodman et al. (2007) and Judkins et al.
(2007). The output ripple voltage and leakage current are pre-
sented as a function of time and degradation of the capacitor,
but no details were presented regarding the modeling of the
degradation process and there were no technical details on
fault detection and RUL prediction algorithms.
A health management approach for multilayer ceramic capac-
itors is presented in Nie et al. (2007). This approach focuses
on the temperature-humidity bias accelerated test to replicate
failures. A method based on Mahalanobis distance is used to
detect abnormalities in the test data; there is no prediction of
RUL. A data driven prognostics algorithm for multilayer ce-
ramic capacitors is presented in Gu et al. (2008). This method
uses data from accelerated aging test to detect potential fail-
ures and to make an estimation of time of failure.

2. ACCELERATED AGING EXPERIMENTS

Accelerated life test methods are often used in prognostics
research as a way to assess the effects of the degradation pro-
cess through time. It also allows for the identification and
study of different failure mechanisms and their relationships
with different observable signals and parameters. In the fol-
lowing section we present the accelerated aging methodology
and an analysis of the degradation pattern induced by the ag-
ing. The work presented here is based on an accelerated elec-
trical overstress. In the following subsections, we first present
a brief description of the aging setup followed by an analysis
of the observed degradation. The precursor to failure is also
identified along with the physical processes that contribute to
the degradation.

2.1 Accelerated aging system description

Since the objective of this experiment is studying the effects
of high voltage on degradation of the capacitors, the capaci-
tors were subjected to high voltage stress through an external
supply source using a specially developed hardware. The ca-
pacitors are not operated within DC-DC converters; only the
capacitors were subjected to the stress.
The voltage overstress is applied to the capacitors as a square
wave form in order to subject the capacitor to continuous
charge and discharge cycles.
At the beginning of the accelerated aging, the capacitors
charge and discharge simultaneously; as time progresses and
the capacitors degrade, the charge and discharge times vary
for each capacitor. Even though all the capacitors under test
are subjected to similar operating conditions, their ESR and
capacitance values change differently. We therefore moni-
tor charging and discharging of each capacitor under test and

measure the input and output voltages of the capacitor. Fig-
ure 2 shows the block diagram for the electrical overstress
experiment. Additional details on the accelerated aging sys-
tem are presented in (Kulkarni, Biswas, Koutsoukos, Celaya,
& Goebel, 2010).

Square wave amplified 
signal

V0 VL

RL

C

Power Supply

Agilent Signal 
Generator

Signal Amplifier 
hardware

Input Square wave

Figure 2. Block diagram of the experimental setup.

For this experiment six capacitors in a set were considered
for the EOS experimental setup. Electrolytic capacitors of
2200µF capacitance, with a maximum rated voltage of 10V ,
maximum current rating of 1A and maximum operating tem-
perature of 105◦C was used for the study. These were the rec-
ommended capacitors by the manufacturer for DC-DC con-
verters. The electrolytic capacitors under test were charac-
terized in detail before the start of the experiment at room
temperature.
The ESR and capacitance values were estimated from the
capacitor impedance frequency response measured using an
SP-150 Biologic SAS electro-impedance spectroscopy instru-
ment. A lumped parameter model consisting of a capacitor
with a resistor in series was assumed to estimate the ESR
and capacitance. The average pristine condition ESR value
was measured to be 0.056 mΩ and average capacitance of
2123 µF individually for the set of capacitors under test.
The measurements were recorded every 8-10 hours of the to-
tal 180 plus hours of accelerated aging time to capture the
rapid degradation phenomenon in the ESR and capacitance
values. The ambient temperature for the experiment was
controlled and kept at 25◦C. During each measurement the
voltage source was shut down, capacitors were discharged
completely and then the characterization procedure was car-
ried out. This was done for all the six capacitors under test.
For further details regarding the aging experiment results and
analysis of the measured data refer to (Kulkarni, Biswas,
Koutsoukos, Celaya, & Goebel, 2010; Celaya et al., 2011).

2.2 Physical interpretation of the degradation process

There are several factors that cause electrolytic capacitors to
fail. Continued degradation, i.e., gradual loss of functionality
over a period of time results in the failure of the component.
Complete loss of function is termed a catastrophic failure.
Typically, this results in a short or open circuit in the capac-
itor. For capacitors, degradation results in a gradual increase
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in the equivalent series resistance (ESR) and decrease in ca-
pacitance over time.
In this work, we study the degradation of electrolytic capac-
itors operating under high electrical stress, i.e., Vapplied ≥
Vrated. During the charging/discharging process the capaci-
tors degrade over the period of time. A study of the literature
indicated that the degradation could be primarily attributed to
three phenomena (IEC, 2007-03; MIL-C-62F, 2008):

1. Electrolyte evaporation,

2. Leakage current, and

3. Increase in internal pressure

An ideal capacitor would offer no resistance to the flow of
current at its leads. However, the electrolyte (aluminum ox-
ide) that fills the space between the plates and the electrodes
produces a small equivalent internal series resistance (ESR).
The ESR dissipates some of the stored energy in the capacitor.
In spite of the dielectric insulation layer between a capacitor’s
plates, a small amount of ‘leakage’ current flows between the
plates. For a good capacitor operating nominally this current
is not significant, but it becomes larger as the oxide layer de-
grades during operation. High electrical stress is known to
accentuate the degradation of the oxide layer due to localized
dielectric breakdowns on the oxide layer (Ikonopisov, 1977;
Wit & Crevecoeur, 1974).
The literature on capacitor degradation shows a direct rela-
tionship between electrolyte decrease and increase in the ESR
of the capacitor (Kulkarni, Biswas, Koutsoukos, Goebel, &
Celaya, 2010b). ESR increase implies greater dissipation,
and, therefore, a slow decrease in the average output voltage
at the capacitor leads. Another mechanism occurring simulta-
neously is the increase in internal pressure due to an increased
rate of chemical reactions, which are attributed to the internal
temperature increase in the capacitor.
During the experiments, as discussed earlier, the capacitors
were characterized at regular intervals. ESR and capacitance
are the two main failure precursors that tipify the current
health state of the device. ESR and capacitance values were
calculated after characterizing the capacitors. As the devices
degrade due to different failure mechanisms we can observe a
decrease in the capacitance and an increase in the ESR.
ESR and capacitance values are estimated by using a sys-
tem identification using a lump parameter model consistent
of the capacitance and the ESR in series as shown in Fig-
ure 3. The frequency response of the capacitor impedance
(measured with electro-impedance spectroscopy) is used for
the parameter estimation. It should be noted that the lumped-
parameter model used to estimate ESR and capacitance, is
not the model to be used in the prognostics algorithm; it only
allows us to estimate parameters which provide indications
of the degradation process through time. Parameters such as
ESR and capacitance are challenging to estimate from the in-

situ measurements of voltage and current through the acceler-
ated aging test.

C ESRIdeal

Figure 3. Lumped parameter model for a real capacitor.

Figure 4 shows percentage increase in the ESR value for all
the six capacitors under test over the period of time. This
value of ESR is calculated from the impedance measurements
after characterizing the capacitors. Similarly, figure 5 shows
the percentage decrease in the value of the capacitance as the
capacitor degrades over the period under EOS test condition
discussed. As per standards MIL-C-62F (2008), a capacitor
is considered unhealthy if under electrical operation its ESR
increases by 280−300% of its initial value or the capacitance
decreases by 20% below its pristine condition value. From the
plots in Figure 4 we observe that for the time for which the
experiments were conducted the average ESR value increased
by 54% − 55% while over the same period of time, the aver-
age capacitance decreased by more than 20% (the threshold
mark for a healthy capacitor) (see Figure 5). As a result, the
percentage capacitance loss is selected as a precursor of fail-
ure variable to be used in the degradation model development
presented next.

Figure 4. Degradation of capacitor performance, percentage
ESR increase as a function of aging time.

3. PREDICTION OF REMAINING USEFUL LIFE

A model-based prognostics algorithm based on Kalman filter
and a physics inspired empirical degradation model is pre-
sented. This algorithm is able to predict remaining useful
life of the capacitor based on the accelerated degradation data
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Figure 5. Degradation of capacitor performance, percentage
capacitance loss as a function of aging time.

from the experiments described in previous sections. The per-
centage loss in capacitance is used as a precursor of failure
variable and it is used to build a model of the degradation
process. This model relates aging time to the percentage loss
in capacitance and has the following form,

Ck = eαtk + β, (1)

whereα and β are model constants that will be estimated from
the experimental data of accelerated aging experiments. In
order to estimate the model parameters, five capacitors are
used for estimation (labeled capacitors #1 through #5), and
the remaining capacitor (#6) is used to test the prognostics
algorithm. A nonlinear least-squares regression algorithm is
used to estimate the model parameters. Figure 6 shows the
estimation results. The experimental data are presented to-
gether with results from the exponential fit function. It can be
observed from the residuals that the estimation error increases
with time. This is to be expected since the last data point mea-
sured for all the capacitors fall slightly off the concave expo-
nential model. The estimated parameters are α = 0.0163 and
β = −0.5653.
The estimated degradation model is used as part of a Bayesian
tracking framework to be implemented using the Kalman fil-
ter technique. This method requires a state-space dynamic
model relating the degradation level at time tk to the degrada-
tion level at time tk−1. The formulation of the state model is
described below.

dC

dt
= αC − αβ

Ct − Ct−∆t

∆t
= αCt−∆t − αβ

Ct = (1 + α∆t)Ct−∆t − αβ∆t,

(2)

Figure 6. Estimation results for the empirical degradation
model.

Ck = (1 + α∆k)Ck−1 − αβ∆k. (3)

In this model Ck is the state variable and it represents the per-
centage loss in capacitance. Since the system measurements
are percentage loss in capacitance as well, the output equation
is given by yk = hCk, where the value of h is equal to one.
The following system structure is used in the implementation
of the filtering and the prediction using the Kalman filter.

Ck = AkCk−1 + Bku + v, (4)

yk = hCk−1 + w, (5)

where,

Ak = (1 + ∆k),
Bk = −αβ∆k,

h = 1,
u = 1.

(6)

The time increment between measurements ∆k is not con-
stant since measurements were taken at non-uniform sam-
pling rate. This implies that some of the parameters of the
model in equations (4)-(6) will change through time. Further-
more, v and w are normal random variables with zero mean
and Q and R variance respectively. The description of the
Kalman filtering algorithm is omitted from this article. A
thorough description of the algorithm can be found in Stengel
(1994), a description of how the algorithm is used for fore-
casting can be found in Chatfield (2003) and an example of
its usage for prognostics can be found in (Saha et al., 2009).
Figure 7 shows the results of the application of the Kalman fil-
ter to the test case (Cap. #6). The model noise variance Q was
estimated from the model regression residuals. The residuals
have a mean very close to zero and a variance of 2.1829. This
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variance was used for the model noise in the Kalman filter
implementation. The measurement noise variance R is also
required in the filter implementation. This variance was com-
puted from the direct measurements of the capacitance with
the electro-impedance spectroscopy equipment, the observed
variance is 4.99E−7. Figure 7 shows the result of the filter
tracking the complete degradation signal. The residuals show
an increased error with aging time. This is to be expected
given the results observed from the model estimation process.

Figure 7. Tracking results for the Kalman filter implementa-
tion applied to test capacitor (capacitor #6).

The use of the Kalman filter as a RUL forecasting algorithm
requires the evolution of the state without updating the error
covariance matrix and the posterior of the state vector. The n
step ahead forecasting equation for the Kalman filter is given
below. The last update is done at the time of the last measure-
ment tl.

Ĉl+n = AnCl +
n−1�

i=0

AiB (7)

The subscripts from parameters A and B are omitted since
a constant ∆t is used in the forecasting mode (one prediction
every hour). Figure 8 presents results from the remaining use-
ful life prediction algorithm at time 149 (hr), which is the time
at which an ESR and C measurements are taken. The failure
threshold is considered to be a crisp value of 20% decrease in
capacitance. End of life (EOL) is defined as the time at which
the forecasted percentage capacity loss trajectory crosses the
EOL threshold. Therefore, RUL is EOL minus 149 hours.
Figure 9 presents the capacitance loss estimation and EOL
prediction at different points during the aging time. Predic-
tions are made after each point in which measurements are
available. It can be observed that the predictions become bet-
ter as the prediction is made closer to the actual EOL. This is
possible because the estimation process has more information
to update the estimates as it nears EOL. Figure 10 presents a

Figure 8. Remaining useful life prediction at time 149 (hr).

zoomed-in version of figure 9 focusing in the area close to the
failure threshold.
Table 1 summarizes results for the remaining life prediction at
all points in time where measurements are available. The last
column indicates the RUL prediction error. The magnitude
of the error decreases as the prediction time gets closer to
EOL. The decrease is not monotonic which is to be expected
when using a the tracking framework to estimate health state
because the last point of the estimation is used to start the
forecasting process. An α-λ prognostics performance metric
is presented in Figure 11. The blue line represents ground
truth and the shaded region is corresponding to a 30% (α =
0.3) error bound in the RUL prediction. This metric specifies
that the prediction is within the error bound halfway between
first prediction and EOL (λ = 0.5). In addition, this metric
allows us to visualize how the RUL prediction performance
changes as data closer to EOL becomes available.
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Figure 9. Health state estimation and forecasting of capac-
itance loss (%) at different times tp during the aging time;
tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].

Figure 10. Detail of the health state estimation and forecast-
ing of capacitance loss (%) at different times tp during the
aging time; tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].

4. CONCLUSION

This paper presents a RUL prediction algorithm based on ac-
celerated life test data and an empirical degradation model.
The main contributions of this work are: a) the identification
of the lumped-parameter model (Figure 3) for a real capaci-
tor as a viable reduced-order model for prognostics-algorithm
development; b) the identification of the ESR and C model pa-
rameters as precursor of failure features; c) the development
of an empirical degradation model based on accelerated life
test data which accounts for shifts in capacitance as a func-
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RUL forecasting RUL estimate Ground truth Error
time (hr) (hr) (hr) (hr)

0 222.2 184.24 37.96

24 186.55 160.24 26.31

47 140.66 137.24 3.42

71 128.98 113.24 15.74

94 104.18 90.24 13.94

116 70.71 68.24 2.47

139 57.58 45.24 12.34

149 42.61 35.24 11.37

161 27.20 23.24 3.96

171 8.94 13.24 -4.3

Table 1. Summary of RUL forecasting results.

tion of time; d) the implementation of a Bayesian based health
state tracking and remaining useful life prediction algorithm
based on the Kalman filtering framework. One major contri-
bution of this work is the prediction of remaining useful life
for capacitors as new measurements become available.
This capability increases the technology readiness level of
prognostics applied to electrolytic capacitors. The results pre-
sented here are based on accelerated life test data and on the
accelerated life timescale. Further research will focus on de-
velopment of functional mappings that will translate the ac-
celerated life timescale into real usage conditions time-scale,
where the degradation process dynamics will be slower, and
subject to several types of stresses. The performance of the
proposed exponential-based degradation model is satisfactory
for this study based on the quality of the model fit to the ex-
perimental data and the RUL prediction performance as com-
pared to ground truth. As part of future work we will also
focus on the exploration of additional models based on the
physics of the degradation process and larger sample size for
aged devices. Additional experiments are currently underway
to increase the number of test samples. This will greatly en-
hance the quality of the model, and guide the exploration of
additional degradation-models, where the loading conditions
and the environmental conditions are also accounted for to-
wards degradation dynamics.
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Figure 11. Performance based on α-λ performance metric.

NOMENCLATURE

Cp Pristine state measured capacitance
ESR Equivalent series resistance of the electrolytic capacitor
ESRp Pristine state measured equivalent series resistance
Ck Measured capacitance at time tk
RUL Remaining useful life
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Chetan S Kulkarni is a Research Assistant at ISIS, Vander-
bilt University. He received the M.S. degree in EECS from
Vanderbilt University, Nashville, TN, in 2009, where he is
currently a Ph.D student.
Sankalita Saha is a research scientist with Mission Critical
Technologies at the Prognostics Center of Excellence, NASA

Ames Research Center. She received the M.S. and PhD. de-
grees in Electrical Engineering from University of Maryland,
College Park in 2007. Prior to that she obtained her B.Tech
(Bachelor of Technology) degree in Electronics and Electri-
cal Communications Engineering from the Indian Institute of
Technology, Kharagpur in 2002.
Kai Goebel received the degree of Diplom-Ingenieur from
the Technische Universitt Mnchen, Germany in 1990. He re-
ceived the M.S. and Ph.D. from the University of California
at Berkeley in 1993 and 1996, respectively. Dr. Goebel is
a senior scientist at NASA Ames Research Center where he
leads the Diagnostics and Prognostics groups in the Intelli-
gent Systems division. In addition, he directs the Prognostics
Center of Excellence and he is the technical lead for Prog-
nostics and Decision Making of NASAs System-wide Safety
and Assurance Technologies Program. He worked at Gen-
eral Electrics Corporate Research Center in Niskayuna, NY
from 1997 to 2006 as a senior research scientist. He has car-
ried out applied research in the areas of artificial intelligence,
soft computing, and information fusion. His research interest
lies in advancing these techniques for real time monitoring,
diagnostics, and prognostics. He holds 15 patents and has
published more than 200 papers in the area of systems health
management.
Gautam Biswas received the Ph.D. degree in computer sci-
ence from Michigan State University, East Lansing. He is a
Professor of Computer Science and Computer Engineering in
the Department of Electrical Engineering and Computer Sci-
ence, Vanderbilt University, Nashville, TN.

9

Annual Conference of the Prognostics and Health Management Society, 2011

39
[paper 4]



  

  
 

A Structural Health Monitoring Software Tool for Optimization, 
Diagnostics and Prognostics 

Seth S. Kessler1, Eric B. Flynn2, Christopher T. Dunn3 and Michael D. Todd4 

1,2,3Metis Design Corporation, Cambridge, MA, 02141, USA 
skessler@metisdesign.com  
eflynn@metisdesign.com   
cdunn@metisdesign.com  

4University of California San Diego 
mdtodd@ucsd.edu   

ABSTRACT 

Development of robust structural health monitoring (SHM) 
sensors and hardware alone is not sufficient to achieve 
desired benefits such as improved asset availability and 
reduced sustainment costs. For SHM systems to be 
practically deployed as part of an integrated system health 
management (ISHM), tools must be created for SHM life-
cycle management (LCM). To that end, SHM-LCM 
software has been developed to expedite the adoption of 
SHM into ISHM.  The SHM-LCM software is a flexible 
application intended to manage the cradle-to-grave life-
cycle of an SHM system for generic applications.  There are 
4 core modules to facilitate critical roles: Optimization, 
Calibration, Visualization, and Action. The Optimization 
module seeks to devise optimal sensor placement and 
excitation parameters in order to achieve probability of 
detection (POD) coverage requirements. The Calibration 
module is designed to guide a user through a series of 
material level tests in order to customize algorithm variables 
to the system being designed. The Visualization module is 
dedicated to generating a diagnostic composite picture based 
on data downloaded from the diagnostic server, which is 
“stitched” to the original 3D mesh, providing users with a 
manipulatable GUI to toggle between probability of damage 
distributions for various calibrated damage modes. Finally, 
The Action module generates residual performance plots 
(ultimate load or deflection for example) as a function of 
probability of damage, so detection confidence can be 
weighed against impact to the vehicle’s capabilities. SHM-
LCM software will enable SHM systems to be incorporated 
into ISHM by engineers rather than experts, making the 
technology more accessible, and commercially practical. 

 

1. INTRODUCTION 

Currently successful laboratory non-destructive testing and 
monitoring methods are impractical for service inspection of 
large-area structures due to the size and complexity of the 
support equipment required, as well as the time and cost 
associated with component tear-down. It is clear that new 
approaches for inspection are necessary.  Structural Health 
Monitoring (SHM) denotes the ability to detect and interpret 
adverse "changes" in a structure to direct actions that reduce 
life-cycle costs and improve reliability. Essentially, 
minimally-invasive detection sensors are integrated into a 
structure to continuously collect data that are mined for 
information relating to damage such as cracks or corrosion. 
SHM is receiving increasing attention, particularly from the 
DoD community, to eliminate scheduled and/or manual 
inspections in lieu of condition-based maintenance for more 
efficient design practices and more accurate repair and 
replacement decisions. This methodology shift will result in 
significant savings in overall cost of ownership of a vehicle, 
as well as significant gains in operational safety. 

For SHM to be successfully implemented, accurate 
diagnostic and prognostic models are essential.  Not only do 
sensors need to be properly integrated to collect data, but 
diagnostic characterization of the health of the structure 
needs to be extracted and presented to the operator and/or 
maintainer in a timely and meaningful manner.  
Furthermore, the diagnostic information should be 
converted to prognostic predictions so that proper action 
regarding remaining useful life or necessary repair can be 
taken.  There are presently limited methods for visualizing 
diagnostic data, mainly 2-D representations, and no proven 
software to explicitly link diagnostic and prognostic 
information. Some methods have been demonstrated for 
health & usage monitoring system (HUMS); however, these 
systems provide far less detailed information compared to 
what is expected from an SHM system. 

Kessler et al. This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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The overall approach taken by the current investigators was 
a system optimization problem; attempting to maximize 
detection capabilities with minimal impact to the test 
structure and at minimal cost, both capitalized and risk-
generated.  Hundreds of sensors densely spaced over a test 
structure would certainly have the best opportunity to 
precisely resolve damage locations, but this would 
obviously be impractical for real-life applications due to the 
quantity of instrumentation required (cables, data 
acquisition hardware, etc) or other incurred penalties (e.g. 
weight on an aircraft).  Therefore the chosen approach was 
to use Bayesian risk function to assign costs to missed-
damage, false-positives, and localization error as well as 
associating a cost with each sensor (where cost here is not 
monetary necessarily, but a relative metric for comparing 
the value of each parameter).   

The algorithms used were a hybrid collection of functions 
making use of both coherent and incoherent information in 
the data.  Data for each sensor is processed separately, then 
ultimately summed in a weighted fashion across the test 
structure.  Further logic is also deployed to eliminate 
anomalies and invalid features.  Generally, this process is 
analogous to active sonar.  Damage ("targets") are detected 
and/or localized by generating ultrasonic elastic waves and 
watching how they bounce off of potential targets.  Because 
a test structure is arguably far more complex than the open 
ocean, producing potentially far more "false targets" (such 
as boundaries, stiffeners, rivets, size changes, material 
interfaces, etc.), this approach takes advantage of 
embedding probabilistic models into the wave 
propagation/scattering process so that likelihood-based 
judgments can be made about the damage targets. These 
judgments may be understood in appropriate performance 
terms—probability of detection, probability of localization, 
etc.—which directly supports the uncertainty quantification 
needed for decision-making. 

Finally, the decomposed data must be displayed in a 
meaningful matter.  Work was done to deploy a graphical-
user-interface (GUI) that would allow 3D structures to be 
represented with damage predictions stitched-in.  Controls 
are deliberately included to allow knowledgeable users to 
deviate from default algorithm and display parameter values 
to refine the image or search for smaller damage that is 
obfuscated by severe damage locations.  The software is 
also built in such as way so that diagnostic results can be 
exported to commercial finite element tools to provide 
prognostic information such as residual strength or stiffness. 

A major advantage of this overall approach is its power to 
serve also as a design tool. Through the overarching 
probabilistic framework, if a client-defined objective is 
established for a given application (e.g., "must detect fatigue 
cracks < 1 mm oriented at any random angle with a 
probability of 95% and use no more than 1 sensor per square 
meter"), this approach allows for an a priori optimization of 

the sensor architecture before in-situ deployment to meet 
those objective(s).  This provides tremendous potential cost 
savings, eliminating the "black box" and "trial and error" 
approaches to doing SHM system design. 

2. SHM SYSTEM SENSORS AND HARDWARE 

To achieve the overall goals of efficient damage detection, 
This research leverages hardware previously developed by 
the investigators, including distributed digitization 
hardware, piezoelectric-based damage and localization 
sensors. A patented method is used to determine relative 
phase information for the sensor responses, by surrounding 
a central actuating disk with multiple sensing disks, known 
as vector-based localization.  The actuating and sensing 
component consists of seven piezoelectric wafers that are 
integrated into a custom flex-circuit assembly that connects 
to the digitization hardware. These elements are 
permanently mounted on the structure being monitored. The 
closely spaced set of piezoelectric elements in each node 
form a phased array, which enables the identification of 
both range and bearing to multiple damage sites using a 
single node. This is in contrast to isolated piezoelectric 
elements which can only identify range, necessitating the 
use of multiple spatially separated elements to localize 
damage sites through a triangulation process that has been 
shown to be susceptible to corruption by multiple damage 
sites.  Also, if relative time of arrival at the sensor elements 
is used, a ray indicating angle to damage can be generated 
without any wavespeed information. Thus damage can be 
localized by simply finding the ray intersection of 2 of these 
vector-locator nodes.  This method can be deployed actively 
using GW to determine the location of damage as described 
here, or passively in acoustic emission mode the same 
equations can be used to describe the position of an impact.  

3. SENSOR PLACEMENT OPTIMIZATION 

SHM systems are decision makers. At any given time, or 
according to any given measurement, the SHM system 
needs to be designed to let the operator know whether or not 
a potential problem in the structure requires action. As such, 
an SHM system will likely have to make hundreds or 
thousands of decisions while the structure is undamaged 
before a defect actually develops. During this time, it is 
important that the SHM system correctly decides that the 
structure is healthy as frequently as possible. If the SHM 
system constantly demands costly, unnecessary manual 
inspections then it provides no benefit to the monitored 
structure and its operation. It is important, then, that the 
design of SHM systems and the evaluation of their 
performance consider the total risk posed by all forms of 
decision errors. 
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3.1 Theory 

The presented approach to SHM is the minimization of the 
expect cost, or Bayes Risk, associated with an SHM system 
through the optimal design of detection algorithms and 
hardware (i.e., sensor placement). Put simply, the Bayes 
Risk is sum of the costs of all possible detection outcomes 
(detection, missed detection, false alarm, etc) weighted by 
their probability of occurring.  This can be represented as 

              
       

,

| ,,
d

R C P P Cd ed e


     (1) 

where d  is the set of possible decisions the SHM system 
makes, is the damage state of the structure, and e is the 
design of the SHM algorithms and hardware. The first 
probability term describes the statistical performance of the 
SHM detection system and the second probability term 
reflects the prior probabilities of damage, if known. The 
optimal design is then defined as:  

 * arg max
e

e R e
 

                  (2) 

A key component of the approach to structural health 
monitoring is the optimization of the placement of sensor 
nodes according to the minimization of the expect cost, or 
Bayes Risk, associated with the decisions made by the SHM 
system. The calculation of the Bayes Risk for an arbitrary 
set of node placements then requires accurate models of the 
wave propagation process and detector statistics 
parameterized by the node coordinates.  To simplify the 
modeling, the structure is divided into discrete regions. 
Then to determine the total Bayes Risk of the structure, the 
localized Bayes Risk is calculated for each region and sum. 
The statistical performance of detectors for each region is 
evaluated with any given set of node placements using an 
analytical model of the wave propagation and scattering 
process. This model includes beam spread, line of site, 
directional scattering, and transmission across the doublers. 
According to this stochastic model, the detector described 
above, and an optimal set of detector thresholds, maps can 
be constructed of the expected localized detection and false 
alarm rates. Examples of these maps for a two-node 
arrangement are shown in Figure 1. Note the effect of line 
of site and the doublers in the two maps. Nodes were 
optimally placed in a greedy algorithm fashion. Starting 
with one node, one at time, each node is added so that it 
optimally compliments the existing fixed arrangement.  As 
such, there always exists a subset of n nodes from the total 
N nodes that is near-optimal. Near-optimal in this case 
means a guaranteed performance of at least: 

        1 0.631
n

Greedy
nU U Un n n

n
      

  
   (3) 

where  U n


is the performance (or utility) of the optimal 

arrangement of   nodes. 

 

Figure 1: Local detection rates (left) and, false alarm rates 
(right) for a two-node arrangement. Nodes are indicated 

with small white-filled circles. 

3.2 Optimization Example 

A structure was divided into two sets of discrete regions. 
The first set forms a uniformly spaced grid covering the 
structure. The second set is assembled from the identified 
hot spots on the structure consisting of the localized area 
around each of the bolt holes. Each region from the uniform 
and hot-spot sets is then assigned a probability of damage. 
Wave scattering was modeled according to a 5 mm crack 
with uniform random orientation. Imaging noise was 
modeled as Raleigh distributed. Noise parameters were 
fitted from data acquired over two days from three-foot-
square plate instrumented with identical nodes. The 
probabilities and error penalties were assigned as follows: 

- Probability of damage being introduced: 80% 

- Conditional probability of damage being 
introduced at hot spots: 60% 

- Conditional probability of damage being 
introduced away from hot spots: 40% 

- Penalty of missed detection / penalty of false alarm 
= 2/1 

Figure 2 shows the optimized arrangement of six nodes on a 
map of the resulting normalized risk.  The nodes are 
numbered in order of their placement by the greedy 
algorithm.  The normalized risk for the greedy-chosen 
arrangement fell within 5% of the true optimal 6-node 
arrangement as found by an exhaustive genetic algorithm 
search.  Figure 3 provides a graph of the normalized risk 
versus node count.  When the cost of each additional node is 
added to the risk calculation, the risk versus node count will 
have a minimum that indicates the optimal number of 
sensors to use. Figure 3 demonstrates that adding additional 
nodes has diminishing returns when accounting for per-node 
costs. 
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Figure 2: Optimal 6 node arrangement with map of 
normalized local risk 

 

 
Figure 3: Normalized risk versus node count 

4. DIAGNOSTIC ALGORITHMS 

Active sensing involves mechanically exciting a structure 
and in turn measuring the response in order to gain 
information regarding the potential presence of damage. 
When one dimension of the structure being excited is 
relatively small compared to the other two, such as in a 
plate-like structure, and the wavelength(s) of excitation are 
of the same order as this dimension, the process is referred 
to as guided-wave active sensing.  

The MD7 system works in an analogous fashion to active 
sonar. One at a time, each MD7 node actuates a series of 
narrow-band, ultrasonic mechanical pulses, or “pings”, 
using its central actuation transducer.  These pulses 
propagate through the structure, reflect and scatter at 
geometric features, such as plate boundaries, as well as at 
potential damage, and are then sensed by the six sensing 
transducers on the node. The node digitizes the sensed 
responses and sends the data to the accumulation hub where 
it is stored for later retrieval and processing 

The recorded responses are used to determine the range(s), 
bearing(s), and size(s) of potential damage in the structure 
relative to each node. In traditional active sonar 
applications, bearing is often determined in one of two 
ways.  The first is to physically arrange the sonar array to 
maximize its sensitivity in one direction, and then 
mechanically orientate, or steer, the array to scan multiple 
directions. The second approach is to artificially introduce 
delays in the acquired, digitized responses in order to 
electronically steer the array through a processes known as 
beam forming. For the current application, the latter 
approach has two distinct advantages.  First, the position of 
the array elements (i.e. sensing transducers) can be fixed so 
there are no moving parts.  Second, a single actuated pulse 
and sensed response can be used to simultaneously scan for 
damage in every direction. This directional scanning 
through electronic steering forms the basis of the present 
approach to ultrasonic guided wave imaging. 

4.1 Beamforming 

Optimal detectors can be derived according to statistical 
likelihood tests on the measured responses for the presence 
and location of damage. Depending upon the specific 
objective(s), such detectors provide a means of combining 
measurement data to build a set of test statistics T(x) 
(sometimes referred to as “damage features”) that can be 
compared to a threshold (determined by a risk analysis) in 
order to make decisions regarding the existence and/or 
location of damage on the structure. In most cases, where 
localization is of prime importance, the time of flight from 
the actuator to the potentially damaged region to the sensor 
for a given wave number can be reasonably estimated based 
on an average group velocity computed from the (likely 
heterogeneous) material and geometric properties along the 
propagation path. With this in mind, a common localization 
detection approach for each region in a structure is one that 
delays and sums the measurements from the different 
transducer pairs so that they will additively combine at the 
true location of damage, resulting in an “image” of highly 
constructive scatter relative to the background noise. 
However, the relative average phase velocities from each 
transducer pair to each region of the structure can be more 
difficult to predict. This leads to two basic forms of 
detectors based on the statistical model of the 
measurements: coherent and incoherent beam forming.  

In the case where the relative phase velocity is different and 
unknown between transducer pairs, the envelopes of the 
waveforms must be summed together in order to eliminate 
the dependence on phase. Otherwise, the delayed and 
summed waveforms run the risk of destructively interfering 
at the true location of damage and/or constructively 
interfering away from damage. If we represent the baseline-
subtracted acquired waveform from each transducer pair   
on node   according to its complex analytic signal  , then the 
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test statistic for the incoherent (“phase ignorant”) detector 
for damage at   reduces to 

    I
1

,
M

m
m

T w t m


 x x              (4) 

where  ,m x is time of flight from transducer pair m  to x. 

In the case where the relative phase velocity between 
transducer pairs is the same, the delayed waveforms can be 
combined coherently, without enveloping, which is referred 
to as coherent beamforming. The test statistic for the 
coherent detector can then be expressed as: 

     C
1

,
M

m
m

T w t m


 x x                    (5) 

where the magnitude is taken after summation rather than 
before. Coherent beamforming is ideal since the summation 
of the delayed waves tend to destructively combine at all 
locations except the true location of damage. However, in 
order for the average phase velocities along the path to each 
region of the structure to be the same, the transducers must 
be very closely spaced (less than a characteristic 
interrogation wavelength apart), limiting their coverage of 
the structure. In practice, for narrowband signals, the time 
delays are substituted by computationally faster phase shifts.  
As such, arrays of sensors that make use coherent beam 
forming, such as those packaged in each MD7 node, are 
referred to as phased arrays.   

Each sensor node implemented by MDC involves a single 
actuating transducer surrounded by six sensing transducers. 
Across the transducers in each node, the average phase 
velocity along the path to any given region is approximately 
equal, allowing for coherent beamforming.  From node to 
node, however, the average phase velocity is generally not 
equal and as such the scattered signals must be combined 
incoherently. This hybrid approach enables both effective 
imaging through coherent beam forming within each node 
as well as effective coverage of large areas through the 
placement of multiple nodes.   
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Figure 4 shows a graphical representation of the summation 
process.  The scans on the left are the result of coherent 
summation of the individual sensing-tranducers’ 
measurements with appropriate time delays while the image 
on the right shows the result of the incoherent summation of 
multiple MD7 nodes. 

 

Figure 4: Summation of multiple single-node radial scans 

  

 
Figure 5: Incoherent (left) coherent (right) and hybrid 

(bottom) imaging using three nodes. The 0.25 inch disc 
magnet is located at the center of the open black circle. 

 

Figure 5 shows a summary of results from these three 
imaging approaches for detecting a 0.25 inch magnet added 
to a three foot square plate. As shown, with coherent 
beamforming, a single node can identify both range and 
bearing of wave-scattering damage.  Sensing systems that 
are not capable of coherent beamforming, such as sparse 
transducer arrays, can only identify range to a target, forcing 
them to rely on multiple, widely spaced, sensing elements in 
order to triangulate the damage location. This significantly 
reduces the necessary instrumentation footprint of the MD7 
system when compared to traditional ultrasonic guided wave 
systems. 
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4.2 Matched Pursuits 

One of primary and most unique aspects of the present data 
processing approach is the using of matching pursuit 
algorithms for identifying scatter targets. This is done by 
decomposing the 2D radial scans for each node into a sum 
of wave reflection packets, so that the scans can be 
approximated as 

  ( , ), n n
n

nI a K rr r                        (7) 

where ia , ir  and i are the maximum likelihood estimates 

of the amplitude, range and bearing of the  largest wave 
reflection and  ,K r   is the wave reflection shape 

function.  The wave reflection shape function depends on 
the shape and frequency of the excitation pulse as well as 
the layout of the sensing array within each node.   

 

Figure 6: Beam pattern for 46 mm wavelength wave 
incident on the MD7 node 

In the case of the MD7 node and the pulse width and 
frequency used in this test, the shape function can be 
expressed as 

   2

2

, exp
2 r

r
K r B 



 
   

 
                       (8) 

where 2
r   is the width of the excitation pulse and   is the 

beam pattern for a wave incident at broadside (zero 
degrees). The beam pattern is graphed in Figure 6 (solid 
line) for the primary wavelength used in testing and the 
circular sensor configuration on the MD7 nodes. The 
function represents the leakage of a wave incident at zero 
degrees into other look directions in the radial scan. 

The amplitudes, ranges, and bearings of the wave packets 
are estimated according to the following matching pursuit 
algorithm: 

1. Identify range, bearing, and amplitude 
corresponding the global maximum of the radial 
scan image 

     
,

, arg max ,   ,,nn n
r

nnr I a I rr


               (9) 

2. Subtract the reconstructed wave packet from the 
radial scan image 

     ,, , n nnI I a K r rr r                  (10) 

3. Repeat until the error the between the original 
image and the reconstructed image reaches a 
minimum 
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  (11) 

 

 
Figure 7: Original radial scan for single MD7 node (left) 
and reconstructed scan (right) using reflection packets 

estimated using matching pursuit algorithm 

 
Figure 8: Reconstructed scan using narrowed-angle 

reflection shape function  

Figure 7 shows the original radial scan for a single MD7 
node (top) and a reconstructed image using discrete 
reflection packets.  As can be seen in the figure, the natural 
wave reflection shape functions leave a large degree of 
ambiguity in the target bearing. When the responses from 
multiple nodes are combined, this can lead to significant 
error in the target localization. To remedy this, the imaging 
software alternatively reconstructs the images using the 
same estimated target amplitudes, ranges, and bearings, but 
with a narrower shape function, as depicted in Figure 6 
(broken line).   Figure 8 shows the same reconstructed radial 
scan image using the narrower shape function. Here, the 
precise locations of the potential reflection targets can be 
more readily identified. 
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5. PATH TO PROGNOSTICS 

The development of sensors, hardware and diagnostic 
algorithms alone is not sufficient to achieve desired benefits 
for SHM.  At best, current SHM systems can to provide 
diagnostic information—typically in a proprietary and/or 
stand-alone format—and furthermore require a team of 
subject-matter experts to properly devise an installation 
strategy, calibrate algorithms and interpret the data. It is 
evident that for SHM system to be practically deployed as 
part of an integrated system health management (ISHM), 
tools must be created for SHM life-cycle management 
(LCM).  To that end, SHM-LCM software has been 
developed to manage the cradle-to-grave life-cycle of an 
SHM system for generic applications.  The initial version 
focuses on the MD7 pulse-echo style guided-wave SHM 
sensors previously described; however, the intent is to 
develop a framework that could eventually be sensor 
agnostic. There are 4 core modules to facilitate critical roles: 
Optimization, Calibration, Visualization, and Action.   

The Optimization module seeks to devise optimal sensor 
placement (using the Bayesian principals previously 
described) and excitation parameters in order to achieve 
probability of detection (POD) coverage requirements.  This 
module is fueled by a 3D mesh of the structure to be 
monitored, and allows a user to impose POD distribution 
through a graphical user interface (GUI), resulting in a list 
of grid point to locate SHM sensors to meet these 
requirements.   

The Calibration module is designed to guide a user through 
a series of material level tests in order to customize 
diagnostic algorithm variables (using the hybrid 
beamforming approach as previously described) to the 
system being designed.  The output would be a file to be 
uploaded onto the SHM system diagnostic server (could be 
a local data accumulator or remote slot-card in a HUMS or 
AHM system box) that would take individual sensor raw 
data, translate it to diagnostic results, and fuse data from 
both active and passive sensor sources to compile a 
complete diagnostic picture including both structural and 
sensor health with quantified uncertainty.   

5.1 Visualization Software 

The Visualization module is dedicated to generating a 
diagnostic composite picture based on data downloaded 
from the diagnostic server.  A prototype of the visualization 
tool was developed to help present ultrasonic imaging data 
to the user, seen in Figure 9.  The idea is that the input to the 
software would be a) finite element mesh from a designer, 
and b) probability distribution as a function of damage size 
from diagnostics algorithms.  The software would then 
stitch these results to the mesh and allow 3D visualization 
and manipulation (zoom, rotate, etc) of the diagnostic 
results on the actual geometry.  Controls in the form of 
“sliders” are provided to the user to be able to control key 

algorithms variables, as well as adjust the upper and lower 
visualization thresholds.  The intention is that eventually 
users will be able to toggle between probability of damage 
distributions for various calibrated damage modes within the 
GUI as well, as separated using time-windowed pattern 
recognition techniques such as K nearest neighbor (KNN). 

This all contributes to providing a system that “feels” more 
like conventional NDE, where, while there are default 
settings, a knowledgeable/advanced user could refine the 
results for a more precise location, or alternatively find 
smaller damage that is hidden by the effects of large damage 
response.  A screen-shot of the full three dimensional 
visualization of the software is shown in Figure 10. 

 

 

 

Figure 9: Prototype diagnostic visualization software (2D) 
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Figure 10: Prototype diagnostic visualization software (3D)  

 

5.2 Residual Performance 

The final Action module completes the life-cycle 
management by providing users with guides for responses to 
the diagnostic results.  This includes the generation of 
residual performance plots (ultimate load or deflection for 
example) as a function of probability of damage, using an 
embedded finite element engine that compares baseline 
models to those with reduced material properties or un-tied 
coincident nodes. Using this module, users can weigh 
detection confidence against the impact to the vehicle’s 
capabilities; and eventually this type of methodology could 
be embedded for real-time usage to enable fly-by-feel 
methodologies. Finally, repair optimization tools are 
planned to be incorporated in order to suggest means of 
restoring original performance for an assumed damage 
confidence-level design point.   

6. CONCLUSION 

This paper presents the framework of a software tool being 
developed to manage the life-cycle for SHM systems.  The 
core elements include optimization, calibration, 
visualization and action modules.  Much of the present 
research has focused on the optimization piece, using a 
Bayesian risk minimization approach to determine optimal 
sensor placement to minimize false positives while 
providing the desired coverage, attempting to use the 
minimum number of sensors to convey efficiency.  
Furthermore work was performed with regards to diagnostic 
algorithm calibration using a hybrid beamforming method.  
Finally, a visualization approach was demonstrated with an 
intuitive and fast GUI for near-real time display of 

diagnostic results with NDE-like controls. Overall, while 
the proposed framework was demonstrated using pulse-echo 
style guided wave sensors, it was developed such that it will 
be able to become sensor agnostic, and also be able to easily 
link up with prognostic methods for evaluating residual 
performance. The SHM-LCM software will enable SHM 
systems to be incorporated into ISHM by engineers rather 
than experts, making the technology more accessible, and 
commercially practical. 
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ABSTRACT
 

 Bayesian formulation is presented to address the parameters 
estimation under uncertainty in the crack growth prediction 
subjected to variable amplitude loading. Huang's model is 
employed to describe the retardation and acceleration of the 
crack growth during the loadings. Model parameters are 
estimated in probabilistic way and updated conditional on 
the measured data by Bayesian inference. Markov Chain 
Monte Carlo (MCMC) method is employed for efficient 
sampling of the parameter distributions. As the model under 
variable amplitude loading is more complex, the 
conventional MCMC often fails to converge to the 
equilibrium distribution due to the increased number of 
parameters and correlations. An improved MCMC is 
introduced to overcome this failure, in which marginal PDF 
is employed as a proposal density function. A center-
cracked panel under a mode I loading is considered for the 
feasibility study. Parameters are estimated based on the data 
from specimen tests. Prediction is carried out afterwards 
under variable amplitude loading for the same specimen, 
and validated by the ground truth data.  

Key Words : Prognostics and Health Management (PHM), 
Markov Chain Monte Carlo (MCMC), Crack growth, 
Variable amplitude loading. 

1. INTRODUCTION 

Although the reliability-based design technology for 
lifecycle is in its mature stage, it has its limited value due to 
the inability to account for the unexpected incidences during 
the in-service condition. Besides, critical systems such as 
aircraft tend to be operated without retirement even after the 
                                                 
* This is an open-access article distributed under the terms of the Creative 
Commons Attribution 3.0 United States License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided 
the original author and source are credited. 

design lives. In such cases, efficient maintenance techniques 
should be incorporated during the operation. Frequent 
preventive maintenance can, however, increase operating 
cost significantly, especially for aging aircraft. Recently, 
prognostics and health management (PHM) techniques are 
drawing considerable attention, which detect, monitor and 
predict the damage growth, from which only the faults 
indicating impending failure are repaired. As a result, 
condition-based maintenance (CBM) can be achieved, 
which significantly reduce the number of maintenance visits 
and repairs. 

Prognosis of crack growth is one of the active research 
topics in the PHM study because the physical model 
underlying the feature is relatively well known. Numerous 
literatures have been devoted to this topic, mainly focused 
on the probabilistic methods to address the associated 
uncertainties. Orchard and Vachtsevanos (2007) introduced 
an on-line particle-filtering-based framework for failure 
prognosis, and applied to a crack growth problem of UH-60 
planetary carrier plate. They assumed that the crack growth 
is described by a simple Paris model and the model 
parameters are known a priori, which is questionable in 
practical applications. Cross et al. (2007) developed a 
Bayesian technique for simultaneous estimation of the 
equivalent initial flaw size (EIFS) and crack growth rate 
distributions. AFGROW is used for the crack growth 
calculation for the fastener hole crack under constant 
amplitude load. Coppe et al. (2009, 2010) employed 
Bayesian formulation using the Paris model in which the 
model parameters are estimated and updated conditional on 
the measured crack data. A center-cracked panel under a 
mode I loading is considered for the study. An et al. (2011) 
conducted similar study by introducing Markov Chain 
Monte Carlo (MCMC) method for more efficient sampling 
of the parameters’ distribution. They payed particular 
attention to the parameters correlation as well as the 
imprecise data due to the noise and bias, which may make 
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the Bayesian estimation more difficult. It should be noted 
that all the previous studies have employed Paris model for 
the sake of simplicity which holds good under a constant 
amplitude loading.  

In this paper, the study by An et al. (2011) is extended to the 
case of variable amplitude loading, which involves more 
parameters in the crack growth model. The feasibility of 
Bayesian approach is studied to cope with the increased 
parameters in which the correlations are encountered. We 
have experienced that the MCMC does not work well, i.e., 
fails to converge at the equilibrium distribution. An 
improved MCMC method is introduced to relieve this 
problem by employing marginal PDF as a proposal density 
function. Feasibility of the method is illustrated by a center-
cracked panel under a mode I loading with constant and 
variable amplitudes, respectively. In the case of variable 
amplitude loading, the unknown model parameters are 
estimated based on the crack data by lab specimens under 
multiple set of constant amplitude loadings. The prognosis 
under variable loading is then conducted for the same 
specimen using the obtained parameter samples, and the 
remaining useful life (RUL) is predicted accordingly.  

2. CRACK GROWTH MODEL 

When the load is applied in a constant amplitude, Paris 
model best describes the crack growth: 

 ( )d
,

d

ma
C K K a

N
s a p= D D = D ⋅  (1) 

where a  is the half crack size, N  is the number of cycles 
(flights), KD  the range of stress intensity factor (SIF) and 
  the geometric correction factor. In the case of the 
variable amplitude loading, however, the crack growth 
behavior is significantly different from that under constant 
loading, presenting the crack growth retardation and 
acceleration caused by the overload. Numerous models have 
been developed to adequately describe this behavior. A 
model based on the crack closure approach, which considers 
plastic deformation and crack face interaction in the wake of 
the crack, was proposed by Eiber (1971). Willenborg (1971) 
and Wheeler (1972) proposed other models based on the 
calculations of the yield zone size ahead of the crack tip. In 
this paper, crack growth model by Huang et al. (2007) is 
used, which is based on a modified Wheeler model to 
account for the overload and underload effect. Huang’s 
model consists of two parts, one being the scaling factor 

RM  which accounts for the crack growth under constant 

amplitude loading and the other the correction factor PM  

which accounts for the loading sequence interaction such as 
retardation and acceleration under variable amplitude. The 
expression is given as follows. 

 0 0[( ) ( ) ]m m
eq th

da
C K K

dN
     (2) 

 0eq R PK M M K    (3) 
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Here, R  is the stress ratio, 0eqK  and 0thK  are equivalent 

and threshold SIF range respectively, ,C m  are the Paris 

model parameters, and 1,   are the shaping parameters for 

RM . The parameters C , m , 0thK ,   and 1  are the 

fitting parameters under a constant amplitude loading, 
which determines the relationship between the crack growth 
rates /da dN  and SIF range K . The correction factor 

PM  is given by 
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where yr  is the plastic zone size ahead of the crack tip, r  is 

the increment in the plastic zone size due to the underload 
following an overload, n  is a shaping parameter determined 
by fitting to the test data under variable amplitude loading, 
and parameters with the subscript OL  denote those under 
the overload.  In Eq.(6) and Eq.(7),  is the plastic zone 
size factor which is dependent upon the constraints around 
the crack tip and the maximum applied stress, yield strength 
of the material, and specimen thickness (Voorwald et al. 
1991). The size of the each plastic zone is calculated in 
terms of the applied maximum SIF and yield strength y . 

The crack growth under variable amplitude loading is 
accounted for by incorporating the correction factor PM  

after decomposing the variable loading into the successive 
series of different constant amplitude loadings. 
Consequently, only the parameters C , m , 0thK ,   and 

1  are the unknown parameters to be estimated in this study. 

3. MARKOV CHAIN MONTE CARLO FOR PARAMETER 

ESTIMATION 

In this study, Bayes rule is used to account for the 
uncertainties in the parameters estimation (Bayes,1763): 
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      | |p L py y    (8) 

where  |y L  is the likelihood of observed data y  

conditional on the given parameters  ,  p  is the prior 

distribution of  , and  | yp  is the posterior distribution 

of   conditional on y . The equation states that our degree 

of belief on the parameter   is expressed as posterior PDF 
in light of the given data y . In general, the posterior 

distribution is given by complex expression in terms of the 
parameters, of which the sample drawing is cumbersome, 
and prohibiting the use of standard techniques of probability 
functions. MCMC has been recognized as an effective 
sampling method, which is based on a Markov chain model 
of random walk with the stationary distribution being the 
target distribution. Metropolis-Hastings is the most typical 
variants of the MCMC algorithm: 
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(9) 

In this equation,  0x  is the initial value of an unknown 
parameter to estimate, nm  is the number of iterations or 

samples, U  is a uniform distribution,  p x  is the posterior 

distribution (target PDF), and   * | iq x x  is an arbitrary 

chosen proposal distribution which is used when a new 
sample *x  is to be drawn conditional on the current point 

 ix . Uniform or Gaussian distribution at the current point 
are the most common choices for the proposal distribution. 
Success and failure of the algorithm relies heavily on a 
proper design of the proposal distribution. In order to 
illustrate this, a target distribution of x  is considered 
(Andrieu et al, 2003): 

      220.3exp 0.2 0.7exp 0.2 10p x x x      (10) 

As the candidates of proposal distribution, normal 
distributions with three different standard deviation,  =1, 
 =10 and  =100, are attempted. The shapes of each 
distribution are compared in Figure 1(a). The MCMC 
sampling results using each three proposal distributions with 
the number of samples nm =5000 are shown in Figure 

1(b)~(d), respectively. Only the proposal distribution with 
 =10 gives acceptable result. In the general case with 
increased parameters and correlations, however, this would 
be much more difficult.  

An improved MCMC method is introduced in this study, 
which is to employ a marginal PDF as a proposal 
distribution: 
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where  q x  is the marginal PDF of x  defined by 

   1 1 1 1 1 1, , , , , ,i i i i np i i npq x p x x x x x dx dx dx dx                     (12) 

Conventional way to construct the marginal PDF requires 
intensive computation which requires large number of joint 
PDF evaluation. In this paper, a simpler approach, which 
employs Latin Hypercube Sampling (LHS), is used to 
facilitate efficiency because the marginal PDF needs not be 
precise in view of the proposal density function.  

In the algorithm (11), unlike the conventional MCMC, if the 
new sample *x  is not accepted, the 1i  'th sample is not 
assigned and the sampling is repeated until 1i  'th sample 
satisfies the MH criteria, which results in a little longer 
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Figure 1.  MCMC sampling results of the target PDF 

given by Eq. (10) 
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computing time. The uniform distribution,  0,1U  in the 

conventional MCMC is replaced here by  0,cU  where c  is a 

constant less than 1. By the authors' experience, it was 
found that as c  gets smaller, the overall time was decreased 
dramatically, while the obtained samples distribution did not 
change much. 

4. CRACK GROWTH UNDER CONSTANT 

AMPLITUDE LOADING 

In order to verify the new MCMC method, the data 
generated with fixed parameter values are used. Crack 
growth of a center-cracked panel of Al 7075-T6 under a 
mode I loading as shown in Figure 2 is considered. 
Assuming the effect of finite plate size is ignored, Paris 
model predicts the crack growth in terms of the fatigue 
cycles in the closed form expression as: 

    
2

21
21

2

m mm

i

m
a N NC a 

       
  

 (13) 

where a  is the half crack size at cycle N , C  and m  are 
the two damage growth parameters to be estimated, ia  is 

the initial crack size which is assumed to be known, and 
  is the stress range due to the fatigue loading. Synthetic 

curve is generated for the case ia =10mm and 

 =78.6MPa. Assuming that the true parameters, truem  

and trueC are given by 3.8 and 1.5E-10 respectively, crack 

sizes are calculated according to Eq. (13) for a given N . 
Then, measurement errors with a deterministic bias b =-

2mm and random noise  0, 1.33N    are added 

intentionally to the synthetic curve for the generated data. 
10 sets of generated data are made at the interval of 100 
cycles. In this case, the unknown parameters consist of the 
two model parameters ,m C  and the two measurement 

errors ,b  . The joint posterior distribution of these 
parameters is given by 
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where f  and    ,p m p C  are the likelihood and prior 

PDFs of the two parameters respectively, given by 
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The synthetic curve and the generated data are plotted as 
black curve and solid dots with 10 numbers in Figure 3 
respectively. The unknown parameters are to be estimated 
conditional on this data based on the MCMC process with 
the number of samples being 5000. Using the conventional 
MCMC, proper sampling could not be achieved in spite of 
lot of trials. One instance of such result is given in Figure 
3(a). In Figure 3(a), the incorrect prediction using the failed 
samples is also given, in which the three dashed curves 
denote the median and 90% confidence bounds obtained 
from the distribution respectively. The green horizontal line 
denotes the critical crack size. On the other hand, the result 
of the improved MCMC is shown in Figure 3(b), which is 
instantly obtained at one attempt. The obtained PDF shapes 
look quite plausible and the correlation between m  and C  
is also identified clearly. The posterior predictive 
distribution of the crack growth obtained by the sampling 
results of the unknown parameters is shown inFigure 4. The 
improved MCMC predicts the crack growth quite well, 
following the synthetic curve by correcting the bias while 
the conventional MCMC could not. Therefore, the improved 

 

Figure 2. Specimen geometry ( t=4.1, b=152.5, a=6 
(mm)) 
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(a) Conventional MCMC. 
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(b) Improved MCMC. 

Figure 3. Prediction of the crack growth 
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MCMC is verified by predicting the synthetic curve with 
correct parameter estimation. 

5. CRACK GROWTH UNDER VARIABLE 

AMPLITUDE LOADING 

In the prognosis of crack growth under variable amplitude 
loading, the unknown model parameters C , m , 0thK ,   

and 1 are to be estimated conditional on the measured 

crack data under study. In this study, the unknown model 
parameters are regarded as the intrinsic property of the 
material such as the Elastic modulus. Therefore, the 
unknown model parameters under constant amplitude 
loading are assumed as identical to those under variable 
amplitude loading.  In view of this, data by Huang et al. 
(2007) are used for the prognosis, in which the cracks are 
grown for the lab specimens of Figure 2 under multiple sets 
of constant amplitude mode I loadings. 

Assuming the error between the data and true crack growth 
model follows Gaussian distribution with  0,N  , the joint 

posterior distribution of the parameters is given by Eq. (8) 

which   denote 1 0, , , , thC m K    and  , and y  are the 

measured crack data. L  is the likelihood given by 
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MCMC simulation is implemented to obtain the samples 
that satisfy the distribution. In this case, the conventional 
MCMC does not work at all due to the large number of 
parameters, and fails to obtain the target distributions. Even 
the improved MCMC gives inadequate distributions as 
given in Figure 6(a). The reason may be attributed to the Eq. 
(2)~Eq.(4), in which the parameters 1,   exist only when 

0R   whereas the data set include the case R =0. Ignoring 
this characteristics and taking all three data set equally into 
account in Eq.(16) leads to the improper marginal PDF. In 
order to resolve this issue, following four steps are taken 
during the MCMC simulation. 

1. The marginal PDFs of 0, , thC m K are constructed from 

R=0 data set. In this process, 1,   is not necessary since 

R=0 makes RM  independent on 1,  . 
2. The ranges of 0, , thC m K are given from the percentiles of 

the marginal PDF of 0, , thC m K . 

3. The marginal PDFs of   and 1  are constructed from the 

remaining two sets R=-1 and R=0.5 under the ranges of 

0, , thC m K of the process 2. 

4. All the marginal PDFs thus obtained are then used in the 
main process of improved MCMC as given by (11). 

As a result, Figure 6(b) is obtained, in which the 
distributions of the parameters   exhibit plausible shape, 
and represent our degree of confidence due to the 
uncertainties caused by the insufficient data and 
measurement errors. 

Once the distributions are obtained by the MCMC, the 
prognosis under variable amplitude loading is conducted 
using the obtained parameter samples. This is just to 
implement the crack growth simulation by integration of 
Eq.(2) to obtain the future crack size distribution using each 
of the parameter samples. The remaining useful life (RUL) 
can be predicted from this result. The same specimen is used 
in this study since the actual data of crack growth are 
available by Huang et al. (2007) under the variable loading 
condition as a ground truth data. The loading condition for 
prognosis process is given in Figure 7, in which a single 
cycle consists of the p  numbers of repeated load between 

3.48~68.13 MPa  and the q numbers of overload with 

3.48~103.02 MPa . This loading condition is repeatedly 
applied to the specimen generating total load cycles. Two  
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Figure 4. Posterior PDFs of four parameters in the crack 

growth problem 
 

Figure 5. Fatigue crack growth data under constant 
amplitude loading for Al 7075-T6 (Huang et al, 
2007) 
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cases of 50p   , 1q   and 50p   , 6q   are considered. 

The results of the predictive simulation are shown in Figure 
8, in which each blue curve represents a single result using 
realized parameters while the red curve represents the 
ground truth data made by the test of identical loading 
condition. Figure 9 also represents the confidence bounds 
obtained from the predictive distribution. The width of the 
curve in this figure may be attributed to the uncertainty of 
insufficient data and measurement errors. The RUL 
distribution shown in Figure 10 is obtained by calculating 
the cycles at which the crack of each sample grows to a 
critical crack size. 10% percentile as well as the true RUL 

values are indicated by the marks respectively. Recall that in 
this study, the parameters were first estimated using the 
three specimens under constant amplitude loadings, 
followed by prognosis for the fourth specimen under 
variable loadings using the estimated parameters. The test 
data of the last specimen was used just for validation of the 
prognosis.  

6. CONCLUSION 

In this paper, Bayesian formulation is presented to identify 
the uncertain parameters in the crack growth problem under 
variable amplitude loading. Huang's model is employed to 
describe the retardation and acceleration of the crack growth 
during the loadings. As the conventional MCMC does not 
work well in the case of increased parameters and 
correlations as in this problem, improved MCMC method is 
introduced by employing marginal PDF as a proposal 
density function. Feasibility of the method is illustrated by a 
center-cracked panel under a mode I loading with constant 
and variable amplitudes, respectively. In the case of variable 
amplitude loading, parameters are first estimated based on 
the data from specimen tests under a multiple constant 
amplitude loadings, and prognosis is followed based on the 
parameters with another specimen under variable loading. 
The result is validated by the actual test data. The drawback 
of this approach is that the model parameters  are identified 
by the lab experiments, and are used for the prognosis of a 
real part (although, in this case, the same specimen is 
chosen), of which the material and operating conditions may 
be somewhat different. Therefore, the estimated RUL has 
wide range to represent the general life of the entire 
specimen. 

More desirably, the measured data from the real part 
undergoing variable amplitude loading may be utilized for 
the parameters estimation as well as the prognosis. 
Additional work toward this direction will be made in the 
final draft.  

 

Figure 7. Variable amplitude loading 
 

6 8 10

x 10
-8

0

200

400

600

m
2 4 6

0

200

400

600

800

c
0.5 1 1.5
0

500

1000

threshold

0.6 0.8 1
0

200

400

600

800


1.5 2 2.5
0

200

400

600

800

1

1 2 3
0

500

1000

1500

2000



(a) Sample data from direct application of improved 
MCMC 
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(b) Sample data after taking the four step process in 
the improved MCMC 

Figure 6. Histogram of samples for the parameters 
generated by the improved MCMC 
method 
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ABSTRACT 

Autonomous unmanned vehicles are playing an 
increasingly important role in support of a wide variety 
of present and future critical missions. Due to the 
absence of timely pilot interaction and potential 
catastrophic consequence of unattended faults and 
failures, a real-time, onboard health and contingency 
management system is desired. This system would be 
capable of detecting and isolating faults, predicting 
fault progression and automatically reconfiguring the 
system to accommodate faults. This paper presents a 
robotic testbed that was developed for the purpose of 
developing and evaluating real-time PHM and 
Automated Contingency Management (ACM) 
techniques on autonomous vehicles. The testbed 
hardware is based on a Pioneer 3-AT robotic platform 
from Mobile Robots, Inc. and has been modified and 
enhanced to facilitate the simulations of select fault 
modes and mission-level applications. A hierarchical 
PHM-enabled ACM system is being developed and 
evaluated on the testbed to demonstrate the feasibility 
and benefit of using PHM information in vehicle 
control and mission reconfiguration. Several key 
software modules including a HyDE-based diagnosis 
reasoner, particle filtering-based prognosis server and a 
prognostics-enhanced mission planner are presented in 
this paper with illustrative experimental results. This 
testbed has been developed in hope of accelerating 
related technology development and raising the 
Technology Readiness Level (TRL) of emerging ACM 
techniques for autonomous vehicles.*   

1. INTRODUCTION 

Autonomous unmanned vehicles (AUVs) are finding 
increasing use in real-world applications ranging from 
the ground (e.g. unmanned ground vehicles, or UGVs), 
                                                           
* This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 

to sea surface (e.g. unmanned surface vehicles, or 
USVs), underwater (e.g. unmanned undersea vehicles, 
or UUVs), airborne (e.g. unmanned aerial vehicles, or 
UAVs), and space exploration missions (e.g. unmanned 
rovers and unmanned space vehicles). Unmanned 
missions using these vehicles include surveillance and 
patrolling, search and rescue, operations in 
contaminated and denied areas, space exploration and 
more (Army UAS CoE, 2010; Navy, 2007). Due to 
communication delay and bandwidth limitations, there 
has been increasing dependence on AUVs for critical 
tasks. This makes it vital to assure the performance of 
the vehicles under off-nominal conditions in an 
autonomous fashion without relying on remote 
operators. 
 In recent years, growing demand for improving the 
reliability and survivability of autonomous vehicles has 
led to the development of prognostics and health 
management (PHM) and automated contingency 
management (ACM) systems (Vachtsevanos et al, 
2006). In this context, the term Automated Contingency 
Management has been introduced to describe intelligent 
systems capable of mission re-planning and control 
reconfiguration based on health diagnostic and 
prognostic information (Tang et al, 2008). As a new 
emerging technology, the development of real-time 
autonomous vehicles PHM and ACM techniques can 
greatly benefit from a testbed that is built on a real 
vehicle platform using commercial-off-the-shelf 
(COTS) computing devices. The use of such a testbed 
can accelerate the development and raise the 
Technology Readiness Level (TRL) of the enabling 
techniques, as well as provide a technology 
demonstrator for commercialization efforts. This paper 
presents the development of a ground robotic testbed 
for real-time autonomous vehicles PHM and ACM 
techniques. The testbed has been built to fulfill the 
following objectives: 
 (1). to demonstrate the benefits of real-time PHM 
and ACM technologies for autonomous vehicles in 
terms of improved reliability, survivability and overall 
mission success;    
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 (2). to demonstrate the advantages of using PHM 
information (particularly the prognostic information) in 
control reconfiguration and mission planning by 
applying a novel hierarchical ACM architecture;  
 (3). to demonstrate that real-time implementation of 
selected diagnostic and prognostic routines are feasible 
on affordable COTS computing devices; 
 (4). to raise the TRL of several selected techniques 
by deploying them on hardware and testing them on 
field systems in realistic environments;  
 The rest of this paper is organized as follows. In 
section 2, the system architecture and common features 
of a generic, hierarchical PHM-enabled ACM system 
for autonomous vehicles are briefly introduced. Section 
3 presents the development of a robotic testbed on 
which the techniques described in Section 2 are 
applied. Hardware configuration and modifications, as 
well as a Failure mode, effects, and criticality analysis 
(FMECA) study of selected components and fault 
simulations are presented.  Section 4 presents the real-
time PHM and ACM software modules implemented 
on the testbed with illustrative experimental results. 
These modules include a diagnostic reasoner based on 
NASA’s Hybrid Diagnostic Engine (HyDE), several 
particle filter-based real-time prognostic routines, and 
prognostics-enhanced control configuration and 
mission re-planning modules. The paper concludes with 
remarks on the main contributions of the presented 
work and planned future developments. 

2. PHM-ENABLED ACM SYSTEM FOR 
AUTONOMOUS VEHICLES 

Conceptually, an ACM system is a system that is 
designed to provide the ability to proactively and 
autonomously adapt to current and future fault and/or 
contingency conditions while either achieving all or an 
acceptable subset of the mission objectives. An ACM 
system is different from a fault tolerant control system 
mainly in two aspects: 1) it consists of not only low 
level control reconfiguration, but also high level 
(mission) planning and optimization; 2) it uses not only 
diagnostic information, but also prognostic information. 
 A typical ACM+P (PHM-enabled ACM system) 
implementation usually utilizes a hierarchical 
architecture as shown in Figure 1. The PHM and 
situation awareness modules provide fault diagnostics, 
prognostics and contingency information to the 
ACM+P system, which in turn, identifies and executes 
the optimal fault accommodation and/or mitigation 
strategies. Note that the PHM system is a precondition 
for implementing ACM strategies, thus the whole 
system architecture is referred to as a PHM-enabled 
ACM system. 

 
Figure 1: Conceptual PHM-enabled ACM system 

hierarchy 
 

 Some important features of the PHM-enabled ACM 
system include: 
 (1) Hierarchical architecture;  
 A component fault can often be accommodated at 
different levels in the ACM hierarchy and the decision 
should be made based on performance requirement and 
safety consideration. For example, if the left engine on 
a twin-engine, fixed-wing UAV is experiencing severe 
degradation, the thrust difference may generate an 
unwanted yaw movement. This fault can be 
accommodated at the lowest (component) level by 
adjusting the fan speed set point value in the engine 
controller or by adjusting the rudder position in the 
trajectory following auto-pilot at system level. 
 (2) Use of redundancy and trade-off;  
 Typically, it is possible to accommodate faults only 
in a system with redundancy, either physical 
redundancy or analytical redundancy. More advanced 
systems may include online healing concepts, including 
self-healing. When system performance cannot be 
totally recovered by the fault accommodation 
strategies, trade-off of mission objectives has to be 
made to secure the most important tasks. 
 (3) Online optimization;  
 If an ACM system is to be applied to an unmanned 
vehicle conducting complicated autonomous missions, 
it is often unavoidable to phrase the solution search as a 
dynamic optimization problem especially at mission 
planning level. This optimization problem may need to 
be solved online to arrive at the optimal strategies 
constrained by the available performance and resources 
to meet multiple (sometimes conflicting) mission 
objectives. It is important to realize that the 
optimization problems at different levels in an ACM+P 
system have different time horizons and real-time 
execution considerations.  
 (4) Uncertainty management and false alarm 
mitigation;  
 The use of prognostic information in the ACM 
system brings new challenges to both uncertainty 
management and false alarm mitigation. Since 
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prognosis projects the current system condition in the 
future using a prognostic model in the absence of future 
measurements, it necessarily entails large-grain 
uncertainty. This uncertainty has to be handled both in 
high level mission re-planning and middle/low level 
control reconfiguration modules.The implementation of 
this ACM architecture on the testbed and the enabling 
algorithms for the main functional modules are 
presented in section 4. More details regarding ACM 
technologies can be found in our previous publications 
(Tang et al, 2010; DeCatro et al, 2011; Zhang et al, 
2011). 

3. THE ACM TESTBED 

The ACM Testbed is based on a Pioneer 3-AT robotic 
platform from Mobile Robots, Inc. The dimensions of 
the Pioneer 3-AT robot (without additional computer 
and sensors) are about 20” long by 19” wide by 11” 
high and it weighs about 26 pounds (see Figure 2).  The 
robot is a four wheeled “skid steered” design with 8.5” 
diameter tubeless pneumatic rubber wheels.  This 
means that the wheels are fixed in place and it is driven 
in a “tank drive” fashion.  The wheels on either side of 
the robot are driven independently at different speeds to 
provide the freedom to turn.  The wheels on one side of 
the robot are linked through timing belts and therefore 
always turn at the same speed.  Each side is driven by 
two mechanically linked DC motors. The platform 
offers a build-in computer that hosts the baseline 
vehicle controller, serial communications, sonar 
sensors, encoders and other autonomous 
functions.  This built-in controller uses PID control 
using the motor encoder signals to drive the robot at a 
commanded speed and calculate the robot’s position 
using dead reckoning. It carries up to 3 hot swappable 
batteries. The eight forward and eight rear sonar array 
senses obstacles from 15 cm to 7 m. The robot can 
reach speeds of 0.8 meters per second and carry a 
payload of up to 32 kg. The robot uses 100-tick 
encoders which have been enhanced with inertial 
correction from a rate gyro measuring yaw movement 
for dead reckoning to compensate for skid steering.  

3.1 Hardware Modifications 

Several modifications have been made to the robot to 
enhance its sensing, computing and fault simulation 
capabilities required for hosting the PHM and ACM 
functions. The major additions to the platform 
described in this section include the following: on-
board computer and data acquisition system, batteries, 
load simulator, tire leakage simulator, vision system, 
and diagnostic/prognostic server. 

 
Figure 2: The ACM testbed 

  
 An onboard computer is mounted on the robot and 
is powered by the robot’s auxiliary power ports. The 
onboard computer is dual boot, running both Windows 
XP and LabVIEW RTOS. The onboard computer 
features a 1.40 GHz Intel Pentium CPU, 512 MB 
RAM, two 40GB Hitachi HDDs and communicates 
with the build-in controller through a serial port. It can 
communicate with other computers (such as a remote 
client laptop) on a network through a WiFi access point 
plugged into the computer’s Ethernet port.  
 A NI PCI-6229 data acquisition (DAQ) card has 
been added to the onboard computer to monitor the 
health of the robot. The DAQ card has 32 analog 
inputs, 4 analog outputs and 48 digital I/O. With a few 
added circuit boards, wires and electrical components, 
the DAQ card monitors the current and voltage of the 
battery and motors while sensors are being added to 
monitor the air pressure of the tires.  
 To perform prognosis demonstrations using 
batteries, the 12 V sealed lead acid (SLA) batteries 
have been replaced with LiFePO4 Li-Ion batteries. A 
200-ohm, 250-watt variable resistor is used to simulate 
an aging battery, and can be re-wired to simulate a 
winding short fault in the motor.  
 To simulate varying loads on the drive system of the 
robot in the lab, which is often needed for the 
development and testing of PHM algorithms for 
batteries and motors, a dynamometer rig has been 
created as shown in Figure 3.  The front two wheels of 
the robot rest on two rollers. One of the rollers is 
attached to a hysteresis brake, which can supply a 
constant braking force when a voltage is applied.  
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Figure 3: Simulated load test rig setup 

 
 A system for simulating tire leakage has been 
implemented as shown in Figure 4.  On the right side of 
the robot, a rotary union has been connected to the hub 
of each tire.  These rotary unions connect directly to the 
tire valve outlets, which have had the valves removed.  
Both of these unions are connected to a central 
manifold mounted on the top of the robot.  This 
manifold provides ports for a pressure gauge for 
monitoring tire pressure, a needle valve for simulating 
slow tire leakage, and a Schrader valve for refilling the 
tires.  Each tire also has its own shut off valve to allow 
for independent deflation.  With this set up, a slow leak 
in the front, rear or both tires can be simulated.  
 

 

Figure 4: Tire leakage simulation system 
 

 To perform image processing, a Surveyor Stereo 
Vision System mounted on a Lynxmotion BPT-KT 
pan/tilt head is mounted on top of the onboard 
computer (see Figure 2). The stereo camera system is 

intended for high level applications such as terrain 
classification, target tracking and classification.  
 The onboard computer acts as an autonomous 
server, receiving command signals from a client 
computer, in this case a laptop computer connected to 
the same network via WiFi.  The laptop is a Dell 
Latitude D505 with a 1.60GHz Intel Pentium processor, 
1.5 GB RAM, and an 80 GB HDD running Windows 
XP. This computer also acts as the server and image 
processor for the Stereo Vision System. 
 The server software on the robot can be configured 
in several different ways.  To perform low-level control 
functions remotely, the remote client laptop can be 
configured to send signals that control either the speed 
of each individual motor, or the overall speed and 
angular speed of the robot.  In this case, low-level 
sensor signals are sent to the client for processing.   As 
an alternative, the client laptop can be configured to 
perform only high-level functions by simply sending 
waypoints to the robot.  In this scenario, the onboard 
computer implements all lower level processing 
including path planning to the given waypoint, sending 
velocity signals to the motors, sensor signals 
processing, and obstacle avoidance and indoor 
localization using sonar array. This localization takes 
inputs of a pre-defined map of surroundings and 
information from the 16 sonar range finders to 
determine the accurate position of the robot which may 
be skewed due to the skid steering. The layout of the 
client software GUI can be seen in Figure 5. 
 

 

Figure 5: Client software GUI 

3.2 FMECA Study 

A Failure mode, effects, and criticality analysis 
(FMECA) study is conducted to identify possible faults 
and failure modes on the testbed platform. A subset of 
the failure modes, as well as their criticalities and 
possible diagnostic approaches and related sensor 
measurements, is listed below.   
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Table 1: Representative Failure Modes 

Failure Mode Cr. Diag. 

Motor Assembly 

Motor winding shorted/open 3 A, B, C 

Motor shaft eccentricity 2 B, C 

Motor bearing spall/wear 2 A, B, C, D 

Seized motor bearing/shaft 4 A, B, C 

Drivetrain 

Timing belt failure 4 A, B, E 

Pulley degradation 2 A, B, E 

Leak in tire 2 B, E, F 

Tire blowout 4 B, E, F 

Battery 

Battery short 3 G, H 

Battery degradation 3 G, H 

Sensors 

Encoder produces incorrect 
readings 

3 
B, E 

Encoder produces no signal 3 B, E 

Gyroscope produces incorrect 
readings 

3 
B, E 

Gyroscope produces no signal 3 B, E 

Cr.: criticality; Diag.: diagnostic approach and related 
sensors. A: Motor current; B: Encoder feedback; C: 
Motor accelerometer; D: Motor spindle; E: Gyroscope 
feedback; F: tire pressure sensor; G: Battery voltage; H: 
Battery Current;  

 
Some of the identified failure modes can be inserted or 
simulated on the testbed without causing permanent 
damage to the vehicle. These failure modes include tire 
leakage, tire blowout, battery short, battery 
degradation, incorrect encoder reading, no encoder 
signal, incorrect gyroscope reading, no gyroscope 
signal, motor wiring short, etc. 

3.3 Load Simulations  

 Since battery end of charge and battery end of life 
are currently being tracked as part of the prognosis of 
the robot, it is necessary to simulate different loading 
scenarios due to terrain changes and other factors while 
the robot autonomously performs its mission. The robot 
is currently configured only for indoor use on 2D 
terrain.  In an actual mission, however, the robot would 
experience different battery loading scenarios based on 
terrain.  To simulate this in an indoor, 2D environment, 
a variable load has been attached to the battery. This 
variable load is made up of three resistors, each wired 
in parallel to the battery. Each resistor can be activated 
via a relay controlled by the onboard computer. It 

provides 8 different loading scenarios progressing 
linearly in magnitude. The onboard computer has a map 
of simulated terrain and when the robot crosses into an 
area of higher simulated difficulty to traverse, the 
onboard computer activates a larger loading scenario 
using the variable load. This allows for many simulated 
terrains while keeping the robot in a safe, indoor 
environment. 

4. IMPLEMENTATION OF PHM-ENABLED 
ACM SYSTEM ON THE TESTBED 

The software architecture of the prototype PHM-
enabled ACM system is shown in Figure 6. Starting 
from the bottom of this hierarchy, the DAQ 
Server/Monitor collects signals from various 
components (such as battery, motor, sonar, encoder, 
gyroscope, etc) and sends the observations to the 
Diagnosis Reasoner and Prognosis Server. Typically, 
the prognosis service is only activated after a fault has 
been detected. The diagnostic and prognostic 
information are sent to the ACM system where control 
reconfiguration and mission re-planning take place to 
accommodate and mitigate both present and potential 
future faults and failures. The ACM modules send 
waypoints to the Auto-pilot to adjust the mission to 
optimize the usage of the vehicle. Set-point commands 
may also be sent directly to the Vehicle Controller 
when lower level control reconfiguration is required. 
The situational awareness sensors, such as the onboard 
stereo vision cameras and sonars, provide obstacle, 
target and terrain information to the Situation 
Awareness module and the Auto-pilot to avoid external 
threats.  
 

 
Figure 6: ACM System Software Architecture on the 

ACM Testbed 
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4.1 HyDE-Based Diagnosis Reasoner 

HyDE (Hybrid Diagnostic Engine) is a model-based 
diagnosis engine that uses candidate generation and 
consistency checking to diagnose discrete faults in 
stochastic hybrid systems. HyDE uses hybrid 
(combined discrete and continuous) models and sensor 
data from the system being diagnosed to deduce the 
evolution of the state of the system over time, including 
changes in state indicative of faults (Narasimhan and 
Brownston, 2007).  
 To demonstrate the generic applicability of HyDE 
diagnostic reasoning techniques to autonomous 
vehicles, a Diagnosis Reasoner was developed and 
deployed on the onboard computer on the robot testbed. 
The deployed reasoner is essentially a HyDE reasoner 
that receives sensor observation from the DAQ 
Server/Monitor module on the onboard computer and 
outputs diagnostic reasoning result. The Diagnosis 
Reasoner on the testbed has been developed to 
diagnose the following fault modes for a proof of 
concept demonstration.  

1) Encoder: missing counts; lost – no output 
2) Timing belt: slipping; failed 
3) Rate gyro: drifting, lost – no output 
4) Tires: leaking; deflated 
5) Tire pressure sensors: biased reading  
6) Sonar Sensors: erroneous reading 

 A part of the HyDE diagnostic model involving the 
encoders, timing belt, rate gyro, tire pressure sensors 
and the tires is shown in Figure 7. 

 
Figure 7: HyDE model for a few selected components 

on the testbed 
 
 To illustrate the reasoning capability of the HyDE-
based solution as compared to simple logical 
calculation (which is often utilized in Expert System-
based diagnostic systems), hybrid state reasoning has 
been used to determine the state of the tires. Using 
encoder measurements in addition to abnormal rotation 

measured by the rate gyro during commanded forward 
movement, the diagnostic model can determine which 
side of the robot has a low pressure tire. With this 
information and the calculated logical constraints, the 
model can then determine whether the front or the rear 
tire is causing the reduced velocity. When combining 
this reasoning capability with tire pressure sensor 
reading, a pressure sensor fault can be diagnosed. 

 To test the model, real-time data was collected from 
the robot while varying both rate of movement in 
forward and reverse as well as individual tire pressures.  
Using this data, it was shown that a calculated channel 
could indicate an individual tire fault using 
accumulated significant error from the rate gyro.  With 
the calculated channel input to the diagnostic model, it 
is possible to isolate an individual tire fault. The 
diagnosis result in a GUI is shown in Figure 8.  

 
Figure 8: HyDE diagnosis given deflated right-

front wheel data 

4.2 Particle Filtering-Based Prognosis Server 

The purpose of prognosis is to predict the remaining 
useful life (RUL) of a system/subsystem or a 
component when a fault is detected. Various prognostic 
algorithms have been developed and applied to various 
mechanical and electrical systems in the past decade  
(Schwabacher and Goebel, 2007; Uckun et al, 2008; 
Saxena et al, 2010). Among these approaches, particle 
filtering-based approaches have been shown to be 
theoretically sound, generically applicable and 
demonstrating promising results especially on 
applications where online prognosis is required (Goebel 
et al, 2008; Saha et al, 2009). To illustrate the 
effectiveness and computational efficiency of real-time 
PF-based prognosis approach, three parallel PF-based 
prognostic routines have been implemented on the 
Prognosis Server to predict three failure modes: the 
RUL of the battery, state of charge of the battery and 
tire leakage situation. Details regarding the particle 
filtering-based prognosis and uncertainty management 
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algorithms can be found in (Orchard et al, 2010; 
Edwards et al, 2010). 
 
4.2.1 Battery Life Prognosis 
To predict the battery end-of-life (EOL), features that 
reflect the aging condition of the battery such as 
capacity or stored energy must be tracked over time. 
Other features derived from electrochemical impedance 
spectrometry (EIS) measurement data (Goebel et al, 
2008) may also be used but these features can only be 
obtained when onboard EIS devices are available. In 
this case study, the capacity of battery is used as the 
feature. 
 Because of its generic applicability and rich 
uncertainty management capabilities, a particle 
filtering-based approach is chosen. To date, three 
particle filtering-based prognostic approaches have 
been developed: i) the classic particle filtering 
algorithm (Orchard, 2009), ii) a routine that 
incorporated an Outer Feedback Correction Loop 
(Orchard et al., 2008), and iii) Risk Sensitive Particle 
Filter (RSPF) based routines (Orchard et al., 2010). The 
algorithm deployed on our testbed is the RSPF-based 
approach. Prognosis results obtained when applying the 
algorithm to a set of real Lithium-Ion battery data are 
shown in Figure 9. The capacity data measured per 
cycle is plotted in green while the estimated capacity 
which is the feature being tracked is plotted in magenta 
in the upper subplot. The critical capacity limit is 
centered around 1200 mAh as shown by the orange 
zone. The lower subplot shows the scaled probability 
density function (PDF) of the EOL predicted at cycle 
100(the peak of the PDF has been scaled to 1 for 
plotting purposes). In this case, the ground truth life of 
the battery is 168 cycles which is very close to the 
mean of the predicted PDF. 
 

 
Figure 9: Battery life prognosis using RSPF-based 

approach 
 

  The algorithm and the implemented software 
module have also been tested on the battery data set 
provided by the Prognostics Center of Excellence at 
NASA Ames research center (Saha and Goebel, 2007) 
with comparable results. It should be noted that since 
the capacity data is collected per charge-discharge 
cycle, the software does not need to run in real-time.  
 
4.2.2 Battery End-of-Charge Prediction 
In contrast to battery end-of-life prognosis which is 
important for the planning of long term or future 
missions, battery end-of-charge prognosis focuses on 
the prediction of battery charge state for the current 
mission given the health of the battery which has 
degraded over the course of use. When a vehicle is 
powered by batteries, its mission plan can be optimized 
in real-time if an accurate battery end-of-charge 
prediction capability is available on board the vehicle.  
 A particle-filtering based algorithm that uses a 
combined voltage and stored energy feature has been 
implemented in the Prognosis Server on the onboard 
computer. One of the challenges in predicting battery 
end-of-charge is to handle the uncertainties associated 
with the prognosis due to uncertain initial state of 
charge, ambient temperature, future load (discharge) 
profile and battery health, among other factors. 
Therefore, a particle filtering-based algorithm is chosen 
in this case study due to its unique uncertainty 
management capability and computational efficiency 
which enables real-time execution of highly accurate 
predictions. 
 Figure 10 below shows a set of battery voltage and 
current data collected on the testbed running a random 
varying load and the prognosis results. It is clear that 
the voltage signal (first subplot) is mainly affected by 
the load before the battery charge reaches a critical 
level at about 3500 seconds, then the voltage drops 
drastically to 10 V within 50 seconds. The current (as 
shown in second subplot) is totally determined by the 
load and only a trivial increase tending is observed 
towards the end when voltage drops. In the 3rd subplot, 
three end-of-charge predictions (PDFs) made at 1226, 
2451 and 3677 seconds respectively are shown. Since 
we know the true end-of-charge time in this case (3990 
seconds), it can be seen that the first and second 
predictions have been made conservatively due to the 
uncertainties associated with initial charge state and 
future load. The third prediction which was made when 
the voltage signal started to drop was rather accurate.   
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Figure 10: Battery data and end-of-charge prediction 

4.3 Prognostics-Enhanced Mission Planning 

A Mission Planning module which uses prognostic 
information to enhance the mission/path planning in a 
non-uniform environment has been implemented and 
deployed on the Client Laptop as shown in Figure 6.  
Prognostic information is introduced in order to ensure 
that the fault progression, or mission failure risk, can be 
minimized after the occurrence of a fault. This will 
enhance the performance of autonomous vehicles that 
often work in harsh environments that cause aging, 
fatigue, and fracture. 
 When a fault occurs, the mission planning module 
sends periodic RUL service requests to the Prognosis 
Server (Figure 6). The received RUL estimate 
(typically represented as a probability density function) 
is then used either as a constraint or an additional 
element in the cost function in the path planning 
algorithm, in this case, a field D* search algorithm, in a 
receding horizon planning framework (Zhang et al, 
2011).  
 In the field D* algorithm, the map is described by 
grids while nodes are defined on corners of grids. The 
planning algorithm divides the map into three areas: 
implementation area, observation area, and unknown 
area as shown in Figure 11. The autonomous vehicle is 
equipped with onboard sensors that are able to detect 
and determine the terrain in the observation area (the 
area inside the magenta square in Figure 11). The 
implementation area (the area inside the green square in 
Figure 11) consists of the gird next to the current node. 

The area beyond observation area is the unknown (un-
observed) area where the terrain is unknown to the 
vehicle (the gray area in Figure 11). At a node, the 
vehicle plans the path from the vehicle’s current 
location to the destination. However, only the path 
planned in the implementation area is executed. This is 
similar to the strategies used in Receding Horizon 
(Model Predictive) Control algorithms. This process is 
repeated until the destination is reached or it turns out 
that no route can lead to destination or the vehicle 
reaches its end of life. The cost function is the weighted 
sum of three factors and is defined as: 

   
 

'
min ( , ') ( ') ( , ') ( ')

( , ') ( ')

T o u Tr o u
s

Pr o u

J w t s s t s w d s s d s

w p s s p s

   

 
     

(1)

where to(s,s’), do(s,s’), and po(s,s’) are normalized 
travel time, terrain, and fault costs on the path segment 
from point s to point s’, respectively, while tu(s’), 
du(s’), and pu(s’) are those corresponding costs on path 
segment from point s’ to final destination, respectively; 
wT, wTr, and wPr are the weighting factors on each cost 
factor and wT+wTr+wPr=1. 

 
Figure 11: Receding horizon mission planning 

 
 To investigate how real-time prognostic information 
can be utilized in mission planning on the ACM 
testbed, we consider battery end-of-charge during the 
mission as a fault mode. In this case, the real-time 
battery prognosis routine described in section 4.2.2 is 
utilized to predict the state-of-charge of the battery. 
Note that battery remaining charge is a function of 
terrain difficulty and vehicle speed. Several laboratory 
experiments were conducted that illuminate the impact 
of battery prognostics on mission planning. 
Representative experimental results for four different 
optimality criteria are presented in Table 2. For 
example, it is apparent that when the mission plan is 
optimized for battery life (3rd column), the robot travels 
the longest distance and finishes the mission with the 
longest time, but consumes the least amount of battery 
life. In contrast, with the time optimal mission plan (1st 
column), the robot travels the shortest distance at a 
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higher speed, but consumes the most battery life. Both 
the mission planner and prognosis routine are 
implemented in real-time in the experiments.  
   
Table 2: Representative Mission Planning Experiment 

Results for Four Different Optimality Criteria 

 
Optimality Criteria 

Time  Terrain Life Weighted 

[wT,  wTr, wPr] [1,0,0] [0,1,0] [0,0,1] 
[0.33,0.33, 
0.34] 

Travelled 
distance 
(meters) 

21.26 24.56 24.81 24.45 

Travel time 
(seconds) 

114.2 202.2 125.9 126.4 

Remaining 
battery 

charge (%) 
67.9 82.3 91 88.1 

 

5. CONCLUSION 

Real-time onboard PHM and ACM systems are needed 
to improve the reliability and survivability of 
autonomous vehicles engaged in critical missions. 
Research and development of enabling techniques have 
been conducted in recent years to achieve the required 
capabilities using relevant simulation programs with 
various levels of fidelity. This paper presents the 
development of a testbed that is built for the purpose of 
evaluating real-time vehicle PHM and ACM techniques 
on a real robotic platform. The testbed has been utilized 
to demonstrate the feasibility of a hierarchical ACM 
system that we have been developing over the past 
years highlighting the importance of using PHM 
information in control reconfiguration and mission 
planning. Several key software modules featuring real-
time system level diagnosis, component fault prognosis 
and prognostics-enhanced mission planning have been 
successfully demonstrated on the testbed. Work 
continues on further development of the PHM-enabled 
control reconfiguration techniques and will eventually 
implement them on the testbed. More advanced 
situational awareness capabilities such as target 
tracking, localization and terrain classification will be 
developed so that the ACM techniques can be 
evaluated in more real world application scenarios. 
More importantly, efforts will be made to ensure the 
general applicability of the developed techniques to 
other types of autonomous vehicles such as UAVs and 
space exploration vehicles. 
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ABSTRACT

It is an inescapable truth that no matter how well a system
is designed it will degrade, and if degrading parts are not re-
paired or replaced the system will fail. Avoiding the expense
and safety risks associated with system failures is certainly a
top priority in many systems; however, there is also a strong
motivation not to be overly cautious in the design and mainte-
nance of systems, due to the expense of maintenance and the
undesirable sacrifices in performance and cost effectiveness
incurred when systems are over designed for safety. This pa-
per describes an analytical process that starts with the deriva-
tion of an expression to evaluate the desirability of future con-
trol outcomes, and eventually produces control routines that
use uncertain prognostic information to optimize derived risk
metrics. A case study on the design of fault-adaptive control
for a skid-steered robot will illustrate some of the fundamen-
tal challenges of prognostics-based control design.

1. INTRODUCTION

Some form of risk management can be seen in virtually every
decision that human beings make. Typically, the desirabil-
ity of future outcomes can be objectively evaluated; however,
evaluating the best present control decision is complicated by
uncertainty in estimating the future effects of control actions.
In the case of controlling a system with incipient faults, the
design objective is to obtain a system with high performance,
low maintenance cost, and low failure rates. The effects of
decisions regarding the design, maintenance, and operation

This is an open-access article distributed under the terms of the Cre-
ative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

of a system on its future performance, maintenance cost, and
failure rates are commonly estimated by using empirical data
or expert knowledge to assess probable outcomes.
The fault analysis process typically starts with the iden-
tification of potential failure modes and the quantification
of the severity and likelihood of each, based on expert
knowledge and historical data. The Failure Modes, Ef-
fects, and Critically Analysis (FMECA) is one of the most
widely applied a priori fault analysis methods; it is currently
nearly universally applied in industrial automation (Gergely,
Spoiala, Spoiala, Silaghi, & Nagy, 2008), automotive (SAE,
1994), and aerospace (Saglimbene, 2009) industries. Fault
Tree Analysis (FTA), Event Tree Analysis (ETA), Reliability
Block Diagrams (RBD), and other fault analysis techniques
that utilize historical failure rates will continue to play an ever
more prominent role in the design of hardware specifications
and contingency management policies.
In addition to the established practice of utilizing historical
fault data to manage failure risks, there is also a growing
push to develop technologies for online fault identification
and fault growth prediction to improve system operation and
maintenance. Online anomaly detection and diagnostic rou-
tines are enabling an increased use of condition based main-
tenance and control (CBMC) policies (Rao, 1998). Pseudo-
inverse (Caglayan, Allen, & Wehmuller, 1988), model pre-
dictive control (MPC) (Monaco, Ward, & Bateman, 2004),
and H2 and H∞ robust control theory (Doyle, Glover, Khar-
gonekar, & Francis, 1987) are commonly used methods to re-
cover controllability of a system after a known fault mode is
detected. Further improvements in performance and safety
are expected if the diagnostic information used by CBMC
routines is supplemented with prognostic routines that predict
the growth fault modes as a function of future use; however,
the development and use of prognostic information is typi-
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cally an extremely challenging proposition due to significant
uncertainty in predicting future fault growth. Prudent meth-
ods for modeling fault diagnostic and prognostic uncertainty
should be selected on a case-by-case basis; particle Filtering
and Bayesian Reasoning are commonly used for estimating
fault magnitudes and predicting future growth based on un-
certain measurements and physical modeling (Arulampalam,
Maskell, Gordon, & Clapp, 2002; Orchard, Kacprzynski,
Goebel, Saha, & Vachtsevanos, 2008; Saha & Goebel, 2008;
Sheppard, Butcher, Kaufman, & MacDougall, 2006).
The analytical approach to fault-adaptive control design that
is introduced in this paper will assume that a non-empty
space of current control actions to maintain system stability
is known, and the controller must attempt to select control
actions from that space to best manage the risk posed by de-
grading components. The future effects of control actions will
be represented by generic probability distributions and con-
trol actions for best risk management will be derived by at-
tempting to optimize an objective function that quantifies the
relative aversion to the risk posed by further degrading com-
ponents and the risk of degrading future system performance.
Candidate metrics for evaluating risk from uncertain prognos-
tic estimates may be drawn from the growing body of publi-
cations on vehicle health management (IVHM) (Srivastava,
Mah, & Meyer, 2008); although, nearly all current studies in
this area consider only end of life predictions in risk calcula-
tions and ignore data regarding short term fault growth, which
will not be ideal in many cases. Literature on risk manage-
ment in finance and actuarial science contain a rich array of
tools that facilitate flexible risk-reward analysis on a contin-
uous scale over a finite horizon. For example, Black-Scholes
models (Lauterbach & Schulz, 1990) and value at risk (VaR)
(Venkataraman, 1997) are prolific financial risk management
tools that are also promising candidates for analyzing prog-
nostic predictions (Schreiner, Balzer, & Precht, 2010).
This paper will explore the fundamental principles behind the
derivation, verification, and validation of controls for optimal
risk management on systems with incipient faults that grow in
severity with increased component loading. The utility of var-
ious VaR based risk metrics for evaluating risk over a prog-
nostic horizon, will be explored in a case-study on the use
of prognostics-based load-allocation control for an unmanned
ground vehicle (UGV).

2. PROGNOSTICS FOR RISK MANAGEMENT

The risk analysis process should begin with the definition of
an analytical expression to evaluate the desirability of future
control outcomes. In practice some form of scenario analy-
sis should be used to derive and validate evaluation metrics
though empirical studies (Abhken, 2000). Evaluation func-
tions for future control outcomes represent the relative value
of preserving nominal system performance and minimizing
component degradations or failures for given scenarios.

A general form of an outcome evaluation function is

JM (x (t)) + Jd
(
dTi
)
, {t = t0..T}, {i = 1, 2, ..N} (1)

where x (t) represents the system state at time t, dTi represents
the amount that component i has been degraded at the end of
the mission, JM (x (t)) evaluates how well the system con-
formed to mission specifications and mission priorities over a
mission that starts at t = t0 and ends at t = T , and Jd

(
dTi
)

evaluates the cost associated with the final state of degrada-
tion for each of the N components. The problem of specify-
ing control actions to maximize this evaluation function will
be referred to as the intrinsic optimization problem.
Due to uncertainty in the way faults grow with component
loading and uncertainty regarding external operating condi-
tions, it is generally impossible to design a controller that
solves the intrinsic optimization problem directly; however,
any control technique that claims to manage or mitigate the
risk posed by load dependent fault modes can be viewed as
being implicitly derived based on the optimization of an in-
trinsic cost function. The development of analytical tools that
utilize knowledge of the intrinsic cost function in the design
of prognostics-based fault-adaptive controllers will facilitate
an understanding of the benefits of proposed approaches, as
well as their fundamental limitations.

3. COMPONENT LOAD-ALLOCATION

In a broad variety of systems the performance of the system
and the growth of potential faults can be viewed as being di-
rect functions of component loads. In general, the fault adap-
tive control problem can be fully understood in terms of a
search for optimal performance and risk metrics that are eval-
uated on the space of allowable component loads over a given
prognostic horizon. The space of allowable component load-
allocations over a given prognostic horizon and the methods
used to derive that space, will vary from one application to
the next; however, many aspects of the fundamental search-
ing problem will be invariant across a range of applications,
facilitating the development of widely applicable analysis and
control techniques.
The domain of allowable component load allocations over a
given prognostic horizon will be defined at each control time-
step using available system modeling and prognostic informa-
tion to translate tolerances on performance degradations and
fault growth risks into the component control domain. If the
system is overactuated then the search for optimal compo-
nent load allocations can be decomposed into two reduced-
order sub-problems. An output control effort optimization
will search for the optimal net system output control effort,
and a restricted component load optimization will utilize any
inherent overactuation in the system to find load allocations
that minimize component degradations while providing the
system output force requested by the output control effort op-
timization routine.
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The separation of the component loading and system output
regulation tasks will be shown for a generic nonlinear system,

ẋ = A (x) +B (x)u (2)

where A (x) ∈ Rn, B (x) ∈ Rn×m, x (t) ∈ Rn, is the state,
and u (t) ∈ Rm is the control effort or load on each of the
m components in the system. If B (x) does not have full col-
umn rank, i.e, rank{B (x)} = k < m ∀x, then the system is
overactuated, and B (x) can be factorized as:

B (x) = Bν (x)Bu (x) (3)

where Bν (x) ∈ Rn×k and Bu (x) ∈ Rk×m both have rank
k. Now the system can be rewritten as:

ẋ = A (x) +Bν (x)ν
ν = Bu (x)u

(4)

where ν(t) ∈ Rk can be interpreted as the net control effort
produced by the m system components.
Because Bν (t) has full column rank, a desired system out-
put will uniquely determine the net output control effort,
ν (t) (using the pseudo inverse); however, since Bu (x) has
a nullspace of dimension m − k there are available degrees
of freedom in assigning component loads, u (t), for a given
ν. Then component loads for best risk management can ef-
fectively be expressed as a function of ν, where any inherent
redundancies in actuation, identified by the null space of Bu,
are used to minimize component damages while still resulting
in the net control effort commanded.
Practical applications of control allocation are currently found
in aerospace (Gokdere, Bogdano, Chiu, Keller, & Vian, 2006;
Karpenko & Sepehri, 2005) and automotive vehicles (Hattori,
Koibuchi, & Yokoyama., 2002). A survey of efficient meth-
ods for determining the optimal control allocation for general
linear and nonlinear systems is discussed in (Oppenheimer,
Doman, & Bolender, 2006). Proof of the equivalence of
this type of control allocation and optimal control is given
in (Harkegard & Glad, 2005), for nonlinear systems with
quadratic cost functions.

3.1 Load-Allocation as a Bounded Optimization

The objective of the general fault-adaptive control problem is
to select the current component load allocations in an attempt
to optimize the system’s intrinsic cost function. In this work,
component loads are allocated at the current control time-step
by attempting to optimize an objective function that uses sys-
tem modeling and fault prognostic information to quantify the
expected trade-off between system performance and fault risk
over a specified prognostic horizon. Constraints on allow-
able system performance and fault growth risk over a prog-
nostic horizon will be enforced in the domain of allowable
component load allocations in an attempt to satisfy minimum
remaining-useful-life requirements for failing components.

The analysis presented in this document will use a fault risk
metric of the following generic form:

f
(
d̃i (t+ τ)

)
, Pr

(
di (t+ τ) > d̃i (t+ τ)

)
=α,

{i = 1, 2, ..N} , given {ui (t) ...ui (t+ τ)} (5)

where τ is the length of the prognostic horizon, di (t) is the
estimated degradation of component i at time t, d̃i(t + τ)
is a VaR estimate for component damage at the prognostic
horizon, and f(d̃i(t + τ)) represents a risk metric that penal-
izes VaR estimates. VaR estimates are defined as the thresh-
old damage such that the probability of the actual damage
exceeding a given magnitude at a given future time equals
α. Published literature contains relatively few examples of
VaR being employed to manage the risk posed by incipient
fault models; however, VaR is a standard risk assessment
tool in finance, and it is powerful and widely applicable tool
for risk management in systems with degrading components
(Schreiner, Balzer, & Precht, 2008; Schreiner et al., 2010;
Venkataraman, 1997).
A general form of the cost function used to represent the rel-
ative aversion to the risk of degrading future system perfor-
mance and the risk posed by degrading components is

g (|ν − r|) |t+τt + f
(
d̃i (t+ τ)

)
(6)

where r represents the desired net output control effort re-
quired for nominal performance and g(|ν−r|) penalizes per-
formance degradation over a given prognostic horizon.
In published literature on prognostics for risk management
there is a nearly ubiquitous use of expected remaining use-
ful life (RUL) or expected time to failure (TTF) estimates to
assess risk; however, in general, the methodology used to as-
sess risk from fault prognosis information should be tailored
to the system’s expected use, its maintenance costs, the dan-
ger of potential failure modes, and the growth of uncertainty
over a prognostic horizon. In this paper, the length of the
prognostic horizon and the utility of various metrics for quan-
tifying risk from prognostic predictions will be explored as a
design choice. In cases where RUL or TTF based risk metrics
are deemed most appropriate they can be realized as a spe-
cial case of finite horizon prognosis, in which the prognostic
horizon is extended until component failure is assured.
Constraints on allowable system performance are defined ei-
ther in terms of a maximum deviation from commanded sys-
tem states or a maximum deviation from the desired nominal
system output force at a given time,

|yc − yo| ≤∆ (t) (7)

|ν − r| ≤ ∆̃ (t) (8)
A finite horizon prognosis constraint will place an upper-
bound on the probability that a component will become dam-
aged by more than a specified amount over the prognostic
horizon. This constraint is written as follows:

Pr (di (t+ τ) > γi (t+ τ) |ui (t)) ≤ β (9)

3
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where γi (t+ τ) is the maximum allowable fault dimension at
time t+τ and β is the upper bound on the probability that the
fault dimension of component i is larger than its maximum
allowable value at time t+ τ .

3.2 Verifying Constraint Feasibility

If the future performance requirements are known in advance,
then the existence of feasible solutions to the optimal compo-
nent load allocation problem can be verified by first finding
the minimum allowable net output control effort needed to
satisfy the performance constraints;

ν̃ = min
ui

{ν} , s.t. |ν − r| = ∆̃ (t) , ∀t (10)

where ν̃ is the minimum allowable net output control effort
under the performance constraint. Feasible solutions to the
optimal load-allocation problem exist if there exists a distri-
bution of component loads that result in ν̃ and do not violate
the prognostic constraint at the end of the mission. This con-
dition is written as follows:

Pr (di (T ) > γi (T ) |ui (t)) ≤ β,
s.t. ν̃ = Bu (x (t))u, t ∈ [t0, T ] (11)

4. UGV APPLICATION EXAMPLE

Simulation studies for optimal load-allocation on a skid-
steered UGV will demonstrate some of the fundamental prop-
erties of the proposed control methods. As shown in Figure
1, each of the wheels in a skid steered vehicle are fixed to the
frame and are pointing straight forward. The system is over-
actuated, as the four motors of the four-wheeled UGV are
linked through their mutual contact with the ground. Assum-
ing that all of the robot’s wheels are getting approximately
the same traction, then a skid-steered wheeled vehicle will
behave much like a treaded vehicle. In the presented simu-
lation studies the UGV’s modeling is simplified by treating
it as a treaded vehicle. The net output control effort of the
modeled UGV is defined as follows:

ν=

[
νf
νφ̇

]
=

[
T1 + T2 + T3 + T4
T1 + T2 − T3 − T4

]
=

[
TL + TR
TL − TR

]
(12)

where νf represents the net motive torque applied in the di-
rection of travel, νφ̇ represents the net turning torque, TL is
the sum of the motor torques on the left side of the robot, and
TR is the sum of the motor torques on the right side of the
robot.
The UGV model is

Mẋ = −C (x) +B · u
y =

[
r
2

r
2−r

αW
r
αW

]
x

x =

[
wl
wr

]
=

[
w1

w3

]
=

[
w2

w4

]

u =
[
T1 T2 T3 T4

]T
, y =

[
v
φ̇

]
(13)

M =




mr2

4 + r2I
αW 2

mr2

4 − r2I
αW 2

mr2

4 − r2I
αW 2

mr2

4 + r2I
αW 2




B =

[
1 1 0 0
0 0 1 1

] (14)

where the coefficients in this model are defined in Table 1.
Note that the UGV model is linear except for a possibly non-
linear fictional force, C (x), and the system is overactuated,
because the B matrix does not have full column rank.
In simulations linear kinetic friction will be used,

C (x̂) =

[
k/2 k/2
k/2 k/2

]
(15)

M1

F1

F2

F3

F4

W

νf

v

M2

φ& φ&ν

M4

M3
Ti Fi

Figure 1. Visualization of motor torque allocation for a UGV

Symbol Description Units Value
r Wheel radius m 0.1
W Vehicle width m 0.4
I Wheel rotational inertia kg·m2 0.1
m Vehicle mass kg 1

C (x) Frictional force N -
wi Wheel speed of motor i rad/s -
wl Left side wheel speed rad/s -
wr Right side wheel speed rad/s -
Ti Torque produced by motor i N·m -
v Vehicle speed m/s -
φ̇ Vehicle angular velocity rad/s -
α Terrain-dependent parameter - -

Table 1. Definitions of symbols used in the UGV model

4.1 Prognostic Modeling

Winding insulation breakdown is a primary failure mecha-
nism for the UGV’s motors. The following model is used
to estimate winding insulation lifetimes as a function of tem-
perature,

LN (t) = αe−βTW (t) (16)
where LN is the expected remaining useful life (RUL) for
new insulation in seconds and TW (t) (◦C) is the winding
temperature at time t (Montsinger, 1930).
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The RUL estimate for a motor winding at any given time is
calculated using:

L (t) = LN (t) ·
(
1− d (t)

100

)
(17)

where d(t) is the percentage of insulation lifetime used prior
to time t,

d (t) =

∫ t

0

dτ

L (τ)
(18)

A probability distribution is added to the α coefficient in Eq.
(16) to capture uncertainty in the prognostic model. Fig-
ure 2 shows the resulting probabilistic insulation life ver-
sus temperature model, where the pdf’s mean corresponds
to α = 105 (s) , and standard deviations are given by α =
105 ± 1.5 × 104. The β coefficient in Eq. (16) is set to
0.035 (◦C−1).
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10
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10
3

10
4
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R
U

L ne
w

(s
)

4 σ

Figure 2. Addition of an uncertainty pdf to the insulation
breakdown model.

Thermal Model
A first order thermo-electrical model, shown in Figure 3, is
used to track the winding-to-ambient temperature as a func-
tion of copper losses,

Ṫwa = − Twa(t)

RwaCwa
+
Ploss(t)

Cwa
(19)

where Twa is winding-to-ambient temperature, Ploss is power
loss in the copper windings, Cwa is thermal capacitance, and
Rwa is thermal resistance.

Figure 3. Thermal model for motor windings

5. SIMULATION STUDIES

In simulation studies of the UGV load-allocation problem, the
intrinsic optimization problem, introduced in Eq. (1), is de-
fined using the following performance and component degra-
dation penalties:

JM (ν) =
1

T

∫ T

0

exp |φc (t)− φ (t)|+Kp1 (20)

Jd (u) = max
i

[
exp

(
d̃i (T )

)
· 4
3

]
+Kp2 (21)

where φc(t) and φ(t) represent waypoints for the desired and
actual path followed by the UGV respectively. Kp1 and Kp2

are penalty functions that effectively enforce constraints on
the maximum acceptable path error and the maximum accept-
able VaR estimate at the end of a mission. Performance and
component degradation constraints are defined as follows:

|φc(t)− φ(t)| < 1, ∀t ∈ [0, .., T ] (22)

d̃i (T ) < 90% (23)

The performance and prognostic penalties introduced in Eq.
(5) and Eq. (6) are defined as follows:

g (|ν − r|) =
∫ t+τ

t

∣∣∣∣exp
([

rf − νf
rφ̇ − νφ̇

])∣∣∣∣ dz (24)

f
(
d̃i (t+ τ)

)
=λ ·

4∑

i=1

[ exp
(
d̃i (t+ τ)− γi (t+ τ)

)

+ exp
(
d̃i (t+ τ)

)
+Cp] (25)

Pr
(
di (t+ τ) > d̃i (t+ τ)

)
=2% (26)

where λ represents the relative value of maximizing perfor-
mance and minimizing component degradations, γi (t+ τ) is
an upper-bound on the 98% confidence VaR estimates at time
t + τ , and Cp is an additional penalty that effectively disal-
lows controls that cause the upper VaR bound to be exceeded
(if other solutions exist). Simulation studies presented later in
this paper will explore the effect of varying τ and λ on the sys-
tem’s intrinsic evaluation function. In the reported simulation
studies, γi (t+ τ) is defined using a linear interpolation from
d̃i(t) to the maximum allowable degradation at the end of the
mission. The effect of varying the formulation of γi (t+ τ)
on load-allocation in a triplex redundant electro-mechanical,
was explored in a previous publication (Bole et al., 2010).
In simulations, the cost of possible motor load allocations is
evaluated by assuming that the current demands on the sys-
tem and the current component load allocations are constants
over the prognostic horizon. The space of feasible motor-load
allocations to be searched over is defined by the following
performance constraint:

0.8 · rL ≤ TL ≤ 1.2 · rL
0.8 · rR ≤ TR ≤ 1.2 · rR (27)
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Figure 4. Plots of winding insulation degradation estimates (mean and ± 2 standard deviations) on the desired UGV path (a)
and the minimum allowable performance path (b), using λ & τ such that Jd (u (t)) |λ,τ = minλ,τ [Jd (u (t))]

where rL and rR are desired net control effort outputs from
the left-hand and right-hand motors respectively. The desired
torque output from the UGV at a given time instant is defined
by the following proportional control law:

r=

[
rL + rR
rL − rR

]
=rref (t)+

[
p1 · cos (φe) · ed
p2 · sin (φe)

]
(28)

where rref (t) is output control effort that would be used at
time t if the vehicle followed the reference path exactly, pi are
the proportional control coefficients, φe is the vehicle’s head-
ing error with respect to the reference path, and ed is the ve-
hicle’s position error with respect to the reference path. Com-
ponent load allocations for best risk management are found at
each time-step by evaluating the objective function on a suf-
ficiently dense uniform grid over the space of all component
load allocations satisfying the performance constraints.

5.1 Verifying Mission Feasibility

In the simulation studies discussed here, the four-wheeled
UGV is commanded to follow a figure-8 type path. By de-
sign, the commanded path is so demanding that following it
exactly will yield no solutions to the load-allocation problem
that satisfy the final VaR constraint (defined in Eq. (23)). The
existence of solutions to the load-allocation problem that will
not violate the performance and VaR constraints for the given
mission is proven by verifying that using the minimum allow-
able UGV performance over the mission will allow all mo-
tors to end the mission with adequate health. Figure 4 shows
simulation results for load-allocation controls that minimize
the final VaR evaluation metric (defined in Eq. (21)) on the
minimum allowable UGV performance path and the desired
UGV path. As shown in the figure, the motors on each side
of the vehicle are initialized at different levels of degrada-

tion in order to observe discrimination in the allocation motor
loads based on their relative healths. The simulation results,
shown in Figure 4, prove that although following the desired
UGV path exactly is guaranteed to result in violation of the
final VaR constraint, the load-allocation problem does have
feasible solutions satisfying both the performance and VaR
constraints.

5.2 Control with Foreknowledge of the Mission and the
Fault Growth Model

Due to the fact that in simulation studies the desired path for
the UGV and a fault growth model are known in advance,
the optimal load allocations over the given mission can be
approximated without the need for prognosis. Analysis of
the direct optimization of the system’s intrinsic cost func-
tion over a known mission will provide substantial insight into
the development of prognostics-based risk-management con-
trollers. Optimization routines will specify candidate UGV
paths over a mission by defining a set of waypoints and using
a third order spline to interpolate between those points.
The search space for the path planning routines is the set all
adjustments to given waypoints that will not violate the per-
formance constraint, given in Eq. (22). The net output control
effort output required to follow a given path is found by in-
verting the modeled UGV dynamics given in Eq. (13),

[
TL (t)
TR (t)

]
= f−1

(
φp (t)

)
, ∀t ∈ [0, .., T ] (29)

where φp (t) is the (x,y) position of the UGV at time t.
Individual motor load allocations are derived using the fol-
lowing expression for splitting load proportionately among
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Figure 5. Results of search for optimal figure-8 path

d̃1 (T ) d̃2 (T ) d̃3 (T ) d̃4 (T ) Jd|T0 JM |T0 (JM + Jd) |T0
min allowable performance path 49% 73% 49% 73% 2.76 2.16 4.93

load-allocation with future knowledge 64% 64% 64% 64% 2.52 1.69 4.21
prognosis based load-allocation 70% 86% 70% 86% 3.17 1.58 4.76

Table 2. Results of simulation studies

the two motors on each side of the vehicle:
T1 (t) · k1 + T2 (t) = TL (t)
T3 (t) · k2 + T4 (t) = TR (t)

(30)

Optimal motor load allocations for a given path are derived
by evaluating Eq. (1) over sufficiently dense uniform grid on
k1 and k2, and selecting the value resulting in minimum cost.
Figure 5 shows plots of the desired UGV path, the bounds
on allowable path error, and an approximation of the optimal
UGV path, for one cycle of the commanded figure-8 maneu-
ver. The simulated mission consists of eight repetitions of
this figure-8 maneuver. A nested optimization is used to es-
timate the optimal motor load allocations over the given mis-
sion. An outer-loop optimization routine uses a gradient de-
scent search over the space of allowable adjustments to a set
of waypoints, where the space of allowable adjustments to
each waypoint is shown in Figure 5 as the linear region be-
tween the black circles. An inner loop optimization routine
finds the net output torque from the left-hand and right-hand
motors required to follow eight repetitions of a given figure-
8 path, and then searches for the optimal proportional load
split among the motors on each side of the vehicle using the
uniform grid method described earlier.
Estimates of the optimal VaR metrics for the winding insu-
lation degradations and the control evaluation costs for the
given mission are shown in Table 2. Note that the estimated
optimal motor load-allocations will result in final winding

VaR estimate being nearly equal for all four motors, due the
fact that the control evaluation function is defined to penalize
only the highest motor degradation. Also, note that the er-
ror between the commanded and the estimated optimal path
is greatest in the extreme upper and lower regions of the
figure-8 path because introducing an error in those regions
results in the greatest reduction in the total distance traveled
by the UGV. Both of these results are expected when the fu-
ture commanded UGV path and the future fault grown model
are known in advance; however, in general, it will be very
difficult to match those results with controllers that rely on
uncertain predictions of future states.

5.3 Prognostics-Based Control

At each control time-step, a prognostics-based controller will
allocate motor loads to best manage the risk posed by uncer-
tain estimates of future system performance and fault progno-
sis. In simulation, motor load-allocations for best risk man-
agement are derived by evaluating Eq. (6) on a sufficiently
dense uniform grid over the space of all motor loads satisfying
the performance constraint. Fundamentally, the prognostics-
based control problem is to specify risk-reward evaluation
metrics, of the form given in Eq. (6), that will result in
the derived controls coming as close as possible to match-
ing the minimum control evaluation metric achievable using
foreknowledge. Figure 6 shows plots the intrinsic evaluation
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(a) Performance degradation penalty (b) Motor degradation penalty

(c) Net evaluation metric

0 50 100 150 200 250 300
0.75

0.8

0.85

0.9

0.95

1

1.05

Time (s)

��
�

 

 

��
��
��
��

(d) Net control effort outputs for best computed λ & τ

Figure 6. UGV simulation results for λ = [0, 3, 6, ..., 160] and τ = [.4, 1.6, 2.8, ..., 24.4]; optimal value at λ = 100 & τ = 3.6s

metrics over a range of values for the prognostic horizon, τ ,
and the weighting factor, λ. The intrinsic evaluation metrics,
shown in the plots, were obtained by computing the optimal
motor load-allocations at each control time-step, after substi-
tuting τ and λ into the evaluation functions for predicted fu-
ture component degradations and system performance, which
were defined in Eq. (24) and Eq. (25). In general, as the
prognostic horizon is increased the increased uncertainty in
fault growth predictions will result in a greater perceived risk,
and thus a more conservative control. Also, increasing the
weighting factor, λ, on the prognostic penalty will tend to re-
sult in solutions with higher path errors and less component
degradations. Plots of the intrinsic evaluation metrics versus
λ and τ show these general trends. The trough seen in Fig-
ure 6 (c) indicates a domain of τ and λ values corresponding
to controls that are neither overly conservative nor overly ag-
gressive. The best computed intrinsic control evaluation costs
and the corresponding winding insulation degradation VaR’s
at the end of the mission are given in Table 2. Future work
will continue to explore the analytical relationships between
the metrics used to evaluate risk from prognostic estimates
and their resultant performance on example systems.

6. CONCLUSION

Any control technique that claims to manage or mitigate the
risk posed by load dependent fault modes can be viewed
as being implicitly derived based on the risk-reward opti-
mization that was explicitly addressed in this work. The
paper introduced a methodology for deriving and validating
prognostics-based fault-adaptive control routines that began
with the derivation of an expression for evaluating the desir-
ability of future control outcomes, and eventually produced
control routines that sought to optimize derived risk met-
rics using uncertain prognostic information. A case study on
the design of fault-adaptive control for a skid-steered robot
demonstrated some of the challenges associated with deriv-
ing risk metrics that will minimize the risk of component fail-
ures without becoming overly conservative and unnecessarily
sacrificing performance. Future work will introduce more so-
phisticated methods for utilizing stochastic prognostic infor-
mation to associate risk with a given distribution of compo-
nent loads; more sophisticated methods for solving the result-
ing stochastic optimization problems will also be explored.
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ABSTRACT
Maintenance of critical or/complex systems has recently
moved from traditional preventive maintenance to Con-
dition Based Maintenance (CBM) exploiting the ad-
vances both in hardware (sensors / DAQ cards, etc.)
and in software (sophisticated algorithms blending to-
gether the state of the art in signal processing and pat-
tern analysis). Along this path, Environmental Control
Systems and other critical systems/processes can be im-
proved based on concepts of anomaly detection, fault di-
agnosis and failure prognosis. The enabling technolo-
gies borrow from the fields of modeling, data processing,
Bayesian estimation theory and in particular a technique
called particle filtering. The efficiency of the diagnostic
approach is demonstrated via simulation results.

1. INTRODUCTION
Heating, Ventilating and Air Conditioning (HVAC) sys-
tems have a large span of applications ranging from in-
dustrial buildings, households to small scale units in-
stalled in aerial and ground vehicles operating as part
of Environmental Control Systems (ECS). Defective or
faulty operation of such systems have both environmen-
tal and economical impact. Typical drawbacks are high
operating cost, maintenance cost and thermal discom-
fort.

A standard ECS system is composed of four main
components that are encountered in subcritical vapor
compression cycles: The evaporator, condenser, Ther-
mostatic Expansion Valve (TEV) and compressor. The
refrigerant enters the compressor as a superheated va-
por at a low pressure. In the compressor, the refrig-
erant is compressed to a high pressure and it is routed
to the condenser. At this higher pressure, the refriger-
ant has a higher temperature than the ambient conditions
and the refrigerant condenses. The refrigerant exits the
condenser as a subcooled liquid at a higher pressure and
passes through the thermostatic expansion device. At the

This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are
credited.

exit of the expansion valve, the refrigerant is at low pres-
sure and routed to the evaporator. At this lower pres-
sure the refrigerant has a lower temperature than ambi-
ent conditions, therefore heat is transferred to the refrig-
erant, and the refrigerant evaporates. Finally the refrig-
erant re-enters the compressor and the cycle is repeated.
The main components as well as the several phases of
the thermo-fluid in a vapor compression cycle with two-
phase heat exchangers are depicted in Figure 1.

From first principles modeling, the dynamic behavior
of thermo-fluid systems is dictated by highly coupled,
nonlinear partial differential equations. Such equations
are both complicated to handle for analysis and conduct-
ing numerical simulations. The main difficulty in the dy-
namic modeling of vapor compression cycles is the rep-
resentation of the thermo-fluid inside the two-phase heat
exchanger. Wedekind’s work (Wedekind, Bhatt, & Beck,
1978) indicated that two-phase transient flow problems
can be converted into lumped-parameter systems of non-
linear ordinary differential equations assuming that the
mean void fraction remains relatively invariant in the
two-phase section of a heat exchanger. This approach
has also been adopted in this paper following the work
reported in (X. He, 1996; X.-D. He & Asada, 2003; Ras-
mussen, 2005).

The ECS systems are subjected to various fault con-
ditions. A survey for the most common faults encoun-
tered in ECS systems is given in (Comstock, Braun, &
Groll, 2002). In this paper, the fault under consideration
is the refrigerant leakage that takes place in the evapo-
rator. According to (Braun, 2003), refrigerant leakage
accounts for about 12% of the total service calls in re-
sponse to a loss of cooling. All refrigeration systems
have the potential to leak because pressures in the system
are usually many times higher than atmospheric. Loss of
refrigerant from industrial and commercial refrigeration
systems can occur: (a) due to gradual leakage from joints
or seals (b) through accidental rapture of a pipe or joint
takes place and results in a significant loss of refrigerant
charge in a short period of time and (c) during servicing
when some refrigerant can be accidentally vented to gain
access to a section of pipe or a given piece of equipment
for repair.

A statistical rule-based method for Fault Detection
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Figure 1: Main components of the vapor compression
cycles and thermo-fluid phases

and Diagnosis (FDD) has been applied in for packaged
air conditioning systems in (Li & Braun, 2003; Rossi &
Braun, 1997) and for rooftop air conditioner in (Breuker
& Braun, 1998). In (Stylianou & Nikanpour, 1996),
an FDD method is employed for reciprocating chillers
utilizing physical modeling, pattern recognition and ex-
pert knowledge. An on-line refrigerant leakage detec-
tion scheme is proposed in (Navarro-Esbri, Torrella, &
Cabello, 2006) using adaptive algorithms.

This paper presents the implementation of an on-
line particle-filtering-based framework for fault diagno-
sis and failure prognosis in a two-phase heat exchanger
of an ECS. The methodology considers an autonomous
module, and assumes the existence of fault indicators
(for monitoring purposes) and the availability of real-
time measurements. The fault detection and identifica-
tion (FDI) module uses a hybrid state-space model of the
plant, and a particle filtering algorithm to calculate the
probability of leakage in the evaporator; simultaneously
computing the state probability density function (pdf) es-
timates.

The failure prognosis module, on the other hand com-
putes the remaining useful life (RUL) estimate of the
faulty subsystem in real time, using the the detection
algorithm current state estimates of the nonlinear state-
space fault growth model and predicts the evolution in
time of the probability distribution of the leaked mass.

The enabling technologies borrow from the fields of
modeling, data processing, Bayesian estimation theory
and in particular a technique called particle filtering. The
proposed FDI framework is enhanced with an additional
particle filtering routine that is executed in parallel with
the state estimator, which estimates the unknown model
parameters of the leakage progression model. The sim-
ulation result indicate that the proposed dual particle fil-
tering scheme is highly adaptive and reliable even for
abrupt crack that cause leakage.

This methodology allows the inclusion of customer
specifications (statistical confidence in fault detection,
minimum prediction window, etc.) in a simple and di-
rect way. Moreover, all the outcomes are easily provided
to plant operators through real-time updated graphs and
may be easily coded and embedded in compact modules.

This paper is organized as follows: Section 2 presents
the evaporator model which was used for the numerical
simulations. In Section 3 the leakage flow rate progres-
sion model is given. The technical approach of the de-
tection algorithm is presented in Section 4. The prognos-
tic module is presented in Section 5. Results in the form
of numerical simulations are given in Section 6. Finally,
concluding remarks are given in Section 7.

2. EVAPORATOR MODELING
For the dynamic representation of the evaporator, this pa-
per adopts the modeling approach introduced by (Grald
& MacArthur, 1992; X.-D. He & Asada, 2003; Cheng,
He, & Asada, 2004). This approach is based on the work
reported in (Wedekind et al., 1978) where a mean void
fraction is used in the two-phase region of the heat ex-
changer. The model converts the two-phase evaporat-
ing flow system into a type of lumped parameter system.
The dynamics of the two heat exchangers use a moving
boundary layer model to separate the distinct two-phase
liquid from the single-phase superheated of the evapora-
tor. Based on (X. He, 1996), the fundamental standing
assumptions of the heat exchangers dynamic model are:

1. One dimensional fluid flow
2. Negligible heat conduction along the axial direc-

tions of heat exchangers
3. Invariant mean void fraction in the two-phase sec-

tions during a short transient
4. Negligible refrigerant pressure drop along the heat

exchangers
Using the mean void fraction assumption the mass bal-
ance equation can be written as:

d

dt
{[ρl (1− γ̄) + ρgγ̄]Atle} = ṁin − ṁmid (1)

where γ̄ is the mean void fraction, le is the tube length
that corresponds to the two-phase section,At is the cross
section area of the tube, ṁin is the inlet flow rate, ṁmid
is the flow rate of the moving boundary, and ρl, ρg are the
refrigerant’s liquid and vapor density in the two-phase
section. The energy balance equation can be written as:

d

dt
{[ρlhl (1− γ̄) + ρghgγ̄]Atle} =

[hl (1− x)+hgx]︸ ︷︷ ︸
hin

ṁin−hgṁmid+leπUwDt (Tw−Te)︸ ︷︷ ︸
Q(le,Te,Tw)

(2)

where x is the inlet vapor quality, Dt is the diameter of
the tube, Uw is the heat transfer coefficient between the
tube wall and the refrigerant, Te is the temperature of
the refrigerant in the two-phase section, Tw is the tem-
perature of the tube wall, and hl, hg are the specific en-
thalpies of the refrigerant liquid and vapor, respectively.
The first term in the right hand side of Eq. (2) represents
the rate at which energy enters the two-phase region by
the inlet mass flow rate, the second term represents the
rate at which thermal energy exits the two-phase region,
by the outlet mass flow rate. The last term represent the
heat transfer rate from the tube wall to the refrigerant.
Multiplying Eq. (1) with hg and subtracting Eq. (2) one
gets:

d

dt
[ρl (1− γ̄)hlgAtle] = (1− x)hlgṁin −Q (3)

where hlg = hg − hl. Assuming that the refrigerant
properties remain constant over the time step, the moving
boundary dynamics can be written as:

2

Annual Conference of the Prognostics and Health Management Society, 2011

78
[paper 9]



Annual Conference of the Prognostics and Health Management Society, 2011

γ̄, Te

SuperheatedTwo-phase

le

Le

Ta
TwTw
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Figure 2: Schematic of the evaporator

dle
dt

= −πUwDt (Tw − Te)
ρl (1− γ̄)hlgAt

le+
1− x

ρl (1− γ̄)At
ṁin (4)

The dynamic equation of the system’s second state
variable is produced by the vapor balance in the evapora-
tor. The vapor mass flow rate entering the evaporator is
ṁinx. The vapor mass flow rate exiting the evaporator is
ṁout while the rate of vapor generated from liquid dur-
ing the evaporation process in the two-phase section is
Q(le, Te, Tw)/hlg. Assuming that in the evaporator the
vapor volume is significantly larger than the liquid vol-
ume, the vapor balance equation is given by:

dme

dt
= Ve

dρg
dt

= ṁinx− ṁout +
Q

hlg
(5)

where me and Ve are the total vapor mass and total vol-
ume of the evaporator. Since ρg is the denotes the vapor
saturated density, from the state equation one can easily
obtain the one-to-one mapping Te (ρg(t)).

It is assumed that the wall temperature is spatially uni-
form. The one dimensional energy balance equation for
the tube wall is given by

cwpwAw
dTw
dt

= UwAw(Te − Tw) + UaAa(Ta − Tw)

(6)
where cw, pw and Aw are the specific heat, density and
cross sectional area of the tube wall, respectively. In ad-
dition, Ua denotes the heat transfer coefficient between
the tube wall and the air, Aathe surface area between the
tube wall and the air and Ta the air exiting temperature
from the evaporator. Similarly, assuming that the air exit
temperature is spatially uniform, the one dimensional en-
ergy balance equation can be written as

capaAa
dTa
dt

= UwAw(Tw − Ta) + ṁa(TA − Ta) (7)

where ca, pa and Aa are the specific heat, density and
cross sectional area of the air tube, respectively. The
variable TA denotes the air temperature at the entrance
of the evaporator and ṁa the air flow rate.

3. REFRIGERANT LEAKAGE MODEL
The refrigerant leakage is produced typically by a crack
in the system pipes or by a faulty connection of the pipe
system joints. Based on (Merritt, 1967), the mass flow
rate of the leaked refrigerant is given by the following
equation:

dmleak

dt
= cdAl

√
2ρ(P − Po) (8)

where mleak is the mass of the leaked refrigerant, cd is
the discharge coefficient, Al is the crack surface, ρ is the
refrigerant density, P is the refrigerant pressure inside
the pipe and Po is the refrigerant pressure outside the
pipe. Assuming that the outer pressure is significantly
smaller than the refrigerant pressure inside the pipe, the
refrigerant leakage growth model can be approximated
by:

dmleak

dt
= Cr

√
ρlPe (9)

where Pe is the refrigerant pressure in the two-phase sec-
tion of the evaporator Cr =

√
2cdAl.

4. TECHNICAL APPROACH - THE
DIAGNOSTIC ALGORITHMS

A fault diagnosis procedure involves the tasks of fault
detection and isolation (FDI), and fault identification (as-
sessment of the severity of the fault). In general, this pro-
cedure may be interpreted as the fusion and utilization
of the information present in a feature vector (measure-
ments), with the objective of determining the operating
condition (state) of a system and the causes for devia-
tions from particularly desired behavioral patterns. Sev-
eral ways to categorize FDI techniques can be found in
literature. FDI techniques are classified according to the
way that data is used to describe the behavior of the sys-
tem: data-driven or model-based approaches.

Data-driven FDI techniques (Chen, Zhang, & Vacht-
sevanos, n.d.; Chen, Vachtsevanos, & Orchard, 2010)
usually rely on signal processing and knowledge-based
methodologies to extract the information hidden in the
feature vector (also referred to as measurements). In
this case, the classification/prediction procedure may be
performed on the basis of variables that have little (or
sometimes completely lack of) physical meaning. On
the other hand, model-based techniques, as the name im-
plies, use a description of a system (models based on
first principles or physical laws) to determine the current
operating condition.

A compromise between both classes of FDI tech-
niques is often needed when dealing with complex non-
linear systems, given the difficulty of collecting use-
ful faulty data (a critical aspect in any data-driven FDI
approach) and the expertise needed to build a reliable
model of the monitored system (a key issue in a model-
based FDI approach).

From a nonlinear Bayesian state estimation stand-
point, this compromise between data-driven and model-
based techniques may be accomplished by the use of
a Particle Filter (PF) based module built upon the dy-
namic state model describing the time progression or
evolution of the fault (Orchard & Vachtsevanos, 2009;
Chen, Brown, Sconyers, Vachtsevanos, & Zhang, 2010;
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X (t+ 1) = Φ (X (t), θ, t,N (t))

ṁv(t) = H (X (t), t) + v(t)

−

θ

Resampling

ṁv(t)

ˆ̇mi
v(t)

X̂ i(t)
wi(t) = φ

(
εi(t)

)
wi(t− 1)

Weights update

w̄i(t) = wi(t)∑N
1 wj(t)

Normalize

X̂ i(t− 1)

wi(t− 1)

wi(t)

εi(t)

Figure 3: Block diagram of the PF algorithm for state estimation

X (t+ 1) = Φ (X (t), θ, t,N (t))

ṁv(t) = H (X (t), t) + v(t)

−

Resampling

ṁv(t)

ˆ̇mi
v(t)

θ̂i(t)
wi(t) = φ

(
εi(t)

)
wi(t− 1)

Weights update

w̄i(t) = wi(t)∑N
1 wj(t)

Normalize

θ̂i(t− 1)

wi(t− 1)

wi(t)

εi(t)

X̄ (t− 1) =
∑

j∈QX j(t− 1)/ |Q|
State Estimator

X̄ (t− 1)

Figure 4: Block diagram of the PF algorithm for parameter estimation where |Q| denotes the cardinality of the set
Q =

{
j ∈ 1, . . . , N : xjd,2(t− 1) = 1

}
.

Orchard & Vachtsevanos, 2007). The fault progression
is often nonlinear and, consequently, the model should
be nonlinear as well. Thus, the diagnostic model is de-
scribed by:

xd(t+ 1) = fd(xd(t), n(t))

xc(t+ 1) = ft(xd(t), xc(t), ω(t)) (10)
y(t) = ht(xd(t), xc(t), v(t))

where fb, ft, and ht are nonlinear mappings, xd(t) is
a collection of Boolean states associated with the pres-
ence of a particular operating condition in the system
(normal operation, fault type #1, #2, etc.), xc(t) is a set
of continuous-valued states that describe the evolution
of the system given those operating conditions, y(t) de-
notes the available measurements, ω(t) and v(t) are non-
Gaussian distributions that characterize the process and
feature noise signals respectively. Since the noise signal
n(t) is a measure of uncertainty associated with Boolean
states, it is advantageous to define its probability density
through a random variable with bounded domain. For
simplicity, n(t) may be assumed to be uniform white
noise (Orchard & Vachtsevanos, 2007). The PF approach
using the above model allows statistical characterization
of both Boolean and continuous-valued states, as new
feature data (measurements) are received. As a result,
at any given instant of time, this framework provides an
estimate of the probability masses associated with each

fault mode, as well as a pdf estimate for meaningful
physical variables in the system. Once this information is
available within the FDI module, it is conveniently pro-
cessed to generate proper fault alarms and to report on
the statistical confidence of the detection routine.

One particular advantage of the proposed particle fil-
tering approach is the ability to characterize the evolu-
tion in time of the above mentioned nonlinear model
through modification of the probability masses associ-
ated with each particle, as new data from fault indicators
are received. In addition, pdf estimates for the system
continuous-valued states provide the capability of per-
forming swift transitions to failure prognosis algorithms,
one of the main advantages offered by the proposed ap-
proach.

The PF based FDI module is implemented accordingly
using the non-linear time growth model given in Eq. (9)
to describe the expected leaked mass flow rate. The goal
is for the algorithm to make an early detection of the
evaporator’s leakage due to an unexpected crack or a
faulty connection to the evaporators pipes. Two main op-
erating conditions are distinguished: The normal condi-
tion reflects the fact that there is no leakage while a faulty
condition indicating an unexpected crack in the evapora-
tor which causes leakage. Denote by xd,1 and xd,2 two
Boolean states that indicate normal and faulty conditions
respectively. The nonlinear model is given by:
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[
xd,1(t+ 1)
xd,2(t+ 1)

]
= fb

([
xd,1(t)
xd,2(t)

]
+ n(t)

)

ṁleak(t) = θ(t)xd,2(t)
√
pl(Te(t))Pe(t) + ω(t)

(11)
ṁv(t) = h(ṁleak(t), t) + v(t)

where

fb(x) =

{
[1 0]

T if
∥∥∥x−[1 0]

T
∥∥∥ ≤

∥∥∥x−[0 1]
T
∥∥∥

[0 1]
T else

[xd,1(to) xd,2(to) ṁleak(to)]
T

= [1 0 0]
T (12)

In the above equations θ(t), is a time-varying model
parameter that represents the crack surface (the crack
constant Cr) in the evaporator that causes the leak. The
one-to-one mapping h(·) is also referred to as fault-to-
feature mapping and it is obtained using the first prin-
ciples model described in Section 2. A more practical
approach is to approximate the fault-to-feature mapping
by a neural network that assigns the operating conditions
and the leakage to the valve flow rate. In particular set
h(ṁleak(t), t) ∼= ΨNN (ṁleak(t), Te(t), TA(t)).

The inlet flow rate of the evaporator is substituted by
ṁv that denotes the TEV flow rate. It is assumed that
ṁv can be measured. The above system can be written
in a more compact form as

X (t+ 1) = Φ(X (t), θ, t,N (t)) (13)
ṁv(t) = H(X (t), t) + v(t) (14)

where X T = [xd,1 xd,2 ṁleak]
T and VT =

[n ω]
T
. The steps of the PF algorithm execution are

described below:

1. From Eq. (13) generate N state estimates (parti-
cles) denoted by X̂ i(t) where i = 1, . . . , N . To
generate the state estimates, use a zero mean Gaus-
sian distribution for ω(t) and uniform white noise
for n(t).

2. From Eq. (14) calculate the liquid side flow rate
estimates denoted by ˆ̇mi

v , substituting the particles
X̂ i(t+ 1) to the mapping H(·).

3. Calculate theN errors εi = ˆ̇mi
v−ṁv , and assign to

each particle X̂ i(t) a weight wi(t) = φ
(
εi
)
, where

φ (·) denotes the standard normal distribution.

4. Normalize the weights wi(t). The normalized
weights w̄i(t) represent the discrete probability
masses of each state estimate.

5. Calculate the final state estimate X̃ (t) using the
weighted sum of all the states X̂ i(t).

An important part of the PF algorithm is the resampling
procedure. Resampling is an action that takes place to
counteract the degeneracy of the particles caused by es-
timates that have very low weights. A block diagram of

θ̃(t)

State Estimator

Parameter Estimator

X̄ (t− 1)

X̃ (t)

Figure 5: Block diagram of the complete FDI algorithm
that utilizes a dual PF for state and parameter estimation.

the PF algorithm is given in Figure 3. An obvious short-
coming of the above procedure is that the crack coeffi-
cient Cr is unknown in a real life application. To this ex-
tent we augment to the standard FDI algorithm a param-
eter estimator module utilizing also PF with the objective
to identify on-line the time-varying parameter θ(t). The
parameter estimator is executed in parallel with the state
estimator. The execution steps of the PF algorithm for
parameter estimation are described below:

1. For each faulty particle (xid,2(t) = 1) calculate the
mean state X̄ (t). If there are not any faulty particles
exit the parameter estimation module.

2. Using X̄ (t) from Eq. (13) generate Nθ param-
eter estimates (particles) denoted by θ̂i(t) where
i = 1, . . . , Nθ.

3. From Eq. (14) calculate the liquid side flow rate
estimates denoted by ˆ̇mi

v , substituting the particles
X̄ i(t+ 1) to the mapping H(·).

4. Calculate theN errors εi = ˆ̇mi
v−ṁv , and assign to

each particle θ̂i(t) a weight wi(t) = φ
(
εi
)
, where

φ (·) denotes the standard normal distribution.

5. Normalize the weights wi(t). The normalized
weights w̄i(t) represent the discrete probability
masses of each state estimate.

6. Calculate the final state estimate θ̃(t) using the
weighted sum of all the states θ̂i(t).

The resampling module takes place is an identical way
as for the state estimator. A block diagram of the PF
algorithm for parameter estimation is given in Figure 4.
The interconnection of the two PF modules for both state
and parameter estimation is given in Figure 5.

5. PROGNOSIS
Prognosis can be essentially understood as the gener-
ation of long-term predictions describing the evolution
in time of a particular signal of interest or fault indica-
tor. The goal of the prognostic algorithm is to use the
evolution of the fault indicator in order to estimate the
RUL of a failing component. Since prognosis intends to
project the current condition of the indicator, it necessar-
ily entails large-grain uncertainty. This paper adopts a
prognosis scheme based on recursive Bayesian estima-
tion techniques, combining the information from fault
growth models and on-line data from sensors monitor-
ing the plant.
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Figure 6: PF based FDI module

The prognosis algorithm is activated when a fault has
been declared by the FDI module. Prognosis is a prob-
lem that goes beyond the scope of filtering applications,
since it involves future time horizons. The main idea
of the prognostic algorithm is to project the continuous
state particle population in time, using the fault growth
model, in order to estimate the time-to-failure (TTF) of
each particle. Considering the nonlinear model given in
Eq. (11) and using the notation of the diagnostic model
introduced in Eq. (10), the progression in time of the
continuous state can be written us:

xc(t+ 1) = ψ
(
xc(t), t

)
(15)

The above equation represents the nonlinear mapping
ft(·), initially introduced in Eq. (10). From this map-
ping we have excluded the dependence of the noise ω(t)
and the dependence of the boolean state xd(t), since in
the prognostic mode a fault has already been detected.
The inclusion of the time variable in the definition of the
nonlinear mapping ψ(·) allows the investigation of time
varying fault growth models. The execution of the prog-
nostic algorithm at each time instant includes the follow-
ing steps:

1. At each time instant, receive from the fault detec-
tion module N particles of the continuous state de-
noted by x̂ic(t), where i = 1, . . . , N . For each par-
ticle, using the fault growth model, iterate pi steps
in time, with pi ∈ N, such that the pi-step ahead
predictions given by:

x̂ic(t+ pi) = ψ
(
x̂ic(t+ pi − 1), (t+ pi − 1)

)

are such that X low
hazard ≤ x̂ic(t + pi) ≤ Xhigh

hazard,
where X low

hazard, Xhigh
hazard denote the upper and

lower bounds of a hazard zone that designate the
limits of a critical failure. The initial estimates x̂ic
are taken directly by the PF detection algorithm de-
scribed in the previous section.

2. Using the RUL estimates (pi) and the normalized
weights of the detection algorithm (w̄i(t)), the pdf
and the weighted estimate of the RUL, denoted as
t̂RUL, can be obtained for each time step.
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Figure 7: This figure illustrates the actual (dashed line)
and the estimated (solid line) value of the leaked mass.

In many practical applications, the error that can be
generated by considering the particle weights invari-
ant for future time instants is negligible with respect to
other sources, such as model inaccuracies or wrong as-
sumptions about process/measurement noise parameters.
Thus, from this standpoint, Eq. (15) is considered suffi-
cient to extend the fault estimate trajectories, while the
current particle weights are propagated in time without
changes. The computational burden of this method is
considerably reduced and, as it will be shown in simula-
tion results, it can give a satisfactory view about how the
system behaves in time for most practical applications.

The proposed fault diagnosis framework allows the
use of the pdf estimates of the system continuous val-
ued states (computed at the moment of fault detection) as
initial conditions in the failure prognostic routine, giving
excellent insight into the inherent uncertainty in the pre-
diction problem. As a result, a swift transition between
the two modules (fault diagnosis and failure prognosis)
may be performed, and moreover, reliable prognosis can
be achieved within a few cycles of operation after the
fault is declared. This characteristic is, in fact, one of
the main advantages offered by this particle-filter based
framework.

6. SIMULATION RESULTS
The performance of the proposed FDI and prognostic
algorithms was tested via numerical simulations. The
evaporator dynamics are described by Eqs. (1)-(7). Re-
garding the inlet flow rates we set:

ṁin = ṁv − ṁleak and ṁout = ṁc

where ṁv and ṁc are the flow rates of the TEV and
compressor, respectively. The leakage fault is seeded ac-
cording to Eq. (9). The systems parameters are summa-
rized in Table 1. The number of particles used for the
two estimators (state and parameter) are N = 100 and
Nθ = 150. The crack constant is given by:

Cr(t) = 5 · 10−9step(t− 144) (16)
Using the above representation we simulate the occur-
rence of an and abrupt and unexpected crack that causes

6
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Figure 9: This figure illustrates the actual (dashed dotted
line) and the estimated (solid line) value of RUL.

Table 1: Simulator parameters
γ̄ 0.8474 Aw 6.6361 ·10−5m2

At 3.14 · 10−2 m2 UwAw 40.9962W/K

Uw 592.9817W/Km2 ṁa 0.765 kgr/sec

Dt 0.02m ca 103 J/kgr ·K
Ve 0.0057m3 ρa 1.1996 kgr/m3

cw 1.9552·103J/kgr·K Aa 0.1518m2

ρw 7.8491 · 103 kgr/m3 x 0

the nonlinear leakage growth model given in Eq. (9).
Signal noise has been added to the available measure-
ments. The saturated states are calculated based on the
tables of R134a refrigerant. The operating conditions
are ṁv = ṁc = 0.0108 kgr/sec and TA = 26 Co. Be-
sides detecting the faulty condition, it is desired to obtain
some measure of the statistical confidence of the alarm
signal. For this reason, two outputs will be extracted
from the FDI module. The first output is the expecta-
tion of the Boolean state xd,2(t), which constitutes an
estimate of the probability of fault. The second output is
the statistical confidence needed to declare the fault via
hypothesis testing (H0: ‘the evaporator is not leaking’
vs H1: ‘The evaporator is leaking’). The latter output
needs another pdf to be considered as the baseline. In
this case, a normal distribution N(0, σ) is used to define
this baseline data. This indicator is essentially equivalent
to an estimate of type II error. Customer specifications
are translated into acceptable margins for the type I and
II errors in the detection routine.

The algorithm itself will indicate when the type II er-
ror (false negatives) has decreased to the desired level.
Figure 6 shows two indicators that are simultaneously
computed. The first indicator, depicted as a function
of time, shows the probability of a determined failure
mode, and it is based on the estimate of the Boolean state
xd,2. FDI alarms may be triggered whenever this indica-
tor reaches a pre-determined threshold (in this case the
threshold value is 0.9). If more information is needed,
the type II detection error (second and third indicators,
respectively) may be considered.

Figure 7 illustrates the actual and estimated leaked
mass. Figure 8 illustrates the estimated crack coefficient.
A small bias is evident in the crack coefficient estimate
in the healthy condition. However, this bias has a very
small value and a low probability of fault. Finally Fig-
ure 9 illustrates the actual RUL compared to t̂RUL that
is estimated by the prognosis module. The results in-
dicate that the enhanced FDI and prognostic algorithms
provide very accurate estimates of the fault progression,
the crack coefficient and the RUL estimate.

7. CONCLUSIONS
This paper is introducing an architecture for the devel-
opment, implementation, testing and assessment of a
particle-filtering-based framework for FDI and progno-
sis. The proposed framework for FDI has been success-
ful and very efficient in pinpointing abnormal conditions
in very complex and nonlinear processes, such as the de-
tection of leakage in a two-phase evaporator of an ECS.
The FDI algorithm is enhanced with an adaptive mod-
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ule that provides estimates of the fault nonlinear model
parameters. Regarding prognosis, it was shown that that
the proposed approach is suitable for online implemen-
tation, providing acceptable results in terms of precision
and accuracy. A successful case study has been pre-
sented, offering insights about how model inaccuracies
and/or customer specifications (hazard zone or predic-
tion window definitions) may affect the algorithm per-
formance.
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ABSTRACT

Nonlinear dynamic systems identification and nonlinear
dynamic behavior prediction are important tasks in several
areas of industrial applications. Multiple works proposed
multimodel-based approaches to model nonlinear systems.
Multimodeling permits to blend different model types to-
gether to form hybrid models. It advocates the use of
existing, well known model types within the same model
structure. Recently, a multimodeling strategy based on be-
lief functions theory was developed based on a fuzzy rule
based system. We propose a different approach of this lat-
ter taking advantage of new efficient evidential clustering
algorithms for the determination of the local models and
the assessment of the global model. In particular, we pro-
pose an online procedure based on the Evidential Evolv-
ing Gustafsson-Kessel (E2GK) algorithm that ensures an
evolving partitioning of the data into clusters that corre-
spond to operating regions of the global system. Thus the
estimation of the local models is dynamically performed by
upgrading and modifying their parameters while the data
arrive. Each local model is weighted by a belief mass pro-
vided by E2GK, and the global model (multimodel) is a
combination of all the local models.

1. INTRODUCTION

Dealing with nonlinear systems behavior identification and
prediction is a widely encountered problem in real world
applications in engineering, industry, time series analy-
sis, prediction and fault diagnosis. Modeling an a priori
unknown dynamic process from observed data is a hard
task to perform. Among the large variety of proposed
approaches taking into account nonlinearity, one can cite
Fuzzy logic based models (Takagi & Sugeno, 1985) and
especially neural network based approaches, which appli-
cations during the last decades are numerous in dynamical
system modeling, and in particular in prognosis applica-
tions (El-Koujok, Gouriveau, & Zerhouni, 2011). Usually,

*This is an open-access article distributed under the terms of the
Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

the models consist of a set of functional relationships be-
tween the elements of a set of variables. Multiple works
propose multimodel-based approaches to avoid difficulties
(modeling complexity) related to nonlinearity (P. Angelov,
Lughofer, & Zhou, 2008; Madani, Rybnik, & Chebira,
2003).

Multimodeling permits to blend different model types to-
gether to form hybrid models, offering a unified view
toward modeling with well known model types instead
of promoting a singular model type which is insuffi-
cient to model large scale systems. In a general way,
in multimodel-based approaches, a set of models, corre-
sponding to a set of operating ranges of the system, con-
tributes to identify the whole system. Such an approach
can be seen as a weighted contribution of a set of models
approximating the whole system’s behavior, each of which
is valid in a well defined interval which corresponds to op-
erating region of the system or covers a part of the whole
feature space of the problem to be solved. The description
of the global system’s behavior is made by combination of
all the local models. The contribution of each local model
in the assessment of the multimodel’s output is quantified
by an activation degree.

One of the most popular models is the TSK fuzzy model
that showed great performances in many applications on
prediction (El-Koujok et al., 2011). A first order Takagi-
Sugeno model can be seen as a multimodel structure con-
sisting of linear models. It is based on a fuzzy decompo-
sition of the input space to describe the inherent structure
for a concrete problem by partitioning each input variable
range into fuzzy sets. For each part of the state space, a
fuzzy rule can be constructed to make a linear approxi-
mation of the input, and the global output is a combina-
tion of all the rules. Then, the parameters of the models
(non-linear parameters of membership degrees and linear
parameters for the consequent of each rule) are tuned in
an appropriate learning procedure. Usually, the identifica-
tion of the linear parameters is addressed by some gradient
descent variant, e.g., the least squares algorithm, whereas
non-linear parameters are determined by some clustering
method on the input space. This kind of approach has
been applied to build a Neuro-Fuzzy predictor in the con-
text of prognosis application by (El-Koujok et al., 2011).
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It was based on the evolving extended Takagi-Sugeno sys-
tem (exTS) proposed by Angelov (P. P. Angelov & Filev,
2004).

Recently, a multimodeling strategy based on belief func-
tions theory was developed based on a TSK fuzzy
model (Ramdani, Mourot, & Ragot, 2005). The basic idea
was to consider a fuzzy rule based system with a belief
structure as output. The focal elements of each rule were
formed by a subset of a collection of functional models
each of which was constructed based on a fuzzy model
of Takagi-Sugeno type. In this paper we investigate this
method and we introduce some modification taking ad-
vantage of new efficient evidential clustering algorithms
for the determination of the local models and the assess-
ment of the global model. In particular, we propose an on-
line procedure using the Evidential Evolving Gustafsson-
Kessel (E2GK) (Serir, Ramasso, & Zerhouni, 2011) algo-
rithm that ensures an evolving partitioning of the data into
clusters that correspond to operating regions of the global
system. Thus the estimation of the local models is dynam-
ically performed by upgrading and modifying their param-
eters while the data arrive. Each local model is weighted
by a belief mass provided by E2GK, and the global model
(multimodel) is a combination of all the local models.

The paper is organized as follows: Section 2 is dedicated to
the necessary background for our approach. In section 3,
the existing approach will be first presented (Section 3.1),
analyzed (Section 3.2) in order to introduce the proposed
model (Section 3.3). Results will finally be presented in
Section 4.

2. BACKGROUND

A brief description of belief functions is first given. Then,
ECM algorithm is presented followed by E2GK algorithm
as the basis of the prediction algorithm.

2.1 Belief Functions

Dempster-Shafer theory of evidence, also called belief
functions theory, is a theoretical framework for reason-
ing with partial and unreliable information. Ph. Smets
proposed the Transferable Belief Model (TBM) (Smets &
Kennes, 1994) as a general framework for uncertainty rep-
resentation and combination of various pieces of informa-
tion without additional priors. In particular, TBM offers
the possibility to explicitly emphasize doubt, that repre-
sents ignorance, and conflict, that emphasizes the contra-
diction within a fusion process. We give here some of the
basic notions of the theory and refer the reader to (Smets
& Kennes, 1994) for a more complete description.

The central notion of the theory of belief functions is the
basic belief assignment (BBA), also called belief mass as-
signment that represents the belief of an agent in subsets of
a finite set Ω, called the frame of discernment. It is defined
by:

m : 2Ω → [0, 1]
A 7→ m(A) ,

(1)

with
∑
A⊆Ωm(A) = 1. A belief mass can not only be

assigned to a singleton (|A| = 1), but also to a subset
(|A| > 1) of variables without assumption concerning ad-
ditivity. This property permits the explicit modelling of

doubt and conflict, and constitutes a fundamental differ-
ence with probability theory. The subsets A of Ω such that
m(A) > 0, are called the focal elements of m. Each focal
element A is a set of possible values of ω. The quantity
m(A) represents a fraction of a unit mass of belief allo-
cated toA. Complete ignorance corresponds tom(Ω) = 1,
whereas perfect knowledge of the value of ω is represented
by the allocation of the whole mass of belief to a unique
singleton of Ω, and m is then said to be certain. In the case
of all focal elements being singletons, m boils down to a
probability function and is said to be bayesian.

A positive value of m(∅) is considered if one accepts the
open-world assumption stating that the set Ω might not be
complete, and thus ω might take its value outside Ω. The
conflict is then interpreted as a mass of belief given to the
hypothesis that ω might not lie in Ω. This interpretation is
useful in clustering for outliers detection (Masson & De-
noeux, 2008).

2.2 Evidential C-Means

In 2008, Masson and Denoeux (Masson & Denoeux, 2008)
proposed a clustering algorithm based on the concept of
Credal Partition (Masson & Denoeux, 2008). Similar to
the concept of fuzzy partition, but more general, it partic-
ularly permits a better interpretation of the data structure
and makes it possible to code all situations, from certainty
to total ignorance. Considering a set of N data x1, . . . , xn
to be grouped in c clusters, a credal partition is constructed
by assigning a BBA to each possible subset of clusters.
Partial knowledge regarding the membership of an data
point i to a class j is represented by a BBA mij on the
set Ω = {ω1, . . . , ωc}. ECM is an optimization based clus-
tering algorithm whose objective function is given by:

JECM (M,V ) =
N∑

i=1

∑

{j/Aj 6=∅,Aj⊆Ω}
|Aj |αmβ

ijd
2
ij +

N∑

i=1

δ2mi(∅)β (2)

subject to
∑

{j/Aj 6=∅,Aj⊆Ω}
mij +mi(∅) = 1 ∀i = 1, . . . , N , (3)

where:

• α is used to penalize the subsets of Ω with high cardi-
nality,

• β > 1 is a weighting exponent that controls the fuzzi-
ness of the partition,

• dij denotes the Euclidean distance between object i
and prototype vj ,

• δ controls the amount of data considered as outliers.

The N × 2c partition matrix M is derived by determining,
for each object i, the BBAs mij = mi(Aj) , Aj ⊆ Ω such
that mij is low (resp. high) when the distance dij between
data i and focal element Aj is high (resp. low). The matrix
M is computed by the minimization of criterion (2) and
was shown to be (Masson & Denoeux, 2008), ∀i = 1 . . . n,
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∀j/Aj ⊆ Ω, Aj 6= ∅:

mij =
|Aj |−α/(β−1)

d
−2/(β−1)
ij∑

Ak 6=∅
|Ak|−α/(β−1)

d
−2/(β−1)
ik + δ−2/(β−1)

,

(4)
and mi(∅) = 1 −∑Aj 6=∅mij . Centers of clusters are op-
timized by minimizing criterion (2). The distance between
an object and any non empty subsetAj ⊆ Ω is then defined
by computing the center of each subset Aj . This latter is
the barycenter vj of the centers of clusters composing Aj .

From the credal partition, the classical clustering struc-
tures (possibilistic, fuzzy and hard partitions) can be recov-
ered (Masson & Denoeux, 2008). One can also summarize
the data by assigning each object to the set of clusters with
the highest mass. One then obtains a partition of the points
in at most 2c groups, where each group corresponds to a
set of clusters. This makes it possible to find the points
that unambiguously belong to one cluster, and the points
that lie at the boundary of two or more clusters. Moreover,
points with high mass on the empty set may optionally be
rejected as outliers.

2.3 E2GK: Evidential Evolving Gustafson-Kessel
Algorithm

In (Serir et al., 2011), an online clustering method, the
evidential evolving Gustafson-Kessel algorithm (E2GK),
was introduced in the theoretical framework of belief func-
tions. The algorithm enables an online partitioning of data
streams based on two existing and efficient algorithms: Ev-
idantial c-Means (ECM) and Evolving Gustafson-Kessel
(EGK) (Georgieva & Filev, 2009). E2GK makes it possi-
ble to compute, online, a credal partition as data gradually
arrive. We summarize in the following the main steps of
the algorithm:

Step 1 – Initialization: At least one cluster center should
be provided. Otherwise, the first point is chosen as the first
prototype. If more than one prototype is assumed in the
initial data, the Gustafsson-Kessel (Gustafson & Kessel,
1978) or ECM algorithm can be applied to identify an ini-
tial partition matrix. The result of the initialization phase
is a set of c prototypes vi and covariance matrices Fi.

Step 2 – Decision making: The boundary of each cluster
is defined by the cluster radius ri, defined as the median
distance between the cluster center vi and the points be-
longing to this cluster with membership degree larger or
equal to a given threshold uh:

ri = median∀xj∈ i-th cluster and Pij>uh
‖vi − xj‖Ai

. (5)

where Pij is the confidence degree that point j belongs to
ωi ∈ Ω and can be obtained by three main process: either
by using the belief mass mj(ωi), or the pignistic transfor-
mation (Smets & Kennes, 1994) that converts a BBA into a
probability distribution, or by using the plausibility trans-
form (Cobb & Shenoy, 2006). We propose to choose the
belief mass for which the computation is faster.

The minimum membership degree uh - initially intro-
duced in (Georgieva & Filev, 2009) and required to decide
whether a data point belongs or not to a cluster - can be
difficult to assess. It may depend on the density of the data

as well as on the level of cluster overlapping. Thus uh is
automatically set to 1/c in order to reduce the number of
parameters while ensuring a natural choice for its value.

Step 3 – Computing the partition matrix: Starting from the
resulting set of clusters at a given iteration, the partition
matrix M is built as in ECM. The Mahalanobis-like dis-
tance dik is considered assuming that each cluster volume
ρi is one as in standard GK algorithm:

d2
ik = ‖xk − vi‖2Ai

= (xk − vi)Ai(xk − vi)T , (6a)

Ai = [ρi · det(Fi)]
1/n

F−1
i , (6b)

Fi =

∑N
k=1(mik)β(xk − vi)T (xk − vi)∑N

k=1(mik)β
. (6c)

where Fi is the fuzzy covariance matrix.

Storing the whole partition is not efficient. Indeed, only
the belief masses on singletons need to be stored in order
to make the decision concerning the radius. As shown in
Eq. 4, values on singletons are easy to compute but the
problem is to estimate the normalization factor. To over-
come this problem, all values of masses have to be com-
puted but not stored. This little trick exponentially de-
creases memory comsumption.

Step 4 – Adapting the structure: Given a new data point
xk, two cases are considered:

• Case 1: xk belongs to an existing cluster, thus a clus-
ters’ update has to be performed. Data point xk is
assigned to the closest cluster p if the distance dpk is
less or equal to the radius rp. Then, an update of the
p-th cluster has to be performed as follows:

vp,new = vp,old + θ ·∆ , (7)
where

∆ = xk − vp,old , (8)
and

Fp,new = Fp,old + θ ·
(
∆T∆− Fp,old

)
, (9)

where θ is a learning rate (and can be set in
[0.05, 0.3]), vp,new and vp,old denote respectively the
new and old values of the center, and Fp,new and
Fp,old denote the new and old values of the covariance
matrix.

• Case 2: xk is not within the boundary of any existing
cluster (i.e. dpk > rp), thus a new cluster may be de-
fined and a clusters’ update has to be performed. The
number of clusters is thus incremented: c = c + 1.
Then, the incoming data xk is accepted as a cen-
ter vnew of the new cluster and its covariance matrix
Fnew is initialized with the covariance matrix of the
closest cluster Fp,old. In order to quantify the credibil-
ity of the estimated clusters, a parameter Pi has been
introduced in (Georgieva & Filev, 2009) to assess the
number of points belonging to the i-th cluster. The
authors suggested a threshold parameter Ptol to guar-
antee the validity of the covariance matrices and to
improve the robustness. This parameter corresponds
to the desired minimal amount of points falling within
the boundary of each cluster. The threshold value is
context determined due to the specificity of the con-
sidered data set. The new created cluster is then re-
jected if it contains less than Ptol data points.

3
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After creating a new cluster, the data structure evolves.
However, the new cluster may contain data points previ-
ously assigned to another cluster. Thus, the number of data
points in previous clusters could change. After the creation
of a new cluster, E2GK verifies that all clusters have at
least the required minimum amount of data points (Ptol or
more). If clusters don’t satisfy this condition, the cluster
with the minimum number of points is removed.

The overall algorithm is presented in Alg. 1.

Algorithm 1 E2GK algorithm

1: Initialization: Take the first point as a center or apply
the off-line GK algorithm to get the initial number of
clusters c and the corresponding matrices V and Fi,
i = 1 · · · c

2: Calculate vj , the barycenter of the cluster centers
composing Aj ⊆ Ω

3: Calculate the credal partition M using Eq. 4 (store
only singletons and normalize)

4: for all new data point xk do
5: Find the closest cluster p
6: Calculate the radius rp of the closest cluster (Eq. 5)
7: if dpk ≤ rp then
8: Update the center vp (Eq. 7)
9: Update the covariance matrix Fp (Eq. 9)

10: else
11: Create a new cluster: vc+1 := xk and Fc+1 := Fp
12: Keep it if the number of points in this cluster is

≥ Ptol
13: end if
14: Recalculate the credal partition M
15: Check the new structure: estimate the number of

points within each cluster and remove one cluster
for which the latter is ≤ Ptol

16: end for

3. MODELING DYNAMICS

In this section, the existing approach is first presented (Sec-
tion 3.1) and then analyzed (Section 3.2). Finally we intro-
duce the proposed model based on belief functions (Sec-
tion 3.3).

3.1 The existing approach

In (Ramdani et al., 2005), a multi-modeling strategy based
on belief function theory was developed for modeling com-
plex nonlinear mappings by combination of simpler func-
tional models. It was based on the TSK fuzzy model. The
basic idea was to consider a fuzzy rule based system with
a belief structure as output. The focal elements of each
rule were formed by a subset of a collection of functional
models. Each functional model is constructed based on a
fuzzy model of Takagi-Sugeno type in two steps: struc-
ture identification and parameters estimation. In the first
step, the antecedent and consequent variables of the model
are determined. From the available training data that con-
tain input-output samples, a regression matrix and an out-
put vector are constructed. In the second step, the number
of rulesK, the antecedent fuzzy sets, and the parameters of
the rule consequents are identified. The system behaviour
is approximated by local linear models of the different

operating regions that are represented by clusters. The
Gustafsson-Kessel fuzzy clustering algorithm (Gustafson
& Kessel, 1978) is applied on the product-space of input
and output variables to discover the potential regions of the
rules and capture the interaction between the input and out-
put variables. Thus, a certain number c of functional rela-
tionships between input and output variables, denoted by
f j(x), j = 1, . . . , c, are assumed and form the frame of
discernment Ω:

Ω =
{{
f1
}
, . . . , {f c}

}
, (10)

where
{
f j
}

is the hypothesis that corresponds to the func-
tional model f j(x). The authors consider the case where
the number of input prototypes (or rules) is equal to the
number of functional prototypes (K = c). In order to pre-
dict an output value y for a given input vector x, each of
theK rules (determined in the second step (Ramdani et al.,
2005)) provides a piece of evidence concerning the value
of the unknown output y, which can be represented by a
belief mass mi, i = 1, . . . ,K:



mi
({
f j
}
|x
)

= φi (x) , j = 1, . . . , J (i)
mi (Ω|x) = 1− φi (x)
mi (A|x) = 0 ∀A ∈ FΩ − F i

(11)

where FΩ is the power set of Ω, F i are the focal sets of
mi, and The function φi (x) is related to the input domain
(domain of expertise) of the ith rule. We refer the reader
to (Ramdani et al., 2005) for more details. This method of
constructing belief masses is based on a method proposed
by T. Denoeux (Denoeux, 2000) in the context of classifi-
cation.

In order to make a decision, the outputs of the different
rules which are belief structures, are combined using the
Dempsters rule of combination giving the overall belief
structure m, which is a vector of c+ 1 elements:

m = ⊕Ki=1m
i, (12)

It is then normalized providing a belief structure: m∗j =
mj∑c+1

q=1mq
j = 1, . . . , c+ 1.

The overall multimodel is then defined as a combination of
the functional prototypes with an additional model repre-
senting the frame of discernment, denoted by fΩ:

ŷ =

c∑

i=1

m∗
({
f i
})
f i (x) +m∗ (Ω) fΩ (x) . (13)

Here, the authors associate the mass of total ignorance to
a general model fΩ (x), which is a convex combination of
local linear functions whose parameters are identified glob-
ally by a single least squares equation (Eq.18, (Ramdani et
al., 2005)). This formulation emphasizes the doubt con-
cerning the model. On the other hand, le linear models
f i (x) are identified by the weighted least squares (Eq.19
in (Ramdani et al., 2005)).

3.2 Analysis of the existing approach

Problem 1 – Determining the belief masses: In (Ramdani et
al., 2005), the approach relies on fuzzy modeling using be-
lief functions based on two existing approaches. The first

4
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approach was proposed by Yager (Yager & Filev, 1995)
in the context of fuzzy modeling. This strategy allows the
integration of probabilistic uncertainty in fuzzy rule based
systems. The output of the rules is a belief structure whose
focal elements are fuzzy sets among the output variable
linguistic terms. The second approach is the evidential k-
nearest neighbours proposed by Denoeux (Denoeux, 2000)
in the context of classification and later applied in regres-
sion analysis (Petit-Renaud & Denoeux, 1999). For a given
input query vector, the output variable is obtained in the
form of a fuzzy belief assignment (FBA), defined as a col-
lection of fuzzy sets of values with associated masses of be-
lief. In (Petit-Renaud & Denoeux, 1999), the output FBA
is computed nonparametrically on the basis of the training
samples in the neighbourhood of the query point. In this
approach, the underlying principle is that the neighbours
of the query point are considered as sources of partial in-
formation on the response variable; the bodies of evidence
are discounted as a function of their distance to the query
point, and pooled using the Dempster’s rule of combina-
tion.

Contribution 1: We propose a simpler and more efficient
method than the one described in section 3.1 to generate
the masses of belief directly from the data at the cluster-
ing step. Indeed, in 2004, the authors of (Ramdani et al.,
2005) couldn’t yet benefit from new efficient clustering al-
gorithms exclusively based on belief functions. In 2008,
the first clustering algorithm, the Evidential c-Means al-
gorithm (ECM) (described in section 2.2), based on be-
lief functions was proposed by M-H. Masson and T. De-
noeux (Masson & Denoeux, 2008). In the approach pro-
posed by (Ramdani et al., 2005), applying ECM to the set
of learning data would directly provide the BBA.

Problem 2 – Modeling doubt regarding the global model:
In (Ramdani et al., 2005), the authors define the overall
model as a combination of the functional prototypes with
a single model representing the frame of discernment de-
noted by fΩ (x). This particular model is associated to
the mass of total ignorance (Eq.13). Doing so, the au-
thors claimed to emphasize the doubt concerning the global
model. We believe that the global model fΩ (x) as pro-
posed in (Ramdani et al., 2005), which is a convex com-
bination of local linear functions, doesn’t bring significant
additional information to the model. Indeed, it is very simi-
lar to the local linear models as shown in their experiments.

Contribution 2: ECM assigns masses of belief to single-
tons but also to unions of clusters representing doubt re-
garding the general model. As a unit mass is distributed
among all possible subsets of Ω, the masses on singletons
are computed taking into account the doubt regarding the
global model. Thus, we propose a different formulation of
the overall multimodel, where we no longer have to com-
bine the functional prototypes with a model representing
the frame of discernment:

ŷ =

c∑

i=1

m∗
({
f i
})
f i (x) . (14)

Contrary to the original approach where the doubt concern-
ing the global model is emphasized by taking into account
an additional model representing the frame of discernment,
we develop an approach where doubt is emphasized di-
rectly based on E2GK.

Problem 3 – Evolving Modeling: The previous approach
is suitable for a fixed set of data supplied in batch mode
and under the assumption that the model structure remains
unchanged. When the training data are collected continu-
ously, some of them will reinforce and confirm the infor-
mation contained in the previous data, while others could
bring new information. This new information could con-
cern a change in operating conditions, development of a
fault or simply more significant change in the dynamic of
the process. They may provide enough new information
to form a new local model or to modify or even delete an
existing one. Thus an adaptation of the model structure is
necessary. To do so, an on-line clustering of the inputout-
put data space with gradually evolving regions of interest
should be used.

Contribution 3: We propose to use the recently proposed
online clutering method (Serir et al., 2011) E2GK (Eviden-
tial Evolving Gustafson-Kessel) that enables online parti-
tioning of data streams and adapts the clusters’ parameters
along time. As presented in section 2.3, E2GK uses the
concept of credal partition of ECM, offering a better in-
terpretation of the data structure. The resulting BBAs can
then be used in Eq.14.

3.3 The proposed model (E2GK-pro)

Based on the same general idea, we propose to construct
a model for approximating nonlinear functional mappings.
As in (Ramdani et al., 2005), the system behaviour is ap-
proximated by local linear models of the different operat-
ing regions that are represented by clusters.

Compared to the original approach, we propose the follow-
ing methodology :

1. Use the online evidential clustering algorithm E2GK
that is capable of generating the belief masses and
adapt the clusters’ parameters along time;

2. For each cluster discovered by E2GK, construct a lin-
ear local model and update with the new incoming
data;

3. Predict the new output ŷ by the linear combination of
the local models as in Eq.14.

Initialization: The first data point x1 is chosen as the first
prototype. At the moment not enough data are available to
construct the first model. As discussed in section (2.3),
a new cluster is created if it contains at least Ptol data
points. We will consider the same threshold for the nec-
essary amount of data to construct a new model. Basically,
the initialization step is the same as in E2GK.

Adapting the structure: At each new incoming data point
xk, an update of the clusters’ parameters is performed by
E2GK. Either xk belongs to an existing cluster, thus a clus-
ters’ update has to be performed. Or, xk is not within the
boundary of any existing cluster, thus a new cluster may be
defined and a clusters’ update has to be performed. After
the creation of a new cluster, E2GK verifies if all clusters
have at least the required minimum amount of data points
(Ptol or more) and suppresses the clusters that fail to sat-
isfy this condition. To each cluster i corresponds a local
model f i such that:

f i (x) = θi0 + θi1x1 + · · ·+ θirxr (15)
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where x = [x1, . . . xr]
T is the vector of data composing

the ith cluster and θTi = [θi0, θi1, . . . , θir] is the vector of
the parameters of f i.

Then either a simple or a weighted recursive least squares
estimation (RLS) (P. Angelov et al., 2008) could be used to
identify the parameters of these linear sub-models.

Three cases are considered: 1) a new cluster is created,
then the partition matrix changes and a learning step has to
be performed for both the new local model and the previ-
ously generated local models; 2) a cluster is removed, then
the partition matrix also changes and a new learning step
has to be performed to update the existing local models; 3)
Nothing happens.

Predicting the new output: Once the parameters of the local
models are identified, the new output (prediction at t + 1)
is estimated by Eq. 14.

We summarize the general approach in Alg. 2:

Algorithm 2 General Approach

Require: xk a new data point and E2GK parameters
Ensure: x̂k+1 and E2GK parameters update

1: if a new prototype is created then
2: Add a new model
3: Estimate parameters of the new model
4: Update parameters of existing models
5: end if
6: Predict the new output ˆxk+1 (Eq.14)

4. EXPERIMENT

The proposed EG2K-pro algorithm is designed for the pre-
diction at t+1. Further predictions requires other develop-
ments which are under study. So we are in the same case
as in (Ramdani et al., 2005) where we assess the algorithm
for the prediction of signals at t+ 1.

Experiments were conducted on three applications:

• the 1-D Mackey-Glass chaotic time series,
• a multidimensional case: the PHM 2008 challenge

data,
• a multidimensional case: the PRONOSTIA platform.

4.1 A benchmark 1-D problem

As a first example of application, we consider the Mackey-
Glass chaotic time series:

x(t) =
a · x(t− τ)

1 + x10(t− τ)
− b · x(t) , (16)

with a = 0.3, b = 0.1, τ = 20, x0 = 1.2 and 100 points.

E2GK parameters were set to δ = 10, α = 1, β = 2,
θ = 0.01 and Ptol = 10, and inputs were composed of
[t x(t− 2) x(t− 1) x(t)].

Figure 1 depicts the prediction at t+1, with a mean-squared
error (MSE) of 2.10−2.

Figure 1. Top: Predictions (continuous bold line) and seg-
mentation (stars). Bottom: Conflict evolution.

One interesting feature of the proposed algorithm is the de-
gree of conflict (Fig. 1). As expected the degree of conflict
is low around prototypes and increases when data points
are far from the latter. The most interesting observation
concerns the increasing of conflict in non-linear parts. For
example, around t = 200 and t = 275, the increasing is
much more important than in interval [1, 150].

Let consider the maximum degree of belief generated by
the clustering phase at instant (data-point) t:

st = max
k

mtk (17)

If the maximum is low, then the confidence in the predic-
tion should be also low. This quantity is illustrated in Fig-
ures 2 (E2GK) and 3 (EGK).

Figure 2. Illustration of 1 − st (Eq. 17) to quantify uncer-
tainty around predictions by E2GK. These uncertainties ap-
pear on the figure with error bars around predictions (con-
tinuous line).

Figure 3. Illustration of 1 − st (Eq. 17) to quantify uncer-
tainty around predictions by EGK. These uncertainties ap-
pear on the figure with error bars around predictions (con-
tinuous line).
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At each instant, this value appears as an error bar. In both
methods (EGK and E2GK), the maximum degree is close
to 1 when points are located near clusters and therefore the
values of 1− st are close to 0. The main difference is that
values for E2GK present more contrast than the ones for
EGK. For example, in [175, 275], the error is almost con-
stant for EGK while in E2GK it increases as the distance
to clusters increase. Moreover, for E2GK, high values are
generally encountered in non-linearities that is not the case
for EGK. In these areas, the value of conflict is generally
high because points can belong to several clusters. These
two figures also show the predictions (continuous line).

4.2 A multi-dimensional case: the PHM 2008
challenge data

We considered the challenge dataset concerning diagnostic
and prognostics of machine faults from the first Int. Conf.
on Prognostics and Health Management (2008) (Saxena,
Goebel, Simon, & Eklund, 2008). The dataset is a multiple
multivariate time-series (26 variables) with sensor noise.
Each time series was from a different engine of the same
fleet and each engine started with different degrees of ini-
tial wear and manufacturing variation unknown to the user
and considered normal. The engine was operating nor-
mally at the start and developed a fault at some point. The
fault grew in magnitude until system failure. The first ex-
periment (train FD001.txt) with five preselected features
(3, 4, 5, 7, 9) was considered.

Figure 4. Segmentation (stars) by E2GK with Ptol = 30
obtained on PHM 2008 data, and prediction (continuous
line) with error bars representing the opposite of the degree
of support in each model. The real data appear with dots.

The automatic segmentation obtained by E2GK is given in
Figure 4. This figure also depicts the prediction (with MSE
equal to 1.6.10−4) and error bars representing the differ-
ence between 1 and the maximum degree of belief for each
data point (Eq. 17). E2GK parameters were the same as
in the previous section, except Ptol = 30. In comparison,
Figure 5 is the result for Ptol = 10 where the segmentation
is finer as expected.

4.3 A multi-dimensional case: the PRONOSTIA
platform

Description of PRONOSTIA

PRONOSTIA is an experimentation platform (Figure 6)
dedicated to the test and validation of the machinery prog-
nosis approaches, focusing on bearing prognostics. It was

Figure 5. Top: Segmentation (stars) by E2GK with Ptol =
10 obtained on PHM 2008 data (to be compared to Fig-
ure 4) and prediction (continuous line). Bottom: The oppo-
site of the maximum degree of belief (the lower the conflict
the higher the confidence in predictions)

developed at FEMTO-ST institute (“Franche-Comté Elec-
tronics, Mechanics, Thermal Processing, Optics - Science
and Technology”) in particular in AS2M department (Au-
tomatic control and Micro-Mechatronic Systems).

Tested bearings

Figure 6. PRONOSTIA platform.

The main objective of PRONOSTIA is to provide real ex-
perimental data that characterise the degradation of a ball
bearing along its whole operational life (until fault/failure).
The collected data are vibration and temperature measure-
ments of the rolling bearing during its functioning mode.

Figure 7. Bearing degradation.

The internal bearing ring is put in rotation, while the ex-
ternal bearing ring is maintained fixed. A radial load is
applied on the external bearing ring in order to simulate
its functioning. To speed up the degradation, the load ex-
ceeds the maximal load recommended by the supplier. The

7

Annual Conference of the Prognostics and Health Management Society, 2011

91
[paper 10]



Annual Conference of the Prognostics and Health Management Society, 2011

originality of this experimental platform lies not only in
the conjunction of the characterization of both the bearing
functioning (speed, torque and radial force) and its degra-
dation (vibrations and temperature), but also in the possi-
bilities, offered by the platform, to make the operating con-
ditions of the bearing vary during its useful life. Figure 7
depicts a bearing before and after the experiment.

The bearing operating conditions are determined by instan-
taneous measures of the radial force applied on the bearing,
the rotation speed of the shaft handling the bearing, and of
the torque inflicted on the bearing. During a test, the rolling
bearing starts from its nominal mode until the fault state.
The bearing behavior is measured using different types of
sensors (Figure 8) such as miniaturized acceleration sen-
sors and temperature probe.

Figure 8. Sensors for degradation measurement.

The raw signals provided by the sensors are processed
in order to extract relevant information concerning bear-
ings states. Several techniques have been implemented
and gathered in a signal processing toolbox with Mat-
lab (Fig. 9): time-domain methods (RMS, skewness and
kurtosis, crest factor, K-factor, Peak-to-Peak), frequency-
domain methods (spectral and cepstrum analysis, enve-
lope detection), time-frequency domain (short-time fourier
transform) and wavelets (discrete transform).

Figure 9. (left) Labview VI for raw signal visualization and
(right) the graphical user interface to set the optional pa-
rameters (if required) of the signal processing algorithms.

Application of E2GK-pro on PRONOSTIA

E2GK parameters were the same as in the first section, ex-
cept Ptol = 20. The prediction results are given in Fig-
ure 10 with a MSE equal to 6.10−5.

The obtained segmentation is provided in Figure 11.

In comparison, Figure 12 is the result of segmentation for
Ptol = 10. For this value, EGK was not able to provide
a segmentation. As expected, the number of clusters is

Figure 10. Top: The predictions for PRONOSTIA’s data
(continuous line). Bottom: The opposite of the maximum
degree of belief.

Figure 11. Segmentation (stars) by E2GK with Ptol = 20
obtained for a bearing in PRONOSTIA’s platform.

greater for this latter value and “over”-segmentation ap-
pears mainly in areas with changes.

Figure 12. Segmentation (stars) by E2GK with Ptol = 10
for a bearing in PRONOSTIA’s platform.

5. CONCLUSION

E2GK-pro is an evidential approach proposed for detect-
ing, adapting and combining local models in order to anal-
yse complex systems behavior. The approach relies on
three main processes: 1) an online clustering called E2GK
that generates belief functions and adapts its structure grad-
ually, 2) the creation, adaptation or removing of models
which are locally computed for each cluster, and 3) predic-
tion of the future evolution.

Experiments were done on three datasets: one sim-
ulated and two real-world problems, in particular the
PRONOSTIA platform. Results demonstrate the ability
of the proposed method for online segmentation of multi-
dimensional time-series and to build provide predictions
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for the next iteration. We also proposed a confidence value
attached to predictions.

Future work is mainly focused on the validation of the
proposed methodology for long term prediction and to its
comparison to Angelov’s methodology (P. Angelov et al.,
2008).
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ABSTRACT
This paper presents an efficient analytical Bayesian method
for reliability and system response estimate and update. The
method includes additional data such as measurements to re-
duce estimation uncertainties. Laplace approximation is pro-
posed to evaluate Bayesian posterior distributions analyti-
cally. An efficient algorithm based on inverse first-order re-
liability method is developed to evaluate system responses
given a reliability level. Since the proposed method in-
volves no simulations such as Monte Carlo or Markov chain
Monte Carlo simulations, the overall computational efficiency
improves significantly, particularly for problems with com-
plicated performance functions. A numerical example and
a practical fatigue crack propagation problem with experi-
mental data are presented for methodology demonstration.
The accuracy and computational efficiency of the proposed
method is compared with simulation-based methods.

1. INTRODUCTION

Efficient inference on reliability and responses of engineer-
ing systems has drawn attention to the prognostics and health
management society due to the increasing complexity of those
systems (Melchers, 1999; Brauer & Brauer, 2009). For high
reliability demanding systems such as aircraft and nuclear
facilities, time-dependent reliability degradation and perfor-
mance prognostics must be quantified to prevent potential
system failures. Reliable predictions of system reliability and
system responses are usually required for decision-makingin
a time and computational resource constrained situation. The
basic idea of time-independent component reliability analysis
involves computation of a multi-dimensional integral overthe
failure domain of the performance function (Madsen, Krenk,
& Lind, 1986; Ditlevsen & Madsen, 1996; Rackwitz, 2001).
For many practical problems with high-dimensional parame-
ters, the exact evaluation of this integral is either analytically
intractable or computationally infeasible with a given time
constraint. Analytical approximations and numerical simula-
tions are two major computational methods to solve this prob-
lem (Rebba & Mahadevan, 2008).

Xuefei Guan et.al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

The simulation-based method includes direct Monte Carlo
(MC) (Kalos & Whitlock, 2008), Importance Sampling
(IS)(Gelman & Meng, 1998; Liu, 1996), and other MC sim-
ulations with different sampling techniques. Analytical ap-
proximation methods, such as first- and second- order relia-
bility methods (FORM/SORM) have been developed to esti-
mate the reliability without large numbers of MC simulations.
FORM and SORM computations are based on linear (first-
order) and quadratic (second-order) approximations of the
limit-state surface at themost probable point (MPP)(Madsen
et al., 1986; Ditlevsen & Madsen, 1996). Under the condition
that the limit-state surface at the MPP is close to its linear
or quadratic approximation and that no multiple MPPs ex-
ist in the limit-state surface, FORM/SORM are sufficiently
accurate for engineering purposes(Bucher et al., 1990; Cai
& Elishakoff, 1994; Zhang & Mahadevan, 2001; Zhao &
Ono, 1999). If the final objective is to calculate the sys-
tem response given a reliability index, the inverse reliabil-
ity method can be used. The most well-known approach is
inverse FORM method proposed in (Der Kiureghian, Yan,
& Chun-Ching, 1994; Der Kiureghian & Dakessian, 1998;
Li & Foschi, 1998). Several studies for static failure us-
ing the inverse FORM method have been reported in the
literature. (Du, Sudjianto, & Chen, 2004) proposed an in-
verse reliability strategy and applied it to the integratedrobust
and reliability design of a vehicle combustion engine piston.
(Saranyasoontorn & Manuel, 2004) developed an inverse re-
liability procedure for wind turbine components. (Lee, Choi,
Du, & Gorsich, 2008) used the inverse reliability analysis
for reliability-based design optimization of nonlinear multi-
dimensional systems. (Cheng, Zhang, Cai, & Xiao, 2007)
presented an artificial neural network based inverse FORM
method for solving problems with complex and implicit per-
formance functions. (Xiang & Liu, 2011) applied the inverse
FORM method to time-dependent fatigue life predictions.

Conventional forward and inverse reliability analysis is
based on the existing knowledge about the system (e.g., un-
derlying physics, distributions of input variables). Time-
dependent reliability degradation and system response chang-
ing are not reflected. For many practical engineering prob-
lems, usage monitoring or inspection data are usually avail-
able at a regular time interval either via structural healthmon-
itoring system or non-destructive inspections. The new in-
formation can be used to update the initial estimate of sys-

1

Annual Conference of the Prognostics and Health Management Society, 2011

94
[paper 11]



Annual Conference of the Prognostics and Health ManagementSociety, 2011

tem reliability and responses. The critical issue is how to in-
corporate the existing knowledge and new information into
the estimation. Many methodologies have been proposed to
handle reliability updating problems. Bayesian updating is
the most common approach to incorporate these additional
data. By continuous Bayesian updating, all the variables
of interest are updated and the inference uncertainty can be
significantly reduced, provided the additional data are rele-
vant to the problem and they are informative. (Hong, 1997)
presented the idea of reliability updating using inspection
data. (Papadimitriou, Beck, & Katafygiotis, 2001) reported
a reliability updating procedure using structural testingdata.
(Graves, Hamada, Klamann, Koehler, & Martz, 2008) applied
the Bayesian network for reliability updating. (Wang, Rabiei,
Hurtado, Modarres, & Hoffman, 2009) used Bayesian reli-
ability updating for aging airframe. A similar updating ap-
proach using Maximum relative Entropy principles has also
been proposed in (Guan, Jha, & Liu, 2009). In those studies,
MCMC simulations have been extensively used to draw sam-
ples from posterior distributions. The Convergence Theorem
ensures the resulting Markov chain converges to the target
distribution (Gilks, Richardson, & Spiegelhalter, 1996) and
it becomes almost a standard approach for Bayesian analysis
with complex models. For practical problems with compli-
cated performance functions, simulations are time-consuming
and efficient computations are critical for time constrained re-
liability evaluation and system response prognostics. Some
of the existing analytical methods includes variational meth-
ods (Ghahramani & Beal, 2000) and expectation maximiza-
tion methods (Moon, 1996). Those methods usually focus on
the approximation of distributions and does not provide a sys-
tematical procedure for inverse reliability problems. In struc-
tural health management settings, simulation-based method
may be infeasible because updating is frequently performed
upon the arrival of sensor data. All these application require
efficient and accurate computations. However, very few stud-
ies are available on the investigation of complete analytical
updating and estimation procedure without using simulations.

The objective of the proposed study is to develop an effi-
cient analytical method for system reliability and response up-
dating without using simulations. Three computational com-
ponents evolved in this approach are Bayesian updating, relia-
bility estimation, and system response estimation given a reli-
ability or a confidence level. For Bayesian updating, Laplace
method is proposed to obtain an analytical representation of
the Bayesian posterior distribution and avoid MCMC simula-
tions. Once the analytical posterior distribution is obtained,
FORM method can be applied to update system reliability or
probability of failure. In addition, predictions of systemre-
sponse associated with a reliability or a confidence level can
also be updated using inverse FORM method to avoid MC
simulations.

The paper is organized as follows. First, a general Bayesian
posterior model for uncertain variables is formulated. Rele-
vant information such as response measures and usage mon-
itoring data are used for updating. Then an analytical ap-
proximation to the posterior distribution is derived basedon
Laplace method. Next, FORM method is introduced to es-
timate system reliability levels and a simplified algorithm
based on inverse FORM method is formulated to calculate
system response given a reliability level or a confidence level.
Following that, numerical and application examples are pre-
sented to demonstrate the proposed method. The efficiency
and accuracy of the proposed method are compared with sim-
ulation results.

2. PROBABILISTIC MODELING AND LAPLACE
APPROXIMATION

In this section, a generic posterior model for uncertain param-
eters is formulated using Bayes’ theorem to incorporate addi-
tional data such as measurements. Uncertainties from model
parameters, measurement, and model independent variables
are systematically included. To avoid MCMC simulations as
in classical Bayesian applications, Laplace approximation is
derived to obtain an analytical representation of the posterior
distribution. The updated reliability and system responses can
readily be evaluated using this posterior approximation.

2.1 Bayesian modeling for uncertain parameters
Consider a generic parameterized modelM(y; x) describing
an observable eventd, wherex is an uncertain model param-
eter vector andy is model independent variable. If the model
is perfect, one obtainsM(y; x) = d. In reality, such a perfect
model is rarely available due to uncertainties such as the sim-
plification of the actual complex physical mechanisms, statis-
tical error in obtaining the parameterx, and the measurement
error in d. Using probability distributions to describe those
uncertainties is a common practice.

Given the prior probability distribution ofx, p(x|M), and
the known relationship (conditional probability distribution or
likelihood function) betweend and x, p(d|x,M), the pos-
terior probability distributionp(x|d,M) is expressed using
Bayes’ theorem as

p(x|d,M) = p(x|M)p(d|x,M) 1
Z ∝ p(x|M)p(d|x,M), (1)

whereZ =
∫

X
p(x|M)p(d|x,M)dx is the normalizing con-

stant.
The modelM is assumed to be the only feasible model

andM is omitted hereafter for simplicity. Letm be the model
prediction ande the error term (for example, the measurement
error ofd). The variabled reads

d = m + e. (2)

The probability distribution form is represented by the func-
tion p(m|x) = fM (m) and the probability distribution fore
is by the functionp(e|x) = fE(e). The conditional proba-
bility distribution ofp(d|x) can be obtained by marginalizing
the joint probability distribution ofp(d, m, e|x) as follows:

p(d|x) =

∫

M

∫

E

p(m|x)p(e|x)p(d, m, e|x)dedm. (3)

Becaused = m + e,

p(d, z, e|x) = δ(d−m− e). (4)

Substitute Eq. (4) into Eq. (3) to obtain

p(d|x) =

∫

M

fM (m)fE(d−m)dm. (5)

Next, termsfM (m) andfE(e) need to be determined. Con-
sider a general case where the model predictionm has a sta-
tistical noise componentǫ ∈ E with a distribution function
p(ǫ|x) = fE(ǫ) due to the modeling errorm =M(y; x) + ǫ.
Equation (2) is revised as

d =M(y; x) + ǫ + e. (6)

Marginalizingp(m|ǫ, θ) = δ(m − M(y; x) − ǫ) over ǫ to
obtain

fM (m) =

∫

E
p(ǫ|x)p(m|x, θ)dǫ = fE(m−M(y; x)). (7)
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For the purpose of illustration,ǫ ande are assumed to be two
independent Gaussian variables with standard deviations of
σǫ and σe, respectively. This assumption is usually made
when no other information about the uncertain variables is
available (Gregory, 2005). Equation (5) is the convolutionof
two Gaussians and it can be further reduced to another Gaus-
sian distribution as

p(d|x) =
1√

2π(σ2
ǫ + σ2

e)
exp

[−(d−M(y; x))2

2(σ2
ǫ + σ2

e)

]
. (8)

Substituting Eq. (3) into Eq. (1) yields the posterior prob-
ability distribution of the uncertain parameterx incorporat-
ing the observable eventd. The reliability or system state
variables can readily be updated with Eq. (1). For problems
with high dimensional parameters, the evaluation of Eq. (1)
is rather difficult because the exact normalizing constantZ,
which is a multi-dimensional integral, is either analytically in-
tractable or computationally expensive. Instead of evaluating
this equation directly, the most common approach is to draw
samples from it using MCMC simulations. For applications
where performance functions are computationally expensive
to evaluate, this approach is time-consuming and hence not
suitable for online updating and prognostics. To improve the
overall computational efficiency, Laplace method is proposed
to approximate the non-normalized Bayesian posterior distri-
bution ofp(x|d). The derivation of Laplace approximation is
presented below.

2.2 Laplace approximation for Bayesian posterior
distributions

Consider the above non-normalized multivariate distribution
p(x|d) in Eq. (1) and its natural logarithmlnp(x|d). Expand-
ing lnp(x|d) using Tylor series around an arbitrary pointx∗
yields

lnp(x|d) =lnp(x∗|d) + (x− x∗)T∇lnp(x∗|d)+

1

2!
(x− x∗)T

[
∇2lnp(x∗|d)

]
(x− x∗)+

O((x− x∗)3),

(9)

where∇lnp(x∗|d) is the gradient oflnp(x|d) evaluated atx∗,
∇2lnp(x∗|d) is the Hessian matrix evaluated atx∗, andO(·)
are higher-order terms. Assume that the higher-order terms
are negligible in computation with respect to the other terms.
We obtain

lnp(x|d) ≈ lnp(x∗|d) + (x− x∗)T∇lnp(x∗|d)︸ ︷︷ ︸
(∗)

+

1

2!
(x− x∗)T

[
∇2lnp(x∗|d)

]
(x− x∗).

(10)

The term(∗) is zero at local maxima (denoted asx0) of the
distribution since∇lnp(x0|d) = 0. Therefore, if we choose
to expandlnp(x|d) aroundx0, we can eliminate term(∗) in
Eq. (10) to obtain

lnp(x|d) ≈ lnp(x0|d) + 1
2 (x− x0)

T
[
∇2lnp(x0|d)

]
(x− x0). (11)

Exponentiatinglnp(x|d) of Eq. (11) yields

elnp(x|d) ≈ p(x0|d)exp

{
−1

2
(x− x0)

T [−∇2lnp(x0|d)](x− x0)

}
. (12)

The last term of Eq. (12) resembles remarkably a multivari-
ate Gaussian distribution with a mean vector ofx0 and a co-
variance matrixΣ =

[
−∇2lnp(x0|d)

]−1
. The normalizing

constant is

Z =

∫

X

elnp(x|d)dx ≈ p(x0|d)
√

(2π)n |Σ|, (13)

whereΣ =
[
−∇2lnp(x0|d)

]−1
, n is the dimension of the

variablex, and|Σ| is the determinant ofΣ.
The non-normalized Bayesian posterior distributionp(x|d)

is now approximated as

p(x|d) ≈ 1√
(2π)n|Σ|

exp
{
− 1

2 (x− x0)
T [Σ−1](x− x0)

}
, (14)

which is a multivariate Gaussian distribution with a mean vec-
tor of x0 and a covariance matrixΣ. To computex0 andΣ,
the first step is to find the local maxima oflnp(x|d) and eval-
uate the Hessian oflnp(x|d) at the local maxima. Numeri-
cal root-finding algorithms can be used to find local maxima,
such as Gauss-Newton algorithm (Dennis Jr, Gay, & Walsh,
1981), Levenberg-Marquardt algorithm (More, 1978), trust-
region dogleg algorithm (Powell, 1970), and so on. Laplace
method can yield accurate results given the target distribution
is approximately Gaussian distributed, which is quite com-
mon for practical problems (Gregory, 2005).

With the analytical representation of the posterior distribu-
tion p(x|d), the updated reliability index can be calculated us-
ing the FORM method. In addition, updated system response
predictions associated with a reliability index or a confidence
level can also be calculated using inverse FORM method. For
the sake of completeness, the basic concept of the FORM and
inverse FORM methods are introduced briefly.

3. FORM AND INVERSE FORM METHODS

The time-invariant reliability analysis entails computation of
a multi-dimensional integral over the failure domain of the
performance function.

PF ≡ P [g(x) < 0] =

∫

g(x)<0

fX(x)dx, (15)

wherex ∈ Rn is a real-valuedn-dimensional uncertain vari-
able,g(x) is the performance function, such thatg(x) < 0
represents the failure domain,PF is the probability of fail-
ure, andfX(x) is the joint probability distribution ofx.
The surfaceg(x) = 0 is usually called limit-state surface.
In FORM/SORM methods, the uncertain variable is usually
transformed from the standard probability space to the stan-
dard Gaussian space, also referred to asreduced variable
space. Denote the transformed performance function asg(z),
wherez ∈ Rn is ann-dimensional standard Gaussian vari-
able, also calledreduced variable. The distance between the
closest point (most probable point (MPP), labeled as MPP in
Figure 1) on the limit-state surfaceg(z) = 0 to the origin in
the reduced variable space is the Hasofer-Lind reliabilityin-
dex (Madsen et al., 1986), denoted asβHL in Figure 1. MPP
is also known as thedesign point.
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FORM

SORM

limit-state surface

MPP

failure domain

β
HL

g(z)=0

g(z)<0

Figure 1: Linear (FORM) and quadratic (SORM) approxima-
tions of the performance function at MPP on the limit-state
surface.

Reliability analysis entails the computation ofβHL and the
design point, which is a standard constrained optimization
problem defined as

minimize: ||z|| subject tog(z) = 0, (16)

where||z|| denotes the distance between the pointz and the
origin in the reduced variable space.

The design point is generally not known a priori, hence an
iterative process is required to find the design pointz∗ in the
reduced variable space such thatβHL ≡ ||z∗|| corresponds to
the shortest distance betweenz∗ and the origin of the reduced
variable space. Because reduced variables are based on the
mean and standard deviation of a normal distribution, the non-
normal variables must be transferred to its equivalent normal
distribution. Rackwitz-Fiessler (Madsen, 1977) procedure is
usually adopted for this purpose. The idea requires the cu-
mulative density function (CDF) and the probability density
function (PDF) of the target distribution be equal to a nor-
mal CDF and PDF at the value of variablex on the limit-
state surface. This procedure finds the meanµeq and standard
deviationσeq of the equivalent normal distribution and thus
the variablex can be reduced to a standard Gaussian variable
z = (x − µeq)/σeq. Several algorithms are available to lo-
cates the design pointz∗, for example the Hasofer & Lind
- Rackwitz & Fiessler (HL-RF) algorithm (Hasofer & Lind,
1974; Rackwitz & Flessler, 1978). With an initial guess ofz0
on the limit-state surface, the basic procedure computes the
new location forz∗ iteratively according to

zk+1 =
1

|∇g(zk)|2
[∇g(zk)zk − zk]∇g(zk)T . (17)

A reasonable guess can be fixing the firstn−1 components of
z0 to its distribution means and solving for the last component
on the limit-state surface. The iterative procedure terminates
based on some criteria such as|βk+1 − βk| < ǫβ , whereǫβ is
a small control parameter assigned by users. Usually a value
of ǫβ = 10−4 to 10−3 yields accurate results forβHL and the
design point(Cheng et al., 2007).

After finding the design point andβHL by solving Eq. (16)
using the iterative formula of Eq. (17), FORM or SORM
can approximate the probability of failure using a linear or
quadratic approximation of the performance function, respec-
tively. Both of them are based on Taylor series expansion of
the performance function around the design point truncated

to linear and quadratic terms. For example, using FORM
method yields the probability of failure as

P FORM
F ≅ Φ(−βHL), (18)

whereΦ is the standard Gaussian CDF. The precision of this
approximation depends on the non-linearity of the limit-state
surface. Experience shows that FORM method yields accu-
rate results for general engineering purposes (Cheng et al.,
2007). FORM is a widely used computational model in reli-
ability index approach (RIA) for reliability-based designop-
timization (RBDO) since it finds the reliability indexβHL.
The advantage of RIA is that the probability of failure is for-
wardly calculated for a given design. However, inverse reli-
ability analysis in performance measure approach (PMA) is
known to be more robust and informative than the reliabil-
ity analysis in RIA (Tu, Choi, & Park, 1999; Youn, Choi, &
Du, 2005). The idea of inverse reliability analysis in PMA is
to investigate whether a given design satisfies the probabilis-
tic constraint with a target reliability indexβt. The inverse
reliability analysis can also be expressed as an optimization
problem such that

minimize: g(z) subject to||z|| = βt. (19)

In inverse reliability analysis, among the different values of
performance functiong(z) taking onz that pass through the
βt curve in the reduced variable space, the onez∗ that min-
imizes the performance function is sought. Figure 2 illus-
trates the inverse reliability analysis. The pointz∗ is also
called MPP and the corresponding minimal value ofg(z∗)
is called probabilistic performance measure (PPM). Both re-
liability analysis and inverse reliability analysis search for
MPPs. The difference is that the former search for the MPP
on the limit-state surfaceg(z) = 0 while the latter search for
MPP on theβt curve. Based on the idea of inverse FORM
procedure proposed in (Der Kiureghian et al., 1994), an effi-
cient and simplified iterative formula in the reduced variable
space is formulated as:

zk+1 = zk + λ

[
−βt

∇g(zk)

|∇g(zk)| − zk

]
, (20)

where∇ is the gradient vector with respect toz andλ is the
step size at thekth iteration (a small constant is used in this
formula instead of an adaptive value). The initial valuez0 is
usually assigned to the distribution mean value. The iterative
procedure proceeds until a convergence is achieved, i.e., when

|zk+1 − zk|
|zk+1|

≤ ε, (21)

whereε is a small quantity assigned by the user. For practical
problems,ǫt = 10−4 to 10−3 usually yields satisfactory es-
timates (Cheng et al., 2007). Based on the iterative formula,
an algorithm locating MPP in inverse reliability problems is
given as Algorithm 1.

Algorithm 1 Inverse FORM algorithm solving MPP given a
target reliability indexβt

1: Initiatez0 andλ, setk = 0
2: repeat
3: calculatezk+1 according to Eq. (20)
4: calculated = |zk+1−zk|

|zk+1|
5: k ← k + 1
6: until d ≤ ǫt

4
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For a given confidence level, the reliability indexes asso-
ciated with that level should be first calculated using inverse
Gaussian CDF then the MPPs associated with these indexes
can be calculated using Algorithm 1. System responses are
readily evaluated with these MPPs.

FORM

MPP

βt

β=1

g(z)=-1.0
g(z)=2.5

g(z)=4.0

β=2

Figure 2: Inverse reliability analysis and MPP for target prob-
ability of failure ofβt and the linear approximation of the per-
formance function at MPP labeled as FORM. Values ofg(z)
are for illustration purposes only.

Both iterative formulae in Eq. (17) and Eq. (20) implicitly
assumes that the components ofz are uncorrelated. For cor-
related component variables inz, the correlated components
need to be transformed into uncorrelated components via the
orthogonal transformation ofz′ = L−1(zT ), whereL is the
lower triangular matrix obtained by Cholesky factorization of
the correlation matrixR such thatLL′ = R, whereL′ is the
transpose ofL.

The overall computational procedure according to the pro-
posed method is summarized as follows:

1. Formulate Bayesian posterior distributions according to
Eq. (8).

2. Compute the posterior approximation according to Eq.
(14).

3. Reliability or probability of failure estimation is calcu-
lated using iterative formula of Eq. (17) and Eq. (18).

4. To estimate system responses associated with a reliabil-
ity level or confidence level, calculate MPPs using Al-
gorithm 1 and then calculate system responses with the
obtained MPPs.

Prior estimations are evaluated according to Steps 3 and 4
using prior distributions. To illustrate the proposed method,
several examples are presented in the next section.

4. EXAMPLES

A numerical example is given first to illustrate the overall
procedure, and a practical fatigue crack propagation prob-
lem with experimental data and a beam example with finite
element analysis data are demonstrated. Comparisons with
traditional simulation-based methods are made to investigate
the accuracy and computational efficiency of the proposed
method.

4.1 A numerical example with two uncertain variables
Consider a performance functionf(x, y) = x + y describ-
ing an observable eventz = f(x, y) + ǫ, wherex andy are
two uncertain variables andǫ is an Gaussian error term with
zero mean and a standard deviation ofσǫ = 0.5. Variablex
is normally distributed with a mean ofµx = 2 and a stan-
dard deviation ofσx = 0.5 and variabley is also normally
distributed with a meanµy = 5 and a standard deviation
σy = 1.5. Variablesx and y are correlated with a corre-
lation coefficient ofρxy = −0.5. The covariance matrix is

Σxy =
[

σ2
x σxσyρxy

σxσyρxy σ2
y

]
. f(x, y) > 9 is defined as fail-

ure event and the limit-state surface isf(x, y) − 9 = 0. The
likelihood function can be expressed according to Eq. (8) as

p(z|x) =
1√

2πσǫ

exp

{
−1

2

[
z − f(x, y)

σǫ

]2
}

. (22)

Assume that the evidence ofz = 8 is observed. The poste-
rior distribution that encodes this information is formulated
according to Eq. (1) as,

p(x|z) = 1√
2π |Σxy |

exp

{
−1

2

(
x− µx
y − µy

)T

[Σxy ]
−1

(
x− µx
y − µy

)}
×

1√
2πσǫ

exp

{
−1

2

[
z − f(x)

σǫ

]2}
.

(23)

Based on the information given above, the prior estimate
of the probability of failure for eventf(x, y) > 9 and the
prediction of system responsez associated with a given relia-
bility or confidence level can be calculated using FORM and
inverse FORM methods. After obtaining the additional data
z = 8, those estimates can be updated using the proposed an-
alytical procedure. The updating process firstly involves the
Laplace approximation for the posterior of Eq. (23). Then the
iterative formula of Eq. (17) is employed to find the design
point (x∗, y∗) andβ, and the probability of failurePF can be
estimated using FORM according toΦ(−β).

To calculate the confidence bound (e.g.,[lo, up] =
[0.025, 0.975] bound) ofz, reliability indexes associated with
the upper and lower limits are first calculated according to
βlo = Φ−1(lo) andβup = Φ−1(up). The iterative inverse
FORM formula of Eq. (20) solves the required design point
for βlo and βup. Finally the confidence bound ofz can be
computed using these two design points. To compare the effi-
ciency and the accuracy, MC and MCMC simulations serve
as benchmark solutions to this example. Table 1 presents
results for this example. The prior estimates for probability
of failure (PoF) and interval prediction are calculated using
FORM and inverse FORM methods, respectively. For this
simple example, just a few function evaluations ensure ob-
taining converged results. A crude Monte Carlo simulation
with 106 samples yields very close results. For the posterior
estimate with Bayesian updating, the proposed analytical so-
lutions using Laplace, FORM, and inverse FORM (results are
labeled as iFORM in all the tables hereafter) methods are very
close to the solution obtained using MCMC simulation with
a chain length of106. By comparing the number of function
evaluations between the analytical and MC or MCMC solu-
tions, it is observed that the proposed analytical method can
reduce the computational cost by several orders of magnitude.
It would be significantly advantageous to use the proposed
analytical procedure for time constrained or online prognosis
systems.
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Table 1: Probability of Failure (PoF), confidence interval (CI) estimates, and the number of function evaluations (NFE)for
f(x, y) = x + y. Both x and y are normally distributed with means of 2 and 5 and standard deviations of 0.5 and 1.5,
respectively. The correlation coefficient betweenx andy is−0.5. The failure is defined asf(x, y) > 9.

Method PoF 95 CI NFE

prior FORM,iFORM 0.030181 4.2570∼9.7430 21
MC 0.030417 4.2493∼9.7455 106

posterior Laplace,FORM,iFORM 0.0045455 6.6536∼8.9852 47
MCMC 0.0046910 6.6506∼8.9898 106

4.2 Reliability updating and response prognostics of a
fatigue crack damaged system with experimental
data

In this section, a practical fatigue crack damage problem is
presented with experimental data. As a typical damage mode
in many structures, the reliability of a system with possible
fatigue cracks must be accurately quantified in order to avoid
severe failure events. Because fatigue crack propagation is
a time-dependent process, crack growth prognosis provides
valuable information for system maintenance or unit replace-
ment. Due to the stochastic nature of fatigue crack propaga-
tion, fatigue crack growth is not a smooth and stable process.
Therefore additional information such as usage information
from health monitoring systems and crack size measures from
inspections can be used to update various quantities of inter-
est. By performing continuous updating, uncertainties asso-
ciated with system reliability and crack size prognosis canbe
reduced for decision-making. Because crack growth equa-
tions are usually in the forms of differential equations or fi-
nite element models, simulation-based methods are relatively
more expensive in terms of computational cost. To demon-
strate the updating procedure with the proposed method and
validate its effectiveness and efficiency, experimental data are
incorporated in this example. A portion of the experimental
data is used to obtain the parameter distributions of the crack
growth equation and one from the rest of the dataset is arbi-
trarily chosen to represent the ”actual” target system. First
we estimate PoF and crack growth prognosis with the prior
parameter distributions. Then we choose a few points from
the ”acutal” target system to represent measurements from
crack size inspections. These measures are used to perform
Bayesian updating with the analytical methods proposed in
previous sections. Both system reliability and crack growth
prognosis are updated. Results are compared with simulation-
based methods in terms of accuracy and efficiency.

(Virkler, Hillberry, & Goel, 1979) reported a large set of
fatigue crack propagation data on aluminum alloy 2024-T3.
The dataset consists of fatigue crack propagation trajecto-
ries recorded from 68 center-through crack specimens, each
of which has the same geometry, loading, and material con-
figurations. Each specimen has a width ofw = 154.2mm
and a thickness ofd = 2.54mm. The initial crack size is
a0 = 9.0mm. A constant cyclic loading with a stress range
of ∆σ = 48.28MPa was applied. Without loss of generality,
the classical Paris’ equation (Paris & Erdogan, 1963) is cho-
sen as the crack growth rate governing equation. Other crack
growth equations can also be applied with the same proce-
dure. Paris’ equation describes the crack growth rate per one
constant cyclic load as

da

dN
= c(∆K)m, (24)

where∆K is the stress intensity range in one loading cycle.

For this particular crack and geometry configuration,∆K =√
πa[sec(πa/w)]∆σ. Termsc andm are uncertainty model

parameters that are usually obtained via statistical regression
analysis of experimental testing data. For convenience,lnc is
usually used instead ofc. Given a specific number of loading
cycles, solving the ordinary differential equation in Eq. (24)
gives the corresponding crack size.

The first fifteen crack growth trajectories from Virkler’s
dataset identifies these two parameters using Maximum Like-
lihood Estimation as a joint Gaussian distribution of(lnc, m)
with a mean vector ofµ0 = [−26.7084, 2.9687] and a co-
variance matrix ofΣ0 =

[
0.5435 −0.0903

−0.0903 0.0150

]
.

p0(lnc, m) =
1

2π
√
|Σ0|
×

exp

{
−1

2
[(lnc, m)− µ0] Σ

−1
0 [(lnc, m)− µ0]

T

} (25)

As we mentioned earlier in this section, another specimen
from the rest of the dataset is arbitrarily chosen to represent
the target system. The reliability and crack growth progno-
sis of this target system are of interest. The prior estimate
of reliability and fatigue crack growth prognosis of the tar-
get system can then be estimated using this joint distribution
and the model in Eq. (24). LetM(N ; lnc, m) denotes the
model output (crack size) given a number of loading cycles
N and parameterslnc and m. Three crack size measures
ai with corresponding numbers of loading cyclesNi at the
early stage of the target system are chosen to represent the
actual inspection data. They are(a1, N1) = (10, 33062),
(a2, N2) = (11, 55101), and(a3, N3) = (12, 75569). The
standard deviation of Gaussian likelihood is also estimated
asσa = 0.304mm. The failure event is defined as the crack
size exceeding 40.0mm given the number of loading cycles as
220,000. With these additional measurement data, the poste-
rior distribution of(lnc, m) (with r response measures) reads

pn(lnc, m) ∝ p0(lnc, m)×

exp

{
−1

2

r∑

i=1

[
ai −M(Ni; lnc, m

σa

]2
}

(26)

Following the proposed analytical procedure, we obtain
updated results of reliability and crack size prognosis. Ta-
ble 2 shows the prior and posterior (updated) results of PoF
and 95% interval predictions of crack size at 220,000 load-
ing cycles. We can observe from this table that the simulation
method requires 200,000 function evaluations while the ana-
lytical method requires less than 200 function evaluationsto
produce similar results.

Figure 3 presents crack growth prognosis results obtained
by the proposed analytical method. MCMC simulation re-
sults are displayed in the same figure for comparison. Several
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Table 2: Prior and updated estimates of Probability of Failure (PoF), confidence interval (CI) for crack size, and the number
of function evaluations (NFE) for fatigue crack problem. The failure is defined as the crack size exceedsac = 40mm at the
number of loading cyclesNc = 220, 000. 95% CI predictions are calculated at the number of loading cycles equal toNc.

Measures Method PoF 95% CI NFE

0(prior) FORM,iFORM 0.0467 28.8290∼41.3095 60
MCMC 0.0498 28.9417∼41.4685 2× 105

1 Laplace,FORM,iFORM 0.0225 28.3694∼39.8084 96
MCMC 0.0186 28.3563∼39.5466 2× 105

2 Laplace,FORM,iFORM 0.0042 27.7926∼37.4207 105
MCMC 0.0039 27.6989∼37.3537 2× 105

3 Laplace,FORM,iFORM 0.0002 27.2484∼34.9112 111
MCMC 0.0001 27.0817∼34.6913 2× 105
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Figure 3: Prior and posterior prognostics of fatigue crack growth trajectory using the proposed method (Laplace,iFORM) and
the traditional simulation-based methods (MCMC). Median and 95% interval predictions are presented: (a) prior estimation;
(b) updated with 1 measure; (c) updated with 2 measures; (d) updated with 3 measures.

aspects can be observed and interpreted: 1) The proposed an-
alytical Laplace and (inverse) FORM method yields almost
identical prognostic results to those obtained using traditional
MCMC simulations, which can be confirmed by observing
Figure 3(a-d). 2) In Figure 3(a), the prior median and interval
prediction of the crack growth is far from the actual target sys-
tem because of various uncertainty associated with the crack
propagation process such as the material uncertainty, model-
ing uncertainty, as well as measurement uncertainty. These
uncertainties are finally encoded into the model parameter
(lnc, m) in form of distributions through statistical regression.

These uncertainties cause the prior estimation deviates from
the actual target system. 3) Inspection data, or crack size mea-
surement in this example, is critical to improve the accuracy
for time-dependent nonlinear system prognostics. With in-
spection data, uncertainties can be greatly reduced. As shown
in Figure 3(b-d), both the median and interval predictions for
crack growth trajectories become closer to the actual trajec-
tories as more measurements are integrated into the Bayesian
updating process.

7

Annual Conference of the Prognostics and Health Management Society, 2011

100
[paper 11]



Annual Conference of the Prognostics and Health ManagementSociety, 2011

4.3 A cantilever beam example
A beam example is used to examine the proposed method
through finite element analysis (FEA). Data from FEA pro-
vide representative sensor output. By analyzing the sensor
output data, frequency information of the beam is extractedto
update the finite element model and also the reliability level.
For the sake of illustration and simplification, we use a simple
cantilever beam. More complex full-scale structural finiteele-
ment model analysis follows the same procedure as presented
here.

A cantilever aluminum beam is divided into ten elements
using finite element modeling, as shown in Figure (4). The
beam is 1m long, 0.1m wide and 0.01m thick. The design
cross section area isA = 0.001m2. Assume the cross section
area of the first segment of the beam (attached to the wall)
is modeled byA1 = αA due to manufacturing uncertainty,
where termα is a Gaussian variable with a mean of 1 and
a standard deviation of 0.5. Because of usage (aging) and
material degradation,α may vary along time. Other segments
have deterministic cross section dimensions that are equalto
the design value ofA. The material has a Young’s modulus
of E = 6.96× 1010Pa and a density of2.73× 103kg/m3.

1m
0.1m

0.01mfixed
 end 1            2          3           4          5          6          7          8         9        10

the cross section area of fixed-end element (#1) is uncertain

Figure 4: The cantilever beam finite element model. The
cross section area of the first element (attached to the wall)
is uncertain due to manufacture and usage and is modeled by
A1 = αA, whereA = 0.001m2 is design cross section area
andα ∼ Norm(1, 0.022).

The failure event is defined as the first natural frequency
is less than 8Hz due to the degradation of the stiffness of the
beam. The sensor data are synthesized by settingα = 0.95
and solving the dynamical equation of the beam under a free
vibration. After adding 5 percent of Gaussian white noise,
the first four mode frequency data are extracted from the sen-
sor data using Fast Fourier Transformation (FFT). They are
(f1, f2, f3, f4) = (8.03, 50.5, 142, 280)Hz.

Based on the above information, the Bayesian posterior
for uncertain variableα given the frequency information ex-
tracted from the sensor data is

p(α) ∝ exp

{
−1

2

(α− 1)2

0.52

}

× exp



−

F∑

j=1

N∑

i=1

(
{ω}i

[(
−(2πfi)

2M(α) + K(α)
)
{φi}

]
j

)2



 ,

(27)

whereN is the number of measured mode andF is the num-
ber of measured mode shape coordinates. Term{ω}i is the
ith weighting factor for ith frequency component in the like-
lihood function. For the purpose of illustration,{ω} is con-
figured such that each frequency component has a coefficient
of variation of 0.1. TermsM(α) andK(α) are the mass and
stiffness matrices, respectively. Becauseα is a variable, ac-
tual values forM(α) andK(α) depends on each realization
of α. Term{φ}i is the ith mode shape. For the current data,
N = 4 andF = 20.

Using the proposed method we obtain results shown in Ta-
ble (3). Simulation-based results are also listed in this table
for comparison.

Table 3: Prior and posterior estimates of probability of
failure (PoF) in the beam example. Frequency data (first four
natural frequency extracted from synthesized noisy data via
FFT) are used to perform Bayesian updating. Statistics of
α (mean,standard deviation(SD)) and computational cost in
term of number of function evaluations (NFE) are shown.

Method PoF NFE α(mean,SD)

prior: FORM 0.004435 11 1.0, 0.02
MC 0.004428 106 1.0, 0.02

posterior: Laplace,FORM 0.0182 57 0.9757, 0.0134
MCMC 0.0164 106 0.9760, 0.0135

Results of the proposed method are similar to those ob-
tained using traditional simulation-based methods. However,
the computational cost is much smaller. Finite element mod-
els in practical problems are usually more sophisticated than
this beam example, and simulation-based methods are not
feasible for such computationally extensive problems. The
proposed method provides an alternative to solving such prob-
lems and it yields accurate results under the condition that
uncertain variables are approximately Gaussian-like.

In this section, three examples are presented to demonstrate
and validate the proposed analytical method. Some important
aspects of the proposed method are closely revealed, includ-
ing the computational benefits in terms of efficiency and accu-
racy. Appropriate conditions to assure these benefits are also
analyzed.

5. CONCLUSIONS

In this paper, an efficient analytical Bayesian method for re-
liability and system response updating is developed. The
method is capable of incorporating additional information
such as inspection data to reduce uncertainties and im-
prove the estimation accuracy. One major difference be-
tween the proposed work and the traditional approach is that
the proposed method performs all the calculations includ-
ing Bayesian updating without using MC or MCMC simu-
lations. A numerical example, a practical fatigue crack prop-
agation problem with experimental data, and a finite element
beam problem with FEA data are presented to demonstrate
the proposed method. Comparisons are made with traditional
simulation-based methods to investigate the accuracy and ef-
ficiency. Based on the current study, several conclusions are
drawn.

1. The proposed method provides an efficient analytical
computational procedure for computing and updating system
reliability responses. No MC or MCMC simulation is re-
quired therefore it provides an feasible and practical solu-
tion to time constrained or online prognostics. The method
is also beneficial for structural health monitoring problems
where Bayesian updating and system response predictions are
frequently performed upon the arrival of sensor data.

2. The proposed method is capable of incorporating addi-
tional information such as the inspection data and usage data
from health monitoring system by way of Bayesian updat-
ing. This property is beneficial for highly stochastic time-
dependent nonlinear system where prior estimates for relia-
bility and system response may become unreliable along with
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system developing. By continuous Bayesian updating, esti-
mation uncertainties can be reduced.

3. The proposed method yields almost identical results
to those produced by traditional simulation-based methods
given that uncertain variables are approximately Gaussian
distributed. This is true for most of the engineering problems
where the uncertain parameters are normal or log-normal
variables (which can be transformed and truncated into nor-
mal variables). When these conditions are not assured, the re-
sults need careful interpretations. The efficiency and accuracy
of the proposed method is demonstrated and verified using
three examples. The proposed method provides an alternative
for time-constrained prognostics problems. If the problem
involves too many random variables, traditional simulation-
based method may be more appropriate. Systematical com-
parisons of the method with other approaches such as varia-
tional method will be conducted in the future.
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ABSTRACT

Modern aircraft—both piloted fly-by-wire commercial air-
craft as well as UAVs—more and more depend on highly
complex safety critical software systems with many sensors
and computer-controlled actuators. Despite careful design
and V&V of the software, severe incidents have happened due
to malfunctioning software.

In this paper, we discuss the use of Bayesian networks to mon-
itor the health of the on-board software and sensor system,
and to perform advanced on-board diagnostic reasoning. We
focus on the development of reliable and robust health models
for combined software and sensor systems, with application
to guidance, navigation, and control (GN&C). Our Bayesian
network-based approach is illustrated for a simplified GN&C
system implemented using the open source real-time oper-
ating system OSEK/Trampoline. We show, using scenarios
with injected faults, that our approach is able to detect and
diagnose faults in software and sensor systems.

1. INTRODUCTION

Modern aircraft depend increasingly on the reliable operation
of complex, yet highly safety-critical software systems. Fly-
by-wire commercial aircraft and UAVs are fully controlled by
software. Failures in the software or a problematic software-
hardware interaction can have disastrous consequences.

Although on-board diagnostic systems nowadays exist for
most aircraft (hardware) subsystems, they are mainly work-
ing independently from each other and are not capable of re-
liably determining the root cause or causes of failures, in par-
ticular when software failures are to blame. Clearly, a pow-
erful FDIR (Fault Detection, Isolation, Recovery) or ISHM

Johann Schumann et.al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

(Integrated System Health Management) system forsoftware
has a great potential for ensuring safety and operational reli-
ability of aircraft and UAVs. This is particularly true, since
many software problems do not directly manifest themselves
but rather exhibitemergent behavior. For example, when the
F-22 Raptors crossed the international date line, a software
problem in the guidance, navigation, and control (GN&C)
system did not only shut down that safety-critical component
but also brought down communications, so the F-22s had to
be guided back to Hawaii using visual flight rules.1

An on-board software health management (SWHM) system
monitors the flight-critical software while it is in operation,
and thus is able to detect faults, such as the F-22 problems, as
soon as they occur. In particular, an SWHM system

• monitors the behavior of the software and interacting
hardware during system operation.Information about
operational status, signal quality, quality of computation,
reported errors, etc., is collected and processed on-board.
Since many software faults are caused by problematic
hardware/software interactions, status information about
software components must be collected and processed,
in addition to that for hardware.

• performs diagnostic reasoning in order to identify the
most likely root cause(s) for the fault(s).This diagnos-
tic capability is extremely important. In particular, for
UAVs, the available bandwidth for telemetry is severely
limited; a “dump” of the system state and analysis by the
ground crew in case of a problem is not possible.

For manned aircraft, an SWHM can reduce the pilot’s
workload substantially. With a traditional on-board diag-
nostic system, the pilot can get swamped by diagnostic
errors and warnings coming from many different subsys-
tems. Recently, when one of the engines exploded on a

1http://www.af.mil/news/story.asp?storyID=
123041567
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Qantas A380, the pilot had to sort through literally hun-
dreds of diagnostic messages in order to find out what
happened. In addition, several diagnostic messages con-
tradicted each other.2

In this paper, we describe our approach of using Bayesian
networks as the modeling and reasoning paradigm to achieve
SWHM. With a properly developed Bayesian network, de-
tection of faults and reasoning about root causes can be per-
formed in a principled way. Also, a proper probabilistic treat-
ment of the diagnosis process, as we accomplish with our
Bayesian approach (Pearl, 1988; Darwiche, 2009), can not
only merge information from multiple sources but also pro-
vide a posterior distribution for the diagnosis and thus pro-
vide a metric for the quality of this result. We note that this
approach has been very successful for electrical power sys-
tem diagnosis (Ricks & Mengshoel, 2009, 2010; Mengshoel
et al., 2010).

It is obvious that an SWHM system that is supposed to oper-
ate on-board an aircraft, in an embedded environment, must
satisfy important properties: first, the implementation ofthe
SWHM must have a small memory and computational foot-
print and must be certifiable. Second, the SWHM should ex-
hibit a low number of false positives and false negatives. False
alarms (false positives) can produce nuisance signals; missed
adverse events (false negatives) can be a safety hazard. Our
approach of using SWHM models, that have been compiled
into arithmetic circuits, are amenable to V&V (Schumann,
Mengshoel, & Mbaya, 2011).

The remainder of the paper is structured as follows: Sec-
tion 2. introduces Bayesian networks and how they can be
used for general diagnostics. In Section 3. we demonstrate
our approach to software health management with Bayesian
networks and discuss how Bayesian SWHM models can be
constructed. Section 4. illustrates our SHWM approach with
a detailed example. We briefly describe the demonstration
architecture and the example scenario, discuss the use of
a Bayesian health model to diagnose such scenarios, and
present simulation results. Finally, in Section 5. we conclude
and identify future work.

2. BAYESIAN NETWORKS

Bayesian networks (BNs) represent multivariate probability
distributions and are used for reasoning and learning under
uncertainty (Pearl, 1988). They are often used to model sys-
tems of a (partly) probabilistic nature. Roughly speaking,ran-
dom variables are represented as nodes in a directed acyclic
graph (DAG), while conditional dependencies between vari-
ables are represented as graph edges (see Figure 1 for an ex-
ample). A key point is that a BN, whose graph structure often

2http://www.aerosocietychannel.com/aerospace
-insight/2010/12/exclusive-qantas-qf32-flight-from
-the-cockpit/

reflects a domain’s causal structure, is a compact representa-
tion of a joint probability table if the DAG is relatively sparse.
In a discrete BN (as we are using for SWHM), each random
variable (or node) has a finite number of states and is param-
eterized by a conditional probability table (CPT).

During system operation, observations about the software and
system (e.g., monitoring signals and commands) are mapped
into states of nodes in the BN. Various probabilistic queries
can be formulated based on the assertion of these observations
to yield predictions or diagnoses for the system. Common BN
queries of interest include computing posterior probabilities
and finding the most probable explanation (MPE). For exam-
ple, an observation about abnormal behavior of a software
component could, by computing the MPE, be used to identify
one or more components that are most likely in faulty states.

Different BN inference algorithms can be used to answer
the queries. These algorithms include join tree propaga-
tion (Lauritzen & Spiegelhalter, 1988; Jensen, Lauritzen,
& Olesen, 1990; Shenoy, 1989), conditioning (Darwiche,
2001), variable elimination (Li & D’Ambrosio, 1994; Zhang
& Poole, 1996), and arithmetic circuit evaluation (Darwiche,
2003; Chavira & Darwiche, 2007). In resource-bounded sys-
tems, including real-time avionics systems, there is a strong
need to align the resource consumption of diagnostic com-
putation with resource bounds (Musliner et al., 1995; Meng-
shoel, 2007) while also providing predictable real-time per-
formance. The compilation approach—which includes join
tree propagation and arithmetic circuit evaluation—is attrac-
tive in such resource-bounded systems.

0.05      0.9         

Bearing Health
Bearing   ok         worn 

ok        0.99

worn    0.01

Bearing   ok        worn

no            0.9        0.05
yes           0.1        0.95

ok            0.95      0.1
low         

Vibration

Oil Pressure

Figure 1. Simple Bayesian network. CPT tables are shown
near each node.

Let us consider a very simple example of a Bayesian network
(Figure 1) as it could be used in diagnostics. We have a node
Bearing Health (BH) representing the health of a ball
bearing in a diesel engine, a sensor nodeVibration (V )
representing whether vibration is measured or not, and a node
Oil Pressure (OP ) representing oil pressure. Clearly,
the sensor readings depend on the health status of the ball
bearing, and this is reflected by the directed edges. The de-
grees of influence are defined in the two CPTs depicted next to
the sensor nodes. For example, if there is vibration, the prob-
ability that p(BH =∼ ok ) increases. To obtain the health
of the ball bearing, we input (or clamp) the states of the BN
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sensor nodes and compute the posterior distribution (or be-
lief) over BH. The prior distribution of failure, as reflected
in the CPT shown next toBH, is also taken into account in
this calculation.

Our example network in Figure 1 represents the joint proba-
bility p(BH,V,OP ) and is shown in Table 1. For simplicity,
we replace all CPT entries withθx (i.e.,θok ↔ BH is ok, and
θ∼ok ↔ BH is worn). Letλi indicate whether evidence of a
specific state is observed (i.e.,λv = 1 means evidence of vi-
bration is observed, andλv = 0 means no evidence of vibra-
tion is observed. The probability distributionp(BH,V,OP )
captured by the Bayesian network above is shown in Table 1.

BH V OP p(BH,V,OP )
ok v op λokλvλopθv|okθokθop|ok
ok v ∼op λokλvλ∼opθv|okθokθ∼op|ok
ok ∼v ∼op λokλ∼vλ∼opθ∼v|okθokθ∼op|ok
ok ∼v op λokλ∼vλopθ∼v|okθokθop|ok

∼ok v op λ∼okλvλopθv|∼okθ∼okθop|∼ok

∼ok ∼v op λ∼okλ∼vλopθ∼v|∼okθ∼okθop|∼ok

∼ok v ∼op λ∼okλvλ∼opθv|∼okθ∼okθ∼op|∼ok

∼ok ∼v ∼op λ∼okλ∼vλ∼opθ∼v|∼okθ∼okθ∼op|∼ok

Table 1. Probability distribution forp(BH,V,OP ).

According to this joint probability distribution table, the first
row (λokλvλopθv|okθokθop|ok) is representing the probabil-
ity that the health of the ball bearing is okay (λok = 1), and
that vibrations and good oil pressure are observed (λv and
λop = 1) would be 9.4% indicating a very low degree of
belief in such a state. Given the corresponding numerical
CPT entries this number is calculated asθv|okθokθop|ok =
0.1 ∗ 0.99 ∗ 0.95 = 0.09405. On the other hand, the fourth
row (λokλ∼vλopθ∼v|okθokθop|ok) representing the probabil-
ity that the ball bearing is okay (λok = 1), there is no vibra-
tions and good oil pressure (λ∼v andλop = 1) is much higher
(85%) as follows:θ∼v|okθokθop|ok = 0.9 ∗ 0.99 ∗ 0.95 =
0.84645.

Posterior marginals can be computed from the joint distribu-
tion:

p(BH,V,OP ) =
∏

θs|x

θs|x
∏

λs

λs

whereθs|x indicates a state’s conditional probability andλs

indicates whether or not states is observed. Here,θ variables
are known as variables,λ variables as indicators.

Summing all individual joint distribution entries yields
a multi-linear function—at the core of arithmetic cir-
cuit evaluation—referred to as thenetwork polynomialf

(Darwiche, 2009):

f = λokλvλopθv|okθokθop|ok+
λokλvλ∼opθv|okθokθ∼op|ok+
λokλ∼vλ∼opθ∼v|okθokθ∼op|ok+
λokλ∼vλopθ∼v|okθokθop|ok+
λ∼okλvλopθv|∼okθ∼okθop|∼ok+
λ∼okλ∼vλopθ∼v|∼okθ∼okθop|∼ok+
λ∼okλvλ∼opθv|∼okθ∼okθ∼op|∼ok+
λ∼okλ∼vλ∼opθ∼v|∼okθ∼okθ∼op|∼ok,

or in other words

f =
∑

E

∏

θs|x

θs|x
∏

λs

λs

whereE indicates evidence of a network instantiation.

An arithmetic is a compact representation of a network poly-
nomial. An arithmetic circuit (AC) is a directed acyclic graph
(DAG) in which leaf nodes represent variables (parameters
and indicators) while other nodes represent addition and mul-
tiplication operators. Size, in terms of number of AC edges,is
a measure of complexity of inference. Unlike treewidth, an-
other complexity measure, AC size can take network param-
eters (such as determinism and local structure) into account.

Answers to probabilistic queries, including marginals and
MPE, are computed using algorithms that operate directly on
the arithmetic circuit. A bottom-up pass over the circuit, from
input to output, evaluates the probability of a particular evi-
dence setting (or clamping ofλ parameters) on the state of the
network. And a top-down pass over the circuit, from output to
input, computes partial derivatives. From these partial deriva-
tives one can compute many marginal probabilities, provide
information about how change in a specific node affects the
whole network (sensitivity analysis), and perform MPE com-
putation (Darwiche, 2009).

3. BAYESIAN NETWORKS FOR SOFTWARE HEALTH

MANAGEMENT

At a first glance, the SWHM does look very similar to a tradi-
tional integrated vehicle health management system (IVHM):
sensor signals are interpreted to detect and identity any faults,
which are then reported. Such FDIR systems are nowadays
commonplace in the aircraft and for other complex machin-
ery. It seems like it would be straight-forward to attach a
software to be monitored (host software) to such an FDIR.
However, there are several critical differences between FDIR
for hardware and software health management. Most promi-
nently, many software faults do not develop gradually over
time (e.g., like an oil leak); rather they occur instantaneously.
Whereas some of the software faults directly impact the cur-
rent software module (e.g., when a division-by-zero is de-
tected), there are situations where the effects of a software
fault manifest themselves in an entirely different subsystem,
as discussed in the F-22 example above. For this reason, and
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the fact that many software problems occur due to problem-
atic SW/HW interactions, both software and hardware must
be monitored in an integrated fashion.

Based upon requirements as laid out in Section 1., we are
using Bayesian networks to develop SWHM models. On a
top-level, data from software and hardware sensors are pre-
sented to the nodes of the Bayesian network, which in turn
performs its reasoning (i.e., updating the internal healthand
status nodes) and returns information about the health of the
software (or specific components thereof). The information
about the health of the software is extracted from the poste-
rior distribution, specifically from health nodes. In our mod-
eling approach, we chose to use Bayesian networks, which do
not reason about temporal sequences (i.e., dynamic Bayesian
networks) because of their complexity. Therefore, all sen-
sor data, which are usually time series, must undergo a pre-
processing step, where certain (scalar)featuresare extracted.
These values are then discretized into symbolic states (e.g.,
“low”, “high”) or normalized numeric values before pre-
sented to the Bayesian health model (Section 3.3).

3.1 Bayesian SWHM

3.1.1 Nodes

Our Bayesian SWHM models are set up using several kinds
of nodes. Please note that all nodes are discrete, i.e., each
node has a finite number of mutually exclusive and exhaustive
states.

CMD node C Signals sent to these nodes are handled as
ground truth and are used to indicate commands, ac-
tions, modes or other (known) states. For example,
a nodeWrite File System represents an action,
which eventually will write some data into the file sys-
tem, has been commanded. For our reasoning it is as-
sumed that this action is in fact happening.3 The CMD
nodes are root nodes (no incoming edges). During the
execution of the SWHM, these nodes are always directly
connected (clamped) to the appropriate command sig-
nals.

SENSOR node S A sensor nodeS is an input node similar
to the CMD node. The data fed into this node are sen-
sor data, i.e., measurements that have been obtained from
monitoring the software or the hardware. Thus, this sig-
nal is not necessarily correct. It can be noisy or wrong al-
together. Therefore, a sensor node is typically connected
with a health node, that describes the health status of the
sensor node.

HEALTH node H The health nodes are nodes that reflect
the health status of a sensor or component. Their pos-
terior probabilities comprise the output of an SWHM

3If there is a reason that this command signal is not reliable, the command
nodeC is used in combination with aH node to impact stateU as further
discussed below. Alternatively, one might consider using a sensor node in-
stead.

model. A health node can be binary (with states, say,
ok or bad), or can have more states that reflect health
status at a more fine-grained level. Health nodes are usu-
ally connected to sensor and status nodes.

STATUS node U A status node reflects the (unobservable)
status of the software component or subsystem.

BEHAVIOR node B Behavior nodes connect sensor,
command, and status nodes and are used to recognize
certain behavioral patterns. The status of these nodes is
also unobservable, similar to the status nodes. However,
usually no health node is attached to the behavioral
nodes.

3.1.2 Edges

The following informal way to think about edges in Bayesian
networks are useful for knowledge engineering purposes: An
edge (arrow) from nodeC to nodeE indicates that the state
of C has a (causal) influence on the state ofE.

Suppose thatS is a software signal (e.g., within the aircraft
controller) that leads into an input portI of the controller. Let
us assume that we wantS being 1 to causeC to be 1 as well.
Failure mechanisms are represented by introduced a health
nodeH. In our example, we would introduce a nodeH and
let it be a (second) parent ofI. More generally, the types of
influences typically seen in the SWHM BNs are as follows:

{H,C} → U represents how stateU may be commanded
through commandC, which may not always work as in-
dicated. This is reflected by the healthH of the com-
mand mechanism’s influence on the state.

{C} → U represents how stateU may be changed through
commandC; the health of the command mechanism is
not explicitly represented. Instead, imperfections in the
command mechanism can be represented in the CPT of
U .

{H,U} → S represents the influence of system statusU
on a sensorS, which may also fail as reflected inH. We
use a sensor to better understand what is happening in a
system. However, the sensor might give noisy readings;
the level of noise is reflected in the CPT ofS.

{H} → S represents a direct influence of system healthH
on a sensorS, without modeling of state (as is done in
the{H,U} → S pattern). An example of this approach
is given in Figure 1.

{U} → S represents how system statusU influences a sen-
sorS. Sensor noise and failure can both be rolled into the
CPT ofS.

Table 2 shows the CPT for the last case. Here, we consider the
status of a file system (FS). The file system can beempty,
full, or filled to more than 95% (full95). If more space
is available, its state is labeledok. This (unobservable) state
is observed by a software sensor, which measures the current
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capacity of the file system (FC). Because this sensor might
fail, a health node (FH) indicates the health ofFC sensor as
ok or bad.

Because the sensor nodeFC has two parents (status node
FS and health nodeFH), the CPT table is 3-dimensional.
Table 2 flattens out this information: the rows correspond to
the states of the sensor node (1st group for healthy sensor,
2nd group for bad sensor). The rightmost four columns refer
to the states of theFS node. In this particular example, a file
system sensor, which is not working properly will not report
if the file system is almost full or full. Such a bad sensor will
only reportempty orok. This is reflected by the zero-entries
in the lower right corner of the CPT.

FS FH p(FC|FH,FS)
empty ok full95 full

empty ok 0.88 0.05 0.01 0.01
ok ok 0.1 0.6 0.2 0.1
full95 ok 0 0.2 0.7 0.1
full ok 0 0 0 1
empty bad 0.9 0.1 0 0
ok bad 0.1 0.9 0 0
full95 bad 0.5 0.5 0 0
full bad 0.5 0.5 0 0

Table 2. CPT table forp(FC|FH,FS).

3.1.3 Developing Conditional Probability Tables (CPTs)

The CPT entries are set based on a priori and empirical knowl-
edge of a system’s components and their interactions (Ricks
& Mengshoel, 2009; Mengshoel et al., 2010). This knowl-
edge may come from different sources, including (but not
restricted to) system schematics, source code, analysis of
prior software failures, and system testing. As far as a sys-
tem’s individual components, mean-time-to-failure statistics
are known for certain hardware components, however simi-
lar statistics are well-established for software. Consequently,
further research is needed to determine the prior distribution
for health states, including bugs, for a broad range of soft-
ware components. As far as a interaction between a system’s
components, CPT entries can also be obtained from under-
standing component interactions, a priori, or testing how dif-
ferent components impact each other. As an example, con-
sider a testbed like NASA’s advanced diagnostic and prog-
nostic testbed (ADAPT) (Poll et al., 2007), which provides
both schematics and testing opportunities. Using a testing
approach, one may inject specific states into the navigation
system and record the impact on states of the guidance sys-
tem, and perform statistical analysis, in order to guide thede-
velopment of CPT entries for the guidance system. Setting
of software component CPTs to reflect their interactions with
hardware can be conducted in a similar way. Clearly, the well-
known limitation of brute-force testing apply, and when this

occurs one needs to utilize design artifacts, system schemat-
ics, source code, and other sources of knowledge about com-
ponent interactions.

3.2 Software Sensors

Information that is needed to reason about software health
must be extracted from the software itself and all compo-
nents that interact with the software, i.e., hardware sensors,
actuators, the operating system, middleware, and the com-
puter hardware. Different software sensors provide informa-
tion about the software on different levels of granularity and
abstraction. Table 3 gives an impression of the various layers
of information extraction.

Only if information is available on different levels, the
SWHM gets a reasonably complete picture of the current situ-
ation, which is an enabling factor for fault detection and iden-
tification. Information directly extracted from the software
(Table 3) provide very detailed and timely information. How-
ever, this information might not be sufficient to identify a fail-
ure. For example, the aircraft control task might be working
properly (i.e., no faults show up from the software sensors).
However, some other task might consume too many resources
(e.g., CPU time, memory, etc.), which in turn can lead to fail-
ures related to the control task. We therefore extract a multi-
tude of different, usually readily available information about
the software.

Software
errors flagged errors and exceptions
memsize used memory
quality signal quality
reset filter reset (for navigation)

Software Intent
fs write intent to write to FS
fork intent to create new process(es)
malloc intent to allocate memory
usemsg intent to use message queues
usesem using semaphores
userecursion using recursion

Operating system
cpu CPU load
n proc number of processes
m free available memory
d free percentage of free disk space
shm size of available shared memory
sema information about semaphores
realtime missed deadlines
n intr number of interrupts
l msgqueue length of message queues

Table 3. SWHM informations sources
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3.3 Preprocessing of Software and Hardware Sensor
Data

The main goals of preprocessing are to extract important in-
formation from the (large amounts of) temporal sensor data
and to discretize continuous sensor data to be used with our
discrete SWHM models. For example, the sensor for the
file system (FC) has the statesempty, ok, full95,
full. Preprocessing steps, which extract temporal features
from raw sensor data, enable us to perform temporal rea-
soning without having to use a dynamic Bayesian network
(DBN). This is a very prominent conceptual decision. By giv-
ing up the ability to do full temporal reasoning by means of
DBNs, which may be complex in design and execution, we
are able to use much simpler static health models and handle
the temporal aspects during preprocessing.

In particular, we use the following preprocessing techniques
(which can also be combined):

discretization A continuous value is discretized using a
number of monotonically increasing thresholds. For ex-
ample, Table 4 shows the discretization for file system
sensorFC.

min/max/average The minimal/maximal value or the
mean of the entire available time series is taken.

moving min/max/average A moving min/max/mean value
(with a selectable window size) is taken. In contrast to
the features above, we only consider the last few seconds
of the signal.

sum (integral) The sum (integral) of the sensor value is
taken. For example, the sum of “bytes-written-to-file-
system” (per time unit) approximates the amount of data
in the file system (assuming nothing is being deleted).

temporal Temporal states of sensor signals can be ex-
tracted, e.g., time difference between eventA and event
B.

time-series analysis Kalman filters can be used to corre-
late signals against a model. Residual errors then can
be used as sensor states (e.g., close-to-model, small-
deviation, large-deviation). Fast Fourier transformation
(FFT) can be used to detect cyclic events, e.g., vibrations
or oscillations.

Percentage (df) State

0 ≤ df < 5% empty
5 ≤ df < 80% ok

80 ≤ df < 95% full95
95 ≤ df full

Table 4. Discretization into states (right) by means of thresh-
olds (left).

4. DEMONSTRATION EXAMPLE

4.1 System Architecture

For demonstration purposes, we have implemented a sim-
ple system architecture on a platform that reflects real-time
embedded execution typical of aircraft and satellite systems.
Trampoline,4 an emulator for the OSEK5 real-time operat-
ing system (RTOS), is used as a platform rather than other
RTOSes more established in the aerospace industry (such as
Wind River’s VxWorks or GreenHills’ INTEGRITY). OSEK
is easily available, widely used for embedded control systems
in the automotive industry, and its capabilities were sufficient
for the purpose of our experiments.

The basic system architecture (Figure 2) for running SWHM
experiments consists of the OSEK RTOS, which runs a num-
ber of tasks or processes at a fixed schedule. For this sim-
ple SWHM demonstration system, (1) the simulation model
of the plant is integrated as one of the OSEK tasks, and (2)
hardware actuators and sensors are not modelled in detail,
which would have required drivers and interrupts routines.
Despite its simplicity, this architecture is sufficient to run a
simple simulation of the aircraft and the GN&C software in a
real-time environment (fixed time slots, fixed memory, inter-
process communication, shared resources).

The software health management executive, including prepro-
cessing, is executed as a separate OSEK task. It reads soft-
ware and sensor data, performs preprocessing and provides
the data as evidence to the sensor nodes of the (compiled)
Bayesian network. The reasoning process then yields the pos-
terior probabilities of the health nodes.

Control

Network

Bayesian

(Knowledge Base)

Arithmetic Circuit

SWHM ISWHM

RTOS Emulator
(OSEK/Trampoline)

Arithmetic Circuit
Inference Engine

Diagnosis

GN&C
Guidance
Navigation

Figure 2. Demonstration system architecture. The Bayesian
network model is compiled (before deployment) into an arith-
metic circuit representing the knowledge base. The real-time
operating system schedules three tasks: the controller, the
plant, and the SWHM inference engine.

4http://trampoline.rts-software.org/
5http://www.osek-vdx.org/
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4.2 Example Scenario

An experimental scenario aimed at the study of faults related
to file systems, inspired by the Mars rover SPIRIT reboot cy-
cle incident (Adler, 2006), has been implemented using the
system architecture. A short time after landing, the Mars
rover SPIRIT encountered repeated reboots, because a fault
during the booting process caused a subsequent reboot. Ac-
cording to reports (Adler, 2006), an on-board file system for
intermediate data storage caused the problem. After this stor-
age was filled up, the boot process failed while trying to ac-
cess that file system. The problem could be detected on the
ground and was resolved successfully.

In a more general setting, this scenario is dealing with bad
interaction due to scarce resources, and delays during access.
Even if no errors show up, a blocking write access to a file
system that is almost full, or the delivery of a message through
a lengthy message queue, can in the worst case cause severe
problems and emerging behavior.

For the purpose of demonstration, we designed a flawed soft-
ware architecture with a global message queue that buffers
all control signals and logs them in the file system (blocking)
before forwarding them (Figure 3). This message queue is
also used to transport image data from an on-board camera
(e.g., for UAV) to the radio transmitter. The relevant software
components of this simple architecture are: GN&C, message
queue, logging to file system, camera, transmitter, and plant.
On-board camera and transmitter are shown in Figure 3 but
not used in the experiments described in this paper.

File

Guidance
Navigation
Control

RTOS Emulator

(OSEK/Trampoline)

Message
Queue

Science
Camera

Transmitter

System

GN&C

Figure 3. Software architecture for file system related fault
scenarios, diagnosed using SWHM system.

Here, we are running the following scenario: the file system
is initially set to almost full. Subsequent control messages,
which are being logged, might stay longer in the message
queue, because the blocking write into an almost full file sys-
tem takes substantial time. This situation potentially causes
overflow of the message queue or leads to loss of messages.
However, even a small delay (i.e., a control message is not
processed within its allotted time frame, but one or more time-
frames later) can causeoscillationof the entire aircraft. This
oscillation, similar to PIO (pilot induced oscillation) can lead

to dangerous situations or even loss of the aircraft.

In this scenario, the software problem does not manifest itself
within the software system (e.g., in form of errors or excep-
tions). Rather, the overall behavior of the aircraft is impacted
in a non-obvious way.

Other possible scenarios with this setup, to be diagnosed by
the SWHM task, are:

• The pilot’s or autopilot’s stick commands are delayed,
which again results in oscillations of the aircraft.

• Non-matching I/O signal transmit/read/processing rates
between control stick and actuators result in plant oscil-
lations whose root causes are to be disambiguated.

• An unexpectedly large feed from the on-board camera
(potentially combined with a temporary low transmis-
sion bandwidth) can cause the message queue to over-
flow, which results in delays or dropped messages with
similar effects as discussed above.

• The controller and the science camera compete for the
message queue, which could (when not implemented
correctly) cause message drops or even deadlocks.

With our SWHM, the observed problem (oscillation) should
be detected properly and traced back to the root cause(s).

4.3 The SWHM Model

A Bayesian SWHM model for this architecture was designed
using the SamIam tool.6 A modular BN design approach was
attempted by first designing the SWHM model for the ba-
sic system including relevant nodes such as—in the aircraft
case—the pitch-up and pitch-down command nodes. The
pitch status nodes, the fuel status node, and the software,
pitch, and acceleration health nodes were introduced. Other
subnetworks were then added to this core Bayesian network
to obtain the complete SHWM model for the specific archi-
tecture used for SWHM experiments. The relevant nodes of
the subnetwork module added for SWHM experiment with
file system related faults are shown in Figure 4.

The Write File System command node indicates
whether a write to the file system is being executed. The
health nodes for the file system and the message queue reflect
the probabilities that they might malfunction. The status
nodes for the file system and the message queue represent
their unobservable states, while their sensor nodes reflect
sensor readings after preprocessing.

The only non-standard software sensor node in this SWHM
model is a sensor to detect oscillations or vibrations. A fast
Fourier transform (FFT) performs a simple time-series analy-
sis on major aircraft signals (e.g., accelerations or pqr rates).
With such a sensor, low-frequency oscillations (e.g., pilot-
induced oscillations (PIO)) or vibrations (with a higher fre-
quency) can be detected and fed into the SWHM model. The

6http://reasoning.cs.ucla.edu/samiam
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Figure 4. Partial Bayesian network for diagnosing faults po-
tentially taking place in the software architecture shown in
Figure 3.

SWHM reasoning then tries to perform a disambiguation on
the cause of the oscillation or vibration.

This Bayesian network is compiled into an arithmetic circuit,
which is integrated with the rest of the system as shown in
Figure 2.

4.4 Results

Analysis of experimental runs with this architecture indicated
that the system undergoing SHWM runs fine in the nominal
case (Figure 5). However, the SWHM inference engine was
instrumental in pointing toward the root cause of oscillations
when pitch-up and pitch-down commands to the aircraft plant
are affected by faults originating in the file system, causing
the aircraft to oscillate up and down rather than maintain the
desired altitude. For the purpose of our experiments, the file
system was set to almost full at the start of the run, and as
the system runs and controls are issued and logged, delays in
executions start taking place at timet = 30s (Figure 6) but
no software errors are flagged. Eventually, altitude oscilla-
tions are detected by a fast Fourier transform performed on
the altitude sensor readings shown in the middle panel of Fig-
ure 6. The bottom panel indicates that when the fast Fourier
transform eventually detects oscillations aroundt = 100s, the
SWHM infers that the posterior probability of good software
health drops substantially, while the posteriors of good health
of pitch and accelerometer systems are mostly high despite
some transient lows. This indicates a low degree of belief in
the good health of the software and that the most likely cause
for a state with oscillations would be a software fault. For the
purpose of this experiment, no additional pilot inputs were
assumed.

SHWM can also be instrumental in disambiguating the root
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Figure 5. Temporal trace for the nominal case of file system
based scenarios. The top panel shows pitch up and down com-
mands to the aircraft. The middle panel shows the readings of
altitude and vertical speed. The bottom panel shows the de-
gree of belief in the good health of the accelerometer sensor
(h accel, green), of the pitch signal (h pitch, red), and of
the software (h SW, thick blue line).

cause of oscillations when we add a pilot input node con-
nected to the oscillation detection fast Fourier transformsen-
sor node. The SWHM reasoner can then disambiguate the
diagnosis by evaluating whether the fault is due to PIO or a
software problem.

The SWHM models, which we have presented here are able
to recognize and disambiguate known failure classes. In gen-
eral, the handling of emergent behavior, i.e., the occurrence of
events or failures that have not been considered or modeled,is
an important task for a system-wide health management sys-
tem. Such failures can occur if the system is operated in a
new environment, or due to unexpected interaction between
components.

Our SWHM approach can—albeit with some restrictions—
detect and diagnose emergent behavior. If we model the soft-
ware behavior using safety and performance requirements (in
addition to specific pre-analyzed) failure modes, emergentbe-
havior, which manifests itself adversely by violating safety
requirements or lowers performance, can be detected and di-
agnosed.

In our experimental setting, relevant performance or safety
requirements could be: no vibrations or oscillations should
occur, and a smooth flight path without specific pilot input
should not require substantial actuator activation. With the
existing sensors and the reasoning capabilities of the Bayesian
network, the failure scenario discussed above would raise an
alarm due to the violation of these requirements.

8
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Figure 6. Temporal trace for a file system related fault sce-
nario resulting in oscillations. The SWHM inference engine’s
evaluation outputs show that the degree of belief in the good
health of the system’s software (blue in bottom panel) sub-
stantially drops when oscillations are eventually detected by
a fast Fourier transform at aboutt = 100s, after overflow of
the file system resulted in delayed pitch up and pitch down
command signals from the controller. Readings from the al-
titude sensor (blue in middle panel) show oscillating altitude
starting at aboutt = 30s.

5. CONCLUSIONS

Software plays an important and increasing role in aircraft.
Unfortunately, software (like hardware) can fail in spite of
extensive verification and validation efforts. This obviously
raises safety concerns.

In this paper, we discussed a software health management
(SWHM) approach to tackle problems associated with soft-
ware bugs and failures. The key idea is that an SWHM system
can help to perform on-board fault detection and diagnosis on
aircraft.

We have illustrated the SWHM concept using Bayesian net-
works, which can be used to model software as well as inter-
facing hardware sensors, and fuse information from different
layers of the hardware-software stack. Bayesian network sys-
tem health models, compiled to arithmetic circuits, are suit-
able for on-board execution in an embedded software envi-
ronment.

Our Bayesian network-based SWHM approach is illustrated
for a simplified aircraft guidance, navigation, and control
(GN&C) system implemented using the OSEK embedded op-
erating system. While OSEK is rather simple, it is We show,
using scenarios with injected faults, that our approach is able
to detect and diagnose non-trivial software faults.

In future work, we plan to investigate how the SWHM con-

cept can be extended to robustly handle unexpected and un-
modeled failures, as well as how to more automatically gener-
ate SWHM Bayesian models based on information in artifacts
including software engineering models, source code, as well
as configuration and log files.
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ABSTRACT 

There are many facets of a prognostics and health 

management system.  Facets include data collection systems 

that monitor machine parameters; signal processing 
facilities that sort, analyze and extract features from 

collected data; pattern matching algorithms that work to 

identify machine degradation modes; database systems that 

organize, trend, compare and report information; 

communications that synchronize prognostic system 

information with business functions including plant 

operations; and finally visualization features that allow 

interested personnel the ability to view data, reports, and 

information from within the intranet or across the internet. 

A prognostic system includes all of these facets, with details 

of each varying to match specific needs of specific 
machinery.  To profitably commercialize a prognostic 

system, a generic yet flexible framework is adopted which 

allows customization of individual facets.  Customization of 

one facet does not materially impact another.   

This paper describes the framework, and provides case 

studies of successful implementation. 

1. INTRODUCTION 

The objective of a prognostic system is to predict the need 

for maintenance before serious equipment breakdown 

occurs and to predict the remaining useful life of the 

equipment components.  A prognostics system should 

operate where possible on its own, to lessen the need for 
human involvement.  This is a tall order for the prognostics 

systems developer.  To ease the required efforts, 

commercial off the shelf (COTS) components can be used to 

allow more focus on prognostics algorithms and 

recommendation reporting.   

 

 

 

 

Prognostics Systems have several components, commonly 

grouped into data acquisition, signal processing and 

analysis, and decision making, Figure 1.  Figure 1 can be 

expanded to include communications, visualization, and 

database components.   

 

Figure 1: Basic components of prognostic system 

 

To allow flexibility for analysis types, and machinery types, 

each component needs to be modular to the extent 

components can be easily interchanged.  This 

interchangeability extends to hardware as well as software.  

The system needs to scale from small machines up to large 

machines, and from test cell applications down to portable 

systems and into on-line embedded systems.  Finally, the 
on-line embedded system components need to be priced 

competitive to existing data collecting systems.  In other 

words, constraints exist in hardware, software, and 

development tools in order to maximize modularity, cost  

and ease of customization.  A framework of hardware and 

software components makes this commercialization 

possible, Figure 2.   

From a cost perspective, it quickly becomes apparent that 

commercial off-the shelf (COTS) components provide the 

best cost model for the framework.  With COTS, the 

prognostics systems designer minimizes electronic design as 

well as software design efforts.  Instead, the designer is able 
to leverage development work already in play within the 

This is an open-access article distributed under the terms of the Creative 
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COTS suppliers’ organization.  Further, COTS systems 

typically provide a faster validation cycle as much of the 

hardware and software components have validation 

certificates.    

 

Figure 2: Modular prognostics architecture 

 

This paper examines the prognostics architecture framework 

and its core components including COTS component 

options.   

2. MODULAR ARCHITECTURES 

There are several publications promoting a modular 

architecture for condition monitoring and prognostics 

systems.  One such standard is the ISO 13374 standard, 

Figure 3, ISO (2003). 

 

Figure 3: ISO 13374 condition monitoring standard 

 

The ISO 13374 standard divides the condition monitoring 

and prognostics system into eight subsystems.  These 

include data acquisition (DA) and data manipulation (DM) 

or data acquisition and signal processing.  The ISO 13374 

standard also calls out state detection (SD).  State detection 

is often defined as the determination of deviation from 

normal or healthy operation.  It can also be defined as 

determining the operational state of the machine, for 

example high speed operation and low speed operation.   

Three prognostic functions in the ISO 13374 standard 

include Health Assessment (HA), Prognostic Assessment 

(PA) and Advisory Generation (AG).  These three blocks 

perform the hard work of diagnostics, prediction, and 

information delivery.  The outer two blocks on the left and 

right of the six middle blocks further define data base 

storage and retrieval, as well as visualization including 

technical displays and reporting. When following this 

model, the prognostics developer can save costs by 

foregoing the need to design these architectures. Further, 

when following a defined standard, it is possible to mix and 

match components from multiple commercial suppliers, 
each of which may specialize in a specific component area.   

The University of Cincinnati Intelligent Maintenance Center 

(IMS Center), for example, takes a unique approach in 

adapting the ISO 13374 model by adding data filtering and 

sorting during the data acquisition (DA) step in the process, 

Figure 4, Lee (2009).  The University recommends sorting 

data into operating regimes.   

 

Figure 4: IMS Center multi-regime approach 

 

Operating regimes are distinguished by speeds, loads, and 

even mechanical failure modes.  These regimes are 

identified during the data collection process.  Data is labeled 

with the regime name, for example speed and load.  

Downstream, categorization of information is made easy 

with regime tags made at the data collection point.   

In either case, adaption of the ISO 13374 model to specific 

implementation provides modularity, flexibility, and 

promises to lower costs.   
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3. DATA ACQUISITION COMPONENT OF 

PROGNOSTICS 

The data acquisition component (Figure 3) of the prognostic 

system has the important role of correctly recording sensory 

information from the machine for downstream analysis and 

decision making.  Data acquisition typically consists of 
sensors, signal conditioning, and an analog to digital 

converter.  Sensors may include digital sensors as well as 

analog sensors.  Analog sensors commonly used in 

mechanical system prognostics include temperature, 

electrical power, strain, speed, and vibration.  Often, 

electrical power, strain, speed, and vibration sensors need 

fast and high resolution analog to digital converters to 

transform the analog output of the sensor into a digital 

format the embedded data acquisition can process, store, 

and report.   

 

To obtain the best sensory information, many dynamic 
signals including vibration, need a wide dynamic range data 

acquisition device.  Dynamic range is a measure of the data 

acquisition’s systems ability to detect both strong and weak 

signals at the same time.  In the case of vibration, it is 

important as many vibration sensors measure vibration from 

multiple machine components at the same time.  In other 

words, high-amplitude low frequency vibration from 

unbalance is measured along with low-amplitude high 

frequency vibration from roller bearing and gears.  A wide 

dynamic range data acquisition system, such as a 24 bit 

delta sigma analog to digital converter is beneficial in 
prognostic applications.  The difference in amplitudes at 

various frequencies can be seen in the Figure 5. 

 

 

Figure 5: Vibration frequency and amplitude spectrum 

 

A high dynamic range then allows the single sensor to 

correctly digitize unbalance vibration, mechanical looseness 

vibration, bearing fault vibration, and even gear mesh 

vibration.   

In addition to dynamic range, there are several other factors 

for consideration in the data acquisition component.  These 

include anti-aliasing filters, amplification, and sensor power.  

Typical 24 bit data acquisition hardware includes anti-

aliasing filters that remove high frequency noise from the 

measured signal.  While pre-amplification of signals is not 

often needed with 24 bit hardware, attenuation may be 

desirable to provide for dynamic displacement or proximity 

probe sensors.  The latest 24 bit data acquisition hardware 

offers a +/- 30V input range at bandwidths of 40kHz, 

creating a universal input for accelerometers, proximity 
probes, voltage inputs, and tachometer signals.  Finally, 

most 24 bit vibration acquisition hardware devices provide 

configurable IEPE 24V power to power accelerometers, 

laser tachometers, dynamic pressure, acoustic emission and 

microphone sensors.   

To provide a data acquisition component of the prognostic 

system, there exist three core choices.  First, it is possible to 

design the data acquisition system from the ground up, 

selecting analog to digital and signal conditioning 

semiconductor components, board manufacturers, 

embedded processors, programming languages, and so on.  

While this approach can lead to the lowest manufacturing 
cost for higher volumes, the electronic design domain 

expertise and time to market costs become prohibitive.   

A second choice is to purchase a series of board level 

products following any number of standards such as PC-

104.  This choice offers the prognostics developer a range of 

suppliers to choose from and a range of generic processor 

and analog to digital boards that can work together.  In most 

cases however, the processor and analog boards have 

limited software facilities for analysis, data storage, and 

downstream diagnostics or prognostics.  In other words, 

they provide a fundamental capability, primarily designed 
for control applications with limited dynamic range, and 

have limited software support.  These products typically are 

designed to compete on price, with limited advanced 

features often needed for embedded or downstream analysis.  

The prognostics developer then must create AND validate 

signal processing, filtering and other related algorithms in 

addition to data storage and communications.  This effort 

can become a significant software development effort.   

A third choice is to build the prognostics system on a 

modular system designed for high fidelity sensor 

measurements with wide dynamic range, with a wide range 

of hardware certifications, and with a full featured signal 
processing library for downstream or embedded prognostic 

analysis.   

The second and third options are differentiated by software 

development tools including mathematics as well as system 

certification activities.  Figure 6 shows a comparison of 

complete custom (option 1) and modular system (option 3).  

There is considerable reduction in development effort 

required when using a instrumentation class modular system 

as the basis of a prognostics system.  A COTS system 

providing modular instrumentation class data acquisition 

then allows the prognostic systems developer to focus 
attention on health assessment and prognostics.   
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Figure 6: Modular system development effort reduction 

 

Given, there is a data acquisition modular hardware 

platform in place, it is possible to adjust the sensory input 

capabilities of the system using modular hardware I/O to 

best match the machine for which the prognostic system will 

be used.  A modular system allows analog input modules for 

a variety of sensor types to be selected based on the needs of 

the system.  For example, vibration, temperature, speed, and 

process variable modules can be added (or removed) based 

on the measurements that best serve the prognostic system.   

Finally, hardware should be industrial grade, meeting high 

standards for rugged environments.  Key measures of 

rugged reliability include temperature, shock, and vibration.  
The prognostic systems designer should also consider 

supplier quality systems and hardware warranty.  Table 1 

provides common rugged specifications.  

  

Table 1. Common rugged specifications for hardware 

  

 

A number of COTS suppliers provide modular industrial 

grade data acquisition hardware.  Example suppliers include 

National Instruments, Spectris, Advantech, and 

Measurement Computing Corporation.   

With a solid hardware framework, the prognostics developer 

is able to focus on the systems architecture, prognostics 

algorithms, and information delivery aspects of the system.    

3.1 Data recording filters 

Once the data acquisition system is chosen, it is prudent to 

determine what signal processing and data storage strategies 

should be embedded into the data acquisition system 

component of the prognostic system.  On one end of the 

scale, all time series data from all sensors is continuously 
recorded.  While this strategy insures no loss of data from 

the machine, it burdens communications and downstream 

signal processing.  For example, simply recording four 

channels of vibration data at 51,400 samples per second 

continuously for a week yields 605 Giga-Bytes of data.  

That is a lot of work for communications, off-line 

processing, and human interpretation.  Much of the data is 

repetitive.   

An alternative is to filter data to limit on board recording to 

just data that contains new information.  This filtering is 

typically done by onboard analysis. 

By analyzing data, it is possible to determine whether the 
data has changed.  On board analysis is performed on 

monitored sensory data such as speed, temperature, 

vibration, strain, and electrical power.  Examples of onboard 

analysis include statistical analysis and spectral analysis,   

The prognostics system should be configurable to allow for 

deviation limits of sensory information to be used as data 

storage triggers.  With this implementation in place, sensory 

data is recorded only when it has changed, on a periodic 

basis, or when an operator request has occurred.  Further, 

the recording includes the condition which caused the data 

to be recorded.  By recording a range of sensory metrics or 
features along with the recorded data, it is possible to sort 

the data downstream in the prognostic process.  These 

sensory metrics, then allow the downstream prognostics 

functions to categorize operational and failure patterns of 

the same machine and similar machines.   

When reviewing the capabilities of COTS technologies for a 

prognostic system, it is prudent to consider software 

templates, routines, facilities, etc. that allow for data 

filtering and data sorting, Figure 7.  With the ability of the 

data acquisition system to filter and sort data, downstream 

prognostic consumers of the data are more focused and 

productive. 

 

Figure 7: In line analysis drives data recording 

 

Figure 7 shows a simple data recording trigger of vibration 

RMS level.  This block can be replaced and enhanced with a 

wide range of embedded signal processing including order 
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analysis, envelope analysis, statistics, etc.  The ability to 

customize storage triggering with embedded analysis is an 

important modularity feature of several COTS hardware 

data acquisition platforms.   

3.2 Data storage format considerations 

When considering data storage formats, it is best to leverage 
a technology or format that works well for the embedded 

data acquisition system, and provides rich descriptive 

capabilities for downstream prognostics analysis.  One 

common “schema” for data recording is the Common 

Relational Information Schema, or CRIS, as defined by the 

Machinery Information Management Open Systems 

Alliance (MIMOSA) organization, MIMOSA (2002). This 

schema defines data types including time waveform data, 

spectral data, alarm status, process data, and a range of 

sensory source information including machine asset and 

sensor asset information.  An illustration of the MIMOSA 

schema is given in Figure 8. 

 

 

Figure 8: MIMOSA CRIS schema 

 

The MIMOSA CRIS data schema describes a rich data 

architecture allowing for a combination of time waveforms, 

spectrum, scalar values, images, and related data types to be 

stored in a unified data base.  When the data sets are 

organized by sensor, mechanical component, etc, a view of 

related data sets is easily obtained.  For example, opening a 

sectional view under a roller bearing, one would see time 

series vibration data, temperature trends, vibration spectra, 

oil particulate count trends, etc.  All of the information is 

organized as sensory information related to the bearing.   

There are several ways to implement an embedded data 

storage capability which supports this rich data structure.  

These include common relational database structures and 

data structures specifically designed for embedded 

monitoring applications.  An example of a embedded data 

structure format is shown in Figure 9.  

 

 

Figure 9: Example embedded data recording structure 

 

Figure 9 illustrates a data structure that is efficient in 

recording with high speed streaming capabilities.  It is rich 

in data descriptors with the use of data property strings for 

each data element or channel stored in the data file.  In other 

words, information about the sensor, location, scaling 

factors, filtering, and mechanical component beneath the 

sensor, can be stored as labels that describe the time 

waveform recording.  In addition, properties in the data file 
describe the conditions that caused the data file to be 

recorded, whether it be an analysis result threshold limit, a 

time limit, speed change, or operator request.   

A second feature of this data structure is the ability to add 

information along the prognostic system analysis chain.  In 

other words, as the data file record is moved from the data 

acquisition device downstream to an engineering 

workstation, additional analysis can be performed on both 

time series data and extracted features which are stored 

alongside the original sensory data record, Figure 10.   

 

 

Figure 10: Progression of data structure 
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The task of analyzing and categorizing data is rarely 

complete.  With a flexible data store, additional analysis 

results, methods, comparisons, labeling, etc can be added to 

the data set at any time in the progression of the prognostics 

process.  Going further, if specific empirical patterns 

emerge, the data files become new models or fault mode 
references.  A flexible and modular COTS data acquisition 

system provides a core framework for the important task of 

digitizing and storing necessary sensory data.   

 

3.3 Data acquisition system communications 

A third important element of the data acquisition system is 

communications capabilities.  While TCP/IP 

communications is a common monitoring systems 

requirement, there are situations where alternative methods 

are beneficial.  These communications protocols can include 

Controller Area Network (CAN) based protocols including 

DeviceNet, CanOpen, Modbus, etc. (National Instruments 
2010).  Further, TCP/IP communications may vary in 

physical form including copper, fiber optic, cellular, and 

900 MHz communications.  The data acquisition platform 

framework should be able to easily accommodate many of 

these communications variants, allowing adaptation of the 

prognostics systems to oil and gas machinery, to mining 

equipment, to wind turbines, to remote equipment and many 

others.  With a flexible architecture, the data acquisition 

system abstracts the communications to a higher level, 

where specific communications protocols can plug in easily.   

By leveraging flexible communications architectures, the 
embedded component of the prognostics system is able to 

easily adapt to the needs of the industry and its machines.  

In addition, with the embedded data recording structure 

described above, data can be stored locally, and forwarded 

to the engineering team at the pace of the communications 

system and when the communications network is available.  

This “store and forward” capability is valuable for remote 

machinery locations with sporadic and slower 

communications.   

4. SIGNAL PROCESSING AND VISUALIZATION 

Signal processing functions operate on sensory data to 

extract features or measurements from data acquired from 
sensors placed strategically on the machine.  Signal 

processing can occur in the data acquisition system, 

downstream on a engineering or database computer, or even 

across the internet leveraging emerging cloud computing 

technologies.  Signal processing plays a part in state 

detection, health assessment, and prognostic assessment 

steps in the complete prognostic system.  Table 2 and Figure 

11 illustrate several signal and data processing functions 

that can play a part in the commercial prognostic system, 

Zhang (2008).   

 

Table2: Signal processing options for feature extraction 

 

 

As Table 2 indicates, there are a wide range of signal 

processing options for condition monitoring and prognostics 
applications. The choice of signal processing function is 

made on feature extraction needs, mechanical phenomenon 

indication desired, and domain expertise and preference of 

the prognostic system designer.  It is important that the 

software development tools used to implement the 

prognostic system, offer a wide range of signal processing 

capabilities.   

The IMS Center at the University of Cincinnati has added 

performance prediction, assessment, and diagnostic pattern 

matching as a supplement to advanced signal processing, 

Intelligent Maintenance Systems (2007).  These capabilities 

operate downstream from embedded data acquisition by 
categorizing extracted features into operating modes and 

failure modes.  

Underlying signal processing and prognostics algorithms is 

a wide range of mathematics.  It is important then that the 

underlying math meets applicable standards and quality 

metrics.  One such reference is the Numerical Mathematics 

Consortium, (NMC 2009).  In the case of sound and 

vibration numerical functions, there exist several standards 

including ANSI, ISO, and IEC.  When using signal 

processing algorithms that meet existing standards, the 

prognostics system developer is able leverage the 
certification and validation work of the algorithm supplier.   

 

Health or performance assessment and prediction or 

prognostics assessment build on signal processing used in 

the data acquisition, data filtering and sorting, and feature 

extraction steps of the upstream prognostic components.  

These additional steps, including logic regression, self 

organizing maps (SOM), and even the field of statistical 

pattern recognition; provide tools for matching current 

measurements with data driven models of system health and 

failure modes.  In other words, the discovery of impacting 
and out of balance features in vibration data can match 
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patterns of induced stress on roller bearings and help predict 

a specific bearing failure.   

The leverage of signal processing for feature extraction and 

health indication measurements, leads to visualization of 

data and signal processing results that the human uses to 

understand a problem or degradation in the machine.  Figure 
11 offers one example of visualization graphics.  

 

 

Figure 11: Orbit plot visualization of shaft vibrations 

 

Orbit plots are a common diagnostic and health indicator 

graphic used in turbine driven machinery applications.  

These plots indicate the severity of out-of-balance, 

alignment, and coupling machined degradation issues.  The 

shape and size of the orbit plot indicates the progression of 

specific shaft vibration problems in the machine.  The shape 

and size of the orbit plat can be analyzed by human domain 
experts as well as analytically with mathematical 

algorithms.   

Additional visualization tools exist in prognostics software 

development libraries to summarize multiple machine or 

system components.  These summary plots provide a high 

level of machine health and allow for selection of suspect 

machines for further study.  The University of Cincinnati’s 

Intelligent Maintenance Systems Center offers several 

visualization tools for information delivery, Lee (2009), 

Figure 12.   

These graphics provide visual display of health information.  
The Confidence Value trend chart shows the mechanical 

health of a specific machine component using a measure of 

1 (very healthy) to 0 (badly damaged).  The confidence 

value is commonly calculated using statistical pattern 

matching described earlier.  The Health Radar Chart shows 

the confidence value of multiple components on a single 

chart. The Health Map combines machine operational states 

with machine failure modes.  The Risk Radar Chart 

combines machine state and health indicators along with 

safety and financial parameters to indicate an element of 

risk.   

 

 

Figure 12: Visualization of machine health and prognostics 

 

Armed with these reports, operations and maintenance 

teams are best prepared to make operational and 

maintenance decisions.  Of course these end reports build on 

solid data collection and signal processing techniques 

described earlier. 

 

The signal processing and visualization components of the 

prognostic system can be utilized in the embedded data 

acquisition portion of the system, at the local engineering 

workstation computer, and over the network and remote 

engineering centers or data centers.  The flexibility of 

location of mathematical analysis offers the prognostic 
systems designer options to choose the best place for 

advanced prognostics in the data acquisition, filtering, 

storage, and post processing components of the prognostic 

system.   

5. CASE STUDIES 

There are several case studies worth review where a 

modular system framework is in use for condition 
monitoring and prognostics applications.  While several are 

relatively new to the market, each leverages a common 

modular hardware data acquisition platform, with modular 

software architecture allowing for the placement of signal 

processing and prognostic functions to be placed anywhere 

along the data acquisition, off-line data manipulation, and 

visualization sequence of prognostic system activities.   

 

In power generation applications, wind energy continues to 

lead renewable energies as next generation sources of 

power.  However, these machines are complex and operate 
in a variety of speed, load, and environmental conditions.  

These energy generating machines historically have shown 

to have reliability problems in the drive train.   Much 

interest in research and industry is focused on improved 

monitoring, diagnostics, and prognostics systems to support 
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wind energy applications.  One such example is illustrated 

in Figure 13.   

 

 

Figure 13: IMS Center view of wind farm prognostics 

 

The IMS Center continues work to adapt state of the art 

prognostics systems technologies to wind energy 

applications.  In partnership with National Instruments, the 
IMS center leverages rugged COTS embedded data 

acquisition technologies, signal processing algorithms, and 

local and web based visualization  tools to implement a 

wind farm prognostics framework.  This framework is used 

to further research in wind turbine prognostics and to 

develop an advanced commercial condition monitoring and 

prognostics system for the wind energy industry.   

Another example in wind energy applications is the use of 

the modular COTS hardware and software prognostics 

development platform by bearing supplier, FAG, Figure 14.   

 

 
Figure 14: FIS condition monitoring system 

 

FAG Industrial Services, the service division of FAG 

industrial bearings, has developed an advanced condition 

monitoring system based on modular COTS embedded data 

acquisition and signal processing platforms.  The 

monitoring systems are used both by wind farm operators 

and maintenance service teams, as well as FAG’s bearing 
service and support center.  Embedded intelligence in the 

monitoring system, specifically envelope analysis,  reduces 

sensory data at the data acquisition source to information 

that is more actionable when it reaches operations and 

maintenance personnel.  The information is transmitted over 

existing controls networks or wirelessly leveraging cellular 

and RF technologies, Langer (2006).   

 

Another case study, explores distributed condition 

monitoring and prognostics in nuclear power, Shumaker 

(2010), Figure 15.   

 

 
Figure 15: AMS-Corp nuclear pump monitoring systems 

 

Analysis and Measurement Services Corporation (AMS) 

specializes in testing of process instrumentation and 

development of specialized test equipment and software 

products for power and process industries. This project 

proposes a comprehensive effort to expand and 

commercialize previous research projects to provide 

passive, in-containment use of wireless technology at 

nuclear power plants. Specifically, the effort of the 

subsequent phases of the project will focus on assembling a 

complete, commercial, wireless on-line data monitoring and 

analysis system that can be adapted for use in any 

pressurized water reactor containment. The system would be 

used for condition monitoring during plant operation and/or 

outage time to provide additional measurements that may be 

needed by the maintenance crews, operations or plant 

management. Because of the nature and purpose of nuclear 

plant containment, the introduction of a wireless 

network/communication system inside the confined area is 

challenging and, yet, very advantageous. The immediate 

benefit to the nuclear plant is the reduced cost for 

monitoring equipment and/or processes within containment 
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and to provide additional data as needed for maintenance 

work during refueling outages and normal operation.  

 

This particular example, leverages COTS technology 

including rugged embedded data acquisition and signal 

processing to gather and digitize sensory information, to 

store and forward the sensory data over wireless TCP/IP and 

to format the data in a flexible data schema for off-line 

analysis and reporting.   

 

Finally, in the mining and materials industry, a wide range 

of conveying and grinding machinery is used.  Crushers are 

important assets in material processing plants.  O’mos 

developed a condition monitoring solution using a modular 

architecture to monitor the health of cone crushing 

equipment, Epie (2011).   

 

The modular conical mill condition monitoring system uses 

accelerometers, temperature sensors, and pressure switches.  

O’mos is a service company, providing maintenance 

services for its customers.  With remote monitoring and in-

line signal processing, O’mos is able to improve its service 

offerings to its material processing customers.  The ability 

to leverage COTS embedded data acquisition and analysis 

components frees O’mos to focus their expertise on off-line 

analysis, prediction, and reporting.  O’mos lowers their cost 

of service thru data acquisition automation while working to 

improve reporting and recommendation results leveraging 

specific conical mill domain expertise.   

 
Several other prognostics suppliers are working to adapt 

COTS technologies as the foundation for their prognostic 

offerings.  Example prognostics offerings are IMS Center 

Watchdog™ Agent, Global Technologies Corporation’s 

PEDs hms™, and Impact Technologies ReasonPro™. 

 

6. CONCLUSION 

By leveraging commercial off the shelf (COTS) 

technologies and a flexible modular architecture or 

framework, it is possible to develop and bring to market a 

prognostic system that adapts to a wide range of machines, 

industries, and applications.  The prognostics system 

developer is able to get to market rapidly and at less cost, 

than the alternative of developing components that are 
otherwise commercially available.  This benefit is 

specifically realized, when the COTS components are 

flexible in data storage, and signal processing capabilities 

making it possible to adapt the COTS components for 

specific prognostic algorithms and methods.   
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ABSTRACT 
 
The Southeast National Marine Renewable Energy Center 
at Florida Atlantic University, which supersedes the Center 
for Ocean Energy Technology (Driscoll et al., 2008), is 
conducting research and development to support the 
implementation of ocean current and ocean thermal energy 
technologies for a low environmental-impact extraction of 
energy.  

Fault detection capability is needed for these offshore ocean 
turbines (and other systems) because access to these 
machines for maintenance is difficult and costly. 
Techniques that offer reliable and early (incipient) detection 
allow for preventive maintenance to prevent the 
development of secondary faults that may be generated by 
the primary faults.  Several methods for processing and 
displaying vibration data are compared and evaluated 
relative to synergistic detection utilizing data from a 
prototype (dynamometer) of an ocean current turbine.  The 
results may generically apply to other machines, such as 
wind turbines.1 

1. INTRODUCTION 

An ocean turbine (OT) is subject to high and varying loads, 
locations that are difficult to access and extreme 
environment conditions; therefore, it requires special 
predictive monitoring strategies (Sloan et al., 2009; 
Beaujean et al., 2009).  For many machines, a vibration 
condition monitoring program is considered as one of the 
most important tools to detect the presence of anomalous 
behavior, thus allowing for early remedial actions to reduce 
both maintenance costs and premature breakdown.  Since 
access is difficult and costly, monitoring techniques that 
detect these faults reliably (and early) for machines like 
offshore ocean turbines offer an advantage over the more 

                                                           

1 This is an open-access article distributed under the terms of the 
Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 

standard techniques (e.g. vibration level trending), allowing 
for preventive maintenance and to prevent the development 
of secondary faults that may be initiated by the primary 
faults. 

This paper discusses several approaches, procedures and 
techniques considered to detect and diagnose the faults of 
an ocean turbine, utilizing vibration data.  Specifically, 
modulation detection techniques utilizing the Cepstrum or 
the Hilbert transform and transient detection techniques 
(Short Time Fourier Transform (STFT) and kurtosis) are 
considered.  Such methods have shown to be efficient, 
(Fernandez et al., 2005; Kim et al., 2006), for detecting 
faults that affect the component health of machines (e.g. 
motors, gearboxes, fans and generators) generically similar 
to those that may be considered subsystems of an OT 
(Figure 1).     

A LabVIEW model for on-line vibration condition 
monitoring was developed (Mjit, 2009; Mjit et al., 2010).  It 
contains the advanced fault detection techniques mentioned 
above as well as diagnostic techniques that provide 
information about the type, severity and identification of the 
fault.   The principal monitoring method utilizes the Power 
Spectral Density (PSD) for in-depth analysis of the 
vibration signal and for vibration level trending, assuming 
acceptable stationary of the vibration signal. The model was 
exercised using data acquired from a rotor end of a 
dynamometer (Figure 2), which is representative of the 
electrical and mechanical equipment of the actual OT 
(Figure 1).  The data were processed in several different 
ways to evaluate the relative ability of the detection 
techniques to detect the types of incipient faults expected of 
the OT.  Actual turbine data may differ because of the 
presence of the dynamometer’s motor drive and additional 
gearbox. Varying loads and structural fluid loading of the 
OT may affect the frequency of structural resonances; 
however the types of mechanical faults should be 
generically the same.  The purpose of this effort was to 
determine if the conclusions and recommendations made in 
(Fernandez et al., 2005; Kim et al., 2006) apply to the 
dynamometer and, possibly, the OT. 
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Most machines display some non-stationary behavior, 
mainly because of varying loads or structural variations. 
This affects the vibration data (Fernandez et al., 2005), 
mainly by causing frequency shifts.  Because of the 
additional variations caused by changes in the water current 
velocity, it is expected that the vibration data collected from 
the ocean turbine will be even less stationary in nature than 
those from the dynamometer. Therefore, the use of 
wavelets, possibly combined with other algorithms, such as 
the Hilbert transform, may be necessary to assess changes 
in the vibration levels, (Fernandez et al., 2005; Fan et al., 
2006; Tyagi et al., 2003; Wald et al., 2010).  Such a 
combination is under development and will be evaluated 
with the in-water turbine data. 

 
 

Figure 1. Ocean Turbine, Conceptual. 
   

 
 

Figure 2. Dynamometer. 
 

2. LISTING AND DESCRIPTION OF THE FAULT 
DETECTION TECHNIQUES  

2.1 Power Spectral Density and Fractional Octave 
Analysis 

The PSD is derived from the vibration time waveform by 
performing a Fast Fourier Transform (FFT).  The PSD is 
well-suited to analysis and diagnosis as it shows more 

clearly the forcing frequencies of the rotating components. 
This technique is very accurate for stationary machines.  
The PSD is averaged over fractional octave bands, and is 
used for trending and detection as it covers a large 
frequency range. The trending of fractional octave spectra is 
very accurate especially if there is small speed variation.  
The PSD is also very accurate for stationary machine where 
the forcing frequencies of the components do not vary with 
time. The PSD can also be used for (slightly) non-stationary 
machines if one is only interested in the spectral 
components that exist in the signal, but not interested in 
what time each spectral component occurs.  Most of the 
peaks in the PSD are directly proportional to the running 
speed of the machine. The PSD may be normalized during 
each iteration before the averaging process to avoid 
smearing in the case of non stationary machine speeds.  

2.2 Cepstrum Analysis  

The power cepstrum is the inverse FFT of the logarithm of 
the power spectrum of a signal; it is used to highlight 
periodicities in the vibrations spectrum, in the same way 
that the spectrum is used to highlight periodicities in the 
time waveform.  Thus, harmonics and sidebands in the 
spectrum are summed into one peak in the cepstrum (called 
rahmonic), allowing identification and trending of 
modulation frequencies associated with a specific fault. 

 2 2 /( ) log { ( )} .j s fC f F x t e ds






   (1) 

F is the Fourier transform operator; x(t) is the time signal 
and f  is the frequency in hertz.  

2.3 Kurtosis  

Kurtosis is a statistical parameter, derived from the fourth 
statistical moment about the mean of the probability 
distribution function of the vibration signal and is an 
indicator of the non-normality of that function. The kurtosis 
technique has the major advantage that the calculated value 
is independent of load or speed variations. The kurtosis 
analysis is good for faults and transient effect detection, but 
it does not give an indication of the specific source of the 
problem (Reimche et al., 2003); however, the kurtosis will 
diminish with increased distance from the source of the 
transients.  The kurtosis will be equal to 3 for a healthy 
machine and greater than 3 if the machine‘s vibrations 
contain transients. The general definition of the kurtosis is, 
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The variables 1x , 2x .. nx represent the population data of 

the signal, x  is the mean of x ,   is the variance of x and 
n  is the number of samples.       

2.4 Hilbert Transform Analysis 

The Hilbert transform of a real signal is defined as the 
convolution of the signal with the function 1/πt, 

 
 1

ˆ( ) .
x

x t d
t




 






  (3) 

The complex analytic signal is: 

 ˆ( ) ( ) ( ).x t x t jx t   (4) 

The envelope of the original signal is defined as follow: 

 2( ) ( ) .j fte t x t e    (5) 

f  is the frequency of the modulated signal. 

The Hilbert transform is used to demodulate the signal so as 
to obtain the low frequency variations (faulty signal) in a 
higher frequency signal (forcing or resonance frequency).  
When a fault starts developing, the vibrations caused by a 
bearing or gear fault is obscured (especially at low 
frequency) by the noise or the vibrations from other rotating 
parts like shafts, gears, etc. In this case, the bearing or gear 
frequencies cannot be seen in either the time waveform or 
the spectrum of the vibration.  The Hilbert transform can be 
used to highlight and extract the modulating signal (faulty 
signal) from the modulated signal (characteristic frequency 
of the machine). The Hilbert transform technique removes 
the carrier signals which are of no interest for fault 
detection.  Amplitude modulation occurs for example when 
a gear rides on a bent or misaligned shaft, while frequency 
modulation occurs for example when the shaft speed varies 
with time.  In the case of a narrow-band detection process, a 
band-pass filter (whose pass band includes the fault 
frequencies) filters out the selected part of the spectrum.  
The output is shifted (heterodyned) to low frequency and 
subjected to envelope detection.

     

 

 

2 ( ' )
1( , ') ( ) ( , ) j f ftBSP f f x w t e d dt   

 
 

 

     (6) 

BSP is the bispectrum of the analytical signal x~ , f and f’ are 

the modulated and modulating frequencies respectively. 1w  

is a time window. 

2.5 Short Time Fourier Transform 

For non-stationary machines, the Short Time Fourier 
Transform (STFT) of the signal should be used to clearly 
identify non-stationary vibration data related to speed 
variation, from vibrations caused by the inception of 
anomalies, Indeed, the PSD may not provide sufficient 
information about the presence of transient effect, since 
abrupt change in the time signal is spread out over the entire 
frequency range.  Time-frequency Analysis results are 
displayed in a spectrogram, which shows how the power of 
a signal is distributed in the time-frequency domain. 
Narrow-band, periodic signals, transients and noise appear 
very distinctly on a spectrogram.  The STFT is based on the 
following mathematical operations, 

'

2

' ' 2 '
2( , ) ( ) ( ) j ftPS t f x t w t t e dt






   (7) 

PS is the power spectrogram of the signal )(ts  and 

2 ( )w t  is a real and symmetric window translated by t. t  

and f are the instantaneous time and frequency.  

3. DATA ACQUISITION  

Vibration data were acquired from the dynamometer 
running at various RPM with simulated faults to evaluate 
the ability of the detection algorithms to detect the presence 
of incipient faults.  Processing features such as stationary 
assumptions and smoothing windows were also evaluated to 
insure a high quality for the data.  The faults were simulated 
for selected levels of severity to determine whether the 
conclusions depended on existing signal-to-noise levels.  
Note that the motor and second gearbox (simulated rotor) 
section of the dynamometer were detached and 
instrumented (Figure 3).  The motor was operated at 
selected speeds with and without several weights that 
increased the rotor shaft imbalance.  These tests were 
performed to evaluate the envelope analysis using Hilbert, 
the PSD and cepstrum techniques.  Additionally, a hammer 
was used to introduce impact transients.  The response of 
the monitoring system to such impacts was evaluated using 
the kurtosis and the STFT. The anomaly detection 
techniques were implemented and assessed relative to their 
detection capabilities. 

In this paper, the motor was operated at 1,144 RPM under 
normal and augmented imbalance condition.  The shaft 
rotated at 52.47 RPM due to the reduction ratio (1:21.8) of 
the two stages reduction planetary gearbox.  The expected 
mechanical forcing frequencies (Singleton, 2006) relative to 
the motor speed of 1,144 RPM are summarized in Tables 1 
and 2.  These forcing frequencies are calculated 
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automatically in the LabVIEW program. Note that Tables 1 
and 2 show only the fundamental forcing frequencies and 
not their harmonics. 

The experiment was performed on the rotor section of the 
dynamometer in three different situations: without any 
weight added to the shaft, with a light weight (two magnets, 
0.5 lbs total) and with a large weight (two magnets and two 
blocks, 2.875 lbs total) attached to the very end of the 
output shaft.  The distance from the shaft axis to the 
location of the weights was 3.7 inches.  Changes in third 
octave bands, power spectral density, envelope and kurtosis 
were measured.  The acceleration data were collected using 
a Low Frequency (0.2 to 3000 Hz) piezoelectric 
accelerometer with a sensitivity of 500 mv/g mounted on 
the torque meter.  The sampling frequency Fs was 5,000 Hz 
or 20,000 Hz. The number of data points in each sample 
was 20,000.  The corresponding frequency resolution was 
0.25 Hz (at Fs = 5,000 Hz) or 1 Hz (at Fs = 20,000 Hz).  A 
total of 500,000 points were acquired (25 samples).  A 
Hanning window was used to smooth the data. 

4. PSD, HILBERT AND CEPSTRUM ANALYSES 

Figures 4 to 6 show the baseline (without imbalance 
condition introduced) PSD, in three different frequency 
regions, of the data acquired at 1,144 RPM of the motor. 
The major frequency components (derived from the known 
forcing frequencies) are identified in these figures. These 
forcing frequencies are tabulated in Table 3.  In figure 4, the 
average of the PSD (25 samples) in the low frequency 
region (0.5 to 50 Hz) was calculated using 500,000 data 
points (20,000 for each sample) for a sampling rate of 5,000 
Hz to achieve a frequency resolution of 0.25 Hz.  High 
frequency resolution was needed in the low frequency 
region (below 50 Hz) as the forcing frequencies are closer 

to each other. In Figures 5 and 6, the average of the PSD 
(25 samples) in medium and high frequency region - 
calculated using 500,000 data point for a sampling rate of 
20,000 Hz (20,000 points per sample) and a frequency 
resolution of 1 Hz - are shown.  Figure 7 shows the baseline 
PSD of the motor running at two different speeds (not 
harmonically related), 1,144 RPM and 1,593 RPM; this 
allows for the identification of the resonant frequencies of 
the system as both PSD should display the same peaks at 
these frequencies. 

 1st stage 
planetary gear 

2nd stage 
planetary gear 

Carrier speed 3.57 RPS 0.87 RPS 
Planet speed 9.62 RPS 2.70 RPS 

Planet absolute 
speed 

6.04 RPS 1.82 RPS 

Planet gear mesh 
frequency 

279.02 Hz 59.47 Hz 

Sun gear mesh 
frequency 

343.2 Hz 78.69 Hz 

Planet passing 
frequency 

10.73 Hz 2.62 Hz 

Sun gear side 
band defect 
frequency 

46.46 Hz 8.10 Hz 

Planet gear side 
band defect 
frequency 

19.24 Hz 5.40 Hz 

 
Table 1. Expected forcing frequencies from planetary 

gears of the rotor side of the dynamometer, motor speed 
1,144 RPM (19.06 Hz). 
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Figure 3. Rotor end of the Dynamometer. 

 
 Bearing 1 Bearing 2 Bearing 3 

Outer ring 
frequency 

58.58 58.26 7.69 

Inner ring 
frequency 

93.95 94.26 13.29 

Roller bearing 
frequency 

77.80 76.29 3.03 

Cage frequency 7.32 7.28 0.32 
 

Table 2. Expected forcing frequencies (in Hz) from bearings 
of the rotor side of the dynamometer, motor speed 1,144 

RPM (19.06 Hz). 
 

 

Figure 4. Forcing frequencies identification on the PSD 
plot (0.5 Hz to 50 Hz). 

 

Figure 5.  Forcing frequencies identification on the PSD 
plot (50 Hz to 250 Hz). 

 

Figure 6. Forcing frequencies identification on the PSD 
plot (250 Hz to 500 Hz). 
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Figure 7. The PSD at 1,144 RPM and 1,593 RPM show 
the same peaks at resonance frequencies. 

In Figure 8, the difference in levels between the imbalance 
and baseline in the third octave bands (63 Hz, 125 Hz, 160 
Hz, 200 Hz, 250 Hz and 315 Hz) exceed the threshold (level 
increase allowance) of 5dB, causing the alarm for each of 
those third octave bands to switch on.  In figure 9, the PSD 
and the spectrograms clearly show peaks at about 60 Hz and 
120 Hz relative to the modulation in the case of extreme 
imbalance. The increase in level is due to the imbalance of 
the shaft that causes the planet gear meshing frequency 
(59.5 Hz) and its harmonics (119 Hz, 178.5 Hz) to be 
modulated by the rotational frequency (0.88 Hz) and its 
harmonics (1.76 Hz, 2.64 Hz, 3.52 Hz) (Figure 11); for 
brevity, only the modulation of the fundamental planet gear 
meshing frequency is shown.  Similar conclusions were 
made from data acquired with the motor running at 1,593 
RPM.  Figure 10 shows comparisons between imbalance 
effect on the PSD and Hilbert envelope analyses. 

The Hilbert envelope analysis shows the major modulation 
of the gear meshing frequency much more clearly than the 
PSD do. Table 4 summarizes the amplitude change relative 
to the baseline using the third octave, PSD and Hilbert 
envelope analysis, in the case where the unbalance is caused 
either by two magnets attached to the shaft or two magnets 
and two blocks attached to the shaft.  The table shows that 
the PSD levels and the levels of the demodulating 

frequencies (envelope analysis) increased with imbalance 
condition.  Figures 11 and 12 show the PSD and the 
spectrograms with two magnets attached to the shaft, and 
two magnets and two blocks, in the frequency ranges 
130-250 Hz and 215-500 Hz, respectively.  The 
spectrograms show clearly the peaks (at the modulating 
frequencies and it harmonics) that are causing the third 
octave bands shown in figure 8 to exceed their baselines.  
The kurtosis was not affected by the imbalance at either 
speed, but would have changed significantly if the 
imbalance was causing damage to the gears or bearings – an 
example of data fusion and a potential tool for prognosis. 

Freq.  Forcing frequencies Symbol 
19.06 Motor speed - 
0.87 Shaft speed 2nd stage gear C’ 
3.57 Shaft speed 1st stage gear C 
2.62 Planet passing frequency 2nd stage P’p 
10.73 Planet passing frequency 1st stage Pp 
1.82 Planet absolute frequency 2nd stage P’a 
6.04 Planet absolute frequency 1st stage Pa 

178 
Planet gear mesh frequency 2nd 

stage 
P’g 

7.32 Cage defect frequency 1st bearing Cb1 

58.58 
Outer race defect frequency 

bearing 1 
Ob1 

58.26 
Outer race defect frequency 

bearings 2 
Ob2 

7.69 
Inter race defect frequency 

bearings 3 
Ib3 

76.29 Roller bearing frequency bearing 2 Rb2 
38.25, 

84, 
367, 
375, 
383, 
393 

Resonance frequencies - 

 
Table 3. Observed forcing frequencies (in Hz) in the PSD 

for motor running at 1,144 RPM (19.06 Hz). 
 

 

Figure 8. Relative amplitude with respect to the baseline (normal condition) using third-octave analysis; two magnets 
attached to the shaft (left) and, two magnets and two blocks (right). 
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Figure 9. Power spectral density and spectrogram in the frequency range 50-150 Hz, with two magnets attached to the shaft 
(left) and two magnets and two blocks (right). 

 

 

Figure 10. Power spectral density and its Hilbert envelope analysis; two magnets attached to the shaft (top) and two magnets 
and two blocks (bottom). 
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Table 4. Comparison of the features (PSD, envelope and third octave level) relative to the baseline (no weight added), for two 
levels of unbalance severity, one with two light magnets, and another with two magnets and two blocks. 

 

 

Figure 11. Power spectral density and the spectrogram in the frequency range 130-250 Hz, with two magnets attached to 
the shaft (left) and two magnets and two blocks (right). 

 

 

Figure 12. Power spectral density and the spectrogram in the frequency range 215-500 Hz, with two magnets attached to 
the shaft (left) and two magnets and two blocks (right). 
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Figure 13. Forcing frequencies identification on the Cepstrum plot. 
 

Figure 14. Cepstrum averaged over 25 samples (motor running at 1,144 RPM)-baseline (blue) shifted 
up by 0.5 compared to extreme imbalance case (green) 

  
Cepstrum analysis was evaluated for early detection or 
fault diagnosis.  In Figures 13 and 14, the increased 
imbalance of the shaft caused by the weight resulted in 
amplitude increases of the harmonically related 
frequencies. These changes are difficult to assess 
because the imbalance changes the dynamics of the 
system; e.g., the stress localized on a tooth due to the 
imbalance of the shaft produces modulation of the 
tooth-meshing frequencies with the shaft speed.  Also, a 
large number of sidebands around the tooth-meshing 
frequency and its harmonics in the spectrum are 
generated, which are spaced by the rotation frequency 
of the shaft. As discussed earlier, the use of the Hilbert 
transform based techniques allows for easier 
interpretations to the monitoring of the envelope at 
specific frequencies, such as bearing or gear related 
frequencies. The easier interpretation increases the 
probability of early detection.   

5. TRANSIENT ANALYSIS 

A transient analysis utilizing kurtosis and STFT was 
performed using a calibrated hammer.  The hammer hit 
the structure every second with increasing intensity 
over 96 seconds; a significant increase in the kurtosis 

and spikes on the spectrograms were observed.  Figure 
15 shows the time waveforms (green curve in normal 
operating condition and yellow curve with hammer 
tests) and the hammer forces (red curve) recorded 
during 96 seconds, the kurtosis and the short time 
Fourier transforms for several different conditions.  
Spectrograms on the top of the figure show the STFT 
resulting from normal operating condition; the kurtosis 
was 3.32 for each stage. Spectrograms on the bottom 
show the STFT for the extra light hammer hits (4 to 36 
s), for light hammer hits (36 to 68 s) and strong hammer 
test (68 to 100 s), respectively. The time step and 
frequency resolution of the STFT were set to 0.125 s 
and 8 Hz, respectively. 

The hammer hits experiment was performed on the 
coupled dynamometer (Figure 2). As the vibration level 
increases with the RPM, the hammer hits should be 
larger in high speed than in lower speed (to avoid being 
masked by the vibration level). The speed of the drive 
motor was selected to be 300 RPM (low speed) to avoid 
damage to the gearbox. Table 5 shows the amplitude 
change relative to the baseline (no hammer hits) of the 
kurtosis in the case of extra light, light and strong 
hammer hits. 
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Figure 15. Spectrogram and kurtosis of the time waveform, for extra light (4-32 s), light (36-68 s) and strong hammer hit 
(68-100 s) at 300 RPM. Curve in red represents the hammer force. Yellow and green curves are the time waveform, with 

hammer test and in normal operating condition respectively.
  

 Relative Kurtosis 
Extra light hammer hits 1.42 

Light hammer hits 28.98 
Strong hammer hits 49.18 

 
Table 5. Relative kurtosis to the baseline for increasingly 

stronger hammer hits. 

6. CONCLUSION 

During the process of data acquisition and processing, 
several findings were made that are believed noteworthy: 
(1) Augmenting the imbalance caused the planet gear 
meshing frequency to be modulated by the output shaft 
speed of the second stage reduction gearbox (0.88 Hz for 
1,144 RPM and 1.25Hz for 1595).  The modulation level 
increased with increased imbalance. 
(2) The PSD was a better indicator of level change than 
the cepstrum, although the cepstrum is a better tool to 
identify harmonic relationships. 
(3) Envelope analysis using Hilbert transform techniques 
is a better indicator of modulation content than the PSD 

and the cepstrum; this is consistent with reference 
(Fernandez et al., 2005). It may outperform the kurtosis 
analysis in the presence of transients. 
(4) The kurtosis seems to be a good indicator for transient 
effects; the kurtosis had similar values with and without 
imbalance. However, had the imbalance been introduced 
while the shaft was rotating (transient), the value of the 
kurtosis would have changed significantly. Also, the 
kurtosis would have been increased if the imbalance had 
caused gear or bearing damages. 
(5) The envelop analysis was performed on the planet 
gear meshing frequency. The results were similar to those 
found in (Fernandez et al., 2005; Yong-Han Kim et al., 
2006) using bearing frequencies. 
(6) The data comparisons indicate that the use of more 
than one technique for fault detection and identification 
increases the reliability of the conclusions. This might 
decrease the false alarms rate and the use of lower alarms 
levels, allowing for earlier fault detection.  
In the light of these findings, the use of envelop and 
kurtosis analyses for detection of bearing and gear related 
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faults should be considered in addition to PSD levels.  
This allows for more reliable of fault identification and 
for evaluation of the severity of the problem. 
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ABSTRACT 

In this study, we have presented a method for detecting  four 

common arrhythmias by using wavelet analysis along with 

the neural network algorithms. The method firstly includes 

the extraction of feature vectors with wavelet analysis. 

Then, the vectors will be categorized by means of the neural 

network into four classes. Input signals are recorded from 

two different leads. In addition, we have used both 

continuous and discrete wavelet analyses simultaneously for 

feature extraction. This results into increasing the accuracy 

of feature vectors extraction.  Also, using the continuous 

wavelet in a specific scale can lead to better extraction of 

coefficients as well as more accurate data. In order to 

decrease the computational efforts and increase the training 

speed, the dimensions of the feature vectors have been 

reduced by substituting the wavelet coefficients with their 

statistical parameters. Furthermore, two approaches are 

introduced in classification of feature vectors. The first 

approach comprises four neural networks in the parallel 

form for detection of four classes, while the second 

approach makes use of one network for four classes. 

Numerical simulation results show that in comparison with 

the previous studies, the proposed methods are more 

accurate and faster. In addition, it is observed that the 

second approach has better capabilities in classification of 

data than the first one. On the other hand, the first approach 

is believed to have a good function for complicated data 

spaces. 

1. INTRODUCTION 

The most common way for studying and diagnosing cardiac 

dysfunctions is the Electrocardiogram (ECG) signal 

analysis. ECG is a record of the origin and the propagation 

of the electrical potential through cardiac muscles. The 

normal ventricular complexes (N) are provoked by the sinus 

node and are related with regular conduction path through 

the ventricles, which assures their normal narrow waveform. 

The existence of ectopic centers, as well as some blocked 

regions in the ventricles changes the path propagation of the 

activation front and leads to generation of QRS complexes 

with wide and bizarre waveforms related to premature 

ventricular contractions (PVC) and left and right bundle 

branch blocks (LBBB, RBBB).  Detection of these diseases 

by means of the convenient medical approaches is usually 

not easy and not accurate. On the other hand, signal 

analyses based on ECG signals has a big potential in the 

diagnosis.      

Various methods are used for heart beat disease detection. 

Accuracy of detection depends on three basic factors – the 

used heartbeat feature set, the applied classification method 

and the organization of the training strategy.  

The literature contains information about various feature 

extraction rules, including wavelet transform (Al-Fahoum 

and Howitt, 1999), (Shahidi Zandi and Moradi, 2006), 

(Ghaffari and Golbayani, 2008), Fourier transform (Minami,  

Nakajima, and Toyoshima, 1999) Lyapanov exponents 

(Ubeyli and Gular, 2004)., (Casaleggio and Braiotta, 1997), 

independent component analysis (Sung-Nien  and  Kuan-To, 

2007), (Wang,  He, and Chen, 1997) principle component 

analysis (Ceylan and Ozbay, 2007)  and also contains a lot 

of methods for classification such as neural network (Al-

Nashash, 2000), (Foo, Stuart, Harvey, and Meyer-Baese, 

2002) and neuro-fuzzy method (Engin and Demirag, 2003), 

(Engin, 2004), (Acharya, Bhat,  Iyengar, Roo, and  Dua, 

2002) and K-th nearest neighbor (Christov, Jekova and 

Bortolan, 2005), (Jekova,  Bortolan, and Chridstov, 2007), 

and mixture of experts (Hu,  Palreddy  and Tompkins, 1997) 

etc. In previous studies, selecting a powerful classifier was 

discussed and feature extraction stage was only a stage for 

reducing signal information. However, regarding to the 

neural network input data influence on the network performance, 
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the feature extraction stage is very important. If the feature 

vector determines the signal characteristics better and 

effectively shows the discrimination between patient 

signals. Then the classifier can serve better and 

subsequently the diagnosis processes will be done more 

accurate. Jekova, et al. (2007)  used the geometrical 

parameters and discriminating features while their method 

was performed manually.  Here, in the present study, the 

features are extracted using both continuous and discrete 

wavelet transforms and in order to have all of observable 

characteristics of signals they are recorded with two leads.  

It should be pointed out that in most relevant works which 

use the advantage of discrete wavelet transform for feature 

extraction while for reducing the dimension of the feature 

vectors they ignore the coefficients of some stages which 

leads to missing part of information through the signal.  The 

statistical parameters are used to replace the coefficients of 

wavelet transform and finally the neural networks were used 

by two different methods for classifying signals to four 

classes. Lastly, the results of these two different methods in 

signal classification are compared with together and with 

some previous studies. The presented approach, in 

comparison to the existing methods, is demonstrated to 

detect heart arrhythmia accurate and efficient under the 

study conditions in this paper.     

2. MATERIAL AND METHODS 

2.1 ECG Signals 

This study involves 8 ECG recording from the MIT-BIH 

(the MIT university arrhythmia signal database) arrhythmia 

database. Each recording has 30 min duration and includes 

two leads, the modified limb lead II as well as one of the 

modified leads V1, V2, V3, V4 or V5. The sampling 

frequency is 360 Hz and the resolution is 200 samples per 

mV. The study focuses on the classification of the four 

largest heartbeat classes in the MIT-BIH arrhythmia 

database: (1) normal beats (N); (2) premature ventricular 

contraction (PVC); (3) right bundle branch block (RBBB); 

(4) left bundle branch block (LBBB). All the recorded data 

from this website are labeled and it is clear that each signal 

is belonged to which four above classes. In the present 

study, each data is made of 200 alternative samples which 

make a heartbeat to involve P, QRS and T waves ( they are 

three waves which make a complete heart beat.) which will 

be used through the neural network. 

2.2 Wavelet Transform (WT) 

The ECG signals are considered as representative signals of 

cardiac physiology which are useful in diagnosing cardiac 

disorders.  The most complete way for displaying this 

information can perform spectral analysis. WT provides 

very general techniques which can be applied to many tasks 

in signal processing. One of the most important applications 

of WT is its ability for computing and manipulating of data 

in compressed parameters which are often called features. 

Thus, the ECG signal, consisting of many data points, can 

be compressed into few parameters. These parameters 

characterize the behavior of the ECG signals. This feature 

uses a smaller number of parameters to represent the ECG 

signal which, particularly, is important for recognition and 

diagnostic purposes (Guler and Ubeyli, 2005). The 

continuous wavelet transform (CWT) of a continuous signal 

)(tx is defined as: 

∫
∞

∞−

∗ −
= dt

a

t
tx

a
aCWTx )()(

1
),(

τ
ψτ                               (1) 

where )(tψ  is the mother wavelet, and a  is the scale factor 

which can be thought as the inverse of frequency. As shown 

in Eq. (1), the mother wavelet )(tψ  is scaled by a  and 

shifted by τ  to provide the basis of time-frequency 

representation of )(tx . Using the CWT, a time-scale (time-

frequency) description of a signal, which is very useful to 

investigate the signal behavior in time and frequency 

domains simultaneously, is obtained (Shahidi Zandi  and 

Moradi, 2006).  

In discrete wavelet analysis, a multi-resolution formulation 

is used in wavelet analysis to decompose a signal event into 

finer and finer details. The procedure of multi-resolution 

decomposition of a signal  ][nx  is schematically shown in 

Fig. 1.  

 

Fig. 1. Sub band decomposition of DWT implementation; 

 ][ng is the high-pass filter and ][nh  is the low-pass filter. 

Each stage of this scheme consists of two digital filters. The 

first filter ][ng  is the discrete mother wavelet, high-pass in 

nature, and the second,  ][nh  is its mirror version, with low-

pass in nature. The outputs of first decomposition stage 

are
1D  and

1A , in which
1A  is further decomposed and this 

process is continued as shown in Fig. 1 (Guler and Ubeyli, 

2005). 

2.3 Neural Network Classifier 

Artificial neural networks (ANNs) may be defined as 

structures comprised of densely interconnected adaptive 

simple processing elements (neurons) that are capable of 

performing massively parallel computations for data 
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processing and knowledge representation. ANNs can be 

trained to recognize patterns and the nonlinear models 

developed during training and allow neural networks to 

generalize what they have previously encountered. The 

multilayer  perceptron  neural networks   (MLPNNs) are the 

most commonly used neural network architectures since 

their nice features such as ability to learn and to generalize, 

with smaller training set requirements, faster operation, and 

ease of implementation. A MLPNN consists of (1) an input 

layer with neurons representing input variables to the 

problem, (2) an output layer with neurons representing the 

dependent variables (what are being modeled), and (3) one 

or more hidden layers containing neurons to help to capture 

the nonlinearity in the data (Guler and Ubeyli, 2005). Fig. 2 

shows a general structure of the MLPNNs. 

 

Fig. 2 The general structure of MLPNNs 

3. EXPERIMANTAL RESULTS 

3.1 Computation of Feature Vectors 

In the present study, four various classes of ECG beats have 

been considered which are shown in Figs. 3(a)-(d). 

According to the fact that with inappropriate inputs even the 

best classifiers will give unacceptable results, then the 

selection of inputs for the neural network seems to be most 

important factor in designing a neural network for the 

patterns classification. In order to select appropriate data it 

should be noted that which elements of the pattern or which 

kind of the input data are the best description of the given 

data. Also it is possible that all information of a signal is not 

observable through a unit lead.  Then, for having more 

information and reducing the possibility of data loss, in this 

study, for each heart signal two available leads from the 

MIT-BIH have been used. In addition, since we are eager to 

compare the results with each other, it is necessary to use a 

similar leads for all data.  This matter has been considered 

within the records selection and all of the records have been 

described with two MLII and V1 leads. 

Also for extraction of feature vectors, both continuous and 

discrete wavelet transform have been used. Continuous 

wavelet transform is used with Haar function and discrete 

wavelet is used with Daubechies function. Continuous 

wavelet transform with Haar function based on the Ghaffari 

and Golbayani (2008) can extract some information about 

the shape of signal and if all the wave of signals occurred or 

not? Also discrete wavelet with Daubechies function based 

on the Ceylan and Ozbay (2007) can extract some 

information about the sudden changes in the signal rhythm. 

Using these two transform simultaneously helps to extract 

more information from the signals.  

After the wavelet transform the statistical parameters like: 

max, mean and standard deviation are used to compact the 

information of continuous and discrete wavelet coefficient 

more. Then feature vectors with dimension 36*1 are made.  

 

Fig. 3 (a) Normal beat (b) Premature ventricular contraction 

(c) Right bundle branch block (d) Left bundle branch block 

3.2 Applying Neural Network on ECG Signals 

In this study 110 signals are used as the test signals as 

shown in Table 1: 

 

Signal Type Number of Test Signals 

N 25 

PVC 25 

RBBB 30 

LBBB 30 

Table 1- Number of test signals 

 

These signals will classified with neural networks by two 

different methods. Each of these methods is explained as 

follows: 

Method 1- Four neural networks are considered for data 

classification and each of these neural networks diagnoses 

one class of signals. For instance a neural network 

diagnoses normal signals and this network divides all data 

into two classes: 1- normal signals and 2- abnormal signals. 

The first network is called normal network. The second 

Input layer 

Hidden layer 

 

Output layer 
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neural network is called PVC network and is dividing 

signals in two classes: 1-PVC signals and 2-other signals. 

The third network is called RBBB network and is dividing 

signals into two classes: 1-RBBB signals and 2-other 

signals. The fourth network is called LBBB network and is 

dividing signals into two classes as 1-LBBB signals and 2- 

other signals. All neural networks have three layers: input 

layer, hidden layer and output layer. Normal, PVC and 

RBBB networks have 36 neurons in input layer and 8 

neurons in hidden layer and 2 neurons in output layer. 

LBBB network has 36 neurons in input layer and 12 

neurons in hidden layer and 2 neurons in output layer.   

 The test results of these four neural networks are given as 

follows: 

 

 
Output of Normal 

Network 

Signal 

Type 

Number 

of test 

signals 

Normal 

signals 

Other 

signals 

Normal 

signals 
25 25 0 

Other 

signals 
85 1 84 

Table 2- Confusion
*
 Matrix for Normal Network 

This table shows that 25+85 signals are tested with the 

normal network and all of the 25 normal signals are detected 

as normal signal correctly and also 1 signal which is not 

normal is detected as a normal signal wrongly. This shows 

that the normal network has high separation ability in 

separating normal signals from the other signals.  

 

 Output of PVC Network 

Signal 

Type 

Number of 

Test signals 

PVC 

Signals 

Other 

Signals 

PVC 

Signals 
25 23 2 

Other 

Signals 
85 4 81 

Table 3- Confusion Matrix for PVC Network 

This table shows that 25+85 signals are tested with the PVC 

network and 23 of 25 PVC signals are detected as PVC 

signal correctly and also 4 signals which are not PVC are 

detected as PVC signal wrongly.   

 

 

                                                 
*
 Confusion matrix is a visualization tool typically used in supervised 

learning . Each column of the matrix represents the instances in a predicted 

class, while each row represents the instances in an actual class. 

 
Output of RBBB 

Network 

Signal 

Type 

Number of 

Test 

Signals 

RBBB 

Signals 

Other 

Signals 

RBBB 

Signals 
30 30 0 

Other 

Signals 
80 2 78 

Table 4- Confusion Matrix for RBBB Network 

This table shows that 30+80 signals are tested with the 

RBBB network and all of the 30 RBBB signals are detected 

as RBBB signal correctly and also 2 signals which are not 

RBBB are detected wrongly. This shows that the RBBB 

network has high separation ability in separating RBBB 

signals from the other signals.  

 

 
Output of LBBB 

Network 

Signal 

Type 

Number of 

Test 

Signals 

LBBB 

Signal 

Other 

Signals 

LBBB 

Signal 
30 29 1 

Other 

Signals 
80 1 79 

Table 5- Confusion Matrix for LBBB Network 

This table shows that 30+80 signals are tested with the 

LBBB network and 29 of 30 LBBB signals are detected as 

LBBB signal correctly and also 1 signal which is not LBBB 

is detected as LBBB signal wrongly.   

For each network two different accuracies are determined 

as:  

1- Specific accuracy: This shows the network accuracy 

in detecting the signals of its class. It is obtained for 

example for normal network by dividing number of 

signals which they detected normal to the number of 

tested signals which they are normal. Then for 

normal network this accuracy will be 100% (25/25). 

2- Total accuracy: This shows the network accuracy in 

detecting the signals for both two classes. It is 

obtained by dividing the number of signals which 

they are detected correct to the number of total 

signals. For example for normal network it will be 

99%. 
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Table 6 shows these two accuracies for each neural network: 

 

Network 
Specific Accuracy 

(%) 
Total Accuracy (%) 

Normal 100 99 

PVC 92 94.5 

RBBB 100 98.2 

LBBB 96.7 98.2 

Table 6- Neural Network Accuracies 

 

The other important issue is the network ability in data 

separation. Network separation ability for example about 

normal network is to determine how many signals of PVC, 

RBBB, LBBB signals are correctly detected and assigned to 

abnormal signal class.  For calculating this item, the number 

of signals which detected will bring by more details in the 

table below: 

 

 

Network 
Number of Signals  

Normal PVC RBBB LBBB 

Normal ---------- 24 30 30 

PVC 23 ---------- 29 29 

RBBB 25 23 ---------- 30 

LBBB 25 24 30 --------- 

Table 7- Number of Signals which correctly detected 

 

The separation abilities for the networks are in the table 

below: 

 

Network 
Signal Class 

Normal PVC RBBB LBBB 

Normal ---------- 96% 100% 100% 

PVC 92% ---------- 96.7% 96.7% 

RBBB 100% 92% ---------- 100% 

LBBB 100% 96% 100% --------- 

Table 8 - Result of Network Separation Ability 

 

From the recorded results in the above table it can be seen 

that the accuracy of the normal network in separating PVC 

signals from normal signals is 96%. It means that 24 signals 

of 25 signals of PVC class are correctly assigned to 

abnormal signal class. Also the accuracy for separating 

RBBB and LBBB signals from normal signals is 100%. 

 

By using neural network in parallel form, after training of 4 

networks the test vectors are fed to all four networks and the 

class of each test signal is determined by these four outputs. 

It can often happen that a signal will be detected by two 

networks. For final classification a logical decision must be 

helpful to detect a correct class for signal. In this study three 

methods for this logical decision are explained as below: 

A- If a signal is only detected by a network, this signal is 

belonging to the class of this network. If a signal is 

detected by two or three networks simultaneously, this 

signal is considered as an unclassified signal. 

Therefore, in this method the signals are either detected 

correctly or wrongly, or remained unclassified. 

B- In this method, the class of a signal is determined 

according to the more accurate network’s detection. For 

example if a signal is detected by two normal network 

and PVC network, by considering that the specific 

accuracy of normal network is 100% and this accuracy 

for PVC network is 92% then it will be concluded that 

the signal is normal.  

C- This method is based on separation ability of the neural 

networks.  On the other hand, if a signal is detected by 

two networks simultaneously, the signal is assigned to 

the class of network with higher separating ability. For 

example if a signal is detected by two normal and PVC 

networks, this signal is assigned to normal signal class. 

This detection is because of difference between the 

separation ability of normal neural network in 

separating normal signals from PVC signals (96%) and 

this ability for PVC network (92%).    

As the above explanations it is clearly seen that this method 

of classification leads to reduction in classification error. 

We are using the neural networks in the parallel form. It 

means that each signal is fed to all networks for class 

detection. Then, the networks can cover their weaknesses 

and therefore the final result will be more accurate. The 

results of implementation of these three logical decisions on 

four network outputs are as follows: 

Table 9- Confusion Matrix for result of Method A 

 

Signal 

Classes 

Detected Class 

Normal PVC RBBB LBBB 

Normal 25 --------- -------- -------- 

PVC 1 21 2 1 

RBBB --------- --------- 30 -------- 

LBBB --------- 1 --------- 29 

Table 10- Confusion Matrix for result of Method B 

 

 

 

Signal 

Classes 

Detected Class 

Normal PVC RBBB LBBB Unclassified 

Normal 24 ------ -------- -------- 1 

PVC 1 21 1 -------- 2 

RBBB --------- ------ 29 -------- 1 

LBBB --------- 1 --------- 29 -------- 
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Signal 

Classes 

Detected Class 

Normal PVC RBBB LBBB 

Normal 25 --------- -------- -------- 

PVC 1 23 1 -------- 

RBBB --------- 1 29 -------- 

LBBB --------- 1 --------- 29 

Table 11- Confusion Matrix for result of Method C 

 

For evaluating the classification methods some statistical 

parameters are defined as follows: 

1- Specificity ( iSp ) =
ii

i

FPTN

TN

+
  

2- Sensitivity ( iSe ) = 
ii

i

FNTP

TP

+
  

where iTP  (true positive) is the number of heartbeats of the 

ith class, which are correctly classified, iTN  (true negative) 

is the number of heartbeats which is not belonging to and 

classified in the ith class, iFP  (false positive) is the number 

of heartbeats classified erroneously in the ith class and 

finally iFN (false negative) is the number of heartbeats of 

ith class which is classified in a different class. These 

statistical parameters for three methods are showed in the 

Tables 12-14 below: 

 

Network iSp % iSe % 

Normal 98.8 96 

PVC 98.8 84 

RBBB 98.8 96.7 

LBBB 100 96.7 

Table 12- The Result of Method A 

 

Network iSp % iSe % 

Normal 98.8 100 

PVC 98.8 84 

RBBB 97.5 100 

LBBB 98.8 96.7 

Table 13- The Result of Method B 

 

Network iSp % iSe % 

Normal 98.8 100 

PVC 97.6 92 

RBBB 98.8 96.7 

LBBB 100 96.7 

Table 14- The Result of Method C 

 

In Tables 15-16, comparison results of three methods in 

terms of specificity and sensitivity are presented. As shown 

in Table 15, all of these three methods have same specificity 

ability for normal signal. Methods A and B have better 

results for PVC signals and also methods A and C have 

better results for RBBB and LBBB signals. Overall, method 

A shows the best results.  

 

Signal 

Type 

iSp (%) 

Method A 
Method 

B 

Method 

C 

Normal 98.8 98.8 98.8 

PVC 98.8 98.8 97.6 

RBBB 98.8 97.5 98.8 

LBBB 100 98.8 100 

Table 15- Comparison Three Methods in Specificity Factor 

 

The sensitivity of three methods is compared in Table 16 

below: 
 

Signal Type 
iSe (%) 

Method 

A 

Method 

B 
Method C 

Normal 96 100 100 

PVC 84 84 92 

RBBB 96.7 100 96.7 

LBBB 96.7 96.7 96.7 

Table 16- Comparison Three Methods in Sensitivity Factor 
 

In summary with considering these given parameters and 

accuracy parameter, it can be concluded that method C 

provides the best performance based on the separating 

ability. 

Method 2- For classifying data in four classes by neural 

network, a MLPNNs with three layers is considered, having 

36 neurons in input layer, 12 neurons in hidden layer and 4 

neurons in output layer. The outputs of neural network for 

four classes are assigned to four target vectors as follows: 

normal signal (1,0, 0, 0) , premature ventricular contraction 

(0,1,0,0) , right bundle branch block (0,0,1,0) and left 

bundle branch block (0,0,0,1). The training method of 

neural network is chosen to be back propagation error. For 

increasing the learning speed the Levenberg-Marquradt 

method has been used. The results of neural network 

training are described in Confusion matrix as below. 

 

Signal 

type 

Number 

of signal 

Neural network output 

N PVC RBBB LBBB 

N 25 25 0 0 0 

PVC 25 1 24 0 0 

RBBB 30 0 0 30 0 

LBBB 30 0 1 0 29 

Table 17- Confusion Matrix 
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According to the Confusion matrix it is observed that all of 

the normal signals and the right bundle branch block signals 

are diagnosed correctly but one of the signals between 

premature ventricular contractions is diagnosed incorrectly 

and is assigned to normal signals class.  In addition, one of 

right bundle branch signals is also diagnosed incorrectly and 

assigned to be in premature ventricular contraction class.  

The statistical parameters are computed for 4 classes and are 

listed in Table 18. 

 

Signal 

type iSp (%) iSe (%) 

N 98.8 100 

PVC 98.8 96 

RBBB 100 100 

LBBB 100 96.7 

Table 18- Statistical Parameter Value of Neural Network 

Performance 

4. DISCUSSION AND CONCLUSION 

 In this paper, wavelet transform and neural network are 

used for heart arrhythmia signal classification. Selected 

signals are belonging to four different classes and signals 

are recorded from two leads (MLII & V1). Wavelet 

transform is used for feature extraction and then feature 

vectors are classified by two different methods by using 

neural networks. The key results of these two methods are 

compared in Tables 19 and 20. 

 

Signal 

Type 

iSe (%) 

Method 1 

Method 

2 
Method 

A 

Method 

B 

Method 

C 

Normal 96 100 100 100 

PVC 84 84 92 96 

RBBB 96.7 100 96.7 100 

LBBB 96.7 96.7 96.7 96.7 

Table 19- Methods Comparison in Sensitivity 

 

 

 

 

Signal 

Type 

iSp (%) 

Method 1 

Method 

2 Method A 
Method 

B 

Method 

C 

Normal 98.8 98.8 98.8 98.8 

PVC 98.8 98.8 97.6 98.8 

RBBB 98.8 97.5 98.8 100 

LBBB 100 98.8 100 100 

Table 20- Methods Comparison in Specificity 

 

According to Tables 19 and 20 the results of second method 

is better than first method which has three shapes. Therefore 

the second method of signal classification, which uses a 

neural network for signal classification, is more accurate 

than first method. 

The key results of the second method are compared with 

previous study in Table 21.  

 

 

This 

study(Method2 ) 

Sung-

Nien [9] 

WT-BPNN method 
ICA-PNN 

method 

Signal 

type iSp (%) iSp (%) 

N 98.8 99.9 

PVC 98.8 98 

RBBB 100 99.97 

LBBB 100 99.65 

Table 21- comparison of the second method results with the 

pervious study 

 According to Table 21 the results of the second method are 

much better than the previous study Sung-Nien and Kuan-

To (2007) in three types of signals: premature ventricular 

contraction, right bundle branch block and left bundle 

branch block. According to the same method for 

classification in two studies the difference between their 

results is because of different feature extraction methods. 

Therefore the feature extraction method that is used in this 
study is a better method to determine signal characteristics.  

The results of the second method are compared with the 

Ceylen and Ozbay ( 2007)  study in Table 22. In their study 

such as second method of this study, wavelet is used feature 

extraction and neural network is used for classification. It is 

clearly to see that the second method of this study serves 

more effectively than the previous one. The use of statistical 

indices of wavelet coefficients in second method of this 
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study provides considerable increase in training speed and 

the accuracy of diagnosis. 

 

 
This 

Study(Method2) 

Ceylen-Ozbay’s 

Study  

Test error 0.158 0.4 

CPU time 

(s) 
10 85.44 

Table 22- Comparison of second method with pervious 

study  
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ABSTRACT 

Most existing condition based maintenance (CBM) work 

reported in the literature only focuses on determining the 

optimal CBM policy for single units. Replacement and other 

maintenance decisions are made independently for each 

component, based on the component’s age, condition 

monitoring data and the CBM policy. In this paper, a CBM 

optimization method is proposed for multi-component 

systems, where economic dependency exists among the 

components subject to condition monitoring. In a multi-

component system, due to the existence of economic 

dependency, it might be more cost-effective to replace 

multiple components at the same time rather than making 

maintenance decisions on components separately. 

Deterioration of a multi-component system is represented by 

a conditional failure probability value, which is calculated 

based on the predicted failure time distributions of 

components. The proposed CBM policy is defined by two 

failure probability thresholds. A method is developed to 

obtain the optimal threshold values in order to minimize the 

long-term maintenance cost. An example is used to 

demonstrate the proposed multi-component CBM method.  

1. INTRODUCTION 

Condition based maintenance (CBM) generally aims to 

determine the optimal maintenance policy to minimize the 

overall maintenance cost based on condition monitoring 

information. The health condition of a piece of equipment is 

monitored and predicted via collecting and analyzing the 

inspection data, such as vibration data, acoustic emission 

data, oil analysis data and temperature data. Various CBM 

policies and optimization methods have been proposed 

(Banjevic et al, 2001, Jardine et al, 2006). However, most 

existing condition based maintenance (CBM) work reported 

in the literature only focuses on determining the optimal 

CBM policy for single units. Replacement and other 

maintenance decisions are made independently for each 

component, based on the component’s age, condition 

monitoring data and the CBM policy.  

For multi-component systems which involve multiple 

components, economic dependency exists among the 

components subject to condition monitoring. For example, 

in the replacement of bearings on a set of pumps at a remote 

location, the fixed maintenance cost, such as sending a 

maintenance team to the site, is incurred whenever a 

preventive replacement is performed. Thus, for multi-

component systems, it might be more cost-effective to 

replace multiple components at the same time rather than 

making maintenance decisions on components separately. 

Tian and Liao (2011b) developed a proportional hazards 

model based approach for CBM of multi-component 

systems. In this paper, we propose an approach which can 

utilize prediction information from more general prediction 

tools. More specifically, the proposed CBM can be used as 

long as the prediction tool can produce predicted failure 

time values and their associated uncertainty information. 

The simulation-based cost evaluation method is presented. 

An example is used to illustrate the proposed approach.  

2. COMPONENT HEALTH CONDITION PREDICTION 

The output of component health condition prediction is the 

predicted failure time values and the associated uncertainty 

information. That is, at a certain inspection point, health 

condition prediction tools can generate the predicted failure 

time distribution. In this section, we present a method that 

can be used for generating the predicted failure time 

distribution.  

Suppose, at a certain inspection point, the age of the 

component is  , the predicted failure time is     , and the 

actual failure time of the component is   , where subscript 

n indicates a predicted failure time while the subscript m 

indicates the actual failure time. The prediction error is 

Zhigang Tian et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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defined in this paper as                  . We also 

define the life percentage as        . The prediction 

error is a measure of the prediction accuracy. To obtain the 

predicted failure time distribution, Tian et al (2010, 2011a) 

developed a method to calculate the standard deviation of 

the predicted failure time, while using the artificial neural 

network (ANN) prediction model. The basic idea is that the 

ANN life percentage prediction errors can be obtained 

during the ANN training and testing processes, based on 

which the mean, 
p , and standard deviation, 

p , of the 

ANN life percentage prediction error can be estimated. 

These values can be used to build the predicted failure time 

distribution at a certain inspection point. Suppose the 

component age is t and the ANN life percentage output is 

tP . The predicted failure time will be  
ptPt  , and the 

standard deviation of the predicted failure time will be 

 
ptp Pt   . That is, the predicted failure time 

pT  at 

the current inspection point follows the normal distribution 

as:  

    
ptpptp PtPtNT    ,~ .            (1) 

It is assumed that the ANN life percentage prediction error 

follows normal distribution, and the predicted failure time at 

a certain inspection point also follows normal distribution. It 

is also assumed that the standard deviation of the ANN life 

percentage prediction errors is constant and does not change 

over time.  

3. THE MULTI-COMPONENT CBM APPROACH 

In this section, we present the CBM policy for multi-

component systems, and the cost evaluation method for the 

CBM policy.  

3.1 The CBM policy 

In multi-component systems, the conditional probability 

   is used to determine not only when and also which 

components should be preventively replaced at each 

inspection time. The CBM policy for multi-component 

systems is proposed as below: 

1) Identify the number of components in multi-

component systems. 

2) Regularly inspect these components which are 

subjected to condition monitoring. Calculate the 

predictive failure probability of each component at 

each inspection time based on the prediction 

method. 

3) When a component’s predicted failure probability 

   exceeds the level-1 threshold value    
 , 

preventively replace the component.  

4) When a component fails, replace it by a new one. 

5) When there is a preventive replacement or a failure 

replacement performed on any component in the 

system, simultaneously replace other components 

if their    values exceed the level-2 threshold 

value    
 . 

At each inspection time, one of the following events takes 

place exclusively for each component  :  
1. Component   reaches    

     a preventive 

replacement is performed on  . 
2. Component   reaches    

  if there is a failure 

replacement or a preventive replacement that needs 

to be performed on one of the components in the 

multi-component systems   preventively replace 

component   simultaneously. 

3. Component   fails   a failure replacement is 

performed, the component is replaced by a new 

one. 

4. None of the above   component   continues its 

normal operation. 

3.2 A simulation method for cost evaluation 

In this work, a simulation method is used to find the optimal 

condition failure probability threshold value which 

corresponds to the minimum expected replacement cost. We 

assume that there are N components in the multi-component 

systems. The procedure of the simulation method for CBM 

policy cost evaluation is shown in Figure 1, and is discussed 

in details as follows.  

Step 1: Define the maximum simulation iteration. 

Set the maximum simulation iteration NT, for example, 

100,000 inspection points. It means we start from inspection 

point 0 and end with inspection points 100,000. Between 

each inspection point, there is a fixed inspection interval L, 

say, 20 days. 

Step 2: Generate a random failure time as the actual failure 

time of each component.  

At the starting point of a new life cycle of component  , 
generate a random failure time,    , which follows Weibull 

distribution with the parameters    .  

Step 3: Generate a random predicted failure time of a 

component. 

At inspection point             , generate a random 

predicted failure time for component   based on ANN 

remaining useful life (RUL) prediction error. In a simulation 

process, this random predicted failure time simulate the 

predicted result based on ANN model using condition 

monitoring data at each inspection time. The predicted 

lifetime is denoted by      and follows normal distribution: 

                         (                ) (2) 

where      ,         ,    is standard deviation of 

the remaining useful life prediction error.  
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Generate a lifetime (failure time) Fti 

for component i.

Set the maximum simulation 

iteration. Kmax=100,000 

Calculate Pri for each 

component i

Pri>Pr1 ?

Replaced component i

Calculate Prj for other 

component j in the system

Prj>Pr2 ?

Replaced component i and 

preventively replaced component j

`

Yes

Yes

No

`

`

`

Generate a predicted failure time PTi 

base on FTi and ANN prediction 

error.

k=k+1

New component?

Yes

No

(RUL)i<0?

No

Yes

Calculate the total expected 

replacement cost C

k<=Kmax?
Yes

`
No

No

 
Figure 1. The procedure of the simulation method for cost 

evaluation in multi-component 

 

Step 4: calculate the failure probability. 

During a lifetime of component  , calculate conditional 

failure probability     
 in each inspection point by using 

equation below (Tian et al, 2011a):  

    
 

 
 

    
 
 
       

     
    

  

 
 

    
 
 
       

     
 

  

     

                   

where    is cumulated inspection time of component   in one 

life cycle,    is the constant inspection interval,   is the 

predicted failure time of different component at different 

inspection point of time     , and         , where    is 

standard deviation of ANN RUL prediction error. The 

failure probability in the formula above basically refers to 

the conditional failure probability during the next inspection 

interval given that it is still working now.  

If      is greater than the level-1 condition failure 

probability threshold    
 , preventively replace the 

component at inspection point  . If there is no preventive 

replacement performed during the lifetime of the component, 

perform failure replacement at the inspection point just past 

the generated failure time    . When there is a preventive 

replacement or a failure replace taking place at inspection 

time  , check other components in the system, if         

       is greater than the level-2 failure probability 

threshold    
 , perform preventive replacement on 

component   simultaneously. 

We also introduce two variables to represent the stature of 

the component   in the multi-component systems: 

      1    Component   is preventively replaced; 

0    No preventive replacement  

      1    Failure replacement on Component    

0    No failure replacement on component    

If                , component   continues its normal 

operation. 

Step 5: New life cycle starts.  

Start a new life cycle of component   after a preventive or a 

failure replacement taking place, go back to Step 2 and set 

the cumulated inspection time,    , equal to 0. The iteration 

would not stop until the maximum simulation iteration is 

reached. 

Step 6: Estimation of the total expected replacement cost.  

The expected replacement cost for multi-component system 

can be obtained by the following equation:  

   
          

          
 

   
  
   

    
                         (3) 

where    is the total cost occurs at inspection point  ,    is 

the total inspection point of the simulation process, and   is 

the inspection interval.  

(3-12) 

(3-13) 
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                 (4) 

where          , when      
 
             

 
     ; 

otherwise          .   is the number of components 

under condition monitoring,     is fixed preventive 

replacement cost, which does not change with respect to the 

number of components being maintained.    is variable 

preventive replacement cost, and    is failure replacement 

cost. 

At inspection point  ,    can be in one of three possible 

circumstances as follows: 

                  , if there is at least one 

preventive replacement needed but no failure replacement; 

                          , if there are 

at least one failure replacement and   preventive 

replacement performed; 

    , if neither preventive replacement nor failure 

replacement is needed. 

Step 7: Determining the optimal CBM policy for multi-

component systems. 

The two-level predicted failure probability threshold values, 

which are defined in Section 3.1, are decision variables in 

the CBM policy for multi-component systems. The 

minimum calculated replacement cost corresponding to the 

predicted failure probability threshold value    
  and    

 . So 

once    
  and    

  are determined, the CBM policy is 

determined. 

3.3 The CBM optimization model 

The objective of the CBM optimization is to determine the 

optimal failure probability threshold values to minimize the 

long-run expected replacement cost. The optimization 

model can be formulated as below: 

         
     

                                         (5) 

     

          
     

     

where    is the cost constraint value    
  and    

  are Level-

1 and Level-2 failure probability threshold values and also 

are the CBM optimization decision variables. 

4. EXAMPLE 

In this section, we present an example based on bearing 

vibration monitoring data collected from bearings on a 

group of Gould pumps at a Canadian kraft pulp mill 

company (Stevens 2006). We use totally 24 bearing 

histories which were examined at 8 pump locations, 

embracing 10 bearing failure histories and 14 suspension 

histories. For each pump, seven types of measurements were 

recorded: five different vibration frequency bands (8*5), 

and the overall vibration reading (8*1) plus the bearing’s 

acceleration data (8*1). So the original inspection data 

includes 56 (8*5+8*1+8*1) vibration measurements at each 

time. More information on the example can also be found in 

Tian et al (2010).  

The software EXAKT was used to conduct the significance 

analysis for the 56 vibration measurements (Stevens 2006). 

Two of the variables were identified as having significant 

influence on the health of bearings. Then we use these two 

measurements and the age values of the components as the 

inputs of the ANN model. Constant usage rate is assumed 

here. 5 failure histories and 10 suspension histories are used 

as ANN training inputs and the other 5 failure histories are 

used as test histories. After comparing the predicted lifetime 

with the actual lifetimes, we found that the prediction error 

follows the normal distribution. The mean of prediction 

error is 0.1385 and the standard deviation is 0.1429. 

For multi-component systems, level-1 and level-2 

probability thresholds are two decision variables to 

determine the optimal CBM policy, and therefore, the 

expected replacement cost of certain CBM policy can be 

evaluated by giving certain probability threshold values 

   
  and    

 . In this case, we consider a multi-component 

system consisting of 5 identical bearings which are 

operating in parallel and subject to random failures. The 

lifetimes of the individual components are independent 

random variables and are identically distributed as Weibull 

distribution with parameters                .  

The simulation procedure is as follows: 

Step 1: Set the maximum simulation inspection point as 

100,000. Between each inspection point, the fixed 

inspection interval,    equals 20 days. 

Step 2: At the starting point of each iteration for component 

           , set    equal 0, generate a random failure time, 

   , of the component which follows Weibull distribution.  

Step 3: At inspection point                  , generate 

a random predicted failure time,    , of the component  , 
based on the ANN RUL prediction error.      follows a 

normal distribution. In this case:       ,         , 

where    is standard deviation of ANN RUL prediction 

error. Thus, we have  

                       
            (6) 

Step 4: During the lifetime of component  , calculate the 

conditional failure probability     of each inspection point, 

and we have: 

     
 

 

         
 
 
         

 

            
     

  

 
 

         
 
 
         

 

            
 

  

       
(4-8) 
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where    is cumulated inspection time in one life circle for 

component  . 

At each inspection point  , if                is greater 

than the given level-1 condition failure probability threshold 

   
        

     , preventively replace the component at 

time point  . If there is no preventive replacement during 

the lifetime of component  , perform failure replacement at 

the inspection point just behind    . When there is a 

preventive/failure replacement occurring at time  , check 

other components, and if                is greater than 

the given level-2 failure probability threshold    
  , perform 

preventive replacement on component   simultaneously. 

Step 5: When there is a preventive/ failure replacement 

taking place on component  , start a new life circle of 

component   by setting     , and go back to Step 2. The 

iteration would not stop until   equals 100,000.  

Step 6: Estimate cost rate. In this case, the fixed preventive 

replacement cost     is 3,000 and the variable preventive 

replacement cost    is 1,800. We have: 

   
          

          
 

   
       
   

          
            

              

where  

           

 

   

         

 

   

             

                

 

   

             

 

   

      

         

where   

      1    Component   was preventively replaced; 

0    No preventive replacement  

      1    Failure replacement on Component    

0    No failure replacement on component    
 

 

 

 

If                , the component   continues its normal 

operation. 

Step 7: find the optimal total expected replacement cost. By 

setting different values for     and    , the corresponding 

total expected replacement cost can be evaluated. The 

minimal cost value can be found and the conditional failure 

probability threshold value    
  and    

  can be determined.  

The expected cost as a function of    
  and    

     
  is 

plotted in Figure 2. The optimal failure probability threshold 

values can be observed from this figure, where the lowest 

expected cost exists.  

The minimal expected cost for multi-component occurs 

when    
           and    

             , and the 

expected maintenance cost for this multi-component system 

containing 5 components is             . 

The comparative results are showed in Table 1. Comparing 

to the CBM policy for single units, the optimal cost is much 

lower when using multi-component CBM policy, with a 

cost saving of 27.21%.  

 

 

Figure 2. Cost versus two condition failure probability 

threshold values 

 

Table 1. Comparison of cost between single unit and multi-

component CBM policy 

 
Single Unit 

Multi-component 

systems 

(5 components) 

Cost ($/day) 4.8264 17.5651 

Cost for 

each component ($/day) 
4.8264 3.513 

Cost savings (%) 27.21% 

 

This comparative study demonstrates that the proposed 

multi-component CBM policy can achieve a lower total 
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expected replacement cost by taking advantage of economic 

dependency in multi-component systems.  

 

5. CONCLUSION 

In this paper, a CBM optimization method is proposed for 

multi-component systems, where economic dependency 

exists among the components subject to condition 

monitoring. Deterioration of a multi-component system is 

represented by a conditional failure probability value, which 

is calculated based on the predicted failure time 

distributions of components. The proposed CBM policy is 

defined by a two-level failure probability threshold. A 

method is developed to obtain the optimal threshold values 

in order to minimize the long-term maintenance cost. An 

example is used to demonstrate the proposed multi-

component CBM method.  

In future work, we can use discrete-event simulation tool, 

such as ARENA and FlexSim, to further verify the proposed 

method in this work and study more complex situations. We 

are also in the process of developing a numerical method for 

more accurate maintenance cost evaluation.  
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ABSTRACT 

Maintenance is crucial to all repairable engineering systems 

as they will degrade and fail.  The cost of maintenance for a 

manufacturing plant can occupy up to 30% of the total 

operating cost. If maintenance is not scheduled properly, 

unexpected equipment failure can induce significant cost 

due to reduced productivity and sub-standard products 

produced, both of which may result in customer penalty.   

Various maintenance policies have been proposed in the 

past.  Among the various policies, age-dependent and 

periodic maintenances are the common policies employed in 

industries.  Recently, predictive maintenance or condition 

based maintenance policies are also proposed owing to the 

advancement in the sensor technology.  In this work, we 

compare the age-dependent and periodic maintenance 

policies as well as the predictive maintenance policies from 

the perspective of cost using Markov multi-state 

maintenance modeling and Monte Carlo simulation.  To be 

realistic, imperfect maintenance is included, and both the 

sequential and continuous inspections are considered and 

compared. 

1. INTRODUCTION 

All industrial systems suffer from deterioration due to usage 

and age, which may leads to system failures. To some 

industry, system failures cause serious consequences, 

especially in industries such as transportation, construction, 

or energy sectors. These deterioration and failure can be 

controlled through a proper maintenance plan.  

The cost of maintenance as a fraction of the total operating 

budget varies across industry sectors.  In the mining 

industry, it can be as high as 50% and in transportation 

industry it varies in the range of 20-30 % (Murthy, Atrens, 

& Eccleston, 2002), which accounts only for the actions to 

keep the system in operating state. The consequential cost of 

failure could be much higher. Hence, it is vital to have a 

good maintenance policy so as to reduce the possibility of 

failure to the least while preserves a low maintenance cost.  

Maintenance problems have been extensively investigated 

in the literature, and a number of maintenance policies have 

been proposed. These policies span from the most basic one 

as corrective maintenance (CM) to more advanced policy as 

preventive maintenance (PM). CM is carried out only when 

a system fails. PM is performed when the system is still 

operating, in attempt to preserve the system in its good 

condition, and the most popular PM policy is age-dependent 

PM policy (Barlow, Proschan, & Hunter, 1996). Under this 

maintenance policy, the system is preventively replaced at 

its age of 𝑇 or at failure, whichever occurs first, where 𝑇 is a 

constant. The extension of this maintenance policy includes 

considering the effect of imperfect maintenance or minimal 

repair at failure (Kijima, 1989; Nakagawa, 1984; SHEU, 

KUO, & NAGAGAWA, 1993). Another common 

maintenance policy is periodic PM (Barlow, et al., 1996). 

Under this maintenance policy, a system is preventively 

maintained at fixed time interval 𝑇 regardless of the failure 

history of the system and at intervening failures. This policy 

is often applied to a group of units where the failure’s 

history of one unit is often neglected. There are several 

modifications of this periodic PM policy. In (Nakagawa, 

1986), minimal repair is performed at failure and the system 

is replaced at planned time 𝑘𝑇  if the number of failure 

exceeds  𝑛 . Age-dependent PM and periodic PM can be 

combined as in (Berg & Epstein, 1976), in which the system 

is periodically replaced only if its age exceeds 𝑇0. Although 

being common and popular, age-dependent PM and periodic 

PM do not account for the actual condition of the system, 

thus these policies may result in unnecessary replacement of 

good units and cost expenditure.  

Recently, condition-based maintenance (CBM), which is a 

subset of Predictive Maintenance (PdM), is proposed in 

order to improve the cost effectiveness of existing PM 
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policies. CBM is to make maintenance decisions based on 

the actual system’s health condition (Lu, Tu, & Lu, 2007; 

Ming Tan & Raghavan, 2008). CBM is often applied to 

system with degradable performance, which can be 

represented by different states. A CBM policy assigns a 

maintenance action to each system state. By its definition, 

CBM must be carried out based on the observation of the 

system’s health, which is obtained using either sequential or 

continuous inspection. With the advancement of sensor 

technology, the system’s health condition can be observed 

continuously. In (Moustafa, Maksoud, & Sadek, 2004), a 

CBM policy is developed for continuous inspection, and 

two maintenance options are considered, namely 

replacement and minimal repair. Although continuous 

inspection is commonly used in detecting system’s 

degradation, it usually swarms with unnecessary and 

excessive data.  Also, the inspection process can be costly, 

especially with complex systems which requires huge 

number of monitoring devices. Hence, there are several 

works on maintenance policies in which the system is 

inspected only at specific time (sequential inspection) and 

replaced with a new identical one only when the degradation 

reaches a predefined threshold (Grall, Dieulle, Bérenguer, & 

Roussignol, 2002; Lam & Yeh, 1994; Ohnishi, Kawai, & 

Mine, 1986). In the formulation of such polices, they 

considered the cost of operation in different states of 

degradation, cost of inspection, and maintenance. 

Tomasevicz (Tomasevicz & Asgarpoor, 2009) extended 

their works by considering the effect of imperfect 

maintenance and by introducing maintenance states, from 

which the system can be recovered to a better operating 

state. Their comprehensive cost analysis showed that an 

optimal choice of inspection date and replacement threshold 

can improve the cost effectiveness of the maintenance 

policy.  

It is widely assumed that the imperfect maintenance restores 

a system to a state between as good as new (replacement) 

and as bad as old (minimal repair). The two extreme cases 

are investigated thoroughly in early works. In general, these 

assumptions are not true in many applications. In practice, 

imperfection can arise due to the maintenance engineering 

skills, quality of the replaced parts and complexity of the 

degraded systems.  Several theoretical models are developed 

that taking into account the imperfect maintenance 

(Nakagawa & Yasui, 1987; Pham & Wang, 1996). They can 

be broadly classified into four classes, namely the 

probabilistic approach (Nakagawa & Yasui, 1987), 

improvement factor (Chan & Shaw, 1993; Malik, 1979), 

virtual age (Kijima, 1989; Kijima, Morimura, & Suzuki, 

1988), and the final class which is based on the cumulative 

system degradation model (Martorell, Sanchez, & Serradell, 

1999). For detailed discussion on the various maintenance 

models, one can refer to (Brown & Proschan, 1983; Levitin 

& Lisnianski, 2000; Wang & Pham, 1996).  

In this work, we will compare the age-dependent and 

periodic maintenance policies as well as the predictive 

maintenance policies from the perspective of cost using 

Markov multi-state system modeling and Monte Carlo 

simulation.  To be realistic, imperfect maintenance is 

included, and both the sequential and continuous inspections 

are considered and compared. The novelty of this work lies 

in the introduction of imperfect maintenance in the 

optimization of CBM policy for Markov multi-state system. 

A clear comparison between age-dependent PM, periodic 

PM and condition-based maintenance under different cost-

related conditions will be shown, and the advantages and 

disadvantages of each maintenance policy will be discussed. 

2. MAINTENANCE POLICIES 

2.1. System Description 

The system under study is a multi-state system, and each 

state represents a system’s health condition. These states can 

be defined by either a degradation index such as vibration’s 

intensity, temperature, etc, or simply the system’s 

performance. The system is assumed to be in a finite 

number of states 1,2,3 …𝑁 where state 1 is the as-good-as-

new state and state 𝑁  is the completely failed state. The 

states are in ascending deteriorating order.  

The degradation process is represented by the transition 

from one state to another state. In normal operation, the 

failures of a complex system have been shown (Drenick, 

1960) to follow the exponential distribution despite the fact 

that the individual components in the system may follow 

different distributions. Hence, the system’s deterioration 

process can be modeled as a continuous-time Markov 

process. From state 𝑖, (1 ≤ 𝑖 ≤ 𝑁 − 1) the system can only 

transit to the more degraded state 𝑗, ( 𝑖 ≤ 𝑗 ≤ 𝑁)  with a 

transition rate of 𝜆𝑖𝑗 . In this work, for the sake of simplicity, 

we assume that the transition rates are constant for a given 𝑖 
and 𝑗. From the values of 𝜆𝑖𝑗 , the probability 𝑃𝑖𝑗  𝑡  that the 

system is at state 𝑗 after a time 𝑡 given that the system is 

originally at state 𝑖 can be calculated. In actual cases, the 

transition rate can be changed after the system is 

maintained. 

The state of the system is not known unless it is inspected. 

In the case of sequential inspection, the cost for each 

successive inspection is fixed at  𝐶𝑆𝐼 . During the time of 

inspection, the system state is unchanged. In the case of 

continuous inspection, since the system is continuously 

monitored, the state can be instantly detected and the cost is 

represented as a cost per unit time 𝑐𝐶𝐼 . The system’s failure 

(system at state 𝑁) is detected without inspection and not 

recoverable by maintenance. The system upon replacement 

is recovered to the initial state 1 with a cost of 𝐶𝑅 . However, 

the failure also results in a secondary consequential damage 

such as unplanned delay in production, lost of physical 
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assets etc, which is represented by a cost of  𝐶𝑓 . The value 

of 𝐶𝑓  depends on the nature of the failures. 

Upon maintenance, the system’s state is improved to a 

better state  𝑗, 𝑖 ≥ 𝑗 ≥ 1 , with probability  𝑃𝑖𝑗
𝑀 . The 

probability that the system is recovered to as-good-as-new 

state is getting smaller as the system state is approaching N, 

and the maintenance cost and time varies with different 

states. 𝐶𝑖𝑗
𝑀  is denoted as the cost of maintenance to repair the 

system from state  𝑖  to a less degraded state  𝑗 . The 

maintenance cost includes the cost due to system 

unavailability.   

The illustration of all the different quantities is as shown in 

Figure 1. 

 

Figure 1.Schematic view of the system state degradation and 

its maintenance-operation cost 

To proceed to the determination of the optimal maintenance 

policies, let us define the following terms: 

𝛿: A policy which determines the action at each state, either 

replacement, maintenance or continue the inspection.  

𝐷(𝑖) : Decision at state 𝑖.  They can be either to inspect the 

system after time interval 𝑡𝑖  (𝐼(𝑡𝑖)), maintain (𝑀), replace 

(𝑅) or keep monitoring in the case of employing continuous 

inspection (𝐶). 

𝑋𝛿 𝑖 : Mean operating time from the moment the system is 

detected to be at state  𝑖  to the time where the system is 

replaced (at state N) for a given policy 𝛿.  Hence, 𝑋𝛿 1  is 

the mean time from a new/newly replaced system till it is 

replaced. 

𝑌𝛿 𝑖  : Mean cost from the moment the system is detected to 

be at state 𝑖 to the time where the system is replaced (at state 

N), for a given policy  𝛿 .  Hence,  𝑌𝛿 1  is the mean cost 

from a new/newly replaced system till it is replaced. 

𝐹𝑖 𝑡 : Probability that the system will fail in the interval 

 0, 𝑡  given that the system is at state 𝑖. 

𝑎𝑖  : operating cost at state  𝑖 . The cost of operation is 

increasing with the degradation in order to accounts for the 

loss in profit due to the degradation in the system’s 

performance.  

The mean operating cost, given that the system initially at 

state 𝑖, after a time 𝑡 is (Ohnishi, et al., 1986): 

𝐴𝑖 𝑡 ≜   𝑃𝑖𝑗  𝑢 𝑎𝑗𝑑𝑢
𝑡

0
𝑁
𝑗 =𝑖     (1) 

𝑃𝑖𝑗 (𝑡): Probability that the system will is at state 𝑗 after a 

time 𝑡 given that the system is at state 𝑖.  

2.2. Maintenance Policies 

In this work, we compare four different maintenance 

policies for a multi-state system, namely age-dependent PM, 

periodic PM, sequential and continuous inspection CBM. 

The optimal maintenance policy refers to minimum overall 

operation cost rate 𝑔∗ ≡ min
𝛿

 𝑌𝛿 1 /𝑋𝛿 1 . Let us now look 

at the formulation of the optimization for each maintenance 

policy.  

a. Age-dependent PM:  

In this study, we only consider the most basic Age-

dependent PM, which does not utilize maintenance. The 

system is preventively replaced at its age of  𝑇𝑎  or at failure, 

whichever occurs first. 𝑇𝑎  is chosen so that the cost rate is 

minimized. 

The mean cost and operating time until system replacement 

can be expressed as: 
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𝑌𝐴 = 𝐴1 𝑇𝑎 + 𝐶𝑅 + 𝐹1 𝑇𝑎 𝐶
𝑓    (2) 

𝑋𝐴 =  𝐹 1 𝑢 𝑑𝑢
𝑇𝐴

0
    (3) 

In (2), the terms   𝐴1 𝑇𝑎 , 𝐶𝑅  and  𝐹1 𝑇𝑎 𝐶
𝑓  represent the 

mean operation cost in the interval  0, 𝑇𝑎 , replacement cost 

and mean failure-induced cost respectively. In (3), 

 𝐹 1 𝑢 𝑑𝑢
𝑇𝑎

0
 is the expected operating time in the 

interval   0, 𝑇𝑎 . This can be derived by considering two 

possibility of the system’s operation, i.e. the system can 

either work up to 𝑡𝑎  with the expected operating time of 

𝑡1 = 𝑡𝑎𝐹 1 𝑡𝑎 , or the system fails at  𝑢 within the interval 
 0, 𝑡𝑎  with the expected operating time of 𝑡2 =

 𝑢𝑑𝐹 𝑢 
𝑡𝑎

0
. We thus have 𝑋𝐴 = 𝑡1 + 𝑡2. 

b. Periodic PM:  

The system is preventively replaced at fixed time interval 𝑇𝑏  

or at intervening failures regardless of the failure history of 

the system. Here 𝑇𝑏  is a constant, and it is chosen so that the 

cost rate is minimized.  

The mean cost until system replacement can be expressed as 

(4). 

𝑌 𝑇𝑏 = 𝐶𝑅 +  𝐶𝑅 + 𝐶𝑓 𝑀 𝑇𝑏 + 𝐶𝑜𝑝𝑒  𝑇𝑏   (4) 

In (4), 𝑀 𝑡  is the mean number of failure and is given in 

(5) (Barlow, et al., 1996).  

𝑀 𝑡 =   1 + 𝑀 𝑡 − 𝑥  𝑑𝐹1 𝑥 
𝑡

0
=  𝐹1

𝑛 𝑡 ∞
𝑛=1  (5) 

𝐹1
𝑛+1 𝑡 =  𝐹1

𝑛 𝑡 − 𝑥 𝑑𝐹1 𝑥 
𝑡

0
, 𝐹1

1 𝑡 = 𝐹1 𝑡   

𝐶𝑜𝑝𝑒  𝑡  is the mean operation cost in the duration  0, 𝑡 , and 

they are given in (6). The term 𝐶𝑘 𝑡  represents the mean 

operation cost given that exactly 𝑘 failures occur and can be 

calculated recursively as shown in (7). In (7), 𝑥 is the time 

of the first failure occurs in the interval  (0, 𝑡). Thus, the 

𝐶𝑘 𝑡  can be computed by integrating the summation of the 

operation cost before and after  𝑥 for all 𝑥 in  0, 𝑡 . 

𝐶𝑜𝑝𝑒  𝑡 =  𝐶𝑘 𝑡 
∞
𝑘=1      (6) 

𝐶𝑛 𝑡 =   𝐶0 𝑥 + 𝐶𝑛−1 𝑡 − 𝑥  𝑑𝐹1 𝑥 
𝑡

0
  (7) 

 𝐶0 𝑡 = 𝐴1 𝑡   

The mean operating time until system replacement can be 

expressed as (8). 

𝑋 𝑇𝑏 = 𝑇𝑏      (8) 

c. Sequential Inspection CBM (SI-CBM):  

The system is inspected at a planned time. The decision 

depends on the indicated system state  𝑖 , which is either 

preventively replaced  𝐷 𝑖 = 𝑅 , maintained  𝐷 𝑖 = 𝑀 , or 

to leave the system operating until the next planned 

inspection time 𝐷 𝑖 = 𝐼 𝑡𝑖 . Maintenance is considered to 

be imperfect. If  𝑖 = 𝑁 , the system fails and needs to be 

replaced. In that case, we have  𝑋𝛿 𝑁 = 𝑇𝑅 , 𝑌𝛿 𝑁 = 𝐶𝑅 +
𝐶𝑓 . The decision 𝐷 𝑖  at each state is chosen so that the cost 

rate is minimized.    

1. If  𝐷 𝑖 = 𝐼 𝑡𝑖  

Under this decision, the system is left to degrade until the 

next inspection after an interval  𝑡𝑖 . If the system fails at 

𝑢 < 𝑡𝑖 , it is replaced. If the system passes the time interval 

𝑡𝑖  without failure, the time to replacement will be 𝑡𝑖  plus the 

mean time to replacement of the arrived state 𝑗. Once the 

planned inspection time  𝑡𝑖  is reached, the system is 

inspected. The mean cost and operating time until renewal 

under the decision 𝐷 𝑖 = 𝐼(𝑡𝑖) can be expressed as: 

𝑌𝛿 𝑖 = 𝐴𝑖 𝑡𝑖 + 𝐶𝑆𝐼𝐹 𝑖 𝑡𝑖 +  𝑃𝑖𝑗  𝑡𝑖 𝑌𝛿 𝑗 
𝑁
𝑗=𝑖   (9) 

𝑋𝛿 𝑖 =  𝐹 𝑖 𝑢 𝑑𝑢
𝑡𝑖

0
+  𝑃𝑖𝑗  𝑡𝑖 𝑋𝛿 𝑗 

𝑁
𝑗 =𝑖   (10) 

In (9), 𝐴𝑖 𝑡𝑖  is the mean operating time in the 

interval   0, 𝑡𝑖 , 𝐶𝑆𝐼𝐹 𝑖 𝑡𝑖  is the mean inspection cost and 

 𝑃𝑖𝑗  𝑡𝑖 𝑌𝛿 𝑗 
𝑁
𝑗=𝑖  is the expected cost until replacement 

given that the system is in the degraded state 𝑗. 

In (10),  𝐹 𝑖 𝑢 𝑑𝑢
𝑡𝑖

0
 is the expected time to replacement in 

the interval   0, 𝑡𝑖  and  𝑃𝑖𝑗  𝑡𝑖 𝑋𝛿 𝑗 
𝑁
𝑗 =𝑖  is the expected 

operating time given that the system is in the degraded 

state 𝑗. 

2. If  𝐷 𝑖 = 𝑀 

The system is maintained with a maintenance cost 𝐶𝑖𝑗
𝑀 , and 

the system is thus improved from the current state 𝑖 to a less 

degraded state  𝑗  with an improvement probability of  𝑃𝑖𝑗
𝑀 . 

The mean cost and operating time until replacement can be 

expressed as 

𝑌𝛿 𝑖 =  𝑃𝑖𝑗
𝑀  𝐶𝑖𝑗

𝑀 + 𝑌𝛿 𝑗  
𝑁
𝑗=1     (11) 

𝑋𝛿 𝑖 =  𝑃𝑖𝑗
𝑀𝑋𝛿 𝑗 

𝑁
𝑗 =1      (12) 

3. If  𝐷 𝑖 = 𝑅, 𝑖 ≠ 𝑁 
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Except the failure case  𝑖 = 𝑁 , the system can be 

preventively replaced. Thus, the mean operating time and 

cost until replacement can be expressed as 

𝑌𝛿 𝑖 = 𝐶𝑅      (13) 

𝑋𝛿 𝑖 = 0     (14) 

Overall, we have 

𝑌𝛿 𝑖 =

 
 
 

 
 
𝐴𝑖 𝑡𝑖 + 𝐶𝑆𝐼𝐹 𝑖 𝑡𝑖 +  𝑃𝑖𝑗  𝑡𝑖 𝑌𝛿 𝑗 

𝑁
𝑗 =𝑖 , 𝑖𝑓 𝐷 𝑖 = 𝐼 𝑡 

 𝑃𝑖𝑗
𝑀  𝐶𝑖𝑗

𝑀 + 𝑌𝛿  𝑗  
𝑁
𝑗 =1 , 𝑖𝑓 𝐷 𝑖 = 𝑀

𝐶𝑅 , 𝑖𝑓 𝐷 𝑖 = 𝑅

 (15) 

𝑋𝛿 𝑖 =

 
 
 

 
  𝐹 𝑖 𝑢 𝑑𝑢

𝑡𝑖
0

+  𝑃𝑖𝑗  𝑡𝑖 𝑋𝛿 𝑗 
𝑁
𝑗=𝑖 , 𝑖𝑓 𝐷 𝑖 = 𝐼 𝑡𝑖 

 𝑃𝑖𝑗
𝑀𝑋𝛿 𝑗 

𝑁
𝑗=1 , 𝑖𝑓 𝐷 𝑖 = 𝑀

0, 𝑖𝑓 𝐷 𝑖 = 𝑅

 (16) 

d. Continuous Inspection CBM (CI-CBM):  

The system is inspected continuously. The decision depends 

on the indicated system state, which is either preventively 

replaced  𝐷 𝑖 = 𝑅 , maintained  𝐷 𝑖 = 𝑀 , or to leave the 

system operating while keep monitoring the system’s 

condition  𝐷 𝑖 = 𝐶 . Maintenance is considered to be 

imperfect. The decision 𝐷 𝑖  at each state is chosen so that 

the cost rate is minimized.  

For the first two decisions, the analysis is the same with SI-

CBM case. Under the decision of continuous inspection, the 

system is operating at state 𝑖 until it changes its state to a 

more degraded state 𝑗. The mean cost and operating time 

until renewal under the decision 𝐷 𝑖 = 𝐶 can be expressed 

as: 

𝑌𝛿 𝑖 =  𝑐𝐶𝐼 + 𝑎𝑖  𝑃𝑖𝑖 𝑢 𝑑
∞

0
𝑢 +  

𝜆𝑖𝑗

 𝜆𝑖𝑘
𝑁
𝑘=1

 𝑌𝛿 𝑗 
𝑁
𝑖=1        

(17) 

𝑋𝛿 𝑖 =  𝑃𝑖𝑖 𝑢 𝑑
∞

0
𝑢 +  

𝜆𝑖𝑗

 𝜆𝑖𝑘
𝑁
𝑘=1

 𝑋𝛿 𝑗 
𝑁
𝑖=1   (18) 

In (17) and (18),  𝑃𝑖𝑖 𝑢 𝑑
∞

0
𝑢  is the mean time the system 

operate at state 𝑖, 
𝜆𝑖𝑗

 𝜆𝑖𝑘
𝑁
𝑘=1

  is the probability that the system 

transit from state  𝑖  to state 𝑗  at any instant given that the 

system has to change its state. Thus, 

 𝑐𝐶𝐼 + 𝑎𝑖  𝑃𝑖𝑖 𝑢 𝑑
∞

0
𝑢  is the mean operation plus 

inspection cost when the system is at state  𝑖 , 

 
𝜆𝑖𝑗

 𝜆𝑖𝑘
𝑁
𝑘=1

 𝑌𝛿 𝑗 
𝑁
𝑖=1  and   

𝜆𝑖𝑗

 𝜆𝑖𝑘
𝑁
𝑘=1

 𝑋𝛿 𝑗 
𝑁
𝑖=1  are the mean 

cost and operating time until replacement averaging on the 

degraded state 𝑗. 

Overall, we have 

𝑌𝛿 𝑖 =

 
 
 

 
  𝑐𝐶𝐼 + 𝑎𝑖  𝑃𝑖𝑖 𝑢 𝑑

∞

0
𝑢 +  

𝜆𝑖𝑗

 𝜆𝑖𝑘
𝑁
𝑘=1

 𝑌𝛿 𝑗 
𝑁
𝑖=1 , 𝑖𝑓 𝐷 𝑖 = 𝐶

 𝑃𝑖𝑗
𝑀  𝐶𝑖𝑗

𝑀 + 𝑌𝛿 𝑗  
𝑁
𝑗=1 , 𝑖𝑓 𝐷 𝑖 = 𝑀

𝐶𝑅 , 𝑖𝑓 𝐷 𝑖 = 𝑅

 

 (19) 

𝑋𝛿 𝑖 =

 
 
 

 
  𝑃𝑖𝑖 𝑢 𝑑

∞

0
𝑢 +  

𝜆𝑖𝑗

 𝜆𝑖𝑘
𝑁
𝑘=1

 𝑋𝛿 𝑗 
𝑁
𝑖=1 , 𝑖𝑓 𝐷 𝑖 = 𝐶

 𝑃𝑖𝑗
𝑀𝑋𝛿 𝑗 

𝑖
𝑗 =1 , 𝑖𝑓 𝐷 𝑖 = 𝑀

0, 𝑖𝑓 𝐷 𝑖 = 𝑅

 (20) 

3. EXAMPLE THROUGH HYPOTHETIC SYSTEM 

In this section, a hypothetical system is studied to illustrate 

the impact of different policies on the system‘s total cost 

and number of maintenance. The system consists of twenty 

one states (1-21), which represents the system degradation 

levels in ascending order. State 1 is the state of no 

degradation (best performance) and state 21 is the state of 

total failure (worst performance). For simplicity, we only 

consider degradation in the sense that at any moment the 

system only degrades to the next degraded state (with a 

fixed degradation rate  𝜆𝑖 ,𝑖+1) or experienced a shock so that 

it fails immediately (with a failure rate   𝜆𝑖𝑁 ). From the 

assumption that the state transition is a continuous time 

Markov process, we have the set of Kolmogorov forward 

equations as shown in Eqn (21): 

𝑑𝑃𝑖𝑗  𝑡 

𝑑𝑡
=  𝜆𝑘𝑗 𝑃𝑖𝑘  𝑡 

𝑗−1
𝑘=𝑖 −  𝜆𝑗𝑘 𝑃𝑖𝑗  𝑡 

𝑁
𝑘=𝑗+1   (21) 

Here the first term on the right of the equation refers to the 

degradation process from state 𝑖, and the second term on the 

right refers to the further degradation process from state 𝑗. 
Eqn (21) can be re-written as follows: 

𝑑

𝑑𝑡
 

𝑃𝑖𝑖 𝑡 

𝑃𝑖 ,𝑖+1 𝑡 
…

𝑃𝑖𝑁 𝑡 

 = 𝑄𝑖  

𝑃𝑖𝑖 𝑡 

𝑃𝑖 ,𝑖+1 𝑡 
…

𝑃𝑖𝑁 𝑡 

    (22) 

where    𝑄𝑖 =  

− 𝜆𝑖𝑘
𝑁
𝑘=𝑖+1 0 ⋯ 0

𝜆𝑖 ,𝑖+1 − 𝜆𝑗𝑘
𝑁
𝑘=𝑗 +1 … 0

⋮ ⋮ ⋱ 0
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With Eqn (22), 𝑃𝑖𝑗  𝑡  can be calculated numerically given 

that the initial probability  𝑡 = 0  is   𝑃𝑖𝑖 , 𝑃𝑖 ,𝑖+1, …𝑃𝑖𝑁  
𝑇

=
 1,0, … 0 𝑇 . The system state is then randomly generated in 

Monte Carlo simulation based on the probability 𝑃𝑖𝑗  𝑡 . A 

numerical example of Markov process with detail derivation 

can be found in (Ming Tan & Raghavan, 2008).  

Due to the loss caused by degradation, namely lower 

productivity and higher recourses consumption, the cost of 

operation is increasing with the degradation levels. The 

degradation and failure rate, operation and maintenance cost 

for different states are hypothetically assumed and given in 

TABLE.I. In this study, we want to investigate the impact of 

failure-induced cost 𝐶𝑓  on the optimal maintenance policies. 

When failure occurs, it will induce a further cost such as 

production delay, human and asset lost, etc. The total cost of 

the system maintenance at failure is the summation of 

system’s replacement cost and the failure-induced cost. 

For illustration purpose on the computation of the 

conditional probability of the post-maintained 𝑗 state given 

pre-maintained state  𝑖 , we further considered a special 

system in this case study.  The system is assumed to consist 

of 𝑛  identical sub-systems in parallel, in which a system 

state  𝑖  represents the condition that  𝑖 − 1 subsystems are 

operating. With this special system, an analytical form of 

the maintenance probability 𝑃𝑖𝑗
𝑀  can be derived.  

The imperfect maintenance is characterized using the 

maintenance quality represented by a parameter 𝑝𝑚 , which 

is the probability that a subsystem can be recovered to as 

new by maintenance actions. The value of  𝑝𝑚  of a 

subsystem can be estimated using the method of 

determining the restoration factor  𝑅𝐹  described in (Ming 

Tan & Raghavan, 2008). Since our system consists of 𝑛 

identical sub-systems in parallel and all the failed sub-

systems has equal probability 𝑝𝑚  to be recovered at each 

maintenance, the probability of post-maintained state 𝑗 is the 

probability that 𝑖 − 𝑗  sub-systems are recovered and thus 

one can use the binomial distribution to compute the  𝑃𝑖𝑗
𝑀  as 

follows.  

 𝑃𝑖𝑗
𝑀 =  

𝑖 − 1
𝑗 − 1

  1 − 𝑝𝑚  𝑗−1𝑝𝑚
𝑖−𝑗

    (12) 

It follows that the expected post-maintained state and its 

variance are both linearly increasing with the pre-

maintained state  𝑖 , i.e.  𝐸 𝑗 = 𝑝𝑚 +  1 − 𝑝𝑚  𝑖 
and  𝑣𝑎𝑟 𝑗 =  𝑖 − 1 𝑝𝑚 (1 − 𝑝𝑚 ) . These indices indicate 

that as the system is more degraded, it is more difficult to 

maintain the system to the initial condition and the 

consistence of the maintenance quality decreases. For a 

general system, the optimization algorithm is still applicable 

as long as the maintenance probability  𝑃𝑖𝑗
𝑀  is given. The 

investigation for such a general system is beyond the scope 

of the present work. 

SS DR FR OC MC 

1 0.4966 0.0082 2.7183 31.4942 

2 0.5016 0.0091 2.8577 31.6111 

3 0.5066 0.0099 3.0042 31.7371 

4 0.5117 0.0108 3.1582 31.8736 

5 0.5169 0.0118 3.3201 32.0216 

6 0.5221 0.0129 3.4903 32.1826 

7 0.5273 0.0141 3.6693 32.3587 

8 0.5326 0.0155 3.8574 32.5531 

9 0.5379 0.0169 4.0552 32.7705 

10 0.5434 0.0185 4.2631 33.0183 

11 0.5488 0.0202 4.4817 33.3091 

12 0.5543 0.0221 4.4715 33.6631 

13 0.5599 0.0242 4.9531 34.1154 

14 0.5655 0.0265 5.207 34.7253 

15 0.5712 0.0291 5.4739 35.59511 

16 0.5769 0.0317 5.4746 36.9004 

17 0.5827 0.0347 6.0496 38.945 

18 0.5886 0.0381 6.3598 42.2541 

19 0.5945 0.0416 6.6859 47.7363 

20 0.6005 0.0455 7.0287 56.9556 

21 0.6065 0.0498 0 72.6683 

SS : System State 
DR : Degradation Rate (per month) 

FR : Failure Rate (per month) 

OC : Operation Cost Rate ($ .000/month) 
MC : Maintenance Cost ($ .000) 

Table 1.System State’s Maintenance Cost & Degradation 

Rate 

4. MONTE CARLO SIMULATION RESULT & DISCUSSION 

Using different values of the failure-induced cost  𝐶𝑓  and 

maintenance quality 𝑝𝑚 , the optimal maintenance plans are 

derived for each of the above-mentioned maintenance 

policy.   

Monte Carlo simulation is run for each derived maintenance 

policy so as to investigate the impact of failure-induced cost 

and maintenance quality on the system’s total operation-

maintenance cost, number of maintenance and number of 

failure. For each value of 𝐶𝑓  and  𝑝𝑚 , the simulation is 

repeated for 500 random samples. The total system runtime 

is assumed to be 120 months.  
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4.1. Impact of Failure-Induced Cost 

The failure-induced cost is assumed to range from 20 to 

1000 ($ .000). For SI-CBM and CI-CBM, the maintenance 

quality is kept at 𝑝𝑚 = 0.8. 

Figure 2 shows the changes of mean value of the total 

maintenance-operation cost of different maintenance 

policies vs. failure-induced cost. The total maintenance-

operation cost is the summation of all operation, 

maintenance and replacement cost: 

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 = #𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 × 𝐶𝑅 

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 𝑐𝑜𝑠𝑡 =  # 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 𝑎𝑡 𝑠𝑡𝑎𝑡𝑒 𝑖 × 𝐶𝑖
𝑀𝑁−1

𝑖=1   

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 =   𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑁−1
𝑖=1 × 𝑎𝑖   

It appears that the mean value of the total cost has a linear 

relation with respect to the failure-induced cost.  

 

Figure 2.Mean value of total Operation-Maintenance Cost 

of various maintenance policies vs. failure-induced cost 

One can also see that CBM policies have a clear advantage 

over traditional PM policies in term of cost reduction. At 

low failure-induced cost, utilizing CBM policies can save up 

to  1100 − 800 /1100 = 27% of the total cost under PM 

policies.  

Figure 3 shows the normalized standard deviation (NSTD) 

curve of the total cost under different maintenance policies. 

This NSTD is the standard deviation of the total cost from 

500 samples of Monte Carlo run divided by its mean 

value 𝜎 = 𝜎/𝜇.  The standard deviation appears to have a 

linear relation to the failure-induced cost. At low 𝐶𝑓 , the 

NSTD values under CBM policies are approximately equal 

to the NSTD under PM policies as 10%. However, as 𝐶𝑓  

increase, the NSTD under CBM policies increases 

dramatically up to 70% for SI-CBM and 62% for CI-CBM 

while it is less than 50% for PM policies cases. This is due 

to the increase number of imperfect maintenance under 

CBM as the failure-induced cost increases. As a result of 

rising failure-induced cost, the optimal CBM policies have 

to increase the number of maintenance in order to reduce the 

number of failure.  

 

Figure 3.Cost normalized standard deviation under different 

maintenance policies vs. Failure-induced cost 

Figure 4 shows that the mean number of failure decreases 

exponentially as the failure-induced cost rise. It is the effect 

of optimal maintenance policy, which tends to reduce the 

number of failure as the failure-induced cost increase. 

However, the mean number of failure only decreases to a 

certain value for each maintenance policy.  This lower 

bound value is lower for CBM policies than PM policies by 

25%, which proves that CBM is more advantageous than 

PM in preventing system failure. 
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Figure 4.Mean number of failure vs. Failure-induced cost 

In summary, one can see that SI-CBM and CI-CBM have a 

clear advantage in term of cost and failure reduction over 

Age-dependent and periodic PM. However, imperfect 

maintenance causes the total cost of CBM to vary 

significantly, especially at high failure-induced cost due to 

higher number of maintenance needed for the optimal 

policy. This large variation in cost may render the financial 

budgeting for using CBM difficult. 

4.2. Impact of maintenance quality 

In this case, the failure-induced cost is kept at 100 ($ .000) 

while the maintenance quality is ranging from  𝑝𝑚 = 1 

(perfect maintenance) to 𝑝𝑚 = 0.6.  

SI-CBM and CI-CBM policies are investigated to study the 

impact of maintenance quality. Figure 5 shows the total cost 

of SI-CBM and CI-CBM under two schemes: optimal 

policies and the policies assuming perfect 

maintenance   𝑝𝑚 = 1 . Under the CBM policies that 

assume perfect maintenance while the maintenance is 

actually imperfect, the total cost increase dramatically 

as  𝑝𝑚 decrease. As  𝑝𝑚  close to 1, the difference between 

optimal CBM and the one assuming perfect maintenance is 

negligible as expected. However, the difference increase 

significantly when 𝑝𝑚 = 0.6 and beyond.  At 𝑝𝑚 = 0.6, the 

optimal CI-CBM can save up to ((1500 − 1000))/1500 =
33%  of the total cost comparing to the policy assuming 

perfect maintenance. The cost under CBM policies 

assuming perfect maintenance eventually rise up to infinity 

as 𝑝𝑚  approaches zero since at 𝑝𝑚 = 0, maintenance take no 

effect. The total cost under both optimal CI-CBM and SI-

CBM also tend to saturate as 𝑝𝑚  decreases. This is due to 

the fact that maintenance is gradually ruled out due to its 

poor quality (referring to figure 6). Thus the saturated value 

is corresponding to the CBM policy that does not utilize 

maintenance.  

 

Figure 5.Total operation-Maintenance Cost vs. Maintenance 

Quality with 𝐶𝑓 = 100 

Figure 6 shows the mean number of maintenance changes 

with respect to the maintenance quality. The plots under SI-

CBM and CI-CBM follow the same trend. When the 

maintenance quality gets worse, the mean number of 

maintenance increases to cover for the imperfection. 

However, at low values of 𝑝𝑚 , the number of maintenance 

drops dramatically to zero as maintenance is too ineffective, 

and hence our optimization process for maintenance will try 

to reduce the number of maintenances.  

 

Figure 6.Mean number of maintenance vs. Maintenance 

Quality,  𝐶𝑓 = 100 

From this study, we can see that there is a threshold for 

maintenance quality, under which, the maintenance is no 

longer effective and should be changed to preventive 

replacement. The quality of maintenance must be carefully 

taken into account when making a maintenance policy since 

a poor maintenance quality can lead to a large portion in 

overall cost. 

5. CONCLUSION 

In this work, we study different maintenance policies for a 

multistate system. Four maintenance policies are 

investigated, namely age-dependent and periodic preventive 

maintenance, sequential and continuous inspection 

condition-based maintenance (CBM). The system has a state 

dependent degradation rate during its operation, and it also 

suffers shock failure which makes it fails immediately with 

a state dependent failure rate. The failure is assumed to 

induce further cost and maintenance is assumed to be 

imperfect. The maintenance policies are optimized 

correspondingly. 
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Monte Carlo simulation shows that CBM is more 

advantageous in term of cost and failure reduction than Age-

dependent and periodic PM. On the other hand, the 

maintenance cost under CBM is less consistent than under 

PM, which renders the budgeting difficult. We also illustrate 

the important of maintenance quality since a poor 

maintenance quality can lead to a large waste in 

maintenance cost. It can be proven that the maintenance 

quality must be higher than a threshold to be worth carrying 

out. 

One issue for CBM to be effectively applied is to have 

accurate inspection. Besides, CBM also need a dynamics 

logistic supply of spare parts, which may further cause some 

time delay between inspection and maintenance. Hence, for 

the future work, we will consider the inspection quality and 

time delay due to supply limit in our model. 

In our paper, the Monte-Carlo simulation is run for two 

parameters, but varying only one parameter at a time. A 

matrix of multi-variables will be studied for a future work to 

better understand the trade-offs between different quantities. 

These will permit understanding strategies based on which 

one can practice non-CBM methods on some components 

versus CBM on others.  
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ABSTRACT 

Detection of damaged mechanical components in their early 
stages is crucial in many applications. The diagnostics of 
mechanical components is achieved most effectively using 
vibration and/or acoustical measurements, sometimes 
accompanied by oil debris indications. The paper describes 
a concept for fusion and decision for mechanical 
components, based on vibro-acoustic signatures. Typically 
in diagnostics of complex machinery, there are numerous 
records from normally operating machines and few 
recordings with damaged components. Diagnostics of each 
mechanical component requires consideration of a large 
number of features. Learning classification algorithms 
cannot be applied due to insufficient examples of damaged 
components. The proposed system presents a solution by 
introducing a hierarchical decision scheme. The proposed 
architecture is designed in layers imitating expert’s decision 
reasoning. The architecture and tools used allow 
incorporation of expert’s knowledge along with the ability 
to learn from examples. The system was implemented and 
tested on simulated data and real-world data from seeded 
tests. The paper describes the proposed architecture, the 
algorithms used to implement it and some examples. 

1. INTRODUCTION 

In diagnostics and prognostics, the decision is the process 
that determines the probability that a certain component, 
module or system is in a healthy state. In order to reach the 
decision, health indicators from a variety of sources related 
to a component are combined. In the implementation 
described herein a multi-layer approach is used. At each 
layer the features of a similar nature are combined. 

Two levels of decision can be identified: component-level 
and system-level decision. 

Component-level decision generates a single decision for 
each component. This is a complex decision as there are 
many different sources of information, sometimes 

contradicting, that should be taken into account. 

During the system-level decision, the health of each 
component is translated into recommendations for 
maintenance operations. This level of decision should 
incorporate root-cause analysis (RCA) type of logic. For 
example, let’s assume that an abnormal behavior was 
observed in components C1 (a massive gearwheel) and C2 
(an anomaly virtual component). During system-level 
decision, and knowing the system dynamics, it can be 
concluded that the actual component that requires 
maintenance operation is C3 (a pinion gear), which is 
connected to both the big gearwheel C1 and to the 
indication on the anomaly C2. It can also be concluded that 
the pinion gear C3 and the gearwheel C1 are, for example, 
part of module B1 and the most efficient maintenance 
operation is full replacement of module B1 and not only the 
faulty component. 

In this paper our focus is on component-level decision 
making. Information on the health of a single component is 
collected from several sources and should be integrated into 
a single decision. The component can be monitored by 
multiple sensors in several operating conditions. For each 
sensor and operating condition multiple health indicators 
can be calculated. 

2. VIBRATION ANALYSIS 

Analysis of vibration signals is performed in several stages. 
The following processing stages are implemented according 
to the OSA/CBM layers (MIMOSA) (see Figure 1). 

HA – Health 

Assessment

SD – State 

DetectionDM – Data Manipulation
DA – Data Acquisition

Data Selection

Signal 

processing

Feature 

extraction

Operating 

mode
Validity Steadiness Scores Fusion

 Figure 1. Vibration analysis processing stages 

2.1 Data Selection 

After data sampling the first step of processing is 
examination of the acquired data and selection of data 
appropriate for analysis. The data is screened in several 

Renata Klein et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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stages (see grey blocks in Figure 1): validity, operating 
conditions and steadiness check. Data selection is a part of 
the OSA/CBM data acquisition layer (DA). 

The goal of the validity stage is to filter out invalid or 
corrupted sections of data such as sensor disconnection, 
saturation, spikes and others. 

The next stage of data selection is recognition of predefined 
operating modes. Operating modes are frequently repeating 
conditions during system regular operation that enhance the 
manifestation of the damaged components (for instance 
when the components are loaded) and satisfy specific 
requirements for data analysis.  

The last stage of data selection contains stationarity checks 
of the analyzed signals. 

2.2 Data Manipulation 

The OSA/CBM data manipulation (DM) layer in the current 
architecture is covered by signal processing and feature 
extraction. 

In the case of vibro-acoustic data, signal processing is the 
most complex and computationally intensive task 
implicating sophisticated flows of algorithms including 
many transformations from one domain of analysis to 
another (Klein, Rudyk, Masad, Issacharoff, 2009b, Antoni 
& Randall, 2002, and Klein, Rudyk, Masad, 2011). During 
signal processing the data is transformed into different 
signatures (instances of a domain) that enhance 
manifestation of damaged components while filtering out 
the excitations from other components. Signal processing is 
done on sections of raw data selected in the data acquisition 
stage.  

Feature extraction is a process in which the signatures are 
compared with signatures representing the population of 
‘healthy’ systems. Results of the feature extraction are 
condition indicators (features) of the ‘health’ status of 
specific failure modes of a mechanical component. These 
indicators organized as a function of time are called trends.  

The feature extraction process typically calculates and 
collects a large number of health indicators for different 
components of the system under test. The failure modes of a 
type of component are manifested in the relevant signatures 
according to a characteristic pattern.  

The typical failure modes of a bearing are damages to inner 
and outer races, rotating elements, or cage. The pattern of 
each failure mode of a bearing can be described by several 
harmonics of characteristic frequencies (also known as 
bearing tones or pointers) with sidebands representing the 
amplitude modulation. More details can be found in Klein, 
et al. (2009a), Klein et al. (2011), Bhavaraju, Kankar, 
Sharma, Harsha, 2010, Li, Sopon, He, 2009, and Hariharan, 
Srinivasan, 2009. 

2.3 Decision 

The stages after feature extraction are part of the state and 
health assessment (SA and HA) OSA-CBM layers. A 
decision regarding the health status of a component is taken 
per run or flight of the machine. 

The inputs to the decision process are normalized features. 
During the normalization process the distance of a feature 
from the distribution of the same feature in normally 
operating machines is calculated. Practically during 
normalization the Mahalanobis distance is calculated.  

The decision at each stage is generated as a probability to be 
in one of pre-defined states, for instance three states 
representing component health status: ‘Normal’, ‘Low’, and 
‘High’ indicating respectively a normally operating 
component, a component with a small deviation from 
normal, and a component with a large deviation from 
normal. An additional state should be considered to 
represent missing or incomplete information when the 
decision cannot be taken. In the presented application this 
state is named ‘Unknown’. A set of the 4 probabilities 
corresponding to the different states is called decision 
vector. The decision vector generated per run is stored in a 
trend of decisions.  

3. ARCHITECTURE OF THE DECISION AND FUSION 

A single feature or health indicator is a function of 
component type, sensor, operating mode, processing 
domain, pointers (harmonics and sidebands), and type of 
indicator. For example, processing domain can be orders, 
location – first harmonic of the shaft, and indicator – 
energy. To obtain the decision for a component it is 
therefore required to undergo the following stages: 
combination of indicators, pointers, processing domains, 
operating modes, and sensors. 

 

Figure 2. Layers of decision 
At the first decision stage features coming from different 
operating modes and pointers are merged. This process is 
called scoring and will be denoted L1. The second decision 
stage (L2) merges processing domains. During the third 
stage (L3) of decision all the failure modes are merged. At 
the next and final decision stage the information from all the 
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sensors is joined (L4). Figure 2 shows a schematic 
representation of decision layers. 

The architecture of the process (layers hierarchy) imitates 
the way an expert makes a decision. At the first stage (L1) 
the expert inspects a single spectrogram such as time-orders 
spectrogram. The expert checks the behavior of the several 
pointers corresponding to a failure mode as a function of the 
operating conditions. Depending on the component and 
failure mode under observation, processing domain and 
sensor the expert can decide whether the energy levels 
indicate damage. 

On the next stage (L2) an expert seeks additional evidences 
for presence of the specific failure mode based on other 
processing domains such as envelope (usually by inspecting 
the time-orders spectrogram of the envelope). Evidences 
from several processing domains can strengthen or weaken 
the indications based on the component and failure mode 
under observation.  

After examination of different domains all the failure modes 
of the component will be considered. Evidences from all the 
failure modes are inspected and again can weaken or 
strengthen the final decision. As the damage progress other 
failure modes may also rise due to suboptimal component 
operation. For example, a damage of the bearing outer race 
might cause a damage of the bearing roller elements. 

When several sensors are used to perform the diagnostics of 
the component the final stage integrates their decisions. 
Based on relative location between the component and 
sensors some logic can be implemented to dismiss false 
positives. An example of such logic can be to take weighted 
voting between the sensors where the weight is proportional 
to the distance between the component under observation 
and the sensor. Such that more proximate sensors have a 
higher weight, but indications from several distant sensors 
will also be considered as indications of damage. 

The scoring layer (L1) is different from the other decision 
layers (L2-L4). The inputs for this layer are normalized 
features and the output is a decision vector. In all other 
layers the inputs and the outputs of a decision layer are 
decision vectors. 

4. SCORING LAYER (L1) 

The first stage of the decision process is the scoring. In this 
stage the various features that were extracted for a certain 
failure mode (energy, confidence1, pointer-location etc.) are 
                                                 
 
1 Confidence is a feature which represents a distance of a 
pattern (harmonics of the carrier and corresponding 
sidebands) from the population of healthy machine 
signatures – ‘score P’ in Klein et al., 2011.  

combined into a single number which may be regarded as 
the probability for a failure. 

Features associated with the same failure mode (e.g. an 
outer-race pattern with sidebands and without sidebands) are 
joined together, and results from different operating modes 
are analyzed together and joined into a single result. 

4.1 Scoring algorithm guidelines  

The main guidelines for the development of the scores 
algorithm are presented below. The feature extraction 
process and the definition of the specific features for 
bearings are described in Klein et al. (2011). Note that 
confidence levels and pointer locations2 are relevant only to 
bearings scores. 

1. In bearing scores, if the confidence is too low the 
respective energy levels should be disregarded. If the 
confidence is high the respective energy levels should 
be more significant. 

2. Consistently high energy and/or confidence levels 
should be more significant than sporadic high energies 
and confidence, since the latter may be caused by noise. 

3. Consistency is particularly important in a feature 
produced in approximately similar conditions, and (in 
bearings) ones which have close pointer locations. 

4. The final score will be a decision vector. 

4.2 Algorithm description 

The general scores algorithm can be separated into 5 steps 
as described below. The 1st stage is relevant only to bearing 
scores. 

4.2.1 Confidence filtering (for bearing scores) 

In order to accommodate the 1st guideline, we multiply the 
energy of each pattern by a decrease factor which is a 
function of the respective confidence ��, ��, … , ��� 	
�
�����, … , 
������ where f is a continuous monotonically 
ascending function with values in [0,1]. If f is properly 
configured, low confidence will lead to low energy levels. 

4.2.2 Energy conversion 

The 2nd guideline means that the affect of the energy on the 
score should be subadditive3. We therefore convert the 
energy values into new values using a continuous 
                                                 
 
2 The algorithm selects the location, with the highest 
corresponding z-score. This selection represents the most 
probable location of the peaks. 
3 A subadditive function is a function φ that φ(x+y) < φ(x) + 
φ(y). 
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monotonically ascending function φ:ℝ→ℝ, which is 
subadditive and in fact strictly subadditive above a certain 
threshold E0>0. Below E0 φ will be zero, so that low 
energies do not contribute to the score. Choosing the right 
function is a matter of assessing the distribution of energy 
values. For example a simple logarithmic function may be 
used. 

For e<E0 φ(e) may be some small negative constant (instead 
of zero). φ may also be smoothed around E0 to prevent edge 
effects. After all we need φ to be subadditive only for large 
values. 

 ���, … , ���  ��
�����, … , 
������ (1) 

 

Figure 3. An example of a monotonically ascending 
function φ which is strictly subadditive above E0=1 

4.2.3 Interaction between record fragments  

In the data-selection stage the recording was fragmented 
into intervals with similar operation modes. In each 
fragment the vibrations were assumed to be stationary. Each 
fragment was processed separately. Now we wish to 
compare the features extracted from various fragments and 
look for consistency. According to guideline 3, we need to 
measure proximity of conditions and pointer locations 
(pointer locations are only relevant to bearings, since other 
components have fixed pointer locations which may be 
determined from their geometry). We construct a metric d 
based on measures of RPM, load, and other operation 
parameters, as well as pointer shifts, which may indicate if 
energies are related to the same origin. Using this metric we 
can determine the amount of correlation we may expect 
between the fragments. 

This correlation may then be used to increase or decrease 
energy levels.  

 ���  ��� � �����, ��, ��� , ����      �  1, … , � (2) 

where k and j are two distinct fragments. 

4.2.4 Initial score estimation 

In this step we turn energy levels ��� into probability. This 
is done by a configurable fuzzy filter. In accordance with 
guideline 4, we use several fuzzy filters ����. 

 ����   ������ (3) 

4.2.5 Merging scores of fragments 

Now we merge the scores of different record fragments. We 
regard the different fragments as though they were 
independent measurements4 !��. 

 !��  1 " #�1 " �����
$

�%�
 (4) 

4.2.6 Merging pointer scores 

Merging pointers is a simple matter of applying a statistical 
function g (such as mean, percentile etc.) on the scores 
produced in the previous step. 

  �&'��  (�!�� , … , !��� (5) 

The function g is applied to the results of all the patterns 
associated with the current failure mode. Thus, the scores of 
the various patterns are also merged. 

4.3 Algorithm illustration 

The results of the algorithm on two sets of simulated data 
are provided below. The first set represents features of 
bearing with damaged outer race OR (Figure 4), and the 
second set represents features of a healthy bearing with 
some abnormal energy levels that may occur due to feature 
overlap (Figure 5). Both sets of simulated features included 
outer race energy level for BPFO and its harmonics (ORS1 
and ORS2), energies of sidebands around a bearing fault 
frequency peak (OR1-OR6), and confidence levels for the 
outer race expected pattern. The labels on y axis of both 
figures represent different operating conditions (fragments). 

In both Figure 4 and Figure 5 when comparing graphs (a) 
and (b) the energies corresponding to the fragments with 
low confidence were decreased considerably, whereas 
energies corresponding to high confidence levels remained 
intact. On the next stage (c) consistently high levels in 
adjacent fragments were increased (see Figure 4). After the 
last stage (d) the energies that were well below the threshold 
yielded low probabilities. Comparing raw features (a) and 
the final scores (d) it can be observed that in the simulated 
damage (Figure 4) the scores are high whereas in the 
simulation of healthy bearing (Figure 5) the scores are small 
thus illustrating the capability of the algorithm to reduce 
false alarms. 

                                                 
 
4 The fragments merged can be considered independent 
because they represent separated segments of time and 
usually different operating modes with different load. 
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Figure 4. Results of damage in OR: a) raw features, on the 
left side – confidence and on the right – energy levels in 

logarithmic scale; b) energy levels after confidence filtering 
�)*; c) �)* after correlation of fragments �*; d) probability of 
abnormal behavior, before (upper graph) and after (lower 

graph) merge of record fragments. 

 

 

 

 
Figure 5. Results of healthy bearing: a) raw features, on the 

left side – confidence and on the right – energy levels in 
logarithmic scale; b) energy levels after confidence filtering 

�)*; c) �)* after correlation of fragments �*; d) probability of 
abnormal behavior, before (upper graph) and after (lower 

graph) merge of record fragments. 
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5. FUSION LAYERS (L2-L4) 

Each decision layer (L2-L4) can be implemented by a 
different decision model. All decision models share an 
identical interface and allow a plug-and-play behavior. 

In the current implementation 2 types of models were used: 
worst-case scenario and Bayesian network (Neapolitan, 
2003).  

5.1 Bayesian network model 

The Bayesian network model allows definition networks of 
arbitrary complexity. The network is initialized with a 
corresponding conditional probability table (CPT). This 
table defines the effect of each combination of inputs on the 
respective output. 

The model allows manual assign of CPT or learning of 
expected behavior using examples.  

5.2 Worst-case scenario (WCS) model 

The WCS model receives several decision vectors as input. 
The input vector with the highest deviation from the normal 
is selected as output of the model.  

One subject that should be specifically addressed is the case 
of non-zero ‘Unknown’ probability. It is clear that if one of 
the inputs contains non-zero probability in an abnormal state 
(indicating some kind of deviation from normal behavior), 
the ‘unknown’ state should be ignored. Otherwise if all 
other inputs indicate completely ‘normal’ behavior 3 options 
should be considered: 

1. To generate a ‘normal’ decision,  

2. To generate an ‘unknown’ decision, 

3. To generate a combination between ‘normal’ and 
‘unknown’ states by assigning non-zero probability to 
each. 

Each option has its own logic and should be considered 
depending on the application. 

5.3 Model selection 

Selection of the decision model for each decision layer is 
based on the level of mutual correlation between the merged 
decisions. If high level of correlation is expected between 
the merged decisions then it is beneficial to use the 
Bayesian network model. This model can incorporate 
complex interconnections between the elements and provide 
means for more sophisticated decision-making. For 
example, it is plausible that different processing domains 
(layer L2) will provide indications of declining health of 
component. Thus multiple weak indications may intensify 
the decision that the component’s health is declining. In 
contrast, if only a single weak indication was received it 

may be dismissed as no other supporting factors were 
detected. 

On the other hand, if minor or no correlation is expected 
between the input elements then a WCS model is more 
appropriate. It actually states the health of the combination 
is the same as the health of the weakest (highest probability 
of damage) element in that combination. For example, in the 
L4 layer a fusion of sensors is performed. At early stages of 
fault development only the closer sensors will be able to 
detect a shift from the normal. Depending on the sensors 
locations as the fault development progresses more distant 
sensors may or may not detect some discrepancy also. So in 
case of insufficient information on correlation between 
sensors and transmission path (component-sensor) a WCS 
decision may be selected.  

Decision modules used at each layer and corresponding 
parameters can be defined for each component separately 
based on available information and component specificity. 

In current application the L2 layer (fusion of domains) is 
implemented by Bayesian network model. Layers L3-L4 are 
using WCS model. 

6. ANALYSIS OF REAL DATA 

Data used in this section originates from PHM ’09 data 
challenge (Klein et al., 2009b). 

The PHM09 marked data set included 280 recordings of 4 
seconds, measured on the gearbox described in Figure 6, 
using two vibration sensors and a tachometer. All the 
bearings were similar. Some of the signals were recorded 
when the gearbox was in ‘spur’ configuration, and others 
when it was in ‘helical’ configuration. Data were collected 
at 30, 35, 40, 45 and 50 Hz shaft speed, under high and low 
loading. 

 
Figure 6. Challenge apparatus:  spur (S) and helical (H) 

configurations. 
The records used in the following analysis are listed in 
Table 1. 

Input shaft – SIS – 32T

H -16T

Idler shaft – SM

LOAD
Output shaft – SO

S – 48T

H – 24T

S – 96T

H – 48T

S – 80T

H – 40T

BI input BI output

BM input

BO input

BM output

BO output
Sin

Input 
sensor

Sout

Output 
sensor
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Figure 7. bA1, sensor Sin (L2) 

 

Figure 8. bA1, sensor Sout (L2) 

 
Figure 9. bA1 final decision (L4) 

 
Figure 10. bB1, sensor Sin (L2) 

 
Figure 11. bB1, sensor Sout (L2) 

 
Figure 12. bB1 final decision (L4) 
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 Name bA1 bB1 Other damages 

1 Spur 1 Good Good Good 

2 Spur 2 Good Good Gear 

3 Spur 6 Inner race Ball Gear, Shaft 

4 Spur 8 Good Ball Shaft 

Table 1. Analyzed records and corresponding bearing 
damages (bA1, bB1). 

Recordings from 2 sensors (called Sin and Sout) were 
provided. Both bearings are identical and located closer to 
sensor Sin. Bearing bA1 was mounted on the input shaft and 
bearing bB1 on the idler shaft. The corresponding bearing 
tones overlap since the idler shaft rotates at a third of the 
rotating speed of the input shaft (see Klein et al., 2009b). 

Results of fusion layers are presented in Figure 7-Figure 12. 
Due to space limitations the score results are not presented 
herein. All the graphs present probabilities for damage in a 
gray scale color map (white represents zero probability and 
black a probability of 1). Conclusions maybe derived on 
probabilities of damage for components (L4) or failure 
modes (L2) according to a specific sensor. For practical 
purposes the decision on component probability of damage 
(L4) is the most relevant. 

Figure 7, Figure 8, Figure 10 and Figure 11 show results of 
domain fusion (layer L2). Three domains corresponding to 
the leftmost subplots were fused. The domains that were 
considered were: order of the dephased signal, order of the 
envelope of the band-pass filtered signal, and order of the 
envelope of the dephased signal (see Klein et. al., 2009b). 
The fusion result is displayed on right subplot of each 
figure. The columns of each subplot correspond to the 
bearing failure modes (IR – inner race, OR – outer race, 
BSF – ball), and the rows correspond to the different records 
as described in Table 1. 

In Figure 7 incorrect indications of ball damage can be 
observed. This is due to the bearing tones overlap 
mentioned beforehand. The third harmonic of ball spin 
frequency (BSF) of bB1 coincides with BSF of bA1. In the 
case of the PHM’09 challenge apparatus the discrimination 
between these bearings is problematic. In practical cases this 
situation is rare. 

Figure 9 and Figure 12 present results of failure mode and 
sensor fusion (layers L3 and L4 respectively). On the 
leftmost subplots results of layer L3 (failure mode fusion) 
are displayed. Each subplot corresponds to a single sensor. 
The rightmost subplot represents the result of layer L4 
(sensor fusion) which is actually the final decision. 

All damages were recognized correctly. All recordings from 
undamaged bearings were classified correctly as well. 
Moreover, the probabilities for sensor Sin were significantly 
higher compared to the probabilities for sensor Sout. This 

may be due to the fact that the bearings are located closer to 
sensor Sin. 

It should be noted that the damages in other components did 
not affect the decisions for the bearings bA1, bB1. 

7. CONCLUSIONS 

Hierarchical architecture of knowledge based system for 
decision and fusion was presented. The architecture was 
implemented using an original scoring algorithm and 
Bayesian belief networks.  

The hierarchy and algorithm design was inspired by 
vibration expert reasoning. The system allows incorporation 
of expert knowledge along with ability to learn from 
examples.  

The architecture was tested with both simulated and real 
data and displayed good discrimination between damaged 
and healthy mechanical components. Detection of the 
damage in bearings was not affected by damages in shafts 
and/or gears. 

In the future the system should be checked on more 
extensive data collections. Implementation of additional 
decision models such as neural networks and other types of 
classifiers may be also considered. As well the condition 
probability tables of the Bayesian networks can be 
determined automatically based on examples. 
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Abstract 
The application of Acoustic Emission (AE) 
technology for machine health monitoring is 
gaining ground as powerful tool for health 
diagnosis of rolling element bearings. The 
successful application of AE to life prognosis of 
bearings is very dependent on the ability of the 
technology to identify and locate a defect at its 
earliest stage. Determining source locations of AE 
signals originating in real time from materials 
under load is one of the major advantages of the 
technology. This paper presents results which 
highlight the ability of AE to locate naturally 
initiated defects on high-speed roller element 
bearing in-situ. To date such location has only be 
successfully demonstrated at rotational speeds of 
less than 100 rpm. 
 
1. Introduction 
 
The rolling element bearing is the most common 
part of rotating machines. The continued interest 
in condition-based maintenance of industrial 
assets has lead to a growing interest in monitoring 
of rolling bearings. The application of Acoustic 
Emission (AE) in monitoring the rolling element 
bearings has grown in popularity over the past 
few decades [1]. To date most of the published 
work has studied the applicability of AE 
technology in detecting seeded faults artificially 
introduced on the bearing. Yoshioka [2] was one 
of the earliest researchers who studied the 

applicability of AE in detecting naturally 
degraded bearings. Later, Elforjani et al [3] 
conducted an experiment aimed at building on 
Yoshioka’s work. Their results showed the 
effectiveness of AE in detecting the onset of 
bearing failure, identifying the circumferential 
location of the defect on the race at very early 
stages of degradation, and the diagnostic potential 
of enveloping AE signatures. Although 
conclusive, this research was not representative of 
the broad operation range of bearings as the test 
was undertaken at a slow rotational speed (72 
rpm). The results presented in this paper aims to 
complement the work of Elforjani [3, 4] by 
experimentally investigating the use of AE for 
detecting and locating the natural pitting of a 
bearing rotating at 1500 rpm in which 
significantly higher background AE operating 
noise is expected.  
 
2. Experimental Setup 
 
The test rig used in this experiment is displayed in 
Figure 1. The bearing test rig has been designed 
to simulate varying operating conditions and 
accelerate natural degradation. The chosen 
bearing for this study was an SKF single thrust 
ball bearing, model number SKF51210. To ensure 
accelerated failure of the race the standard 
grooved race was replaced with a flat race, model 
number SKF 81210TN. This caused a point 
contact between the ball elements and the race 
resulting in faster degradation of the race and 
early initiation of sub-surface fatigue cracks. The Eftekharnejad et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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load on the test bearing was applied by a hand 
operated hydraulic pump (Hi-Force No: HP110-
Hand pump-Single speed-Working Pressure: 700 
BAR). The flat race was fitted onto the loading 
shaft in a specifically designed housing. This 
housing was constructed to allow for placement of 
AE sensors directly onto the race. Modifications 
were made to the support of the flat bearing race 
so as to allow positioning of the AE sensors, see  
Figure 2. The placement of the AE sensors was 
such that it facilitated the identification of the 
source of AE during operation. The motor on the 
rig operated at 1500rpm and the number of rolling 
element in the test bearing was 14 and the ball 
pass frequency (BPF) was 175Hz. 
 

 
 
Figure 1  Test rig assembly 
 

 
 
Figure 2  Test bearing and sensor arrangement 
on the flat race. 
 
The AE acquisition system employed 
commercially available piezoelectric sensors 
(Physical Acoustic Corporation type ‘PICO’) with 
an operating range of 200–750 kHz at 
temperatures ranging from 265 to 1770C. The AE 
sensors were connected to a data acquisition 
system through a preamplifier (40dB gain). The 

system was set to continuously acquire AE 
absolute energy (atto-Joules) over a time constant 
of 10 ms at a sampling rate of 100 Hz. The 
absolute energy is a measure of the true energy 
and is derived from the integral of the squared 
voltage signal divided by the reference resistance 
(10 k-Ohms) over the duration of the AE signal. 
For these tests a fixed sample length (250msec) of 
AE waveforms were captured every 60 seconds at 
2 MHz sampling frequency. Throughout the test 
AE HITs were also acquired.  An Acoustic 
Emission HIT is normally described by several 
parameters such as threshold, duration, counts and 
rise time. The AE signal duration is the time 
between the first and last amplitude threshold 
crossing while the rise time is the time between 
the start of the HIT and the instant at which the 
maximum amplitude of HIT is reached, see figure 
3. Also, a single AE event can be produced by 
number of AE HITs. In addition to this, the timing 
parameters employed for defining an event during 
these experiments included the HIT definition 
time (HDT), HIT lockout time (HLT) and peak 
definition time (PDT) and these were set at 500 
µsec, 500 µsec and 100 µsec respectively. 
Correctly setting the PDT will result in an 
accurate measurement of peak amplitude while 
the appropriate definition of HDT will ensure that 
each signal generated from the structure is 
reported as one HIT. As it defines the period over 
which a HIT can be acquired. With an accurate 
setting of HLT spurious measurement during the 
signal decay will be avoided [5]; essentially it 
defines the period between successive HITs; its 
second function is to inhabit the measurement of 
reflections .In addition, an accelerometer (ISO 
BASE Endevco 236 with repose between 10 and 
8000 Hz) was mounted on the flat race housing 
and vibration measurements were acquired at 
sampling of 10 kHz at three-minute intervals 
using a NI-6009 USB analog to digital data 
acquisition card. 
 

Loading 
part 
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Figure 3 Schematic representation of an AE 
Hit [5] 
 
3. Test procedure 
 
For the purpose of this experiment the following 
procedure was undertaken to determine the 
subsurface stresses on the test bearing and thereby 
estimate the time, or number of cycles, prior to a 
surface defect on a track. Theories employed for 
this procedure, particularly for the flat race, 
included the Hertzian theory for determining 
surface stresses and deformations, the Thomas 
and Hoersh theory for subsurface stress, and the 
Lundberg and Palmgren theory for fatigue 
evaluation. For the grooved race the standard 
procedure, as described by BS 5512,1991, was 
employed for determining dynamic load rating. 
The theoretically determined life was calculated 
to be approximately 16 hours though the actual 
test duration was significantly longer. The test rig 
was allowed to operate until a spall was induced 
on the flat race and figure 4 shows the developed 
defect upon the termination of the tests. At this 
time abnormal vibration levels were registered 
and the rig was stopped. A load of approximately 
50000N was applied on the bearing throughout 
the test. The test was stopped at 278 minutes 
though the AE measurement failed after 220 min 
due to excessive temperatures experienced on the 
bond holding the sensor to the race.  

 

 
 
 
Figure 4  Defect on the outer race at 
termination of bearing test 
 

 
 
 
 
 
 
 
 

 
4. Results and Discussion 
 
4.1 Real time monitoring of the Vibration and 
AE levels 
 
The overall trends of Acoustic Emission activity 
and the vibration r.m.s noted for the duration of 
both tests are presented in Figure 5. There was an 
initial rise in AE and vibration levels at the very 
start of the tests. This is associated with the run-in 
period. After this period both vibration and AE 
levels remained level for approximately 40mins 
after which a noticeable increase in AE was again 
observed from 40mins of operation though 
vibration levels remained constant. The drop in 
vibration levels at 50mins into operation was due 
to a glitch in the vibration recording system that 
was fixed immediately. Comparing the overall 
trend of vibration and AE r.m.s it is evident that 
the AE is more sensitive in monitoring the 
progression of the defect. This was because the 
AE level began to increase continuously much 
earlier than vibration levels. It must be noted that 
these are accelerated failure tests and the 
difference in time between these techniques (AE 
and vibration) in identification of the defect will 
most certainly be much longer for non-accelerated 
test conditions; further highlighting the increased 
sensitivity of the AE technology. 
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Figure 5      Overall AE  (--) and vibration (….) 
r.m.s levels  
 
The AE and vibration waveforms upon the 
termination of the test are presented in Figure 6. 
Evident were AE burst spaced at 175 Hz that 
corresponds to the bearing defect frequency, 
though not evident on the vibration plot. Also 
values of Kurtosis and Crest Factor 1  (CF) 
associated with AE signal are significantly higher 
than corresponding levels of vibration (Crest 
factor and Kurtosis values of 13 and 14.2 
respectively for AE, and, 0.2 and 2.6 respectively 
for vibration), see Figure 6. This reiterates the 
diagnostic advantage of AE over vibration; as it is 
more sensitive to damage detection [1]. A time-
frequency plot of a section of AE wave associated 
with a surface defect showed a broad frequency 
range (100 to 600 kHz), see figure 7.This shows 
the significant high frequency content of AE 
associated with the bearing defect. A Gabor 
wavelet transform on was employed to determine 
the time-frequency spectrum. For the wavelet 
analysis AGU-Vallen Wavelet software, developed 
by Vallen System GmbH, was employed  [6]. 
Given this well-established view that AE is more 
sensitive than vibration, the aim of this paper in 
not to re-iterate the obvious but to assess the 
applicability of AE to locate the position of the 
                                                             
1 The CF defined as the ratio of the peak value divided by the 
signal r.m.s. 

growing defect in-situ on a high speed bearing in 
comparison to slow speed bearing tests that have 
already shown defect location with AE. 
 
 
 
 

 
Figure 6  Acoustic Emission and vibration 
waveforms associated with the damaged 
bearing 
 
 

 
 

 
Figure 7  Time-frequency plot associated 
with a single AE burst from region A of Figure 
6 
 
4.2   Defect source location 
The most common method for source location 
involves employing differences in time of arrival 
of waves at the receiving sensor. Given the actual 

Region A 

Time (µsec) 

Fr
eq

ue
nc

y 
(k

H
z)

 
A

m
pl

itu
de

 (m
V

) 

Annual Conference of the Prognostics and Health Management Society, 2011

171
[paper 18]



Annual Conference of the Prognostics and Health Management Society, 2011 

5 

location of the AE sensor and the wave velocity 
for the bearing material, the location of the AE 
source can be determined. The sensor positions on 
the race allow linear location of the source to be 
calculated which involves linear interpolation 
between the coordinates of two adjacent sensors 
based on the differences in arrival time at the 
receiving sensors. Simulated AE sources on the 
test bearing race (Hsu-Nelson) showed the 
dominant frequency content of AE’s recorded to 
be approximately 300 kHz which corresponds to a 
velocity of 4000 m/s for the symmetric zeroth 
lamb wave mode (So) on steel at 1.8 mm MHz 
(0.3 MHz, and 6 mm thick race). This velocity 
was used for all source location investigations and 
prior to the onset of testing several Hsu–Nielsen 
sources were made at various positions on the 
surface to establish the accuracy at this velocity 
and specific threshold level. Results were within 
4% of the exact geometric location of the Hsu–
Nielsen sources. For this investigation, a threshold 
of 70 dB was set and whenever the threshold was 
exceeded, the location of the source is computed 
and identified. Further, any AE event detected 
above this threshold is assigned to the geometric 
position (source); this is a cumulative process and 
as such a fixed source will have the largest 
contributory events in a cumulative plot. 
 
Figure 8 presents such a cumulative plot detailing 
location results for the test at three chosen 
operating times. The x-axis represents the 
circumferential distance between each sensor; the 
position of each sensor is detailed on each of the 
plots in figure 8. The y-axis of figure 8 details the 
number of AE events captured during the test. 
Observations showed that at 120mins and 
180mins into operation the recorded events 
suggested activity in the vicinity of sensor 4, 
however by 206mins into operation, a large 
number of AE events were registered between 
sensor-1 and -2 suggesting the development of 
surface damage. The location of this abnormally 
high concentration of AE events matched the 
location of damage upon the termination of test, 
see figure 4. The events noted earlier in the test 

are attributed to spurious AE activity. 
Interestingly, the identification of the defect 
location become evident from the cumulative 
plots at approximately 200 minutes into operation 
even though AE levels had seen rising from 60 
minutes into the test. The inability to identify the 
location much earlier into the test, unlike 
observations at the lower rotational speeds [3,4,7], 
is attributed to the higher operating background 
noise that makes identification of AE HITs more 
difficult. A direct comparison of AE operating 
noise at 72 rpm and 1500 rpm was noted to be 52 
dB and 70 dB respectively. Such high operational 
noise level (70dB) could make source location 
significantly more challenging than at low 
rotational speeds. To enhance the ability to 
identify the defect location earlier would require 
advanced noise cancellation techniques. 

 
5.   Conclusion 
The applicability of AE for source location of 
bearing defect in-situ has been demonstrated. 
Threshold levels above operating background 
levels have been shown to be sufficiently suitable 
for differentiating AE time of arrival intervals. 
This conclusion has been derived based on results 
from tests on a few experiments. Whilst the 
probability of having four AE sensors placed on a 
bearing race is limited it can be employed as a 
quality control tool for bearing manufacturers or 
applied on bespoke critical bearings. 
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Figure 8  Acoustic Emission events against sensor position at different time intervals  
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ABSTRACT
Online fault diagnosis is critical for detecting the on-

set and hence the mitigation of adverse events that arise
in complex systems, such as aircraft and industrial pro-
cesses. A typical fault diagnosis system consists of: (1)
a reference model that provides a mathematical repre-
sentation for various diagnostic monitors that provide
partial evidence towards active failure modes, and (2)
a reasoning algorithm that combines set-covering and
probabilistic computation to establish fault candidates
and their rankings. However, for complex systems ref-
erence models are typically incomplete, and simplify-
ing assumptions are made to make the reasoning algo-
rithms tractable. Incompleteness in the reference mod-
els can take several forms, such as absence of discrim-
inating evidence, and errors and incompleteness in the
mapping between evidence and failure modes. Inaccu-
racies in the reasoning algorithm arise from the use of
simplified noise models and independence assumptions
about the evidence and the faults. Recently, data mining
approaches have been proposed to help mitigate some
of the problems with the reference models and reason-
ing schemes. This paper describes a Tree Augmented
Naı̈ve Bayesian Classifier (TAN) that forms the basis
for systematically extending aircraft diagnosis reference
models using flight data from systems operating with
and without faults. The performance of the TAN mod-
els is investigated by comparing them against an expert
supplied reference model. The results demonstrate that
the generated TAN structures can be used by human ex-
perts to identify improvements to the reference model,
by adding (1) new causal links that relate evidence to
faults, and different pieces of evidence, and (2) updated
thresholds and new monitors that facilitate the derivation
of more precise evidence from the sensor data. A case
study shows that this improves overall reasoner perfor-
mance.

This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are
credited.

1. INTRODUCTION
An important challenge facing aviation safety is early de-
tection and mitigation of adverse events caused by sys-
tem or component failures. Take an aircraft, which con-
sists of several subsystems such as propulsion, avionics,
bleed, flight control, and electrical; each of these subsys-
tems consists of several dozen interacting components
within and between subsystems. Faults can arise in one
or more aircraft subsystems; their effects in one system
may propagate to other subsystems, and faults may in-
teract. To detect these faults, an onboard fault diagnosis
solution must be able to deal with these interactions and
provide an accurate diagnostic and prognostic state for
the aircraft with minimal ambiguity.

The current state of online fault diagnosis is focused
on installing a variety of sensors onboard an aircraft
along with reasoning software to automatically interpret
the evidence generated by them, and infer the presence
of faults. One such state of the art system is the Aircraft
Diagnostic and Maintenance System ADMS (Spitzer,
2007) that is used on the Boeing B777. ADMS can
be broadly categorized as a model-based diagnoser that
separates system-specific knowledge and the inferencing
mechanism.

Consider characteristics of some typical faults arising
in aircraft subsystems. Turbine blade erosion is a natural
part of turbine aging and wearing of the protective coat-
ing due to microscopic carbon particles exiting the com-
bustion chamber. As the erosion progresses over time,
it starts to affect the ability of the turbine to extract me-
chanical energy from the hot expanding gases. Even-
tually this fault manifests itself as increase in fuel flow
and gradual degradation of engine performance. This
causal propagation of faults is usually known to a do-
main expert and captured mathematically using a static
system reference model. As evidence gets generated by
aircraft installed sensors, a reasoning algorithm “walks”
the relevant causal paths and infers the current state of
the aircraft—in this case, turbine erosion of the propul-
sion engine.

The ADMS uses a fault propagation system refer-
ence model that captures the interactions between air-
craft components under various operating modes. A
Bayesian belief propagation network together with the
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Bayesian update rule provides an ideal framework for
onboard diagnostic reasoning using the reference model.
It provides the necessary transparency for certification as
a safety system, while allowing the subsystem manufac-
turer to encode proprietary fault models. The generation
of this reference model is mostly a manual process, and
often the most tedious step in the practical development
and deployment of an ADMS. While most of the knowl-
edge about fault propagation can be derived from earlier
aircraft designs, upgrades to component design (for ex-
ample using active surge control rather than passive on-
off surge prevention) create gaps in the knowledge base.
As the engineering teams “discover” the new knowledge
from an operating fleet, they are translated into expert
heuristics that are added to the specific aircraft model,
rather than applying systematic upgrades to the overall
reference model that was generated at design time.

Many of the shortcomings of the ADMS can be at-
tributed to incomplete and incorrect information in the
system reference model. In other words, there is a miss-
ing link in making systematic upgrades and increments
to the reference model as vast amount of operational data
is collected by operating airlines. We look at this prob-
lem as a “causal structure discovery” problem. Specifi-
cally, learning causal structures in the form of a Bayesian
Network built for classical fault diagnosis, wherein the
nodes represent system faults and failures (causes) and
available diagnostic evidence (symptoms)(Pearl, 1988).
Unlike associations, Bayesian networks can be used to
better capture the dependencies among failures (failure
cascade from one subsystem to another) and evidence
cascade (failure mode in one system triggering a symp-
tom in a nearby component). We adopt this approach,
and develop a data mining approach to updating existing
reference models with new causal information.

This paper presents a case study, an adverse event sur-
rounding an in-flight shutdown of an engine, which was
used to systematically augment an existing ADMS refer-
ence model. Section 2. describes the basic principles and
the constituents of a model-based onboard fault reasoner.
Section 3. describes the problem statement that formally
defines the model augmentation to be derived using op-
erational data. Next, section 4. describes the available
historic data surrounding the adverse event. Section
5. briefly discusses the challenges in taking operational
data and transforming it into a form that can be used by
the data mining algorithms. Section 6. then discusses
these data mining algorithms employed for construct-
ing the diagnostic classifiers as Tree-Augmented Naı̈ve
Bayesian Networks (TANs). Section 7. presents exper-
imental results of this case study to show how a human
expert could utilize the classifier structure derived from
flight data to improve a reference model. Metrics are de-
fined for evaluating classifier performance, and a num-
ber of different experiments are run to determine when
improvements can be made in the existing model. Sec-
tion 8. presents a summary of the approach, and outlines
directions for future work for diagnostic and prognostic
reasoning using the data mining algorithms.

2. BACKGROUND ON REFERENCE MODELS
AND REASONERS

Model-based strategies that separate system-specific
knowledge and the inferencing mechanism are preferred

for diagnosing large, complex, real-world systems. An
aircraft is no exception to this, as individual component
suppliers provide system-specific knowledge that can be
represented as a bipartite graph consisting of two types
of nodes: failure modes and evidence. Since this knowl-
edge acts as a baseline for diagnostic inferencing, the
term “reference model” is also used to describe this in-
formation. The set F captures all distinct failure modes
defined or enumerated for the system under considera-
tion. A failure mode fmi ∈ F may be occurring or not
occurring in the system, which is indicated by a 1 (occur-
ring) or 0 (not occurring) state. Often a −1 an unknown
state is also included in the initial state description. The
following are shorthand notations regarding these asser-
tions.

fmi = 0⇔The failure mode is not occurring
fmi = 1⇔The failure mode is occurring (1)

Every failure mode has an a priori probability of oc-
curring in the system. This probability is given by
P (fmi = 1). Failure modes are assumed to be inde-
pendent of one another, i.e., given any two failure modes
fmk and fmj , P (fmk = 1|fmj = 1) = P (fmk = 1).

To isolate and disambiguate the failure modes, com-
ponent suppliers also define an entity called “evidence”
that is linked to sensors and monitors in the system. The
set DM denotes all distinct diagnostic monitors defined
for the system under consideration. A diagnostic monitor
associated with mj ∈ DM , can either indict or exoner-
ate a subset of failure modes called its ambiguity group.
In other words, each monitor mi in the system is labeled
by three mutually exclusive values allowing a monitor to
express indicting, exonerating or unknown support for
the failure modes in its ambiguity group. The notations
are described in equation (2).

mi = 0⇔ Exonerating evidence
mi = 1⇔ Indicting evidence

mi = −1⇔ Unknown evidence
(2)

An ideal monitormj fires only when one or more fail-
ure modes in its ambiguity group are occurring. Given
the fact that the ith failure mode is occurring in the sys-
tem, dji denotes the probability that monitor mj will
provide indicting evidence under this condition.

dji ⇔ P (mj = 1|fmi = 1), (3)

dji is called the detection probability of the jth mon-
itor with respect to failure mode fmi. A monitor may
fire when none of the failure modes in its indicting set
are present in the system. False alarm probability is the
probability that an indicting monitor fires when its cor-
responding failure modes in its ambiguity group are not
present in the system. That is,

εj ⇔ P (mj = 1|fmi = 0,∀fmi ∈ Ambiguity Set)
(4)

Designing a monitor often requires deep domain
knowledge about the component or subsystem, but the
details of this information may not be important from the
reasoner’s viewpoint. A more abstract view of the moni-
tor is employed in the reasoning algorithm. This abstrac-
tion is shown in Figure 1. With few exceptions, most
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Figure 1: Abstraction of Diagnostic monitor

diagnostic monitors are derived by applying a threshold
to a time-series signal. This signal can be a raw sensor
value or a derived quantity from a set of one or more
sensor values. We call this a condition indicator (CI)
and denote it as x(t). Assuming a pre-defined threshold
value θ, we set m = 1 ⇔ x(t) ≶ θ. A diagnostic mon-
itor may specify the underlying condition indicator and
the threshold or simply provide the net result of applying
a hidden threshold.

Figure 2 illustrates an example reference model graph-
ically, with fault modes (hypotheses) as nodes on the left,
and diagnostic monitors mi ∈ DM on the right. Each
link has an associated detection probability, i.e., condi-
tional probability P (mj = 1|fmi = 1). In addition,
fault nodes on the left contain the a priori probability
of fault occurrence, i.e., P (fmi). Probabilities on the
DM nodes indicate the likelihood that a particular moni-
tor would indicate a fault in a nominal system. Bayesian
methods are employed to combine the evidence provided
by multiple monitors to estimate the most likely fault
candidates.

The reasoner algorithm (called the W-algorithm) com-
bines an abductive reasoning scheme with a forward
propagation algorithm to generate and rank possible fail-
ure modes. This algorithm operates in two steps: (1) Ab-
ductive reasoning step: Whenever a diagnostic monitor
m1 fires, it provides either indicting (ifm1 = 1) or exon-
erating (if m1 = 0) evidence for the failure modes in its
ambiguity set, AG = {fm1, fm2, . . . fmk}. This step
assumes that the firing of a DM implies at least one of the
faults in the ambiguity set has occurred; and (2) Forward
reasoning step: For each fmi belonging toAG, this step
calculates all other diagnostic monitors that may fire if
any of the failure modes are indeed occurring. These
are called the evidence of interest. Let m2,m3, · · · de-
note this evidence of interest set. Some of these moni-
tors may be indicting evidence, for example m2 = 1 or
they may be exonerating evidence, for example m3 = 0.
The reasoning algorithm calculates the joint probability
P (fm1 = 1,m1 = 1,m2 = 1,m3 = 0, . . . ) of a spe-
cific failure mode fm1 occurring in the system. As ad-
ditional monitors fire, the numeric values of these prob-
abilities increase or decrease, till a specific failure mode

hypothesis emerges as the highest-ranked or the most
likely hypothesis. The reasoning algorithm can gener-
ate multiple single fault hypotheses, each hypothesis as-
serting the occurrence of exactly one failure mode in the
system.

The reasoning algorithm may not succeed in reduc-
ing the ambiguity group to a single fault element. This
can happen for various reasons: (1) incompleteness and
errors in the reference model; (2) simplifying assump-
tions in the reasoning algorithm; and (3) missing ev-
idence (monitors) that support or discriminate among
fault modes. For example, a modest aircraft has over
5000 monitors and failure modes; estimating the detec-
tion probabilities, dji, even for this aircraft is a challeng-
ing offline design task. Errors in dji, and more specif-
ically missing the link between a monitor and a failure
mode (incompleteness) can adversely affect the reasoner
performance. Further, to keep things simple for the rea-
soner, a modeler may assume that the firing events for
monitors are independent. This eliminates the need for
the modeler to provide joint probability values of the
form, P (mj = 1,mk = 1|fmi = 1) (say for 4000 mon-
itors and 1000 faults the modeler would have to provide
1.56×1010 probability values), and instead approximate
it as P (mj = 1|fmi = 1) × P (mk = 1|fmi = 1).
This reduces the total number of probabilities to 4×106,
which is still a large number but orders of magnitude
less than the number required for the joint distributions
and the order of the joint distributions grow exponen-
tially when additional monitors fire. Designing a good
set of monitors is yet another challenging task. For ex-
ample, the modeler may have overlooked a new monitor
mp that could have differentiated between failure modes
fm1 and fm2.

Given the complexity of large systems such as an
aircraft, incompleteness in the reference model is ex-
pected. As one collects enough operational data, some
of these gaps can be addressed. The collection of as-
sumptions made about the fault hypotheses and moni-
tors results in the probability update function for each
fault hypothesis, fmi∀i ∈ F , being computed using
a Naı̈ve Bayes model, i.e., P (fmi|mj ,mk,ml · · · =
α × P (mj ,mk,ml · · · |fmi) = α × P (mj |fmi) ×
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Figure 2: Example Reference Model

P (mj |fmi) × P (mj |fmi) × · · · where α is a normal-
izing constant. The direct correspondence between the
reference model and the simple Bayesian structure pro-
vides opportunities to use a class of generative Bayesian
model algorithms to build structures that are relevant for
diagnostic reasoning from data. These newly learned
structures can then be used with a systematic approach
for updating the system reference model. The following
work focuses on this systematic approach.

3. PROBLEM STATEMENT
The combination of the reference model and reasoner
when viewed as a single fault diagnoser can be in-
terpreted as a Noisy-OR classifier, which is a simpli-
fied form of a standard Bayesian Network. These net-
works that model diagnostic information (i.e., monitor-
fault relations) can be built from data itself as a prac-
tical application of data mining. A number of Ma-
chine Learning techniques for building Bayesian net-
works from data have been reported in the litera-
ture (Friedman, Geiger, & Goldszmidt, 1997), (Cheng,
Greiner, Kelly, Bell, & Liu, 2002),(Grossman & Domin-
gos, 2004). For example, state-based hidden Markov
Models (HMMs) (Smyth, 1994) and even more gen-
eral Dynamic Bayesian Network (DBN) (Dearden &
Clancy, 2001), (Lerner, Parr, Koller, & Biswas, 2000),
(Roychoudhury, Biswas, & Koutsoukos, 2008), (Verma,
Gordon, Simmons, & Thrun, 2004) formulations can
be employed to capture the dynamics of aircraft behav-
ior and effects of faults on system behavior and perfor-
mance. However, rather than addressing the problem as
a traditional data mining problem, it is approached as an

application that works to extend an existing ADMS. In
other words, the output of the data mining algorithms
have to be designed to provide information that sup-
plements existing expert-generated reference models, as
opposed to providing replacement forms of the refer-
ence model with corresponding reasoner structures. This
technique can be construed as a method for supporting
human experts, by having a human in the loop to in-
terpret the findings generated by the data mining algo-
rithm and make decisions on how to modify and update
the existing reference model and reasoner structures. By
including humans, who verify and integrate the model
enhancements, we turn the verification into a straightfor-
ward task for the human to either approve the selected
changes, or ignore them.

A systematic approach to the data mining task in this
context is to discover elements of the reference model
that can be augmented by comparing the results of a data
driven model produced from using a learning algorithm
against an existing structure extracted from the reference
model. The extraction of this existing structure from the
Reference Model begins by isolating a specific failure
mode. The failure mode chosen is often guided by the
available data where the mode was active. Isolating a
single failure mode from the reference model and the
monitors that indict the mode produces a tree structure
where the class node describes the binary presence of
that fault. The indicators(the leaves of the tree) have
probabilities for the indictment of the mode and false
alarm rates from the reference model that can be used
to construct the complete probabilistic space. This struc-
ture and probabilistic information is the classical defini-
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tion of a Naı̈ve Bayes classifier. With data and the use
of algorithms to build a Bayesian structure, the model
can be leveraged to improve this very specific structure.
Limiting it to a structure that preserves the general tree
of the Naı̈ve Bayes classifier eases the transition of in-
formation from the learned structure back to the original
model. This is balanced with our desire to add limited
causality into the network to help the expert understand
if there are health indicators which are correlated. This
information could be added back in limited ways to the
isolated structure, without requiring the entire reference
model to be changed from the Noisy-OR model. The
structure that is chosen for learning is a Tree Augmented
Naı̈ve Bayesian network, which we will discuss in more
detail in section 6.

The information added back to the reference model
falls into three areas:

1. Update Monitors Update the threshold θ associ-
ated with a diagnostic monitor. The idea is to make
the monitor i more sensitive to failure mode j (so
that it can be detected earlier, if it is present) with-
out sacrificing the false alarm rate, εj for the moni-
tor.

2. Add Monitors to Failure Mode Update the iso-
lated structure by adding a monitor that helps indict
the failure mode. Specifically this could take two
forms: (a) creating a new monitor with the requisite
probabilistic information, and adding a new dji to
associate it with the failure mode, and (b) assigning
a non-zero number for dji if the link did not already
exist with a previously created monitor.

3. Create Super Monitors Creating new monitors
that combine existing monitors, say mi and mj
such that the combination of monitor indictments
asserts stronger evidence for a specific failure mode
fmk. That is, calculate a stronger value for
P (mi = 1,mj = 1|fmk = 1) which is greater
than P (mi = 1|fmk = 1)×P (mj = 1|fmk = 1).

In addition to establishing areas of improvement
found by comparing the data mining results with the ref-
erence model, the computational complexity of the data
mining algorithms should be manageable, so that they
can be used as exploratory analysis tools by the domain
experts. Potentially, the experts may apply a successive
refinement process by requesting a number of experi-
mental runs, each using a specific data set from an op-
erating fleet of aircraft, and the results from the nth ex-
periment augments or confirms the reference model from
the (n − 1)th experiment. This will result in a continu-
ous learning loop wherein historical observations from
the fleet are analyzed systematically to understand the
causal relations between failure modes and their mani-
festations (monitors). In addition, building models from
the data may also reveal unknown (or currently unmod-
eled) dependencies among failure modes that are linked
to the adverse event situations under consideration. Over
time, this learning loop will increase the accuracy and
time to detection (while reducing false positives) in the
diagnostic reasoner.

The next step is to explore and pre-process the avail-
able aircraft flight data for the data mining task. The pre-
processing plays a major role in determining the nature
of information derived from the data, and, using prior

knowledge of the aircraft domain the pre-processing al-
gorithms can be tailored to avoid the “needle-in-the-
haystack” search problem.

4. AIRCRAFT FLIGHT DATA
It is important to extract flight data of the right type and
form that will potentially help to find and validate new
diagnostic information. Since the goal is early and reli-
able detection of an evolving fault in the aircraft, it is im-
portant that the data set formed for analysis span several
contiguous flights. This set should also include multiple
aircraft to account for aircraft-to-aircraft variations and
the heterogeneity of flight conditions and flight paths.
Our data set comes from a fleet of aircraft belonging to a
regional airline from North America. The fleet consisted
of 30+ identical four engine aircraft, each operating 2–5
flights each day. This work examines data spanning three
years of the airline’s operations.

The Aircraft Condition Monitoring System (ACMS)
is an airborne system that collects data to support fault
analysis and maintenance. The Digital ACMS Recorder
(DAR) records airplane information onto a magnetic tape
(or optical) device that is external to the ACMS. This
data is typically stored in raw, uncompressed form. The
DAR can record information at a maximum rate of 512
12-bit words per second via a serial data stream modu-
lated in either Harvard Bi-Phase or Bi-Polar Return-to-
Zero code. The recorded data is then saved permanently
to a compact flash card. The ACMS can be programmed
to record parameter data from the propulsion subsystem,
the airframe, the aircraft bleed subsystem, and the flight
management system at a maximum rate of 16 Hz. We
apply our initial data retrieval and pre-processing algo-
rithms to this raw time-series data that was made avail-
able to us in the form of multiple CDs.

A second source of information we referenced for this
study was adverse event annotations that is available in
a FAA developed Aviation Safety Information Analy-
sis and Sharing (ASIAS) database system. The ASIAS
database is a collection of adverse events reported by var-
ious airline operators. On searching this database for the
time period of the flight data available to us revealed that
an engine shutdown event had occurred for one of the air-
craft in our list. On one of the flights of this aircraft, the
third engine(out of four) aboard the aircraft shutdown au-
tomatically. As a result, the flight crew declared an emer-
gency situation and returned back to the airport where
the flight originated. Fortunately, there were no casu-
alties or serious injuries. For this study, we decided to
focus on this failure mode, mainly because the on board
reasoner or the mechanics who serviced the aircraft were
unable to detect any anomalies in the engine till the ad-
verse event occurred.

In more detail, an adverse event such as an engine
shutdown typically evolves as a sequence of anomalous
events and eventually leads to a situation, such as over
heating, that causes the shutdown. For this case study,
our objective was to analyze the ACMS flight data from
the aircraft prior to adverse event with the goal of defin-
ing anomalies in the system monitors that were not de-
fined for the existing ADMS. The primary intent was to
use these anomalous monitor reports to detect and iso-
late the root cause for the failure as early as possible,
so that the onset of the adverse event could be avoided.
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Investigation of the airline maintenance crew reports af-
ter the adverse event revealed that the root cause for
this adverse event was a faulty fuel metering hydro-
mechanical unit(Fuel HMA) in the third engine, which
was the engine that shut down. The fuel metering unit
is a controller-actuator that meters fuel into the com-
bustion chamber of the engine to produce the desired
thrust. Given that we now knew the time of the adverse
event and the root cause for the particular engine failure,
knowledge of the fuel metering unit impliedthat this was
a slowly evolving (i.e., incipient) fault that could very
likely start manifesting about 50 flights before the actual
engine shutdown adverse event. Therefore, we extracted
the [−50, 0] flight interval for the analysis, where 0 indi-
cates the flight number for which the adverse event oc-
curred and −50 indicates 50 flights before this one. We
assumed that the particular aircraft under study had one
faulty and three nominal engines. We collected relevant
data (discussed below) for all of the engines, and then ran
Bayesian classifiers to discover the differences between
the faulty and the nominal engines.

As we discussed earlier, all of the aircraft for the re-
gional airline were equipped with ADMS. The diagnoser
receives information at pre-defined rates from the di-
agnostic monitors. In this case study, we also assume
that we had access to the sequence of condition indica-
tors(CI) values that were generated. As discussed earlier,
the binary monitor output is produced by applying a pre-
defined threshold to the CI values. In our data mining
analysis, we use the CI’s as features, and compare the
thresholds derived by the classifier algorithms against the
thresholds defined in the reference model. The following
condition indicators and diagnostic monitors were avail-
able from this aircraft flight dataset.
StartTime This CI provides the time the engine takes to

reach its idling speed. Appropriate threshold gener-
ates the no start diagnostic monitor.

IdleSpeed This CI provides the steady state idling
speed. Appropriate threshold generates the hung
start diagnostic monitor.

peakEGTC This CI provides the peak exhaust gas tem-
perature within an engine start-stop cycle. Appro-
priate threshold generates the overtemp diagnostic
monitor.

N2atPeak This CI provides the speed of the engine
when the exhaust gas temperature achieves its peak
value. Appropriate threshold generates the over-
speed diagnostic monitor.

timeAtPeak This CI provides the dwell time when the
exhaust gas temperature was at its peak value. Ap-
propriate threshold generates the overtemp diagnos-
tic monitor.

Liteoff This CI provides the time duration when the en-
gine attained stoichiometry and auto-combustion.
Appropriate threshold generates the no lightoff di-
agnostic monitor.

prelitEGTC This CI provides the engine combustion
chamber temperature before the engine attained sto-
ichiometry. Appropriate threshold generates the hot
start diagnostic monitor.

phaseTWO This CI provides the time duration when
the engine controller changed the fuel set-point

schedule. There are no diagnostic monitors defined
for this CI.

tkoN1, tkoN2, tkoEGT, tkoT1, tkoPALT These CIs
provide the fan speed, engine speed, exhaust gas
temperature, inlet temperature and pressure alti-
tude, respectively, averaged over the time interval
when aircraft is operating under take off conditions.
There are no diagnostic monitors defined for these
CIs.

tkoMargin This CI provides the temperature margin for
the engine during take off conditions. Appropriate
threshold generates the medium yellow and low red
diagnostic monitors.

Rolltime This CI provides the time duration of the en-
gine’s roll down phase. Appropriate threshold gen-
erates the abrupt roll diagnostic monitor.

resdTemp These CI provide the engine exhaust gas
temperature at the end of the engine’s roll down
phase. Appropriate threshold generates the high
rtemp diagnostic monitor.

N2atDip, dipEGTC These CIs provide the engine
speed and the exhaust gas temperature at the
halfway point in the engine’s roll down phase.
There are no diagnostic monitors defined for these
CI.

N2cutoff These CI provide the rate of change of the en-
gine speed at the halfway point in the engine’s roll
down phase. There are no diagnostic monitors de-
fined for these CI.

This large volume of CI data (multiple aircraft, mul-
tiple flights) provides opportunities to study aircraft en-
gines in different operating scenarios in great depth and
detail. However, the data as extracted from the raw flight
data DAR files was not in a form that could be directly
processed by our classification algorithms. We had to de-
velop data curation methods to generate the data sets that
could be analyzed by the machine learning algorithms.

5. DATA CURATION
An important requirement for the success of data driven
techniques for knowledge discovery is the need to have
relevant and well-organized data. In our study, well-
organized implied getting rid of unwanted details, be-
ing able to structure the data on a timeline (having all of
the CI’s aligned in time, and the monitor output inserted
into the time line as a sequence of events), and applying
filtering algorithms to the noisy sensor data. Relevance
is an important concept, since it is necessary to extract
sequences of data that contain information about the par-
ticular situation being modeled. For example, if the goal
is to design a classifier that can identify a faulty situation
from one in which there is no fault, it is important that the
classifier be provided with both nominal and faulty data,
so that it can derive the discriminating features from the
data. Further, the systems under study are complex, and
they operate in different modes and under different cir-
cumstances. This information is likely to be important
for the classification task, so the data needs to be appro-
priately annotated with this information. It is clear that
unreliable data is unlikely to provide useful information
to an already effective reference model. Our (and oth-
ers) experiences show that the data curation task is often
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more time consuming and sometimes quite difficult (be-
cause of noisy, missing, and unorganized data) as com-
pared to the data mining task, which involved running a
classifier or a clustering algorithm on the curated data. A
good understanding of the nature of the data and how it
was acquired is critical to the success of the data mining
task.

In our study, the DAR files represented single flights
encoded in binary format. As a first step, we orga-
nized several thousands of these files by the aircraft tail
number. For each aircraft, the data was then organized
chronologically using the time stamp associated with the
particular flight. Since the case study involves an engine
shutdown situation, the data was further classified based
on the engine serial number so that the data associated
with each engine could be easily identified.

For practical reasons, given the size of the data, and
the need to extract specific sub-sequences for the data
mining task, we designed a relational database to cre-
ate an organized representation for the formatted data.
This made it easier to access the relevant data for dif-
ferent experimental analyses. For a data analysis ses-
sion, step 1 involved formulating data base queries and
collecting the extracted data segments into the form re-
quired by the classification algorithm. Step 2 was the
data curation step. A primary task at this step was re-
moving all extraneous non-flight data. For this analy-
sis, all ground-test information (data generated when the
maintenance crew ran a test when the aircraft was on the
ground) was defined as anomalous and removed during
the cleansing step. Step 3 involved running the classifi-
cation algorithms.

6. TREE AUGMENTED NAIVE BAYESIAN
NETWORKS

The choice of the data driven techniques to apply to par-
ticular problems is very much a function of the nature
of the data and the problem(s) to be addressed using
the data. The extracted portion of the reference model
discussed earlier can be modeled as a Naı̈ve Bayes rea-
soner. The independence assumptions of the model may
also be systematically relaxed to capture more discrimi-
natory evidence for diagnosis. There are several inter-
esting alternatives, but one that fits well with the iso-
lated structure is the Tree Augmented Naı̈ve Bayesian
Method (Friedman et al., 1997) abbreviated as the TAN
algorithm. The TAN network is a simple extension to
the Naı̈ve Bayes network formulation. The Root (the
fault mode) also know as the class node is causally re-
lated to every evidence node. In addition, the indepen-
dence assumption for evidence nodes is relaxed. An evi-
dence node can have at most two parents: one is the class
node, the other can be a causal connection to another
evidence node. These constraints maintain the directed
acyclic graph requirements and produce a more nuanced
tree that captures additional relationships among the sys-
tem sensors and monitors. At the same time, the learning
algorithm to generate the parameters of this structure is
computationally simpler than learning a general Bayes
net structure.

The TAN Structure can be generated in several dif-
ferent ways. One approach uses a greedy search that
constrains the graph from building “illegal” edges (i.e.,
a node having more than one parent from the evidence

nodes)(Cohen, Goldszmidt, Kelly, Symons, & Chase,
2004). Another procedure, sketched out in Algorithm
1, builds a Minimum Weighted Spanning Tree (MWST)
of the evidence nodes and then connects the fault mode
to all of the evidence nodes in the tree (Friedman et al.,
1997). We use this algorithm in our work. A standard
algorithm (e.g., Kruskal’s algorithm(Kruskal, 1956)) is
applied to generate the MWST. The edge weight compu-
tation for the tree structure utilizes a log-likelihood crite-
rion, such as the Bayesian likelihood value (Chickering,
Heckerman, & Meek, 1997) and the Bayesian Informa-
tion Criterion (BIC) (Schwarz, 1978). If the values are
naturally discrete or they represent discretized continu-
ous values, the Bayesian likelihood metric is preferred.
This is a simple metric, which calculates the likelihood
that two variables are dependent. The BIC is better
suited for data sets whose features are derived from con-
tinuous distributions (like a Gaussian Normal). For ei-
ther measure, the values are calculated for every pair of
evidence nodes and stored in a matrix. Note that the
value calculated for node i to node j is different for the
value calculated for node j to node i, Therefore, the di-
rected edges of the MWST represent the implied direc-
tion of causality, and the derived structure includes pre-
ferred causal directions (and not just correlational infor-
mation).

Figure 3: Example TAN Structure

An example TAN structure is illustrated in Figure 3.
The root node, labeled class, is the fault hypothesis of in-
terest. The other nodes represent evidence supporting the
particular fault hypotheses. For the structure in Figure 3,
rolltime, a monitor associated with the shutdown phase
of the aircraft is the anchor evidence node in the TAN
structure, called the observation root node. Like a Naı̈ve
Bayesian classifier, the fault hypothesis node (class) is
linked to all of the relevant monitor nodes that support
this hypothesis. Dependencies among some of the mon-
itors, e.g., rolltime and dipEGTC, are captured as addi-
tional links in the Bayesian network. Note that the TAN
represents a static structure; it does not explicitly cap-
ture temporal relations among the evidence. The choice
of the observation root node is important; in some ways,
it represents an important monitor for the fault hypothe-
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sis, since it is directly linked to this node. This means the
distribution used in the observation root node(whether it
be a discrete CPT, or a continuous distribution) is con-
ditioned only on the priors of the class distribution. The
rest of the MWST structure is also linked to this node.
All other conditional probability tables(CPTs) generated
for this TAN structure include the class node and at most
one other evidence node. The choice of the observation
root node may determine the overall structure of the tree,
but for the same data, the procedure for identifying the
stronger causal links should not change in any signifi-
cant way, i.e., the strong links will appear on all TANs,
irrespective of the choice of the observation root node.

Algorithm 1 TAN Algorithm Using MWST
1: INPUT:Dataset D of N Features and a label C
2: INPUT:Observational Root Node FRoot
3: INPUT:CorrelationFunction
4: OUTPUT:TAN Structure with Adjacency Matrix,

CLassAdjMat, describing the Structure
5: OUTPUT:Probability Values ProbVec for each

Node {Note: Corr is a matrix of the likelihood
that feature i is causally related to feature j (dif-
ferent values can be found for i to j and j to i)}
{Count(Node,ClassAdjMat,D) is a counting func-
tion, that takes the Data, the Class, the Full Adja-
cency Matrix of the TAN and for the Node finds
either the CPT for discrete-valued features, or the
set of means and covariances to describe the Gaus-
sian Normal Distributions of the Node for continu-
ous valued variables.} {AdjMat describes the par-
ents so that correct data slices can be isolated and
used in the counting. }

6: for featurei = 0 to featurei = N do
7: for featurej = 0 to featurei = N do
8: if featurei 6= featurej then
9: Corr (i,j) = CorrelationFunction(fi, fj ,D)

10: end if
11: end for
12: end for
13: AdjMat = MWST(Corr, FRoot){ Build a Minimum

Weighted Spanning Tree using the Correlation Ma-
trix and the Root chosen}

14: for featurei = 0 to featurei = N do
15: ClassAdjMat(featurei, C) = 1 {Connect ev-

ery feature to the Class Node to build the TAN}
16: end for
17: ProbVec(C) = Count(C,ClassAdjMat,D) {Estimate

the parameters, starting with the class}
18: for featurei = 0 to featurei = N do
19: ProbV ec(featurei) =

Count(featurei, ClassAdjMat,D)
20: end for
21: RETURN: (AdjMat, ProbV ec)

When the inference is used to assign a faulty or nomi-
nal label to the observed flight data, the result will be bi-
ased towards one class(fault) over another based on the
CI value of the observation root node. This shift also
changes some causal relationships and may impact how
the counting algorithm for parameter estimation groups
the data and produces probabilities for the evidence. In
a later section we discuss how these choices can be used
by the domain expert to make effective improvements to

the reference model for the AHM.
This choice of the observation root node, as shown in

Algorithm 1 is an input parameter to the algorithm. This
choice is normally based on a ranking computed using a
heuristic, such as the highest BIC value. The algorithm
in Weka (Hall et al., 2009) builds TANs with every fea-
ture as the root node of the MWST. It compares the gen-
erated structures, using a scoring metric such as the log-
likelihood for the training data. The structure with the
best score is then chosen as the classifier structure. An-
other approach could use domain knowledge to choose
this node. For example, using expert knowledge of the
system one may choose the sensor that is closest to the
fault under consideration because it is not likely to be
causally dependent on other sensors. The implication in
the classifier is that it will be closest to indicating a fault.

Consider the example TAN shown in Figure 4. When
the data for constructing the TAN is extracted from
flights just before the adverse event occurred, the root
node chosen by the Weka scheme is idlespeed. This
node connects to the rest of the MWST, which in this
case is the starttime feature, to which the rest of the fea-
ture nodes are connected. Using data from flights that
were further away (before) from adverse event occur-
rence, the Weka algorithm picked PeakEGTC as the root
node. This is illustrated in TAN structure in Figure 5.
However, the derived causal link from idlespeed to start-
time to a large group of nodes is retained at the bottom
right of Figure 5. The similarities and shifts in the TAN
structures from different segments of data typically in-
forms the domain expert about the underlying phenom-
ena due to the fault that is captured by the monitors. We
discuss this in greater detail when we develop our case
study in Section 7..

6.1 Implementations Used for Building TANs
Two different implementations can be employed for the
TAN algorithms used in the experiments. The first is
one that attempts to maintain the continuous nature of
the features and build Gaussian Normal distributions for
the nodes. It is implemented in MATLAB using the
Bayesian Network Toolkit (Murphy, 2011).

The second method from the Weka (Hall et al., 2009)
toolkit, uses a discretization algorithm which looks to bin
each of the features into sets that unbalance the classes
to provide the best possible split. For this case study, it
produced more accurate classifiers, however, there were
situations where it created a number of very fine splits
in the feature values to define all of the class structures.
The result was excessive binning, which produced very
large conditional probability tables. When considering a
more general view, methods that produce excessive bin-
ning are likely to be less robust to noise. Therefore, one
has to consider these trade offs when choosing between
these approaches.

7. EXPERIMENTS
To evaluate the data mining approach and demonstrate
its ability to improve a diagnoser reference model, we
conducted a case study using real flight data from the
regional airline described earlier. We defined three stan-
dard metrics: (1) classification accuracy (2) false pos-
itive rate, and (3) false negative rate to systematically
evaluate the TAN learning algorithm. Starting from the
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Figure 4: TAN Structure with idlespeed as observation root node

Figure 5: TAN Structure with peakEGTC as observational root node
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flight in which the adverse event occurred for a partic-
ular aircraft, we used the earliest time to detection as
another metric to evaluate the improvement in the sys-
tem reference model after it has been updated with new
information generated from the TAN classifier structure.
The particular case study discussed here was an aircraft,
where an overheated engine caused the engine to shut-
down. This was considered to be a serious adverse event,
and the pilots decided to return to the originating airport.
By comparing the data from the faulty engine against the
three other engines on the aircraft, which operated nor-
mally, starting from 50 flights before the adverse event,
we were able to generate additional monitor information
that reliably pointed to a FuelHMA problem (i.e., leak
at the fuel meter) 40 flights before the actual incident.
We break up the case study into three experiments and
discuss their details next.

7.1 Experiment 1
The first task was to investigate the effectiveness of the
generated classifier structures in isolating the fault con-
dition using the condition indicator information derived
from the flight data. We used condition indicators (CIs)
rather than the health indicators (HIs) in this analysis
because they make fewer assumptions about the nature
of the data. We hypothesized that the original expert-
supplied thresholds for the HIs were set at conservative
values to minimize the chances for false alarms, and
our derived classifier structures could potentially pro-
vide better thresholds without sacrificing the accuracy
and false alarm metrics. This would lead to faster de-
tection times.

From the ASIAS database, we extracted the aircraft
and flight number in which the adverse event occurred.
The report also indicated the nature of the fault that
caused the adverse event, and knowledge of the fault pro-
vided context to our domain expert as to when this fault
could be detected in the engine system. Our expert sur-
mised that the fault would most likely start manifesting
about 50 flights prior to the adverse event. The initial
dataset that we then formulated consisted of the calcu-
lated CIs for all 50 of the identified flights. Each engine
has its set of monitors, therefore, we had four sets of
CIs, one for each engine. For analysis, we considered
two ways for organizing this data. The first approach
combined the four engine CI’s as four separate features
associated with one data point (i.e., one flight). Since we
had 25 different CIs, this meant the dataset consisted of
50 data points, with each data point defined by 100 fea-
tures. The second approach looked at each engine as a
separate data point. Therefore, we formed four datasets,
each with with 50 data points and 25 features. From the
problem definition, it was clear that one of the four en-
gines was faulty, and other three were most likely nomi-
nal for the 50 flights that we were analyzing. Therefore,
we chose the latter approach for representing the data. To
label the dataset appropriately for the classification study
that we applied in this experiment, the three engines of
the aircraft that showed no abnormalities (1, 2, and 4)
were labeled as nominal, and the data points correspond-
ing to engine 3, where the shutdown incident occurred,
was labeled as faulty.

The classifiers were trained and evaluated using 10-
Fold Cross validation (180 samples for training, and 20
for testing) with the nominal engine data being agnos-

tic of which engine produced the data. All of the CIs
described in 4. were used as features in the classifier al-
gorithm. The TAN generation algorithm from the Weka
toolkit were used to derive the necessary classifiers. The
fact that the discretized representation of the conditional
probabilities were employed made it easier to find the
threshold values for the diagnostic monitors that were
linked to each CI. This is discussed in greater detail in
Section 7.3. The derived TAN structure is illustrated in
Figure 6.

The classification accuracy for this TAN structure was
high, the average accuracy value was 99.5% with a .7%
false positive rate and 0% false negative rate. These ini-
tial results were encouraging and to better understand
them, the experiment was extended to confirm that the
classifier results were be attributed to the evolving fault
in engine 3 and it was not just an artifact of the differ-
ences between the different engine characteristics. The
above experiment was repeated with the training data
including one of the nominal engines (1, 2, or 4) and
the faulty engine, 3. The other two nominal engines
were used as the test data. If the classifier split the re-
maining nominal engine data between the nominal and
faulty classes derived, this would indicate that its struc-
ture more likely an artifact of engine placement on the
aircraft. This experiment was repeated two more times,
each time using a different nominal engine providing the
training data and the other two being used as the test data.
For all 3 experiments, the fault classification accuracy re-
mained high, indicating that the classifier was truly dif-
ferentiating between the fault and no-fault conditions.

7.2 Experiment 2
The positive results from the classification task led to the
next step, where we worked with a domain expert to de-
termine which of the CIs in the classifier provided the
best discrimination between the faulty and nominal con-
ditions. This information would provide the necessary
pointers to update the current reference model. As a first
step, the expert examined the TAN created using data
from the 50 flight set used in Experiment 1. The ex-
pert’s attention was drawn to the complex relationship
between certain pairs of CI’s during different phases of
the flight:(1) rolltime and dipEGTC during the Shutdown
phase, and (2) PeakEGTC and Starttime from the Startup
phase. The expert concluded that there was a likely de-
pendence between the shutdown phase of flight n and
the startup of the next flight, n + 1. The reasoning was
that an incomplete or inefficient shutdown in the previ-
ous flight created situations where the startup phase of
the next flight was affected. The expert hypothesized that
this cycle of degradation from previous shutdown to the
next startup resulted in the fault effect becoming larger
and larger, and eventually it would impact a number of
CIs of the faulty engine.

This phenomena was investigated further by designing
an experiment to track how the causal structure and ac-
curacy of the classifiers derived from different segments
of data. The different segments were chosen as intervals
of flights before the flight with the adverse event occur-
rence as shown in Table 1. The 50 flights were divided
into 5 bins of 10 flights each. A test set was constructed
from the remaining 40 flights (data with nominal and
faulty labels) as well as the samples of CIs from engine
3 after it had been repaired (after engine 3 was repaired,
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Figure 6: TAN Structure Generated using Data from all 50 Flights

Bin Training Flights Acc.on Holdout Set FP% Obs. Root Node Children of ORN Notes
1 1 to 10 97.65% 2.30% IdleSpeed StartTime Thresholds Chosen

from this Bin due to
low FP

2 11 to 20 93.90% 5.70% peakEGTC liteOff,dipEGTC peakEGTC Impor-
tant Node

3 21 to 30 94.65% 5.30% peakEGTC liteOff,dipEGTC peakEGTC Impor-
tant Node

4 31 to 40 96.62% 3.50% startTime peakEGTC Links startTime and
PeakEGTC

5 41 to 50 96.06% 4.10% liteOff phaseTwo,RollTime Links Startup and
Rolldown CI

Table 1: Accuracy, False Positive Rate, Observational Root Node and Immediate Child Node for Classifiers Created
from different data segments
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no anomaly reports were generated by mechanics, and
no further adverse events were reported for engine 3 in
the ASIAS database, therefore, it was considered to be
nominal). Table 1 shows the accuracy and false posi-
tive rate(FP%) metrics reported for the five experiments.
The observation root node, and its immediate child in the
generated TAN structures are also shown.

The conventional wisdom was that the accuracy and
false positive metrics would have the best values for the
classifiers generated from data close to the adverse event,
and performance would deteriorate for the TAN struc-
tures derived from bins that were further away from the
incident. The actual results show partial agreement. The
bin 1 experiment produced the highest accuracy and low-
est false positive rate, but the next best result is produced
for TAN classifiers generated from the bin 4 data. This
prompted the domain expert to study the bin 1 to bin 4
TANs more closely. The expert concluded that two CIs,
startTime and peakEGTC showed a strong causal con-
nection for bin 4, and startTime was highly ranked for
the bin 1 TAN. On the other hand, PeakEGTC was the
root node for bins 2 and 3. This study led the domain
expert to believe that a new monitor that combined start-
Time and peakEGTC would produce a reference model
with better detection and isolation capabilities. The pro-
cess of designing and testing the diagnoser with the new
monitor is described as Experiment 3.

7.3 Experiment 3
Working closely with the data mining researchers, the
domain expert used the framework in the problem state-
ment to reconcile the results from Experiment 2 to sug-
gest explicit changes in the reference model; this in-
cluded: (1) updates to the threshold values that specified
the diagnostic monitors (i.e., updated HIs from the CIs),
(2) a new monitor that could be added to the current ref-
erence model and (3) the addition of a “Super Monitor”
to the reference model.

The CPTs generated by the learned classifier were de-
fined as discretized bins with split points that could be
interpreted as thresholds. Looking at the bins, the lowest
false positive rate occurred in bin 1. For the observation
root node, the thresholds were updated using the results
for bin 1 by comparing the split values with the origi-
nal thresholds. For the remaining nodes, their causality
with respect to the observation parent was removed by
marginalizing to remove that particular variable. Once
marginalization is applied, the CPT lists the probabil-
ity values at the nominal versus faulty split points. The
domain expert studied these split values and made de-
cisions on whether the new split values should update
the thresholds in the reference model. The trade off was
to improve the accuracy of fault detection without in-
troducing too much noise (uncertainty) into the decision
process.

Studying the TAN structures provided additional in-
formation to the domain expert. When the slowStart HI
fired, the expert discovered that this was not because the
startTime during start up was slow; sometimes the fault
occurred when the startTime was too fast. This implied
a new HI could be added to the failure mode that now
examines if startTime is under a threshold and too fast.
The addition of this HI(called fastStart) to the reference
model would be to speed up detection by adding new
evidence to indict the fault.

Experiment 2 also showed a causal relationship ap-
pearing between startTime and peakEGTC. The domain
expert suggested adding this as a “super monitor”. This
new HI would combine information from the fastStart
HI and the HighTemp HI to identify the fuelHMA fault
in the reference model. In other words, if both moni-
tors fired, then this new monitor would also fire directly
implicating the fault hypothesis. In other words, joint
occurrence of these two monitors provides stronger evi-
dence of the fault than if one considers the effect of the
two monitors individually. For example, in the origi-
nal structure that showed a possible relationship between
monitors in flight N and flight N+1, the causality might
cause this new monitor to fire only when the two HI in-
volved fire in that explicit sequence, flight n and flight
n + 1. Not only does this super monitor combine the
results from other monitors, but it also indicates cyclic
behaviors that again provide very useful diagnostic infor-
mation. In general, these “super monitors” could model
complex interactions thus increasing the overall discrim-
inability properties of the reasoner. The consequence of
using a super monitor, is that the usefulness of the two
monitors used in the construction are lost. These are re-
moved from the links to the failure mode being exam-
ines(however they remain for any other failure mode).
In this situation, the just created monitor for fast start-
Times would be removed as well as the HighTemp HI in
place of a new super monitor for a fast start and a high
engine temperature on start up.

To show that this new super monitor and the updated
thresholds produce better results, multiple traces of the
monitor output were made for the 50 flight data set. This
included 10 nominal flights after the problem was caught
and corrected. The first trace is only a recording of the
original monitors designed by the expert. The second
trace includes the new monitors(both the fast startTime
monitor and “super monitor”) derived by the data mining
analyses, as well the updated information(thresholds).
Run separately, they can be analyzed to determine if the
reasoner finds the fault sooner in the trace and indicates
that maintenance is more than likely needed for the air-
craft.

These results from the reasoner simulations are shown
in Figures 7 and 8. The traces illustrate the reasoner’s
inferences at different flight numbers before the actual
incident occurrence. This analysis demonstrates how far
before the adverse event the reasoner would reliably de-
tect the fault, and potentially generate a report that would
lead to preventive maintenance, and, therefore, avoid-
ance of the adverse event. With the original reference
model the reasoner was unable to disambiguate between
three potential fault candidates at any point leading up
to the event. All of the fault candidate hypotheses re-
quired more evidence to support the isolation task. This
would not avoid the unfortunate shutdown and the emer-
gency return to the originating airport. Figure 8 shows
the reasoner trace for the new reference model. Using the
updated thresholds and the new super monitor(which is
derived from a new monitor itself and one original moni-
tor) suggested by the data mining algorithms led to a cor-
rect isolation of the fault, i.e, the fuelHMA problem. In
this case, the reasoner originally hypothesized five fault
conditions: four of these were linked to the faulty en-
gine and one was a vehicle level hypothesis. As further
monitor information became available, fuel metering re-
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Figure 7: Trace of the Reasoner on the Original Reference Model

Figure 8: Trace of the Reasoner with the improved Reference Model
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mained the only plausible candidate, and the fault hy-
pothesis was established unambiguously. The fact that
this isolation by the reasoner occurred 30 flights before
the incident is significant because it gave sufficient ad-
vanced warning to the maintenance crews to fix the prob-
lem before an emergency situation developed.

This case study provides encouraging results in the
area of diagnoser model improvement through data min-
ing. It indicates that it may be possible to uncover new
information about the relationship between components
on a vehicle and how they can be harnessed to improve
diagnostic reasoning. Not only can it help isolate faults,
but also potentially catch them earlier in the cycle. These
three experiments provide a general direction to assist-
ing a domain expert in improving their work, and giving
them access to new or missing information.

8. CONCLUSIONS AND FUTURE WORK
The overall results from this case study generated pos-
itive results and show the promise of the data mining
methodology and the overall process that starts from data
curation and ends with systematic updates to and verifi-
cation of the system reference model. The results pre-
sented clearly demonstrate that the data mining approach
is successful in: (1) discovering new causal relations in
the reference model, (2) updating monitor thresholds,
and (3) discovering new monitors that provide additional
discriminatory evidence for fault detection and isola-
tion. Experiment 3 demonstrated that the new knowl-
edge leads to better diagnoser performance in terms: (1)
early detection, and (2) better discriminability. An im-
mediate next step will be to generalize this methodology
by applying it to other adverse event situations. In the
longer term, to further validate this work, we plan to ad-
vance this research in a number of different directions.
• Validation of the approach and classifier structures

generated by looking at additional engine data sets
from other flight data that report the same and re-
lated adverse events. To establish the robustness of
the work, it is important to extend the analysis to
looking at multiple occurrences of the same adverse
event, and to compare the thresholds, relations, and
monitor structures generated by the extended data
analysis.
• Extension of the analysis methodology beyond sin-

gle systems and subsystems. A rich source of infor-
mation about fault effects involves looking at the
interactions between subsystems, especially after
fault occurrence begins to manifest. Of particular
interest is looking at cascades of monitors and cas-
cades of faults. In this framework, studying the re-
sponse of the avionics systems under different fault
conditions would be very useful.
• Advance our data mining techniques to extract

causal relations between avionics and other sub-
systems, as well as study correlations between the
combined avionics and engine features and adverse
vehicle events, such as in-flight engine shutdowns
and bird strikes. Understanding what features of
a flight differentiate situations when a pilot starts
compensating for what may be a slowly degrad-
ing component that originates from a bird strike
will help us gain a better understanding of how to

monitor the actual operation of the aircraft with
its subsystems under various conditions. This also
presents interesting problems from the application
and development of machine learning algorithms to
utilize in this data mining problem.
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ABSTRACT 

As electrical and electronic systems (EES) steadfastly 
increase their functional complexity and connectedness, 
they pose ever-growing challenges in fault analysis and 
prevention. Many EES faults are intermittent, emerging 
(new faults), or cascading, and cannot be addressed by the 
traditional component-level diagnostic design. Leveraging 
the latest advancements in Network Science, we take the 
holistic approach to model and analyze the highly 
interrelated in-vehicle EES as layered sub-networks of 
hardware components, software components, and 
communication links. We develop multi-partite, multi-
attribute betweenness centrality measures to quantify the 
complexity and maintainability of the layered EES network.  
We then use the betweenness centrality distribution to 
identify fault analysis monitoring points and fault-mitigation 
strategies.  The promising results obtained by our initial 
empirical study of an example in-vehicle EES presents a 
first step toward network-theory based IVHM. 

1. INTRODUCTION 

The complexity of the electrical and electronic system 
(EES) in vehicles has evolved over the years in response to 
continuously increasing demand for incorporating new 
electronic control units (ECUs) onto vehicles. These allow 
for advanced safety, convenient and comfort features, as 
well as meeting new emission and fuel-economy standards. 
However, the fast growing number of ECUs and their 
peripherals has led to complex interactions which can lead 
to unexpected emerging or cascading failures.  

Current state-of-the-art diagnosis and prognosis algorithms 
typically focus on one aspect of the system which makes it 

difficult to capture problems originating from the interaction 
between and across different system layers: physical level 
(power or communication), functional level and 
communication level.  Such multi-layer problems are 
typically addressed after the fact with tedious and error 
prone manual analysis.    

In this paper, we consider in-vehicle EES as an embedded 
and distributed complex system, subject to the design for 
fault detection, isolation, and mitigation.  Based on recent 
advancements in Network Science, we develop the layered 
EES network modeling methodology to capture highly 
inter-related in-vehicle EES. We develop novel multi-partite 
and multi-attribute betweenness centrality measures to 
quantify the importance to which a node has control over 
pair-wise connections between other nodes in the layered 
EES network model. We apply multi-partite and multi-
attribute betweenness centrality measures to rank and 
recommend fault detection and isolation monitoring points 
that cannot be discovered by single layered analysis 
techniques and conventional betweenness centrality 
measures. We provide usage-based and random failure 
simulation strategies for recommending fault isolation and 
mitigations points for desired diagnostic coverage.  We 
present our initial empirical study toward this network-
based approach of IVHM.  

We discuss related work in Section 2 and introduce our 
layered network modeling methodology in Section 3. In 
Sections 4-6, we describe our multi-partite and multi-
attribute betweenness centrality, and their application to 
fault analysis monitoring. Section 7 provides an example 
study. We conclude our papers with future research 
direction in Section 8. 

2. RELATED RESEARCH 

Our work is related to embedded system, complex system 
diagnosis, and network science.  Struss et. al. (2010) 

Lu et al. This is an open-access article distributed under the terms of the
Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided
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compiled a special issue on the recent advancements of 
model-based diagnosis in which (Wang & Provan, 2010) 
describes the automated benchmark diagnostic model 
generator, with various domain, topology and system-level 
behaviors, based on the graphical model approach of 
network science. The benchmark models generated in 
(Wang & Provan, 2010) can be provided as the input to our 
methodology for fault detection, isolation and mitigation 
analysis.  

Simonot-Lion (2009) is another special issue compiling 
recent advancements in the area of in-vehicle embedded 
system. Zeng et al., (2009) describes a stochastic analysis 
framework for the end-to-end latency of distributed real-
time systems and demonstrated the experimental results on 
Controller Area Network (CAN).  This work focuses on 
simulation and analysis of probability distribution for end-
to-end latency analysis of active safety functions on 
vehicles.  Our work, on the other hand, focuses on design 
and diagnosis.  

Our proposed new measures for quantifying EES 
complexity and maintainability is based on betweenness 
centrality measures in network science. Brandes (2008) 
gives a comprehensive survey and contrasts most recent 
variants of betweenness centrality.  Our proposed new 
measures are inspired from our layered EES network; 
therefore, there is no compatible measures in the state-of-
the-art as surveyed in (Brandes, 2008). The measures closest 
to ours are those described in (Borgatti, 2005; Flom et. al., 
2004). However, their works do not consider multi-partite, 
multi-attributes layered networks.  In general, these works 
focus on social network analysis and has no mentioning of 
fault-isolation and fault-mitigation analysis. 

3. LAYERED NETWORK MODELING 

By taking the holistic approach to model in-vehicle EES, we 
make the following modeling assumptions to construct the 
layered, multi-partite, multi-attribute network for analyzing 
an EES system.  

1. Each network layer models one aspect of EES; for 
example, physical network layer represents physical 
wiring connections of ECUs, functional network layer 
represents relations of software functions among ECUs, 
message network layers models message flows among 
ECUs, and so on.   

2. Nodes can be annotated with node types.   Designation 
of node type leads to partitions of nodes where nodes in 
the same partitions do not have edges; for example, one 
ECU node is not directly linked to another ECU node, 
but via Message nodes in a message network layer. 

3. Nodes can be annotated with node attributes to 
represent their special characteristics. Node attributes 
are usually defined orthogonally to node types; nodes 
with the same node type may have different node 

attributes, and similarly nodes with different types may 
have the same node attribute. For example, node 
attributes {Sending, Receiving} can be used to annotate 
nodes across node types {ECU, Message}. 

4. Edges within the layered network can be annotated with 
edge attributes where the value of an attribute typically 
represents the types of information flowing between 
nodes. For example, a feature node may have an edge to 
another feature node with edge attributes {data, 
frequency} in the dataflow network.  

5. Edges across different layers typically represent 
dependency or identity relations. For example, the same 
hardware ECU node may appear in both electrical and 
physical sub-networks which warrant across layer 
edges. 

Formally, we consider a graph G=(N,E) consists of a 
nonempty countable set of nodes N and a set of directed or 
undirected edges E  N×N. A multipartite graph is a graph 
where N is divided into nonempty disjoint subsets (called 
Parts) and no two nodes in the same subset have an edge 
connecting them.  Nodes can be associated with a vector of 
node attributes NA; similarly, edges can be associated with a 
vector of edge attributes EA. Part is imposed by topological 
structure, whereas attribute is primarily augmented for the 
semantic aspect of a node.  A layered, multi-partite, multi-
attribute EES network consists of layers of multi-partite, 
multi-attribute graphs where node types correspond to parts, 
and edges across layers represent dependency or identity 
relations for entities in different layers. Figure 1 shows an 
example layered network of in-vehicle EES layered 
network. 

  

Figure 1: An example layered EES network consists of 
layers of electrical, physical, functional, message, and 
dataflow sub-networks; relation within each layers are 
shown to the right; dependency and identify relations across 
layers are summarized into double arrows across layers of 
sub-networks. Note that across layer links are not restricted 
to neighboring layers only. 
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4. BETWEENNESS CENTRALITY 

Betweenness centrality is defined in social network analysis 
to quantify the importance to which a node has control over 
pair-wise connections between other nodes, based on the 
assumption that the importance of connections is equally 
divided among all shortest paths for each pair (Freeman, 
1978). The betweenness centrality  for a node  
is defined as follows. 

∑ , 

where  is the total number of shortest paths between  
and , and  is the number of such shortest paths that 
pass through the node  .  The  can be scaled between 
0 and 1 using | |  where |N| is the number of nodes in the 
graph.  Correspondingly, the betweenness centrality  
for an edge  is defined as the number of shortest paths 
passing through the edge, i.e., ∑ . The 

 could be normalized between 0 and 1 
using 

| | | | /
. 

Recognizing the rich semantics in the layered EES network, 
we develop novel multi-partite, multi-attribute betweenness 
centrality to account for node types and attributes in the 
layered in-vehicle EES network. 

4.1. Multi-partite Betweenness Centrality 

In the layered EES network, each node and edge can have 
different types and attributes which warrant further 
constraints on how betweenness centrality can be defined 
when considering different semantic meaning of shortest 
paths in the layered EES network. We propose three 
different multipartite betweenness centrality measures based 
on the constraints on node types (parts) in the network. 

We first define the homogeneous multipartite betweenness 
centrality   for a node  , where  is a part 

 , is defined as follows: 

∑    , 

where  is the total number of shortest paths between  
and , given that nodes , , and  are all in the same part 

 , and  is the number of such shortest paths that 
pass through the node . This is to constrain the shortest 
paths such that the starting and ending nodes are the same 
node types (in the same part) as the one of the intermediate 
node.  For example, an ECU node linked to another ECU 
node via a gateway ECU with some message nodes along 
the path.  

Next, we define the bi-mode multipartite betweenness 
centrality where the starting and ending nodes are the same 
part but different from the part of the intermediate node. The 

bi-mode multipartite betweenness centrality  for a 
node  is: 

    ,   ,   

, 

where  is the total number of shortest paths between  
and  that are in the same part, but are different from the part 
of the node , and  is the number of such shortest 
paths that pass through  . One example use of this measure 
is to consider a message node  sitting on the paths of 
communications between two different ECU nodes.  

We define the heterogeneous multipartite betweenness 
centrality for a node  for a node  as follows: 

     , ,   

, 

where  is the total number of shortest paths between  
and  that are in different parts and not in the same part as 
the node    , and  is the number of 
such shortest paths that pass through  .  This measure 
assumes that there are at least three parts defined in the 
network.   One example use of such measure could be 
finding out the betweenness for a node in functional layer 
and starting and ending nodes are in the layers of message 
and physical networks. 

4.2. Multi-attribute Betweenness Centrality 

To account for attributes orthogonal to topological 
definition of parts, we define homogeneous multi-attribute 
betweenness centrality ,  and negated multi-attribute 
betweenness centrality ,  for a node  and an 
attribute  as follows: 

,
,  

, 

where  is the total number of shortest paths between  
and , given that nodes , , and  has the same values for the  
attribute  (i.e., ), and  is the 
number of such shortest paths that pass through  ; and 

,
, ,  

, 

where  is the total number of shortest paths between  
and  , given that nodes  and  has the same values for the  
attribute  (i.e., ) but they have different values 
from node  ( . . , ), and  is the number of 
such shortest paths that pass through . 

Similarly, the multi-attribute betweenness centrality, 
,  and ,  for an edge  and an attribute 
, can be defined as those for the nodes. One example 
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Figure 5: An example functional network depicting relations 
between virtual devices (green nodes) and ECUs (yellow 
nodes).   

7. AN EXAMPLE STUDY 

To demonstrate the values of proposed methods, we show 
our analysis on an example layered EES network.  We first 
show how consideration of different node types may lead to 
different views of the importance of a node.  We next show 
the effect of usage-based node failures based on different 
node types.  Finally, we show simulation of sequential 
failures for fault-mitigation analysis. 

We apply multi-partite betweenness centrality on the 
network depicted in Figure 5.  We show the distributions of 
betweenness centrality for each part in Figure 6 and Figure 
7. 

We simulate the failures and inspect the changes of 
betweenness centrality measures.  Figure 8 show an 
example of changes in the distribution of betweenness 
centrality for failing the top three ECUs. Nodes with 
increasing betweenness centrality after the failures can be 
considered as survival nodes that can carry out functions of 
failed nodes (e.g., Node9 and Node17 in Figure 8).   

 
Figure 6: An example distribution of betweenness centrality 
in functional network.   The distribution shows the top 59 
ECU (out of 102) with above average betweenness 
centrality.  

Figure 7: An example distribution of betweenness centrality 
for VD part in functional network. The distribution shows 
the top 10 VDs (out of 482) with above betweenness 
centrality. 
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Figure 8: An example of changes in the distribution of 
betweenness centrality by failing the top 3 ranking ECU. 
The original ECU betweenness centrality is charted along 
with their new distribution after each simulated failures 
(Fail1, Fail2, and Fail3).  

8. CONCLUSION 

The network-theory based approach reported in this paper 
provides a first step toward integrated fault detection, 
isolation, and mitigation analysis capabilities for in-vehicle 
embedded electrical and electronic systems (EES). We 
apply layered network modeling over EES to build a layered 
multi-partite, multi-attribute network which represents 
physical, structural, functional, and data-flow aspects of in-
vehicle EES.  We employ two failure strategies to simulate 
failures and analyze the effects using betweenness centrality 
measures.  We develop novel multi-partite, multi-attribute 
betweenness centrality to account for the effects of failures 
and to quantify complexity, maintainability, and robustness 
of EES.  We provided an example to demonstrate our 
proposed methodology.  
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ABSTRACT

Model-based prognostics approaches capture system knowl-
edge in the form of physics-based models of components that
include how they fail. These methods consist of a damage
estimation phase, in which the health state of a component is
estimated, and a prediction phase, in which the health state is
projected forward in time to determine end of life. However,
the damage estimation problem is often multi-dimensional
and computationally intensive. We propose a model decom-
position approach adapted from the diagnosis community,
called possible conflicts, in order to both improve the com-
putational efficiency of damage estimation, and formulate a
damage estimation approach that is inherently distributed.
Local state estimates are combined into a global state esti-
mate from which prediction is performed. Using a centrifugal
pump as a case study, we perform a number of simulation-
based experiments to demonstrate the approach.

1. INTRODUCTION

Model-based prognostics approaches capture knowledge of
how a system and its components fail through the use of
physics-based models that capture the underlying physical
phenomena (Daigle & Goebel, 2010b; Saha & Goebel, 2009;
Luo, Pattipati, Qiao, & Chigusa, 2008). Model-based prog-
nostics algorithms consist of two parts: (i) damage estima-
tion, which is fundamentally a joint state-parameter estima-
tion problem, and (ii) prediction, which projects the current
joint state-parameter estimate forward in time to determine
end of life (EOL). In (Daigle & Goebel, 2011), we developed
a prognostics framework using particle filters for the damage
estimation step that handles several simultaneously progress-
ing damage processes. However, the approach may not scale

Daigle et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

well as the number of damage processes to track (i.e., the di-
mension of the system) increases.
In this paper, we improve both the scalability and the com-
putational efficiency of the damage estimation task by ex-
ploiting structural model decomposition (Williams & Mil-
lar, 1998), similar to methods developed within the diagno-
sis community (Bregon, Pulido, & Biswas, 2009; Roychoud-
hury, Biswas, & Koutsoukos, 2009; Staroswiecki & Declerck,
1989). In particular, we adopt the possible conflicts (PCs)
approach (Pulido & Alonso-González, 2004). PCs decom-
pose a global system model into minimal overdetermined
subsystems (local submodels) for fault detection and isola-
tion (Pulido & Alonso-González, 2004). PCs have also been
used to formulate smaller estimation tasks for fault identifi-
cation (Bregon, Pulido, & Biswas, 2009). In general, PCs
can be used to automatically decompose a global joint state-
parameter estimation task into a set of local estimation tasks
that are easier to solve and require less overall computation.
We use the PC approach to derive a minimal set of submod-
els and define a local damage estimation task for each one.
Every local estimator computes a local joint state-parameter
estimate, represented as a probability distribution. Then, the
local estimates are merged into a global estimate from which
prediction is performed in the typical way (Daigle & Goebel,
2011).
The models are decomposed into independent submodels by
using measured signals as local inputs. Therefore, each local
estimator operates independently, and the damage estimation
becomes naturally distributed. Clearly then, this approach es-
tablishes a formal basis for distributed prognostics. This is in
contrast to other proposed distributed prognostics approaches,
e.g. (Saha, Saha, & Goebel, 2009), which still treat the prog-
nostics problem as a global one in which only the computation
is distributed, whereas we propose to decompose the global
problem into a set of local ones for which computation may
be trivially distributed.

1
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Figure 1. Prognostics architecture.

We demonstrate our prognostics methodology on a centrifu-
gal pump. Centrifugal pumps appear in a variety of domains
and often need to be operated for long time periods, hence di-
agnostics and prognostics become critical to ensuring contin-
ued operation that meets performance requirements. We ap-
ply our model-based prognostic approach based on structural
model decomposition to centrifugal pumps using a number of
simulation-based experiments when multiple damage mecha-
nisms are active, and compare to results using the global esti-
mation approach presented in (Daigle & Goebel, 2011).
The paper is organized as follows. Section 2 formally defines
the prognostics problem and describes the prognostics archi-
tecture. Section 3 describes the modeling methodology and
develops the centrifugal pump model for prognostics. Sec-
tion 4 presents the model decomposition approach and pro-
vides results for the pump model. Section 5 describes the par-
ticle filter-based local damage estimation method. Section 6
discusses the prediction methodology. Section 7 provides re-
sults from simulation-based experiments and evaluates the ap-
proach. Section 8 concludes the paper.

2. PROGNOSTICS APPROACH

The goal of prognostics is the prediction of EOL and/or re-
maining useful life (RUL) of a component. In this section,
we first formally define the problem of prognostics. We then
describe the model-based prognostics architecture based on
structural model decomposition.

2.1 Problem Formulation

In general, we define a system model as

ẋ(t) = f(t,x(t),θ(t),u(t),v(t))

y(t) = h(t,x(t),θ(t),u(t),n(t)),

where t ∈ R is a continuous time variable, x(t) ∈ Rnx is the
state vector, θ(t) ∈ Rnθ is the parameter vector, u(t) ∈ Rnu

is the input vector, v(t) ∈ Rnv is the process noise vec-
tor, f is the state equation, y(t) ∈ Rny is the output vector,
n(t) ∈ Rnn is the measurement noise vector, and h is the
output equation. The parameters θ(t) evolve in an unknown
way.
The goal is to predict EOL (and/or RUL) at a given time
point tP using the discrete sequence of observations up to
time tP , denoted as y0:tP . The component must meet a
given set of functional requirements. We say the compo-
nent has failed when it no longer meets one of these require-
ments. In general, we may capture this boundary on accept-
able component behavior using a threshold that is a func-
tion of the system state and parameters, TEOL(x(t),θ(t)),
where TEOL(x(t),θ(t)) = 1 if the system has failed and
TEOL(x(t),θ(t)) = 0 otherwise. Using TEOL, we formally
define EOL with

EOL(tP ) , inf{t ∈ R : t ≥ tP ∧ TEOL(x(t),θ(t)) = 1},
i.e., EOL is the earliest time point at which the damage thresh-
old is met. RUL is then

RUL(tP ) , EOL(tP )− tP .

Due to the noise terms v(t) and n(t), and uncertainty
in the future inputs of the system, we at best compute
only a probability distribution of the EOL or RUL, i.e.,
p(EOL(tP )|y0:tP ) or p(RUL(tP )|y0:tP ).

2.2 Prognostics Architecture

In our model-based approach, we develop detailed physics-
based models of components and systems that include de-
scriptions of how faults and damage evolves in time. These
models depend on unknown parameters θ(t). Therefore,
damage estimation is fundamentally a joint state-parameter
estimation problem. In discrete time k, we jointly estimate
xk and θk, and use these estimates to predict EOL and RUL
at desired time points. Here, we assume that prognostics is

2
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Figure 2. Centrifugal pump.

not aided by a fault diagnosis module, and so we must jointly
estimate all possible damage modes.
We employ the prognostics architecture in Fig. 1. The sys-
tem is provided with inputs uk and provides measured out-
puts yk. The damage estimation module takes as input both
uk and yk, and produces the estimate p(xk,θk|y0:k). In this
work, we decompose the global damage estimation problem
into several subproblems based on model decomposition, as
shown in Fig. 1. A model decomposition algorithm splits the
global model into n submodels,M1,M2, . . . ,Mn. We con-
struct for each submodelMi a local estimator that performs
damage estimation. Each estimator has input ui

k ⊆ uk and
yi
k ⊆ yk and produces the local state estimate p(xi

k,θ
i
k|yi

0:k),
where xi

k ⊆ xk and θi
k ⊆ θk. Note that for two submod-

elsMi andMj , in general it is possible that xi
k ∩ xj

k 6= ∅
and θi

k ∩ θj
k 6= ∅. The local estimates are merged into the

global estimate p(xk,θk|y0:k). The prediction module uses
this joint state-parameter distribution, along with hypothe-
sized future inputs, to compute EOL and RUL as probabil-
ity distributions p(EOLkP |y0:kP ) and p(RULkP |y0:kP ) at
given prediction times kP .

3. PUMP MODELING

We apply our prognostics approach to a centrifugal pump, and
develop a physics-based model of its nominal and faulty be-
havior. Centrifugal pumps are used in a variety of domains
for fluid delivery. A schematic of a typical centrifugal pump
is shown in Fig. 2. Fluid enters the inlet, and the rotation of
the impeller, driven by an electric motor, forces fluid through
the outlet. Radial and thrust bearings, along with lubricating
oil contained within the bearing housing, helps to minimize
friction along the pump shaft. Wear rings prevent internal
pump leakage from the outlet to the inlet side of the impeller,
but a small clearance is typically allowed to minimize fric-
tion (a small internal leakage is normal). We review here the
main features of the model, and refer the reader to (Daigle &
Goebel, 2011) for details.
The state of the pump is given by

x(t) =
[
ω(t) Tt(t) Tr(t) To(t)

]T
,

where ω(t) is the rotational velocity of the pump, Tt(t) is the
thrust bearing temperature, Tr(t) is the radial bearing temper-
ature, and To(t) is the oil temperature.
The rotational velocity of the pump is described using a
torque balance,

ω̇ =
1

J
(τe(t)− rω(t)− τL(t)) ,

where J is the lumped motor/pump inertia, τe is the electro-
magnetic torque provided by the motor, r is the lumped fric-
tion parameter, and τL is the load torque.
We assume the pump is driven by an induction motor with
a polyphase supply. A torque is produced on the rotor only
when there is a difference, i.e., a slip, between the syn-
chronous speed of the supply voltage, ωs and the mechanical
rotation, ω. Slip, s, is defined as

s =
ωs − ω
ωs

.

The expression for the torque τe is derived from an equiva-
lent circuit representation for the three-phase induction mo-
tor, based on rotor and stator resistances and inductances and
the slip s (Lyshevski, 1999):

τe =
npR2

sωs

V 2
rms

(R1 +R2/s)2 + (ωsL1 + ωsL2)2
,

where R1 is the stator resistance, L1 is the stator inductance,
R2 is the rotor resistance, L2 is the rotor inductance, n is the
number of phases, and p is the number of magnetic pole pairs.
The dependence of torque on slip creates a feedback loop that
causes the rotor to follow the rotation of the magnetic field.
The rotor speed may be controlled by changing the input fre-
quency ωs.
The load torque τL is a polynomial function of the flow
rate through the pump and the impeller rotational veloc-
ity (Kallesøe, 2005):

τL = a0ω
2 + a1ωQ− a2Q2,

whereQ is the flow, and a0, a1, and a2 are coefficients derived
from the pump geometry (Kallesøe, 2005).
The rotation of the impeller creates a pressure difference from
the inlet to the outlet of the pump, which drives the pump flow,
Q. The pump pressure is computed as

pp = Aω2 + b1ωQ− b2Q2,

where A is the impeller area, and b1 and b2 are coefficients
derived from the pump geometry. Flow through the impeller,
Qi, is computed using the pressure differences:

Qi = c
√
|ps + pp − pd|sign(ps + pp − pd),

where c is a flow coefficient, ps is the suction pressure, and
pd is the discharge pressure. The small (normal) leakage flow

3
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from the discharge end to the suction end due to the clearance
between the wear rings and the impeller is described by

Ql = cl
√
|pd − ps|sign(pd − ps),

where cl is a flow coefficient. The discharge flow, Q, is then

Q = Qi −Ql.

Pump temperatures are monitored as indicators of pump con-
dition. The oil heats up due to the radial and thrust bearings
and cools to the environment:

Ṫo =
1

Jo
(Ho,1(Tt − To) +Ho,2(Tr − To)

−Ho,3(To − Ta)),

where Jo is the thermal inertia of the oil, and the Ho,i terms
are heat transfer coefficients. The thrust bearings heat up due
to the friction between the pump shaft and the bearings, and
cool to the oil and the environment:

Ṫt =
1

Jt
(rtω

2 −Ht,1(Tt − To)−Ht,2(Tt − Ta)),

where Jt is the thermal inertia of the thrust bearings, rt is the
friction coefficient for the thrust bearings, and the Ht,i terms
are heat transfer coefficients. The radial bearings behave sim-
ilarly:

Ṫr =
1

Jr
(rrω

2 −Hr,1(Tr − To)−Hr,2(Tr − Ta)),

where the parameters here take on analogous definitions.
The overall input vector u is given by

u(t) =
[
ps(t) pd(t) Ta(t) V (t) ωs(t)

]T
.

The measurement vector y is given by

y(t) =
[
ω(t) Q(t) Tt(t) Tr(t) To(t)

]T
.

Fig. 3 shows nominal pump operation. The input voltage (and
frequency) are varied to control the pump speed. The electro-
magnetic torque is produced initially as slip is 1. This causes
a rotation of the motor to match the rotation of the magnetic
field, with a small amount of slip remaining, depending on
how large the load and friction torques are. As the pump ro-
tates, fluid flow is created. The bearings heat up as the pump
rotates and cool when the pump rotation slows.

3.1 Damage Modeling

For the purposes of prognostics, the model must include dam-
age variables d ⊆ x representing the amount of particular
forms of damage. The most significant forms of damage for
pumps are impeller wear, caused by cavitation and erosion by
the flow, and bearing failure, caused by friction-induced wear
of the bearings. In each case, we map the damage to a par-
ticular parameter in the nominal model, and this parameter
becomes a state variable in d(t). The evolution of these dam-
age variables is described by damage progression equations,
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Figure 3. Nominal pump operation.

which are included in the state equation f . These equations
are parameterized by unknown wear parameters w ⊆ θ.
Impeller wear is represented as a decrease in effective im-
peller area A (Biswas & Mahadevan, 2007; Daigle & Goebel,
2011). We use the erosive wear equation (Hutchings, 1992):

Ȧ(t) = −wAQ
2
i ,

where wA is a wear coefficient. A decrease in the impeller
area will decrease the pump pressure, which, in turn, reduces
the delivered flow, and, therefore, pump efficiency. The pump
must operate at a certain minimal efficiency, defining an EOL
criteria. We define A− as the minimum value of the impeller
area at which this requirement is met, hence, TEOL = 1 if
A(t) < A−.
Bearing wear is captured as an increase in friction. Sliding
and rolling friction generate wear of material which increases
the effective coefficient of friction (Hutchings, 1992; Daigle
& Goebel, 2010b, 2011):

ṙt(t) = wtrtω
2,

ṙr(t) = wrrrω
2,

where wt and wr are the wear coefficients. The slip com-
pensation provided by the electromagnetic torque generation
will mask small changes in friction, but these changes can be
observed using the bearing temperatures. Limits on the max-
imum values of these temperatures define EOL for bearing
wear. We define r+t and r+r as the maximum permissible val-
ues of the friction coefficients, before the temperature limits
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Figure 4. System graph and minimal subgraphs of the pump.

are exceeded over a typical usage cycle. So, TEOL = 1 if
rt(t) > r+t or rr(t) > r+r .
So, the damage variables are given by

d(t) =
[
A(t) rt(t) rr(t)

]T
,

and the full state vector becomes

x(t) =
[
ω(t) Tt(t) Tr(t) To(t) A(t) rt(t) rr(t)

]T
.

The wear parameters form the unknown parameter vector, i.e.,

w(t) = θ(t) =
[
wA wt wr

]T
.

4. MODEL DECOMPOSITION

Especially for nonlinear systems, state and parameter estima-
tion is a nontrivial problem for which no general closed-form
solution exists. In general, these problems may be solved
by numerical optimization methods, where the computational
complexity is exponential in the size of the model, or by
approximate Bayesian filtering methods, like particle filters,
where the computational complexity is only linear in the size
of the sample space, but, the number of sufficient samples
grows with the model size.
Several approaches have been developed to decrease the com-
putational complexity by model decomposition, in which the
global model is decomposed into several independent sub-
models (Staroswiecki & Declerck, 1989; Williams & Millar,

1998). This results in a set of smaller, lower-dimensional es-
timation tasks. We adopt the PC approach for model decom-
position. PCs are minimal subsets of equations with sufficient
analytical redundancy to generate fault hypotheses from ob-
served measurement deviations, and, in previous work, we
used PCs to propose a more robust and computationally sim-
pler parameter estimation approach for fault identification
(Bregon, Pulido, & Biswas, 2009), where the parameter es-
timation task using the entire system model was replaced
by a set of smaller estimation problems (one for each PC).
In this approach, fault identification is fundamentally a joint
state-parameter estimation problem. This is equivalent to the
damage estimation problem in prognostics, only the models
specifically include damage progression. So, in this paper,
we adopt this paradigm for distributed damage estimation.
In order to compute the minimal set of submodels of a sys-
tem, a structural representation of the system model is needed.
In previous work, we computed submodels as PCs using hy-
pergraphs (Pulido & Alonso-González, 2004) or Temporal
Causal Graphs (TCGs) (Bregon, Pulido, & Biswas, 2009) as
inputs. Representations that include computational causal-
ity, like TCGs, are favored because causality allows efficient
derivation of PCs. In this work, we represent the system
model with a directed hypergraph, and use an algorithm close
to the TCG-based algorithm presented in (Bregon, Pulido,
Biswas, & Koutsoukos, 2009).
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The system modelM is represented using a set of functions
F over variables V , where a subset of the variables X ⊆ V
corresponds to the state variables x, a subset Θ ⊆ V corre-
sponds to the unknown parameters θ, a subset U ⊆ V corre-
sponds to the (known) inputs u, and a subset Y ⊆ V corre-
sponds to the (measured) outputs y. For the purposes of the
model decomposition algorithm, we represent M using an
extended directed hypergraph G = (V,E, F ), where V is the
set of vertices corresponding directly to the variables in M,
E is the set of hyperedges of the form (V ′, v) with V ′ ⊆ V
being a set of vertices and v ∈ V being a single vertex, and F
is a map from an edge (V ′, v) ∈ E to a function f ∈ F such
that v = f(v1, v2, . . . , vn) where V ′ = {v1, v2, . . . , vn}. M
and G are equivalent data structures, where the direction of the
edges in G captures the computational causality of the func-
tions in F . The variable sets X , Θ, Y , and U are represented
equivalently in G as vertex sets, and we use yi ∈ Y to refer to
the vertex/variable corresponding to the ith output in y.
Fig. 4a shows the hypergraph G for the pump model described
in Section 3. Individual arrows pointing to the same vertex are
to be interpreted as a single directed hyperedge. State vari-
ables are denoted using dashed circles, and measured vari-
ables are denoted with boxes.
Algorithm 1 computes subgraphs corresponding to PCs from
a system graph G. One PC will be computed for each output
yi ∈ Y . So, for the pump model, there will be five total sub-
models, one each for ω, Q, Tt, Tr, and To. For each vertex
in Y , the algorithm propagates back to members of U and Y ,
which will be used as inputs to the submodel. Vertices which
are not included in U or Y or have not yet been included in
Vi are added to the set vertices for further backward propa-
gation. For example, starting with Tt in Fig. 4a to form the
subgraph shown in Fig. 4d, we propagate to To, a measured
output, at which propagation terminates, and Ṫt. From Ṫt we
propagate back further to the input Ta and the state rt, from
which we propagate to ṙt, from which we propagate to mea-
sured output ω and the unknown parameter wt. All vertices
and edges encountered are added to Vi and Ei, respectively,
and the model equations corresponding to the added edges are
included in the submodel as well. The algorithm forms from
G subgraphs Gi = (Vi, Ei, Fi), which may be easily trans-
lated to submodelsMi. If each v ∈ X ∪Θ is causally linked
to at least one output, then every variable x ∈ X and θ ∈ Θ
will belong to at least one Vi over the set of Gi computed, i.e.,
will belong to at least one submodelMi.
The algorithm decomposes the pump model into 5 submodels,
with their corresponding subgraphs shown as Figs. 4b to 4f.
For example, the Tt subgraph takes as input measurements of
ω and To, and computes the expected value of Tt. Damage
estimation for this submodel will compute estimates of Tt,
rt, and wt. Note that, for the pump model, each state or pa-
rameter will be estimated by exactly one submodel, therefore,
there will be no overlap in the local estimates.

Algorithm 1 {Gi}nyi=1 = Decompose(G)

for i = 1 to ny do
Vi ← {yi}
Ei ← ∅
vertices← {yi}
while vertices 6= ∅ do

v ← vertices{1}
vertices← vertices \ {v}
edges← {(V ′, v) ∈ E : V ′ ⊆ V }
for all (V ′, v) ∈ edges do

for all v′ ∈ V ′ do
if v′ * U and v′ * Y and v′ * Vi then

vertices← vertices ∪ {v′}
end if

end for
Vi ← Vi ∪ V ′

Ei ← Ei ∪ {(V ′, v)}
Fi(V

′, v)← F (V ′, v)
end for

end while
Gi ← (Vi, Ei, Fi)

end for

5. DAMAGE ESTIMATION

In our local estimation scheme, the local estimator for each
submodel Mi produces a local estimate p(xi

k,θ
i
k|y0:k),

where xi
k ⊆ xk and θi

k ⊆ θk. The local estimates are com-
bined into the global state estimate p(xk,θk|y0:k).
Due to the decoupling introduced by the decomposition
scheme, we lose information about the covariance between
states in separate submodels. If these covariances are nom-
inally small, then this information loss is acceptable and the
approximation of the global state estimate obtained by merg-
ing the local state estimates into a global state estimate will
closely approximate the global estimate obtained through a
global damage estimator. Although we lose information due
to the decoupling, the advantage is that the local estimation
tasks are naturally distributed, and therefore, unlike the global
estimation approach, the distributed approach scales well as
the size of the model increases. Further, the local estimation
tasks become easier to solve and should require less compu-
tational resources without sacrificing estimation performance.
This should be the case as long as the sensor measurements
that are used as inputs to the submodels are reliable and do
not exhibit extremely high noise.
A general solution to the problem of damage estimation is the
particle filter, which may be directly applied to nonlinear sys-
tems with non-Gaussian noise terms (Arulampalam, Maskell,
Gordon, & Clapp, 2002). The main disadvantage of the par-
ticle filter is the computational complexity, which is linear
in the amount of samples, or particles, that are used to ap-
proximate the state distribution, as typically a large number
of particles are needed, and the sufficient number of particles
increases with the dimension of the state-parameter space. A
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key advantage of the model decomposition algorithm is that
it creates submodels that are simpler than the global model.
Some of these submodels may be completely linear, and some
may require only state estimation, not joint state-parameter
estimation. If only state estimation is required, the Kalman
filter or one of its nonlinear extensions may be used, which
requires computation on the order of a particle filter using
one particle (e.g., Kalman filter or extended Kalman filter) or
a number of particles linear in the state dimension (e.g., un-
scented Kalman filter (Julier & Uhlmann, 1997)), resulting in
a significant improvement in computational complexity. The
remaining submodels that require joint state-parameter esti-
mation represent several small, low-dimensional estimation
problems that are easier to solve than the global one, there-
fore requiring less computation overall.
In particle filters, the state distribution is approximated by a
set of discrete weighted samples, or particles:

{(x(i)
k ,θ

(i)
k ), w

(i)
k }Ni=1,

where N denotes the number of particles, and for particle i,
x
(i)
k denotes the state vector estimate, θ(i)

k denotes the pa-
rameter vector estimate, and w

(i)
k denotes the weight. The

posterior density is approximated by

p(xk,θk|y0:k) ≈
N∑

i=1

w
(i)
k δ

(x
(i)
k ,θ

(i)
k )

(dxkdθk),

where δ
(x

(i)
k ,θ

(i)
k )

(dxkdθk) denotes the Dirac delta function

located at (x
(i)
k ,θ

(i)
k ).

We use the sampling importance resampling (SIR) particle fil-
ter, using systematic resampling. Each particle is propagated
forward to time k by first sampling new parameter values,
and then sampling new states using the model. The particle
weight is assigned using yk. The weights are then normal-
ized, followed by the resampling step. Pseudocode is pro-
vided in (Arulampalam et al., 2002; Daigle & Goebel, 2011).
The parameters θk evolve by some unknown random process
that is independent of the state xk. To perform parameter esti-
mation within a particle filter framework, we assign a random
walk evolution, i.e., θk = θk−1+ξk−1, where ξk−1 is a noise
vector. During the sampling step, particles are generated with
parameter values that will be different from the current values
of the parameters. The particles with parameter values closest
to the true values should match the outputs better, and there-
fore be assigned higher weight. Resampling will cause more
particles to be generated with similar values, so the particle
filter converges to the true values as the process is repeated
over each step of the algorithm. In general, though, conver-
gence is not always guaranteed.
The selected variance of the random walk noise determines
both the rate of this convergence and the estimation perfor-
mance after convergence. Therefore, this parameter should

be tuned to obtain the best possible performance, but the op-
timal value is dependent on the value of the hidden wear
parameter, which is unknown. We use the variance control
method presented in (Daigle & Goebel, 2011). In this ap-
proach, the variance of the hidden wear parameter estimate is
controlled to a user-specified range by modifying the random
walk noise variance. We assume that the ξ values are tuned
initially based on the maximum expected wear rates. The al-
gorithm uses relative median absolute deviation (RMAD) as
the measure of spread. The adaptation scheme controls the
error between the actual RMAD of a parameter θ(j), denoted
as vj , and the desired RMAD value (e.g., 10%), denoted as
v∗j , using a proportional control strategy governend by a gain
P (e.g., 1 × 10−3). There are two different setpoints. The
first allows for a convergence period, with setpoint v∗j0 (e.g.,
50%). Once vj reaches T (e.g., 1.2v∗j0), a new setpoint v∗j∞
(e.g., 10%) is established. The advantage of this methodol-
ogy is that the random walk variance is automatically tuned to
achieve the best performance for the requested relative spread
for the actual value of the hidden parameter.

6. PREDICTION

Prediction is initiated at a given time kP . In order to obtain a
prediction that is valid for the global state-parameter vector,
we must first combine the local estimates into a global esti-
mate. To do this, we assume that the local and global state
estimates may be sufficiently approximated by a multivari-
ate normal distribution N (µ,Σ). So, for each local state-
parameter distribution i, we obtain the mean µi and covari-
ance matrix Σi. We then combine all of these into a global
mean µ and covariance Σ. If there is overlap in the state-
parameter estimates, i.e., if two submodels both estimate the
same state variable x or parameter θ, then we take the average
value for common means and covariances (alternate strategies
may also be used). The covariance information lost due to the
decoupling will appear as zeros in the global covariance ma-
trix.
We then sample from the global state-parameter distribution
defined byN (µ,Σ) a number of times to obtain a set of sam-
ples that sufficiently approximates the distribution defined by
those parameters, which may each be simulated to EOL. An
alternate approach is to use the unscented transform to de-
terministically select the minimal number of samples from
this distribution that capture the statistical moments as de-
scribed in (Daigle & Goebel, 2010a). Although the latter
method is computationally more efficient, we use the former
method here in order to obtain a fair comparison to the re-
sults presented for the global estimation approach in (Daigle
& Goebel, 2011).
Using the global joint state-parameter estimate at kP ,
p(xkP ,θkP |y0:kP ), which represents the current knowl-
edge of the system at time kP , the goal is to compute
p(EOLkP |y0:kP ) and p(RULkP |y0:kP ). As discussed in
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Algorithm 2 EOL Prediction

Inputs: {(x(i)
kP

,θ
(i)
kP

), w
(i)
kP
}Ni=1

Outputs: {EOL
(i)
kP

, w
(i)
kP
}Ni=1

for i = 1 to N do
k ← kP
x
(i)
k ← x

(i)
kP

θ
(i)
k ← θ

(i)
kP

while TEOL(x
(i)
k ,θ

(i)
k ) = 0 do

Predict ûk

θ
(i)
k+1 ∼ p(θk+1|θ(i)

k )

x
(i)
k+1 ∼ p(xk+1|x(i)

k ,θ
(i)
k , ûk)

k ← k + 1
x
(i)
k ← x

(i)
k+1

θ
(i)
k ← θ

(i)
k+1

end while
EOL

(i)
kP
← k

end for

Section 5, the particle filter computes

p(xkP ,θkP |y0:kP ) ≈
N∑

i=1

w
(i)
kP
δ
(x

(i)
kP

,θ
(i)
kP

)
(dxkP dθkP ).

We can approximate a prediction distribution n steps forward
as (Doucet, Godsill, & Andrieu, 2000)

p(xkP+n,θkP+n|y0:kP ) ≈
N∑

i=1

w
(i)
kP
δ
(x

(i)
kP+n,θ

(i)
kP+n)

(dxkP+ndθkP+n).

So, for a particle i propagated n steps forward without new
data, we may take its weight as w(i)

kP
. Similarly, we can ap-

proximate the EOL as

p(EOLkP |y0:kP ) ≈
N∑

i=1

w
(i)
kP
δ
EOL

(i)
kP

(dEOLkP ).

To compute EOL, then, we simulate each particle forward
to its own EOL and use that particle’s weight at kP for
the weight of its EOL prediction. The pseudocode for the
prediction procedure is given as Algorithm 2 (Daigle &
Goebel, 2010b). Each particle i is propagated forward until
TEOL(x

(i)
k ,θ

(i)
k ) evaluates to 1. The algorithm hypothesizes

future inputs of the system, ûk. In this work, we consider the
situation where a single future input trajectory is known.

7. RESULTS

We performed a number of simulation-based experiments to
analyze the performance of the prognostics approach using
local damage estimation. For the purposes of comparison, we
include results from the global estimation approach. For the
local estimation approach, we use the five submodels derived

in Section 4, where the three submodels associated with dam-
age models use particle filters for joint state-parameter esti-
mation, and the remaining two submodels, which require only
state estimation, use extended Kalman filters. The global ap-
proach used N = 500, so when the three local particle filters
each use N = 167, the total computational cost is equivalent
to that of the global particle filter. We try also N = 100 and
N = 50 to observe the changes in performance when less to-
tal computation is performed. Since the local estimators use
measured values as inputs, performance will degrade as sen-
sor noise is increased. We varied the sensor noise variance by
factors of 1, 10, 100, and 1000, to explore this situation.
In a single experiment, combinations of wear parameter val-
ues were selected randomly within a range. We selected the
true wear parameter values in [1 × 10−3, 4 × 10−3] for wA,
and in [1 × 10−11, 7 × 10−11] for wt and wr, such that the
maximum wear rates corresponded to a minimum EOL of 20
hours. The local estimators had to estimate both the local
states and the local unknown wear parameters. In all exper-
iments, we used T = 60%, v∗0 = 50%, v∗∞ = 10%, and
P = 1 × 10−4 for the variance control algorithm. We per-
formed 20 experiments for each value of N and sensor noise
level. We considered the case where the future input of the
pump is known, and it is always operated at a constant RPM,
in order to limit the uncertainty to only that involved in the
noise terms and that introduced by the filtering algorithms.
The averaged estimation and prediction performance results
are shown in Table 1. The part of the table with |M| = 1
corresponds to results using the global model. The column
labeled N lists the number of particles used per submodel,
and the column labeled n lists the sensor noise variance
multipliers. Here, we use percent root mean square error
(PRMSE) as a measure of estimation accuracy, relative ac-
curacy (RA) (Saxena, Celaya, Saha, Saha, & Goebel, 2010)
as a measure of prediction accuracy, and RMAD as a mea-
sure of spread. Each are averaged over multiple prediction
points for a single scenario (see (Saxena et al., 2010; Daigle &
Goebel, 2011) for the mathematical definitions of the metrics
used here). Note that all metrics are expressed as percentages.
We can see that in the case where N = 167, for the same
amount of computation, the local estimation approach obtains
results very close to the global approach for damage estima-
tion accuracy. In some cases, performance is slightly bet-
ter, and in other cases, slightly worse. At the highest noise
level, the local approach improves significantly for estima-
tion of wA. This is mostly due to the convergence proper-
ties of the global approach. It tends to converge with much
more difficulty than the local approach for the same amount
of noise. RMADs of the wear parameters are also quite evenly
matched. Here again, in some cases the local approach is
slightly better, and in others slightly worse. As the sensor
noise increases, the variance is naturally larger and more dif-
ficult to control, resulting in the increase in RMAD as sen-
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Table 1. Estimation and Prediction Performance

|M| N n PRMSEwA PRMSEwt PRMSEwr RMADwA RMADwt RMADwr RA RMADRUL

1 500 1 3.70 3.58 2.54 11.58 11.27 10.03 97.28 11.61

1 500 10 4.15 2.81 2.74 12.25 11.48 10.63 96.58 12.34

1 500 100 6.30 3.46 3.23 13.46 12.38 11.59 94.69 14.09

1 500 1000 12.93 6.25 5.29 13.92 12.99 12.64 79.37 15.32

5 167 1 3.19 2.61 2.88 12.26 10.85 10.76 96.61 12.01

5 167 10 3.66 2.90 3.56 12.69 11.09 11.85 95.28 13.32

5 167 100 4.44 3.39 3.78 13.05 11.78 12.56 93.17 14.57

5 167 1000 5.59 4.46 8.26 14.72 12.86 15.09 87.66 16.19

5 100 1 4.02 3.49 3.49 12.42 10.68 10.77 95.90 12.15

5 100 10 4.52 3.78 4.27 12.69 11.04 11.45 95.16 13.30

5 100 100 5.71 4.02 6.05 12.99 11.81 12.73 91.82 14.74

5 100 1000 9.06 4.76 6.91 13.83 12.15 13.92 79.90 16.40

5 50 1 5.66 4.98 5.19 12.33 10.41 10.39 94.59 12.39

5 50 10 6.12 4.92 6.29 12.41 10.71 11.21 93.44 12.99

5 50 100 7.43 6.08 8.24 12.94 11.16 11.91 90.05 14.19

5 50 1000 14.03 9.33 14.41 12.90 11.66 12.46 73.05 13.62

sor noise increases for both approaches. As the number of
particles used in the local approach is reduced, accuracy de-
creases, as expected, but not significantly. The RMADs actu-
ally generally decrease as the number of particles is reduced,
corresponding to increased precision at the cost of decreased
accuracy.
Prediction performance corresponds to the change in dam-
age estimation performance. More accurate damage estimates
correspond to higher RA, and increases in spread of the wear
parameters leads to increases of the spread of the RUL. For
N = 167, the performance is slightly worse, but still com-
parable to the global estimation approach, even though some
of the covariance information in the global state estimate was
lost due to the decoupling. At the highest noise level, the local
approach has significantly better accuracy. This is due to the
relatively poor convergence behavior of the global approach,
leading to inaccurate early predictions that bring down the av-
eraged RA. As N decreases, so that less total computation is
being performed, accuracy reduces, but so does spread. For
N = 100, less computation is performed with only a small
change in performance. As N is reduced further to 50, per-
formance begins to degrade. Moreover, as sensor noise in-
creases, the local approach can lose its advantage over the
global approach, and this occurs when N is reduced to 50.
For N = 50 and the nominal amount of sensor noise, com-
parable prognostics performance is achieved to the global ap-
proach with less than a third of the computation. We expect
the benefits of the local approach to be more pronounced as

the dimension of the state-parameter space increases.

8. CONCLUSIONS

In this paper, we developed a novel distributed damage esti-
mation approach for model-based prognostics that is based on
a formal framework for structural model decomposition. Us-
ing the concept of PCs, a system model is decomposed into a
set of minimal submodels. A local damage estimation prob-
lem is defined for each submodel. Local state-parameter es-
timates obtained using an appropriate filter are merged into
a global state-parameter estimate from which EOL predic-
tions are computed. Results demonstrate that equivalent, or in
some cases, better prognostics performance can be achieved
using this methodology with less computation than a global
approach. Further, the approach can be naturally distributed
and therefore may serve as a fundamental aspect of a practical
system-level prognostics approach.
The idea of using model decomposition to improve state
and parameter estimation is not new. For example, sub-
space methods (Katayama, 2005) for system identification
employ QR-factorization and singular-value decomposition
(Overschee & Moor, 1996) for solving identification prob-
lems in large-dimension systems. These methods are nu-
merically robust for linear systems. Recently, several ex-
tensions have been proposed that apply to nonlinear systems
(e.g., (Westwick & Verhaegen, 1996)). However, methods
to automatically derive the decomposition from the system
model have not been addressed.
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An approach for decomposing a system model into smaller
hierarchically organized subsystems, called dissents, is de-
scribed in (Williams & Millar, 1998). PCs are conceptu-
ally equivalent to dissents, and previous work applied PCs
for model decomposition to generate a more robust and com-
putationally simpler parameter estimation approach for fault
identification (Bregon, Pulido, & Biswas, 2009). Simulation
results in that case showed an improvement in estimation ac-
curacy while having a faster convergence to true solutions.
Similar work was proposed in (Roychoudhury et al., 2009)
using a dynamic Bayesian network (DBN) modeling frame-
work, in which an automatic approach for model decompo-
sition into factors based on structural observability was de-
veloped for efficient state estimation and fault identification.
This approach also obtained an improvement in state esti-
mation efficiency without compromising estimation accuracy.
The relation between both approaches has been established in
(Alonso-Gonzalez, Moya, & Biswas, 2010), where DBNs are
derived from PCs for the purposes of estimation.
In future work, we will investigate extensions to system-level
and distributed prognostics. For one, the model decomposi-
tion algorithm suggests a sensor placement strategy to opti-
mize the decomposition of a system-level model into inde-
pendent component models. One need only place sensors at
the inputs and outputs of components to ensure that compo-
nent models may be decoupled. The submodels derived from
the PC approach are minimal in that, for a given output, they
contain only the subset of the model required to compute that
output as a function of only inputs and other measured out-
puts. Nonminimal submodels may be formed by merging
minimal submodels, and this may be desired in some cases,
e.g., if it eliminates using some high-noise sensors as inputs.
This forms part of a more generalized model decomposition
framework under development. As described in the paper,
distributed damage estimation is an essential part of a dis-
tributed model-based prognostics architecture. The computa-
tion associated with the prediction problem in our approach
can be trivially distributed (via parallel EOL simulations), but
in future work, we would like to develop a decomposition of
the prediction problem into local prediction problems for a
fully distributed prognostics architecture.
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ABSTRACT
Ocean waves can provide a renewable and secure energy sup-
ply to coastal residents around the world. Yet, to safely har-
ness and convert the available energy, issues such as bearing
reliability and maintainability need to be resolved. This paper
presents the application of a Prognostics and Health Manage-
ment (PHM) based research methodology to derive empirical
models for estimating the wear of polymer bearings installed
on wave energy converters. Forming the foundation of the
approach is an applicable wave model, sample data set, and
experimental test stand to impose loading conditions similar
to that expected in real seas. The resulting wear rates were
found to be linear and stable, enabling coarse health estima-
tions of the bearing surface.

1. INTRODUCTION

Aggressive development of new energy resources for an ever
growing human population is currently underway, and ocean
waves have shown promise as a viable source of renewable
energy. The interest in offshore power production is due in
no small part to the proximity of consumers: over the next
15 years, 75% of the world’s population is projected to live
within 200 km of the coast (Hinrichsen, 1999), while the
worldwide resource has been conservatively estimated to con-
tain 200 - 500 GW of economically extractable energy (Cruz,
2008). Yet, designing, installing, operating, and maintain-
ing systems to harness this renewable energy is an extremely
complex problem from multiple standpoints. From an engi-
neer’s perspective, the most immediate and challenging prob-
lems revolve around device reliability and survivability within
the marine environment.

Located in extremely energetic wave climates, a wave en-
ergy converter (WEC) is subjected to an array of loads and
millions of oscillatory cycles per year. Depending on the de-
vice, certain components will deteriorate more rapidly than
others, particularly the bearing surfaces that many WEC de-
signs rely upon. Here, prognostic and health management
(PHM) techniques can help create a strategy to cultivate in-
formation for predicting bearing degradation. These tech-

Michael T. Koopmans et.al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

niques are important because often times the quality of the
bearing surface directly affects the total cost of the device in
terms not limited to 1) power take-off efficiency, 2) scheduled
and/or non-scheduled maintenance, and 3) device survivabil-
ity. Hence, the success of research efforts to assess and man-
age WEC reliability remains a critical step to the growth of
the ocean renewable energy market.

Therefore, to help contextualize the problem and aid in
WEC component-level experiments, system health research
methods within the PHM community (Vachtsevanos, Lewis,
Roemer, Hess, & Wu, 2006) were sought. A WEC’s complex-
ity, although not as involved as other complex systems such
as aircraft, automobiles, or a submarine, is intensified with its
naturally corrosive, brutal, and immense spectrum of marine
operating conditions. Consequently, extensive and efficient
use of laboratory experiments is needed to build the marine
renewable community’s database of seawater-based compo-
nent life models. To populate this database, an accepted and
scalable methodology is needed. This paper explores a pro-
posed PHM research methodology (Uckun, Goebel, & Lucas,
2008) to lay the foundation for an experimental approach to
measure bearing wear. More specifically, this study aims to
assess the wear characteristics of polymer-based bearings im-
mersed in seawater that are subject to loads and oscillations
similar to those experienced by a point absorber WEC in real
seas. Our investigation has three goals:

1. Verify and benchmark test stand design and operation for
bearing wear measurements

2. Conduct wave energy research following a proposed
PHM methodology

3. Present an initial study of polymer bearing health esti-
mation utilizing wear models derived from a set of gen-
eralized representative sea states

1.1 Main Contributions of the Paper
The work presented here is the beginning of a larger research
effort to assess and manage WEC reliability, maintainability,
and overall system health using PHM based techniques. Be-
ginning with the bearing design and operating effects, accu-
rate material wear models become critical in determining the
efficiency of the device power output. The contributions of
this study are itemized as follows:
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Figure 1: Oscillating wave energy converter devices.

• A PHM based methodology was used to determine poly-
mer bearing wear models with respect to their pressure
and velocity parameters in seawater;

• Wave climate load classification was detailed for a point
absorber WEC in generalized real seas;

• Cumulative wear of proposed bearing material was esti-
mated for a given month;

• Relevant information was provided to ocean renewable
developers and partners to help assess the applicability
of the materials and improve the technology;

• An experimental test stand’s performance was bench-
marked and recommendations were offered for future
bearing tests.

1.2 Roadmap
The paper will begin with a brief background section, includ-
ing an introduction to the point absorber WEC, application
assumptions, and an overview of the PHM research method.
Next, the wave climate and the process used to determine ex-
perimental wave cases are discussed, followed by a descrip-
tion of the experimental setup. Results of the bearing wear
tests, their implications, and future studies are also presented.

2. BACKGROUND

This section provides a brief description of the chosen wave
energy converter (WEC), test stand effects, and modeling
considerations. To begin, there are generally four main
groups of WEC designs: oscillating water columns, overtop-
ping devices, point absorbers, and attenuators (Fig. 1) (Ocean
Power Technologies, 2011; Wave Dragon, 2011; Wavegen,
2011). Each device relies on bearings to either support a tur-
bine shaft (water columns and overtopping) or provide a slid-
ing surface on which two large masses can move relative to
each other (Yemm, 2003). Specifically, the point absorber and
attenuator WECs are designed to harvest the heave motion of
a passing wave through their power take-off (linearly or ro-
tationally), where the relative motion of two or more large
masses is exploited to generate electricity. Other examples
of seawater exposed bearing applications include wind plus
wave energy harvesters (Floating Power Plant, 2011) and sea
floor based rotational power take-offs (Aquamarine Power,
2011).

Spar

Buoy

Power take-off

Electrical
Distribution

Mooring

Figure 2: A generic linear power take-off point absorber WEC
architecture layout, where relative motion between the buoy
and spar provide energy conversion opportunities.

2.1 The Point Absorber
Focusing on the point absorber design, the system contains
a few core subsystems: power take-off, mooring, structures,
control, and distribution (Fig. 2). The device is capable of
translating in three degrees: heave (up/down), surge (for-
ward/back), sway (starboard/port) and rotating three degrees
about its axis: pitch, yaw, and roll. This investigation will
only consider the structures subsystem of a point absorber
WEC (buoy and spar) and its heave dynamics with respect
to the sea floor. Power take-off, mooring, and control do play
very important roles in the loading conditions of the bearing
surface, albeit require much more knowledge about the WEC
system itself and is not covered in this paper. Essentially,
this study assumes one degree of freedom (heave) and a float
that is a perfect wave follower. In other words, when solv-
ing for the heave dynamics, it will be assumed that as each
wave passes, the buoy will travel up and down with the wa-
ter surface. This relative velocity between buoy and spar is
the assumed velocity the bearing surface will experience dur-
ing operation (i.e., power generation). In storms however, the
WEC is most likely not converting energy and may switch to
a survivability mode; one possible technique locks the buoy
in place to impede system damage.

The bearing subsystem is integrated into the structure of the
WEC and provides a surface on which the buoy and spar may
move relative to each other. To avoid installing a bearing ma-
terial sleeve along the entire inner diameter of the buoy, one
possible solution lays two to four equally-spaced counterface
extrusions around the spar, where they are mated with bear-
ing blocks impregnated within the buoy. Here, the bearing re-
quirements for many WEC technologies demand the surface
to be inexpensive, corrosion-resistant, low maintenance, and
near-zero friction in a large variety of loading conditions. One
proposed solution utilizes a polymer-based approach, simi-
lar to those found in current naval designs (Cowper, Kolomo-
jcev, Danahy, & Happe, 2006) and hydropower applications
(McCarthy & Glavatskih, 2009; Ren & Muschta, 2010).

This simple polymer-based approach has proven to be ben-
eficial in such applications for its ability to self-lubricate and
deposit a transfer film on the counterface, filling in surface
asperities, linearizing the wear rate, and even reducing fric-
tion in some cases (Wang, Yan, & Xue, 2009). However,
water’s tendency of inhibiting or wholly preventing transfer
film formation is a research topic itself and will only be indi-
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rectly addressed in this work. Research regarding wear char-
acterization of polymer journal bearings has been published
at various pressures, velocities, and environmental conditions
(Ginzburg, Tochil’nikov, Bakhareva, & Kireenko, 2006; Ry-
muza, 1990); yet, few studies have been shared with the
wave energy community presenting the results of seawater
immersion (W.D. Craig, 1964; Tsuyoshi, Kunihiro, Noriyuki,
Shozo, & Keisuke, 2005), let alone under pressures and veloc-
ities expected to be experienced by WECs (Caraher, Chick,
& Mueller, 2008). So, with an immature technology being
relied upon by a large complex system, an experimental test
stand has been designed and used to procure knowledge about
the bearing material’s performance characteristics under rep-
resentative loading conditions.

2.2 PHM Based Techniques
As previously mentioned, the research methodology born in
the PHM community provides a good platform on which test
stand research can be integrated into a larger, more compre-
hensive effort to assess system health. A general outline is
shown in Fig. 3, where the path to implementing and relying
upon a prognostic solution begins first with high-level sys-
tem requirements (health predictions for subsystems and/or
the system itself) that define the subsequent metric, fault, and
sensor selection process. Next, the third step determines the
most appropriate approach in terms of desired performance,
available resources, and acceptable uncertainty to satisfy the
component-level predictions. Here the proper number of sam-
ples to sacrifice for an accurate inference is also set. The
fourth step ascertains the test scenarios, design of experi-
ments, and data collection, while the fifth step is dedicated
to building models and remaining useful life algorithms for
nominal and faulted conditions. The last two steps encompass
the health estimation and actual usage comparisons, in addi-
tion to the verification and validation sequence. A good appli-
cation of the entire PHM research methodology was presented
in estimating battery capacitance over time using high qual-
ity test chambers (Goebel, Saha, Saxena, Celaya, & Christo-
phersen, 2008). For this work however, only a few steps of
the methodology are addressed for estimating WEC bearing
wear. Knowing that it would be useful to predict bearing wear
in extreme marine conditions, the initial strategy to determine
adequate experimental conditions and data collection proce-
dures is described in addition to how the test stand itself con-
tributes to the main goals of this investigation.

2.3 Test Stand Considerations
The test stand design and operation are critical to the va-
lidity of the empirical bearing wear models. Many inter-
ested researchers have built test stands to measure the degra-
dation of particular components, including batteries (Saha,
Goebel, Poll, & Christophersen, 2009), actuators (Balaban et
al., 2010; Bodden, Clements, Schley, & Jenney, 2007), and
polymer bearings (Gawarkiewicz & Wasilczuk, 2007). The
particular test stand employed for the experiments presented
in this paper is a modified version of American Society for
Testing and Materials’ (ASTM) standard test for ranking plas-
tic resistance (ASTM, 2009), where the major changes to the
standard include an oscillatory velocity, varying loads, and
immersing the sample in seawater. Being a relatively new
field of research, a lack of verification and validation of the
modified test stand contributes to the uncertainty of the re-
sults. A goal of this work is to verify and benchmark test stand
design and operation, ensuring the bearing wear measured re-
peatedly and accurately reflects imposed loading conditions.

2.4 Modeling Considerations
When investigating and modeling polymer bearing wear, it
is important to note that multiple factors contribute to the
wear rate. A polymer bearing / counterface tribosystem fail-
ure modes and effects analysis may contain only a few failure
causes, where a primary failure would be the direct result of
the physical amount of bearing material removed, and sec-
ondary failures may be attributed to biofouling or sediment-
rich seawater. This study only covers the primary failure
(wear) and does not address secondary failures. Also, a wear
estimation is considered synonymous with a bearing health
estimation because the bearing’s ability to perform as de-
signed is assumed to be directly attributed to the physical
amount of material remaining in place.

One must also consider the naturally stochastic ocean
waves. Their modeling effort has been well documented
(Tucker & Pitt, 2001; Holthuijsen, 2007; Young, 1999) and
the trade-off between the relevance of a higher fidelity nu-
merical model and a closed-form solution must be done. For
this work, the mapping of sea state to bearing pressure and
velocity will be solved analytically with several conservative
assumptions (e.g., linear waves, buoy / spar dynamics) that
serve well as an initial attempt to assess the applicability of
this research.

3. THE WAVE CLIMATE

Within the fourth step of the PHM methodology, expected sea
states are sought to derive the pressures and velocities experi-
enced by the bearing surface. In order to choose experimental
cases representative of WEC oscillations and loads, a wave
climate comparable to permitted sites was chosen (FERC,
2011). A wave climate is defined here as the aggregation
of all the reported wave measurements taken at a specific lo-
cation. The most accessible sources for past wave climate
information include the Coastal Data Information Program
(CDIP, 2011) and the National Data Buoy Center (NDBC,
2011) who manages a worldwide buoy network. A buoy of
particular interest for its similarities to a potential WEC in-
stallation (proximity to coast / large population areas, con-
sistent and predictable wave energy) is located 15.5 nautical
miles northwest of Winchester Bay, Oregon (NDBC station
ID: 46229), where the water depth is 186 meters and the buoy
is assumed to be a perfect wave follower.

3.1 Wave Data
Wave information is often reported in the frequency domain
as a wave spectrum, where, for each frequency and respec-
tive bandwidth, the energy or wave energy density is regis-
tered (Tucker, 1991). Other parameters included in the report
can denote the wave direction, depending on the buoy. Much
more wave data is also available apart from the spectral infor-
mation, including the raw time series values, which is used
for much higher fidelity WEC modeling. For the purpose of
this study however, only two parameters were used in defining
the wave climate: significant wave height (Hs) and dominant
wave period (TD). The significant wave height (in meters)
is the average of the highest one-third of all the wave heights
encountered during the 20 minute sampling period. The dom-
inant wave period (in seconds) is the period with maximum
wave energy as taken from the wave spectrum over the sam-
pling period (Steele & Mettlach, 1993).

3.2 The Sample Data Set
Significant wave heights and dominant wave periods were
taken for years 2005 - 2010 (NDBC, 2011). Reporting data
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Figure 3: A universal PHM research methodology.
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Figure 4: The total wave climate, where each bin contains the average number of hours for each sea state for an average year
during the past six years (2005 - 2010).

every hour until the end of January 2008, the sampling rate
was increased to every half hour. The entire data set is not
complete, as some data points are erroneous (e.g., Hs =
TD = 99) or absent altogether. To include some of these
reports in the sample data set, the erroneous points were re-
placed with the average of their nearest neighbors, whereas
the absent points were left out of the averaging process. No
weighting was installed to unbias the months with more hours
reported over the months with lesser hours reported. There
were four major gaps in the data, where no reports were given
for the following dates: 1/1/05 - 4/1/05, 2/25/06 - 5/11/06,
5/29/06 - 7/13/06, and 3/16/09 - 4/1/09. Three of the four
gaps occur in the spring and summer, while the largest con-
secutive gap occurs in the winter. This may be due to a more
energetic sea state during these months causing system fail-
ures. Overall, the six years of coverage yielded only 5.06
years of data. This fact affects the total wave climate picture
in terms of number of hours per particular sea state, but for
the purpose of choosing test wave parameters, it is not fore-
seen to affect the results of this study. Therefore, the data set
from which the experimental cases were determined can be
seen in Fig. 4, where each bin covers one second wave pe-
riods and half meter wave heights with the average number
of hours reported for that bin over the measured time period
displayed in the plot. The most common sea state was an 9 -
10 second period and 1.5 - 2.0 meter wave height, accounting
for approximately 3.8% of the yearly total.

3.3 Choosing Experimental Cases
In order to effectively achieve a spread of experimental cases,
the wave period distribution was analyzed as shown in Fig. 5
while the wave heights were taken at each period interval. An
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Figure 5: Wave period distribution over the entire climate data
set, with an average of 10.89 sec and a standard deviation of
2.95 sec.

interval is defined here as a particular one second period bin
determined by the average and standard deviation of the cu-
mulative wave period distribution where the column of wave
heights is then sampled to find the exact experimental case
(i.e., H and T ). For the test period of 10.89 sec, the 10 - 11
sec period bin was analyzed (Fig. 6), as were the other three
test period bins (7 - 8 sec, 13 - 14 sec, and 16 - 17 sec) to
achieve all four experimental cases (Tbl. 1).
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Figure 6: Distributions of significant wave heights for the 10
-11 sec period bin with an average of 2.3 m and a standard
deviation of 1.0 m.

Exp. Case T (s) H(m)

1 10.89 2.31

2 13.84 5.51

3 16.79 2.92

4 7.95 1.74

Table 1: Chosen test wave heights and periods.

4. EXPERIMENTAL DESIGN

This section explains the design decisions and limitations
behind the bearing wear experiments and their correspond-
ing parameters, including the bearing health estimation algo-
rithm (addressing step three and parts of step five of the PHM
methodology). Knowing the experimental wave parameters,
the calculation of pressures and velocities at the surface of
interest is described. First, a description of the procedure to
compute the loading condition input for each bearing wear
experiment is presented, followed by a table containing each
experimental case parameter. Many assumptions support the
closed-form procedure taken in this paper and will be dis-
cussed as they are applied.

4.1 Wave Modeling and Force Calculation
First, the wave experienced by the WEC is classified using
four main parameters: water depth h, wave height H , wave
length L, and wave period T (Fig. 7), where η describes
the wave surface elevation in terms of x and t while hav-
ing a value of z meters. The wave itself is assumed to be
harmonic and linear (or regular); other wave classifications
include irregular, ocean, and stochastic ocean waves (Ochi,
1998). Generalizing the sea state under linear wave theory is
the most basic approach to modeling the ocean surface and is
deemed appropriate for this initial study.

The generalization assumes the fluid to be incompressible
and inviscid (irrotational), enabling the local water particle
velocities to be solved explicitly and facilitating the use of
Morison’s equation (Dean & Dalrymple, 1991). In a typi-
cal design, a software program is tasked with computing the

Figure 7: A regular two dimensional wave with relevant pa-
rameters and coordinate system shown.

structural loading (e.g., AQWA, WAMIT). However, in our
case, the Morison equation will be shown as an initial ap-
proach to calculate bearing pressure.

Next, assuming an intermediate water depth, the wave
length is solved numerically using Eq. 1, where g is the accel-
eration due to gravity. A water depth of 91.4 meters was used
in this study to mimic Oregon sites where WEC developers
currently hold permits (FERC, 2011).

L =
g

2π
T 2 tanh

2πh

L
(1)

The wave length can be verified for use in an intermediate wa-
ter depth by checking the inequality (Eq. 2), where the wave
number is k = 2π

L . When calculating a kh scalar towards the
lower or upper extremes, a shallow or deep water assumption,
respectively, would instead prove more accurate.

π

10
< kh < π (2)

Next, the water surface displacement, η, is given in Eq. 3,
where σ = 2π

T and its correlated velocity potential, φ, is given
in Eq. 4.

η(x, t) =
H

2
cos (kx− σt) (3)

φ = −gH
2σ

cosh k(h+ z)

cosh kh
sin (kx− σt) (4)

The closed-form velocity potential allows for the calculation
of horizontal (−∂φ∂x ) and vertical (−∂φ∂z ) water particle veloc-
ities, which can be seen in Eq. 5 and Eq. 6, respectively.

u = −∂φ
∂x

=
gHk

2σ

cosh k(h+ z)

cosh kh
cos (kx− σt) (5)

ν = −∂φ
∂z

=
Hσ

2

sinh k(h+ z)

sinh kh
sin (kx− σt) (6)

The local horizontal acceleration is shown in Eq. 7.

∂u

∂t
=
Hσ2

2

cosh k(h+ z)

sinh kh
sin (kx− σt) (7)

Using these equations, an estimation of the horizontal force
imposed on the buoy by a passing wave can be computed.

Typically used to design and estimate loads on columns
embedded in the sea floor, Morison’s equation (Eq. 8) can
be employed during conceptual WEC design for computing
the horizontal wave force imparted on the device by a passing
regular wave (Morison, O’Brien, Johnson, & Schaaf, 1950).
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Figure 8: Example surface displacement and corresponding
water particle velocities for a H = 3 m, T = 12 sec wave.

The equation is composed of two elements, the first captures
the drag forces and the second captures the inertial forces,

F (z) =
1

2
CDρDu|u|+ CMρV

Du

Dt
(8)

where CD, CM , ρ, D, and V represent the drag & inertial
coefficients, seawater density (1025 kg

m3 ), buoy diameter, and
buoy volume. Ultimately integrated over a water depth with
respect to z, total horizontal force is represented in Eq. 9,

Fx =

∫ b

a

F (z) dz (9)

where b is usually the water displacement(η), and a is some
value in the vertical length (z) of the geometry. For exam-
ple, if a = −h, the force would integrate over a continuous
column to the sea floor. The aggregation of Eqs. 3 - 9 can
be viewed in Fig. 8 and Fig. 9, where the parameters of a
H = 3 m, T = 12 sec wave are plotted implementing the
zero crossing method.

4.2 Experimental Case Parameters
Incorporating the above wave model, chosen wave heights
and periods, and force calculations, the experiment case pa-
rameters can now be set (Tbl. 2). To reiterate, the experi-
mental cases represent a first attempt at a sample set of rep-
resentative wave parameters to classify polymer bearing wear
during WEC operation. The third column states the maxi-
mum velocity the counterface experiences during the oscil-
latory profile (i.e., Eq. 6). Next, geometric assumptions that
enable a specific velocity and pressure to be applied during
wear tests are held and explained as follows. A buoy diame-
ter of 11 m was used in the Morison force calculation while
the force was integrated over a depth of 1.5 m. This depth
was chosen based off the assumed buoy height (1.5 m) and as-
suming the buoy was fully submerged throughout the length
of the passing wave. Next, knowing linear wave theory was
being utilized, the drag and inertial coefficients were taken as
1.3 and 2.0, respectively (Agerschou & Edens, 1965). The
bearing pressure was computed using the wave force calcula-
tion and an assumed bearing area of 0.232 m2. This particular
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Figure 9: Example force oscillation imposed on the buoy by
a passing H = 3 m, T = 12 sec wave, where Fd and Fi rep-
resent the individual components of Fx: the drag and inertial
forces, respectively. The actual normal force applied to bear-
ing sample was taken as the root mean squared value of the
maximum Fx due to test stand limitations.

area was chosen as a conservative estimate of the total bear-
ing area and set the active bearing pressure below the bearing
manufacturer’s recommendations.

The final parameter set for the wear testing experiments
was the number of runs for each experiment case. Using the
operating characteristic (OC) curve to minimize the type II
error, Eq. 3 was implemented (Montgomery, 2009),

Φ2 =
nD2

2aσ2
(10)

where Φ and β (probability of type II error) make up the OC
curve x and y parameters. Further, n is the number of runs for
each test climate, D is the difference between two treatment
means desired to be detected (0.5), a is the number of exper-
imental cases (4), and σ is the assumed maximum standard
deviation of wear rate at any power level (0.1). These val-
ues were based on previous wear studies completed. Tbl. 3
shows the results of checking various sample sizes and it was
decided due to the infancy of this research that a probabil-
ity of 0.85 would be adequate for detecting a difference in
wear means (D) for separate experiment cases. Consequently,
three test runs were specified for each experimental case.

n Φ2 Φ a(n− 1) β Power (1 − β)

2 6.3 2.5 4 0.5 0.5

3 9.3 3.0 8 0.15 0.85

4 12.5 3.5 12 0.01 0.99

Table 3: Determining each experimental case’s sample size
using the operational characteristic curves with α = 0.01.

4.3 Bearing Health Estimation
Once the bearing wear experiments have concluded, the post-
processing of the raw linear variable differential transformer
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Exp. Case T (s) H(m) νmax(m/s) Frms(kN) P (kPa) kh

1 10.89 2.31 0.66 78 334 3.1

2 13.84 5.51 1.25 120 500 2.0

3 16.79 2.92 0.55 47 202 1.4

4 7.95 1.74 0.69 108 445 5.8

Table 2: Experiment Case Parameters

(LVDT) measurements should ideally indicate a linear and
stable wear rate. Under these circumstances, the wear models
can be pieced together to create a cumulative data driven life
model of the bearing surface. This inference allows ocean
renewable developers the capability to predict the bearing’s
health after some length of time. For example, if the life
model indicates the amount of bearing material departed is
approaching a critical threshold, then operators and maintain-
ers can make informed decisions. Given enough time, the re-
pairs could be scheduled to minimize the cost associated with
servicing the bearings. It is important to note that the predic-
tion accuracy of the bearing health estimation is directly at-
tributed to wear model quality and its associated experimental
design.

In order to quantify the raw bearing wear in a format appli-
cable to wear predictions, the recorded vertical wear from the
LVDT is multiplied by the constant contact area to form the
total volumetric wear for the sample seen in Eq. 11,

V = 2wrq sin−1(
l

2r
) (11)

where w is the vertical wear, r is the counterface outer radius,
l is the sample length, and q is the sample width (all variables
in mm). To avoid biasing the wear estimate to focus on force
or distance or time alone, a specific wear rate variable is used
(Eq. 12),

V = eFs (12)

where V is the total volumetric wear (mm3), e is the specific
wear rate (mm3

Nm ), F is the normal load (N), and s is the slid-
ing distance (m). Solving for e using the stable portion of the
wear plot, a set of specific wear rates are then available to the
user for calculating volumetric wear of the bearing during dif-
ferent climates than those tested in the experiment. Assum-
ing the worst case scenario for the specific wear rate model
formulation, forces and sliding distances are derived for each
particular hour of reported wave parameters. The cumulative
volumetric bearing wear is tracked using Eq. 13,

m∑

i=0

Vici (13)

where i is the bin index (wave height and period), m is the
number of discreet sea states reported during the time inter-
val, V is the volumetric wear associated with a particular bin
and c is the total number of hours the WEC experienced seas
classified to the particular bin. This purely data driven model
would preferably be used in parallel with the wave climate
in Fig. 4 and although relatively elementary, could be enor-
mously useful in estimating the overall bearing health, while
further informing WEC design, operation, and maintenance
decisions.

5. EXPERIMENTAL SETUP

This section describes the bearing material and its mating
counterface used during this study - addressing step four of
the PHM methodology. The test stand is also shown and the
procedure to measure bearing wear is described.

5.1 Bearing Material
Each bearing sample was machined out of disks (with an in-
ner radius equal to the counterface) 6.40 mm in width into
sections of 15.85 mm in length and approximately 10 mm in
height. The Thordon SXL bearing material was used through-
out the study (Thordon, 2011). Each bearing sample was
cleaned with methanol prior to each test to guard against any
incidental debris from contaminating the experiment.

5.2 Counterface
Two identical 316 stainless steel counterfaces were used dur-
ing testing, each with a diameter of 63.5 mm (derived from
the rpm limit of the motor so as to maximize the range of
test surface velocities) as seen in Fig. 10. Before and after
each test run, the surface roughness of the counterface was
measured using a Mitutoyo surface roughness tester in an at-
tempt to determine any transfer of material to the counterface.
As per design recommendations from the manufacturer, the
counterface surface roughness was made to be less than 0.8
µm Ra before each test. In an effort to allow for better me-
chanical bonding of the polymer, roughening was completed
perpendicular to the direction of rotation (Marcus, Ball, &
Allen, 1991). The roughness measurements were taken in
parallel to the direction of rotation at three different points
along the width of the counterface and six different section
widths around the circle. Prior to each test, the counterface
was also thoroughly cleaned with methanol.
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Figure 10: Counterface dimensions.

5.3 Test Stand
Implementing a testing method derived from the ASTM
G176-03 standard (ASTM, 2009) for ranking wear resistance
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Figure 11: The bearing wear test stand.

of plastic bearings, the test stand can be seen in Fig. 11. Mod-
ifications to the setup have been made to allow for complete
immersion of both the bearing sample and counterface in sea-
water. A procedure to run a bearing wear test follows:
1. Empty all seawater from reservoir and wash out with

freshwater, lightly touching the counterface (remove salt,
but not the transferred bearing material) and remove
bearing sample.

2. Remove the counterface from drive shaft, air dry, and
measure surface roughness.

3. Take the second, prepped counterface and couple to drive
shaft, ensuring minimum change in deflection of the sur-
face during rotation. The authors recommend using a
dial indicator to measure this deflection.

4. Set the new, prepared bearing material in place, load
mass on vertical shaft, latch front plate, fill reservoir, in-
put test parameters to software, and begin test.

The removable counterface is held in place with two plas-
tic nuts on a stainless steel drive shaft directly coupled to a
DC brushed motor. A 0.5 µm resolution LVDT was tasked
with measuring the vertical wear of the bearing sample while
linked to the vertical shaft responsible for holding the mass
load in place. The drive shaft and all connecting parts were
cleaned with methanol prior to each test. The seawater
used during testing is seawater filtered to 50 µm, taken from
Yaquina Bay in Newport, Oregon.

A National Instruments cRIO unit was programmed to con-
trol motor velocity using the LabVIEW interface and shaft en-
coder relaying speed information. The bearing samples were
subjected to sinusoidal velocity profiles (ν) oscillating at their
specified frequency ( 1

T ) and each wear test was run for 20
hours with no intermittent stops. In order to determine the
correct mass to load the sample, the test climate pressure (P )
was multiplied by the bearing sample projected area and di-
vided by the gravity constant, g.

6. RESULTS

This section presents the results of all twelve wear tests,
grouped into their four respective experiment cases, followed
by the specific wear rate model formulation, a month long
bearing health estimation, and the corresponding before and
after counterface surface roughness measurements. The raw
LVDT readout was smoothed for graphing purposes. Each
wear plot contains two x-axes: sliding distance (computed
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Figure 12: Experiment case one, pressure = 334 kPa, maxi-
mum surface velocity = 0.66 m/s, mass = 3.382 kg.

from oscillation frequency, amplitude, and counterface ra-
dius) and time (each wear test was 20 hours long). The first
case is shown in Fig. 12, while the second, third, and fourth
cases are shown in Figs. 13 - 15, respectively. The plots show
the highest pressure resulted in the highest wear rate, while
the lowest pressure resulted in the lowest wear rate, as ex-
pected. And for the majority of test runs, similar patterns ex-
ist within each experimental case. However, test run number
twelve is an anomaly: around hour seven, the wear measure-
ment diverges and increases 350% less than the previous two
test runs. Another test run that is unlike its counterparts is
number eight, where its wear measurements are offset 50 -
100% less than complementary tests three and ten.

Next, to ensure wear is linear with respect to time and dis-
tance, hour six to twenty was set as the stable portion of the
wear plot for all test runs. Analyzing this segment, a vertical
bearing wear measurement can be used to derive the total vol-
umetric wear and specific wear rate for each test run. Here the
results can be seen in Fig. 16, where the dotted line represents
a worst case scenario specific wear rate model. For a month
long wear estimation, the specific wear rate model was used,
where the volumetric wear for each hour of reported wave
data was calculated using 1) a specific wear rate, e, from the
model, 2) a normal force, F , derived from Morison’s equa-
tion, and 3) a sliding distance, s, derived from the particular
climate’s reported wave parameters. For the month of January
2011, a total of 4.5 mm was estimated to have been lost during
the theoretical point absorber WEC operation (Fig. 17). Ad-
ditional information was recorded before and after each test
run that included the counterface surface roughness measure-
ments (Tbl. 4).

7. DISCUSSION

Upon completing the experiments for this study, the wear
plots show the bearing material’s performance is dependent
on a few external factors including, a direct correlation with
the loading conditions and a peculiar association with coun-
terface preparation. The test stand was shown to operate
reliably throughout the investigation, however it too affects
the wear rate indirectly through load application and velocity
control attributes. Further exploring the findings, this section
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Figure 13: Experiment case two, pressure = 500 kPa, maxi-
mum surface velocity = 0.1.25 m/s, mass = 5.000 kg.
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Figure 14: Experiment case three, pressure = 202 kPa, maxi-
mum surface velocity = 0.55 m/s, mass = 2.045 kg.
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Figure 15: Experiment case four, pressure = 445 kPa, maxi-
mum surface velocity = 0.69 m/s, mass = 4.442 kg.
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Figure 16: Specific wear rates plotted vs. applied bearing
pressure for all twelve test runs with the conservative model
overlay (dotted line).
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Figure 17: An example wear estimation for the month of Jan-
uary 2011.

Exp. Test Rate Before After
Case No. (µm

hr
) (µm Ra) (µm Ra)

1
3 18 .58 .69 .48 .71 .84 .56
8 8 .61 .71 .48 .61 .79 .46
10 16 .56 .69 .43 .53 .71 .38

2
5 45 .66 .81 .51 .63 .79 .41
7 37 .61 .76 .53 .51 .64 .43
11 42 .51 .58 .41 .48 .61 .33

3
1 9 .69 .76 .51 .58 .74 .43
4 7 .69 .74 .58 .69 .79 .58
9 8 .53 .69 .46 .53 .66 .41

4
2 25 .74 .79 .69 .64 .74 .58
6 21 .66 .76 .58 .71 .94 .51
12 5 .61 .71 .53 .56 .69 .43

Table 4: Stable wear rates for each test run and their corre-
sponding before and after surface roughness measurements
(average, maximum, minimum).

discusses several factors contributing to the uncertainty in the
results. Topics affecting the accuracy of the prediction include
the effect of counterface surface roughness, wave modeling,
wear data quality, and test stand effects.

7.1 Effect of Counterface Roughness
To begin, the effect of surface roughness on the stable wear
rate is plainly apparent and as one would expect, a higher
roughness generally yields a higher wear rate. Observing ex-
periment case four in particular, test twelve yielded a stable
wear rate 4 - 5 times smaller with a pre-test surface roughness
less than 0.06 µm smoother than test two or six. Perhaps this
result is specific to the experiment (relatively high pressure
and frequency oscillation) as the difference between pre-test
roughness measurements for experiment cases two and three
are similar, yet their subsequent stable wear rates are analo-
gous. It should be noted that there are limits as to how smooth
the initial counterface can be as one study showed a rough-
ness of 0.03 µm increased the wear rate by 33 times (Marcus
& Allen, 1994). Experiment case one and four both contain a
test run dissimilar to the others while their pre-test roughness
measurement differences are negligible, indicating that there
may be some other factor affecting the results and warranting
more experiments.

From previous experience, the bearing material studied ex-
hibited an unusually higher wear rate for their respective load-
ing conditions in the majority of test runs. Acknowledging
the customization of the experimental design and operation,
the obvious absence of a transfer film may indicate the need
for a better application of pressure and velocity to the bearing
sample itself via a different test stand design and/or operation.

7.2 Wave Modeling
Second, the method of wave modeling used in this investiga-
tion assumes a regular wave, which is not an accurate repre-
sentation of real seas. Propagating linear waves and the as-
sumption of the buoy being a perfect wave follower are likely
the most influential assumptions within this study. The most
rigorous of ocean wave modeling efforts solve the Navier
Stokes non-linear differential equation for velocities and pres-
sure fields, yet is only suggested for higher fidelity investiga-
tions. However, the success of applying the often used princi-
ple of superposition (as many frequency domain wave models
do) to the wear rates remains to be seen given the limitations
of linear wave theory (Young, 1999). Another, more promis-
ing strategy would be to utilize the WEC dynamics derived
from previous modeling efforts (Ruehl, Brekken, Bosma, &
Paasch, 2010).

Further, choosing NDBC 46229 as the source of ocean
surface measurements was designed to allow researchers the
freedom of employing either a time or frequency domain
based approach. Also, for a more complete input to the wave
climate, the authors suggest employing a method that ex-
plicitly presents representative wave spectra (Lenee-Bluhm,
2010).

7.3 Wear Data Quality and Health Estimations
Third, the health estimation, however unrefined, was possible
because of quality wear data. The empirical models yielded
few extraordinary anomalies and provided a good basis for re-
gression and validation of the sample size suggestion. Apply-
ing the wear algorithm, approximately 6000 mm3, or 4.5 mm
of bearing material was estimated to be lost during the month
long WEC operation. This initial estimate is quite large and
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could be attributed to several factors, including the material
itself, the loading conditions chosen, the load application via
the test stand’s design and operation, and/or the counterface’s
surface roughness.

Also, a method for how to rectify the fact that wear rates
do not exist for each bin within the wave climate has yet to
be developed and would constitute a very interesting future
work. Although the experiments do not change parameters
during the 20 hour tests, future work would require the pro-
gramming of varying parameters, resulting in more accurate
loading conditions. Also, some of the next steps in this re-
search would apply more advanced aspects of PHM by incor-
porating uncertainty assessment (Tang, Kacprzynski, Goebel,
& Vachtsevanos, 2008) and prognostic evaluation (Saxena et
al., 2008).

7.4 Test Stand Effects
Fourth, the effect of the test stand on the bearing experiments
is inherent in the wear data, so only by modifying the test
stand and running the same experiments would the effect be
measurable. During testing, the motor was observed to jerk
near the crest and trough of the sinusoid velocity profile, indi-
cating poor torque control. This phenomenon occurred with
greater intensity during experimental cases with higher pres-
sures. To solve this problem, a torque sensor and high torque
motor would be ideal additions to accurately and smoothly
follow the desired velocity profile. Other test stand modifica-
tions to produce more accurate results would be the integra-
tion of a varying pressure function and time domain velocity
profile. Currently, the test stand is limited to constant force
application and only after running these initial experiments
has it become readily obvious that the test stand is not capa-
ble of accurately recreating loading conditions that a bearing
sample would see in the field - a much smoother control of
the counterface velocity profile is required.

8. CONCLUSION

Twelve bearing wear experiments were conducted using a
simplified wave model coupled with an average sea climate to
derive representative loading conditions for polymer bearings
installed on a point-absorbing WEC. Following a PHM based
research method, a stable and linear wear rate was established
for each experiment, leading to the use of empirical methods
for estimating bearing wear. Not only was essential informa-
tion gained regarding the limits of the experiments, but the
actual research methodology as well. Much work remains,
albeit progress was made towards careful benchmarking of
the test stand and successful employment of PHM research
tenets.

As a note, PHM is often an afterthought in complex sys-
tem design because of many unanswered questions regard-
ing prognostic requirements and their resulting validation se-
quence (Ferrell, 2010). This research focused on one com-
ponent of the WEC and illuminated experimental attributes
critical to its life predictions, even as developers work to in-
stall production-level devices where bearing health estimation
may be the lowest of priorities. Promoting a scalable and
technically sound approach to classifying WEC bearing per-
formance early in the industrial development is significant, as
benefits can quickly materialize for all parties.
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NOMENCLATURE

PHM Prognostics and Health Management
WEC Wave Energy Converter
TD dominant wave period
Hs significant wave height
η water surface displacement, a function of x and t
k wave number
φ water particle velocity potential
Fx horizontal force imposed on buoy by passing wave
e specific wear rate
i bin index (wave height and wave period)
Vi volumetric wear
ci total bin index hours
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ABSTRACT 

Prognostics and prediction of patients‟ short term 

physiological health status is of critical importance in 

medicine because it affords medical interventions that 

prevent escalating medical complications.  Accurate 

prediction of the patients‟ health status offers many benefits 

including faster recovery, lower medical costs and better 

clinical outcomes.  This study proposes a prognostics engine 

to predict patient physiological status.  The prognostics 

engine builds models from historical clinical data using 

neural network as its computational kernel.  This study 

compared accuracy of various neural network models.  

Given the diversity of clinical data and disease conditions, 

no single model is ideal for all medical cases. Certain 

algorithms are more accurate than others depending on the 

type, amount and diversity of possible outcomes.  Thus 

multiple neural network algorithms are necessary to build a 

generalizable prognostics engine.  The study proposes using 

an oracle, an overseer program to select the most accurate 

predictive model that is most suited for a particular medical 

prediction among several neural network options. 

1. INTRODUCTION 

Prognostics and Health Management (PHM) is an 

engineering discipline that links studies of failure 

mechanisms to system lifecycle management (Uckun, 

Goebel, & Lucas, 2008). Other definitions of PHM describe 

it as a method that permits the assessment of the reliability 

of a system under its actual application conditions, to 

determine the advent of failure, and mitigate system risks 

(Pecht, 2008).  A system can be broadly defined as an 

integrated set of elements that accomplish a defined 

objective (International Council on Systems Engineering 

Systems Engineering Handbook, 2000).  The human body is 

a biological system that functions as a collection of 

interrelated systems.  The question that we wish to answer is 

how PHM can be applied to human biological systems as a 

methodology to predict and prevent adverse medical 

conditions in patients.  

The term “diagnostics” pertains to the detection and 

isolation of faults or failures.  “Prognostics” is the process 

of predicting a future state (of reliability) based on current 

and historic conditions (Vichare & Pecht, 2008).   

The emphasis of this study is on prognostics (prediction) of 

the individual‟s short term future health condition and a 

rule-based prognostics engine that makes such predictions 

possible.  Short term is defined as a time frame that spans 

from a few seconds to several days from any given moment.  

The prognostics engine is a computational component that 

can analyze vast amounts of historical and current 

physiological data and predict future health of an individual.  

Predictions are continuous over time as new, real time data 

are gathered from multiple physiological systems including 

warnings, alerts, events and precautions.   

Admittedly developing mathematical models that make 

accurate predictions in biology and medicine is challenging 

but researchers suggest that soon such mathematical models 

will become a useful adjunct to laboratory experiment (and 

even clinical trials), and the provision of „in silico‟ models 

will become routine (Smye & Clayton, 2002). 

Advances in vital-signs monitoring software/hardware, 

sensor technology, miniaturization, wireless technology and 

storage allow recording and analysis of large physiological 

data in a timely fashion (Yu, Liu, McKenna, Reisner, 

Reifman, 2006).  This provides both a challenge and an 

opportunity. The challenge is that the medical decision 

maker must sift through vast amount of data to make the 

appropriate treatment plan decisions.  The opportunity is to 

analyze this large amount of data in real time to provide 

forecasts about the near term health state of the patient and 

assist with clinical decisions.   

The application of PHM to human systems promises to 

deliver several benefits such as: 
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 Continuously assess the physiological and 

biological predictions to provide advance warning 

of clinical complications 

 Minimize the frequency of reactive and emergency 

medical response by predicting and applying 

preventative medical interventions 

 Enhance the quality of life and improve remaining 

useful life (RUL) of patients 

 Manage the patient healthcare life cycle more 

effectively to improve patient care outcome and 

reduce medical care costs 

Continuous and periodic monitoring of the individual‟s 

physiological systems involve collecting data from more 

than ten distinct human physiological sub-systems ranging 

from circulatory to respiratory to immune system.  The 

collected data is used by the prognostics engine to predict 

future health of the individual.   

The input data may consist of a wide array of clinically 

relevant information, medical history, allergies, 

medications, clinical procedures, genetic disposition and 

current physiological monitored data.  

Medical science is grounded in scientific evidence, prior 

research, experiments and studies that have produced a body 

of medical knowledge based on generalizations and meta-

analysis of research data.  Such generalizations explain the 

causal relationships between risk factors, diseases and 

diagnosis.  There are however gray areas in medical 

prognostics where many health treatment and screening 

decisions have no single „best‟ choice or because there is 

scientific uncertainty about causes of certain diseases, or the 

clinical evidence is insufficient (O‟Connor, Bennett, Stacey, 

Barry, Col, Eden, Entwistle & Fiset, 2009).   

In many areas of medical science, the causal relationships 

are still incompletely understood and controversial. There 

are environmental, situational, cultural and unique factors 

that provide unique clinical data about a disease or groups 

of patients. Although this data is inadequate for making 

scientific generalizations and clinical evidence, it can 

provide valuable information to make assessments of 

individual‟s health status.  The research hypothesis is that 

such data can be employed to make early predictions about 

the future health status of individuals and allow doctors 

apply medical interventions that prevent diseases or adverse 

medical events. 

2. MARKERS AND PREDICTORS: THE CANARY AND THE 

DOG 

The use of canaries for predicting failures has been 

discussed in literature as an illustrative example of 

prognostics (Vichare & Pecht
 
, 2006).  The analogy comes 

from an old mining practice.  Canaries are more susceptible 

to dangerous gases than humans.  Since gases are not easily 

detected by humans, miners carried canaries to mines as an 

early indicator of dangerous gases.  When the canary died, it 

signaled presence of dangerous gases and miners got out.  

The canary is an example of what in medicine is referred to 

as a marker (Souter, 2011). 

For years, dogs have been trained to assist patients for 

medical purposes.  Studies have shown that medical 

response dogs can be trained to predict and alert their 

owners of seizures before they occur (Brown & Strong, 

1999, 2001, and Kirton, Winter, Wirrell & Snead, 2008).  

Other anecdotal studies claim that certain response dogs 

have been able to detect presence of melanoma cancer 

(Williams & Pembroke, 1989).  A dog‟s ability to alert its 

owner of a pending seizure is an example of a prediction in 

medicine. 

A prediction is a form of speculation about a state in the 

future.  A prediction is foretelling a medical event or disease 

when the ingredients for that medical event are in place but 

have not combined to affect their significance in form of a 

disease yet.  Predictors are variables that offer predictions 

about a disease. A marker is the recognition that the 

ingredients for a medical event are in place and have indeed 

combined to result in form of a disease but in lower and 

milder yet measurable doses (Souter, 2011).   

The precursor to a disease is known as risk factors in 

medicine.  Thus, a timeline of medical predictions starts 

with risk factors, leading to predictors (pre-disease state), 

and then on to markers (disease is in place but in low, mild 

state) and finally to the occurrence (onset) of the disease or 

medical event itself.  Figure 1 illustrates the chronology of 

events and progression of the individual‟s health status from 

risk factors leading to the final disease or medical event 

manifestation.  The distance between time ticks are arbitrary 

and vary between individuals. 

Traditional medical prediction models rely on risk factors to 

make crude speculations about the patient‟s future health 

status. This research attempts to predict medical health 

problems in a more accurate and timely manner using real 

time physiological measurements collected from patients. 

 

 

Figure 1. The progression of patient health condition 

3. THE PROPOSED MODEL 

The model proposed by this research considers medical 

treatment plan as input to the patient‟s physiological system. 

Medical Event
Or disease 

manifestation

Marker

Time  t

PredictionRisk Factors

Annual Conference of the Prognostics and Health Management Society, 2011

223
[paper 24]



Annual Conference of the Prognostics and Health Management Society, 2011 

3 

Represented by u(t), medical treatment plan involves some 

set of medications, procedures and care protocols prescribed 

by the physician. The patient‟s physiology is the process 

that produces a clinical outcome at time t, represented by 

y(t).   The patient‟s clinical outcome is the output or the 

response variable.  The outcome is a vector of a single or 

multiple states of health for that patient.  The input and 

response variable can be shown as:  

U(t) = (u1(t), u2(t), …, uq(t))    (1) 

Y(t) = (y1(t), y2(t), …, ym(t))   (2) 

The internal physiological measurements consisting of 

clinical and vital sign data such as lab results and monitored 

data are represented by x(t): 

X(t) = (x1(t), x2(t), …, xk(t))   (3) 

The model includes a prognostics engine that consists of 

prediction rules R, and uses specific model M to predict 

specific outcome for time (t + t1).  The prognostics engine 

collects vital clinical data from the patient‟s physiological 

system and makes a prediction for t1 minutes in advance, for 

time (t + t1). The prognostics engine delivers a prediction 

that can be used to modify the medical treatment plan u(t). 

The prediction rules are based on prior evidence and formed 

from retrospective collection of past patient data. The set of 

rules can be defined by: 

R: = (r1, r2, …, rp)     (4) 

The model is shown in Figure 2.   

Figure 2. The Medical Prognostic Model 

The prognostics engine works continuously by monitoring 

real time patient data and applying mathematical algorithms 

that can discern data patterns and make predictions about 

propensity of certain disease or adverse events occurring in 

the near future. 

The medical intervention, retrospective case information 

and monitored data can be mathematically described as sets 

of variables.  We can write prediction as a function of 

multiple variables including the input clinical data and 

medical intervention.  Prediction is a mapping between new 

input data and an outcome from a set of retrospective cases.  

Prediction (t+t1) = F(X, U, R)   (5) 

where physiological data set collected from the patient is 

represented by vector X; medical treatment plans are 

selected from a set of treatment plans shown as U; and 

retrospective cases are denoted by R as the set of prior 

relationships established between physiological data and 

outcome  

The goal of this research is to identify the appropriate 

mathematical model F(X, U, R) that selects the appropriate 

prediction from a set of possible outcomes.  The model is a 

mapping function developed based on historical data 

patterns that maps the input data to a specific outcome. 

3.1. Mathematical Model 

A large volume of literature concerning mathematical 

models to predict biological and medical conditions has 

been published.  But only a few of such works in predictive 

mathematical tools have found their way into mainstream 

clinical applications and medical practice.  Several reasons 

are cited for the low adoption of predictive tools: either 

important biological processes were unrecognized or crucial 

parameters were not known, or that the mathematical 

intricacies of predictive models were not understood 

(Swierniak, Kimmel & Smieja, 2009).   

The properties of an appropriate mathematical model for 

predicting medical health condition include: accuracy, 

prediction, economy, well-posedness and utility (Smye & 

Clayton, 2002).  Among constructs used in prior research, 

several distinct mathematical models can be found, such as: 

multivariate regression analysis, Markov chains and 

stochastic processes, Bayesian networks, fuzzy logic, 

control theory, discrete event simulation, dynamic 

programming and Neural Networks. 

There are three evolving philosophies pertaining to 

biological and medical prediction: one is grounded in 

control theory.  Decay of human physiology and adverse 

medical conditions such as Intra-cranial Pressure (ICP), or 

carcinogenesis can be viewed as a result of loss of body‟s 

control over its critical mechanisms.  For example, loss of 

control over blood flow regulation leads to irregular 

intracranial pressure; or loss of control over cell cycle 

causes altered function of a certain cell population that leads 

to cancer.  Medical intervention is viewed as a control 

action for which the human body is the system.  This 

approach requires a deep understanding of the internal 

causal models between control mechanisms and human 

physiology.  

The second approach follows the Markov chain model as it 

considers the disease cycle as a sequence of phases 

traversed by each physiological subsystem from birth to 

expiration.  For example, a patient that develops pneumonia 

starts from a healthy normal state and then deteriorates 

through four stages of Congestion, Red hepatization, Gray 

hepatization, Resolution (recovery).   
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The third approach considers the human body as a black 

box.  Since we don‟t have perfect knowledge about each 

individual‟s physiology, environmental, genetic and cultural 

information and in the areas of medicine where our 

knowledge of clinical evidence is uncertain, we can only 

rely on predictive models that take data from physiological 

sensors and laboratory results and apply certain models and 

rules developed through retrospective studies to make 

predictions. 

These models have considered both deterministic and 

probabilistic approaches.  Other mathematics constructs 

consider the asynchronous nature of biology and thus their 

approach uses simulation models.  For example, one study 

applied simulation and statistical process control to estimate 

occurrence of hospital-acquired infections and to identify 

medical interventions to prevent transmission of such 

infections (Limaye, Mastrangelo, Zerr & Jeffries, 2008). 

Other predictive models in cancer therapy have used 

stochastic process to predict drug resistance of cancer cells 

and variability in cell lifetimes (Kimmel, Axelrod, 2002).  

The most successful predictive methods in literature are 

model-free approaches using neural networks and fuzzy sets 

(Kodell, Pearce, Baek, Moon & Ahn, 2009) (Arthi & 

Tamilarasi 2008). 

A vast majority of mathematical models in medicine are 

developed for diagnosis. A survey of literature from 1970‟s 

to present, reveals that more attention has been given to 

decision support and diagnoses models than to prediction. 

The development of prognostics models to predict short 

term medical health condition of individuals has been under 

explored.   

Given the non-linear aspect of relationships between 

physiological measurements, medical outcome and medical 

treatment plan, a mathematical method that best models 

non-linear relationships is needed for the prognostics 

engine.  It has been established that neural networks are 

among the most effective methods to discern patterns and 

non-linear relationships between data. 

3.2. Neural Networks 

Neural networks have been successfully applied to classify 

patterns based on learning from prior examples.  Different 

neural network models use different learning rules, but in 

general they determine pattern statistics from a set of 

training examples and then classify new data according to 

the trained rules.  Stated differently, a trained neural 

network model classifies (or maps) a set of input data to a 

specific disease from a set of diseases.  

To illustrate the classification model for this case study, a 

simple example is described below and in Figure 3.  We can 

classify input data about patients into two categories of 

predictions: Disease-True and Disease-False, by looking at 

prior patient data.  The objective of the single-layer 

perceptron is to determine a linear boundary that classifies 

the patients on either side of the linear boundary.  As shown 

in Figure 3, we wish to classify patients into two categories 

separating by a boundary called a decision boundary line.  A 

linear set of equations define this boundary.   The region 

where the linear equation is >0 is one class (Disease-True), 

and the region where the linear equation is <0 is the other 

class (Disease-False).  The line is defined as: 

    (6) 

We can apply a threshold function to classify patients based 

on the following threshold function: 

 (7) 

 

Figure 3. Classification using single-layer perceptron 

Suppose we‟re considering classifying patients by only four 

input variables, Glucose (G), Body mass (M), Systolic 

Blood pressure (S) and White blood cell count (B).  The 

threshold function would be computed as follows: 

     (8) 

The appropriate predictive mathematical model must offer 

accuracy and simplicity to learn from prior cases and easily 

be extensible to apply new data to make predictions about a 

patient‟s health condition.  It has been established that the 

most accurate neural network models for prediction are as 

follows: 

1) PNN - Probabilistic Neural Networks are four layer 

networks.  They classify data in a non-parametric method 

and are less sensitive to outlier data.  It‟s been demonstrated 

that probabilistic neural networks using only four layers of 

input, pattern, summation and output perceptron can provide 

accurate and relatively faster classifications than the back-

propagation neural networks.   
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2) SVM – Support Vector Machine networks.  SVM 

performs classification by constructing a two-layer network 

that defines a hyperplane that separates data into multiple 

classifications. The SVM is a non-probabilistic binary linear 

classifier. It takes a set of input data and determines which 

of possible classes the input is a member of. 

3) Generalized Feedforward Multi-Layer Perceptron (MLP) 

trained with LM – A feedforward neural network consists of 

one or more layers of nodes where the information flows in 

only one direction, forward from the input nodes and there 

are no cycles or loops in the network.  In the multi-layer 

model, each node has direct connection to the nodes in the 

subsequent layer. The sum of products of the weights and 

the inputs are calculated in each node (Haykin 1999).     

4) MLP trained with LM – Muli-layer perceptron, a method 

similar to gradient descent approach with variable step 

modification.  Several variations of this model have been 

proposed, including the Levenberg-Marquardt model 

(Wilamowski & Chen, 1999) which is known to be among 

the most efficient algorithms. 

This study applied and compared prediction results from all 

four neural network models. These models were compared 

based on their accuracy. 

4. CLINICAL CASE STUDY 

The clinical case study consisted of 468 patient cases who 

were admitted to a hospital for various treatments.  The 

patient data consisted of 21 independent variables and one 

dependent variable. The input data included various relevant 

physical and vital sign data ranging from blood pressure to 

heart rate and blood lab test results.  The input variables 

consisted of both continuous and dichotomous variables. 

The dependent variable was a dichotomous variable that 

represented the clinical outcome, the occurrence or absence 

of a disease. In this study, the output was defined by a 

marker called Deep Vein Thrombosis (DVT).  Of the patient 

population in this study, 89 were positively diagnosed with 

DVT.   

DVT is the formation of blood clots in deep veins, typically 

in leg veins. Blood clots can dislodge and flow to lungs 

causing a more critical condition called Pulmonary 

Embolism (PE).  DVT/PE is a serious medical condition 

that can cause serious pain and even death.  In the US alone 

approximately 350,000 to 600,000 patients suffer from DVT 

and at least 100,000 deaths per year are attributed to 

DVT/PE (The Surgeon General‟s Call to Action to Prevent 

Deep Vein Thrombosis and Pulmonary Embolism, 2008). 

Neural networks have been successfully applied to classify 

patterns based on learning from prior examples.  Different 

neural network models use different learning rules, but in 

general they determine pattern statistics from a set of 

training examples and then classify new data according to 

the trained rules.  Stated differently, a trained neural 

network model classifies (or maps) a set of input data to a 

specific disease from a set of diseases.   

Four models were trained and tested in two stages: in the 

first stage, we used genetic neural network algorithm to 

identify the input variables with most predictive power.  We 

narrowed the list of input variables from 21 down to 14 

variables. In the second stage, we trained and tested all four 

models on the 14 input variables from stage 1.  The list of 

the most predictive variables is given in Table 1. 

  

Input Variable 

 

 

Data Type 

 

Definition 

ADMITTED 

OVER 48 HRS 

Dichotomous In hospital over 48 hours? 

INPATIENT Dichotomous Is patient admitted as 

inpatient? 

MAX GLUCOSE Continuous Maximum Glucose level 

during patients‟ stay. 

MAX WEIGHT Continuous Maximum weight during 

stay in Kg. 

MIN PLATELET Continuous Minimum no. of blood 

platelets, tiny cells that 

assist in blood clotting 

MIN INR Continuous Minimum INR 

(International Normalized 

Ratio). The standard for a 

healthy person is 1.  

MAX INR Continuous Maximum INR 

(International Normalized 

Ratio).  

MAX RBC Continuous Maximum no. of red blood 

cells 

MIN RBC Continuous Minimum no. of red blood 

cells 

MAX 

HEMOGLOBIN 

Continuous Maximum no. of 

hemoglobin, a red protein 

that carries oxygen in the 

blood.  

MIN 

HEMOGLOBIN 

Continuous Minimum no. of 

hemoglobin. a red protein 

that carries oxygen in the 

blood.  

MAX HCT Continuous Maximum hematocrit: the 

proportion, by volume, of 

red blood cells 

MIN HCT Continuous Minimum hematocrit: the 

proportion, by volume, of 

red blood cells 

MIN RDW CV Continuous Minimum red blood cell 

distribution width.  

MIN RDW CV3 Continuous Minimum red blood cell 

distribution width 

Coefficient Variation-3. 

MIN RDW CV4 Continuous Minimum red blood cell 

distribution width 

Coefficient Variation-4. 

Table 1. Input variables description 
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4.1. Computational Method 

In this study, we computed and optimized four different 

prediction and classification algorithms on 21 data input 

variables and 468 patient cases. There were 89 true positive 

cases in the retrospective study. We used NeuroSolutions 

V6.0 (NeuroDimension, Inc. 2011) tools to build and test 

the models.   

In each computation, we trained the network using one of 

the four neural network methods.  For all four methods, we 

selected the “Leave-N-out” technique.   This technique is a 

cross training and validation method used to minimize bias 

due to random data selection.  This approach trains the 

network multiple times, each time omitting a different 

subset of the data and using that subset for testing.  The 

outputs from each tested subset are combined into one 

testing report and the model is trained one final time using 

all of the data. 

The test results of all four models can be compared using 

classification measures such as number of false positives 

(FP), false negatives (FN), true positives (TP) and true 

negatives (TN), as shown in Table-2: 

Model TP FP TN FN Total 
Probabilistic 

Neural Network 

5 7 372 84 468 

Support Vector 

Machines 

30 83 296 59 468 

Multi-layer 

Perceptron with LM 

24 78 301 65 468 

Generalized Feed  

forward with LM 

19 68 311 70 468 

Table 2. Model test results 

4.2. Accuracy and Validation 

External validity of medical prediction models is an 

extremely challenging task. Clinical validation is 

challenging not just because it involves prospective patient 

studies, double-blind studies and careful administration of 

research protocols, but for two other reasons: first, if a 

patient gets the treatment, could that patient have exhibited 

the predicted disease?  Second, if a patient is not treated and 

the disease occurs, would the outcome been the validation 

of the model‟s prognosis had the patient been treated? We‟ll 

focus on accuracy in this paper and consign clinical 

validation to a future research project. 

 Several measurements have been proposed as methods for 

internal validation. Some of the measurements that are 

commonly used to compare accuracy of classification 

models include: Accuracy, Sensitivity, Specificity, Area 

Under Receiver Operating Curve (AUROC) and Likelihood 

Ratio (LR).  Sensitivity measures the fraction of positive 

cases that are classified correctly as positive.  Specificity is 

the fraction of negative cases that are classified correctly as 

negative.  AUROC is a good overall measure of predictive 

accuracy of a model.  It represents a plot of sensitivity 

versus (1 - specificity).  An AUROC close to 1.0 is a 

considered an excellent discrimination, but a value near 0.50 

suggests no discrimination (similar to a coin flip). Positive 

LR is the ratio of sensitivity to (1 - specificity).  (Delen 

2009).  The accuracy measures may be defined as: 

    (9) 

    (10) 

     (11) 

   (12) 

where (T+ | D+) denotes a case with positive test of a 

disease when the disease actually exists, and (T+ | D-) 

denotes a case with positive test of a disease but the patient 

does not present with the disease. 

When a model uses continuous data measurements, then 

different thresholds may be applied in order to decide which 

value is the cut-off to distinguish between patients with 

disease.  The best model has the highest values for 

sensitivity and specificity.  In certain situations, both may 

not be equally important.  For example, a false-negative 

(FN) prediction might be more critical than a false-positive 

(FP) prediction.  If we apply no preference to either 

measurement then, Youden‟s index (J) may be used to 

choose an appropriate cut-off, computed by (Bewick, 

Cheek, Ball 2004): 

  (13) 

The maximum value that J can take is 1, when the test is 

perfect. 

4.3. Comparison of results 

All four models were optimized for classification of cases 

into a dichotomous dependent variable: the presence or 

absence of DVT.   

 The results showed that the SVM algorithm was most 

accurate followed by the MLP model and the General feed 

forward neural network model. All four methods are 

compared using the accuracy measurements in Table 3.   

 

 

 

Measure- 

ment 

 

Probabil

- istic 

Neural 

Network 

 

 

Support 

Vector 

Machine 

Multi-

Layer 

Percep- 

tron -  

LM 

General- 

ized 

Feed 

forward- 

LM 
Accuracy 0.8056 0.6966 0.6944 .7051 

Sensitivity 0.0562 0.3371 0.2697 0.2135 

Specificity 0.9815 0.7810 0.7942 0.8206 

LR+ 3.0417 1.5392 1.3103 1.1899 

Youden‟s J 0.0377 0.1181 0.0639 0.0341 

Table 3. Accuracy Measures of Neural network models 
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All four models exhibited low sensitivity measures 

indicating their poor ability to detect true positives.  This is 

due to the lower number of positive DVT cases in this study 

(only 89 out of 468 cases had positive DVT cases).   

4.4. Use of an Oracle to Select the Best Model 

Since their introduction in 1960‟s, various neural network 

algorithms have been proposed and successfully 

implemented to classify and predict future state of output 

variables.  Certain models are more suitable to specific class 

of problems based on the type and number inputs and output 

classifications.  Typically, no single neural network model 

is best for all types of problem. 

Given that there are many neural networks to select from, 

the goal is to select the most accurate model for prediction 

of each disease condition.  Therefore, we propose that the 

prognostics engine utilizes several different algorithms to 

determine accuracy of each method and then use an oracle, 

an overseer program that selects the most accurate model.  

An oracle is defined as the medium which selects the best 

answer amongst a set of options.  An oracle can be defined 

to select the best algorithm or a combined prediction from 

an ensemble of algorithms based on desired accuracy or 

characteristic of the prediction problem at hand. 

Given that one model performs better in predicting true 

positives and another better at predicting the true negatives, 

we propose the oracle program to combine the predictions 

from models in a way that the model with higher accuracy is 

assigned a higher weight and the worst model still 

contributes to the prediction but at a smaller weight.  This 

way, the oracle can improve the classification accuracy,  

sensitivity and specificity by combining the best 

classification characteristics from different models. 

An approach that uses an ensemble of prognostic algorithms 

is shown to be effective in providing more accurate 

prediction (Hu, Youn & Wang 2010). 

We produced two Oracle methods to compute the combined 

predictions of the ensemble.  The first Oracle used 

conditional logic to maximize the number of TP and 

minimize the number of FP predictions.  

The results of the oracles are shown in Table 4 and accuracy 

comparison in Table 5.  

Model TP FP TN FN Total 
Oracle #1 – Ensemble 

of PNN & SVM models 

35 107 272 54 468 

Oracle#2 – Ensemble of 

all four models 

46 141 238 43 468 

Table 4. Results of the two oracle program 

Ensemble1 essentially took the best traits from the PNN and 

SVM models to produce a more accurate prediction. The 

second Oracle combined weighted sum of predictions from 

each model in the ensemble.  The weights were determined 

to maximize the number of FP predictions. 

Measurement Oracle #1 Oracle #2 
Accuracy 0.6560 0.6068 

Sensitivity 0.3933 0.5169 

Specificity 0.7177 0.6280 

LR+ 1.3929 1.3893 

Youden‟s J 0.1109 0.1448 

Table 5. Comparison of Oracles‟ accuracy 

One method to compare all four models and the two oracle 

programs is to use the Receiver Operating Curve (ROC) 

plot. The ROC curve is a plot of sensitivity versus (1 – 

specificity), and generally is considered a good accuracy 

measure of binary classifiers (Bourdes, Ferrieres, Amar, 

Amelineau, et al, 2011).  Figure 4 shows a scatter plot of 

ROC for all models.  The best prediction method would 

result in a point in the upper left corner of the diagram. The 

diagonal line depicts a random guess or prediction by a flip 

of coin.   

The diagram illustrates two observations: The prediction 

results are not as accurate as one would like. This is 

attributed to the fact there were too few positive cases in the 

entire population to help train a more accurate predictive 

model.  Furthermore, several of input variables were highly 

correlated such that the predictive contribution of some 

variables was less significant for making a more accurate 

prediction. 

 

Figure 4. ROC curve for results of all models 

The second observation is that the combined ensemble 

methods #1 and #2 were more accurate than each neural 

network model alone.  
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5. CONCLUSION 

Various neural network methods can be used to identify the 

most accurate model to make short term predictions about 

patient health condition.  The performance of these models 

varies depending on the type and volume of input and 

output variables.  The conclusion of our study is not to say 

which model or method is better, but, to recognize that each 

model has strengths and weaknesses. By combining 

multiple models we can improve classification accuracy.  

Since no single model can be the best fit for all medical 

prediction problems, an oracle program is proposed to select 

the best weighted combination of multiple neural network 

models. 
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ABSTRACT 

Battery Health Management (BHM) is a core enabling 

technology for the success and widespread adoption of the 

emerging electric vehicles of today. Although battery 

chemistries have been studied in detail in literature, an 

accurate run-time battery life prediction algorithm has 

eluded us. Current reliability-based techniques are 

insufficient to manage the use of such batteries when they 

are an active power source with frequently varying loads in 

uncertain environments. The amount of usable charge of a 

battery for a given discharge profile is not only dependent 

on the starting state-of-charge (SOC), but also other factors 

like battery health and the discharge or load profile 

imposed. This paper presents a Particle Filter (PF) based 

BHM framework with plug-and-play modules for battery 

models and uncertainty management. The batteries are 

modeled at three different levels of granularity with 

associated uncertainty distributions, encoding the basic 

electrochemical processes of a Lithium-polymer battery. 

The effects of different choices in the model design space 

are explored in the context of prediction performance in an 

electric unmanned aerial vehicle (UAV) application with 

emulated flight profiles. 

1. INTRODUCTION 

Battery-powered devices have become ubiquitous in the 

modern world, from tiny headsets to cameras, cell phones 

and laptops to hybrid and electric vehicles. Yet the battery is 

not a new invention. Battery artifacts date back to the early 

centuries A.D. (the Baghdad battery) and electric cars were 

favored over their gasoline counterparts in the late 

nineteenth century because of higher reliability. However, 

the uncertainty in determining battery life plagued electric 

vehicles then as it does now. A recent report by the 

Consumer Electronics Association, “Electric Vehicles: The 

Future of Driving”, indicates that although these vehicles 

are increasing in popularity, running out of battery power on 

the road is the top concern for consumers (71% of adults 

surveyed). Consequences of battery exhaustion may range 

from reduced performance to operational impairment and 

even to catastrophic failures, thus motivating the study of 

Battery Health Management (BHM). 

One of the most critical applications of BHM technologies 

is in the field of electric vehicles (EVs). Usually combustion 

based powertrains run within narrow bands of RPMs 

(revolutions per minute) with metered fuel delivery. This 

combined with a known volume fuel tank allows reasonably 

accurate predictions of remaining use-time or travel 

distance. Batteries on the other hand, decrease in capacity 

with time and usage. Various factors like ambient storage 

temperatures and the state-of-charge (SOC) at which the 

battery was stored affects capacity fade. Additionally, the 

amount of usable charge of a battery for a given discharge 

profile is not only dependent on the starting SOC, but also 

other factors like battery health and the discharge or load 

profile imposed.  

In this paper, the BHM problem is approached from the 

model-based point of view. The following sections will 

address the salient battery characteristics that need to be 

modeled, the BHM framework, explorations of the model 

design space, an electric unmanned aerial vehicle (UAV) 

application example, battery end-of-discharge (EOD) 

prediction results, and relevant conclusions.  

2. BATTERY CHARACTERISTICS 

Batteries are essentially energy storage devices that 

facilitate the conversion, or transduction, of chemical 

energy into electrical energy, and vice versa (Huggins, 
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2008). They consist of a pair of electrodes (anode and 

cathode) immersed in an electrolyte and sometimes 

separated by a separator. The chemical driving force across 

the cell is due to the difference in the chemical potentials of 

its two electrodes, which is determined by the difference 

between the standard Gibbs free energies the products of 

the reaction and the reactants. The theoretical open circuit 

voltage, E
o
, of a battery is measured when all reactants are 

at 25
o
C and at 1M concentration or 1 atm pressure. 

However, this voltage is not available during use. This is 

due to the various passive components inside like the 

electrolyte, the separator, terminal leads, etc. The voltage 

drop due to these factors can be mainly categorized as 

follows. 

Ohmic Drop 

This refers to the diffusion process through which Li-ions 

migrate to the cathode via the electrolytic medium. The 

internal resistance to this ionic diffusion process is also 

referred to elsewhere as the IR drop. For a given load 

current this drop usually decreases with time due to the 

increase in internal temperature that results in increased ion 

mobility, and is henceforth referred to as IRE . 

Activation Polarization 

Self-discharge is caused by the residual ionic and electronic 

flow through a cell even when there is no external current 

being drawn. The resulting drop in voltage has been 

modeled to represent the activation polarization of the 

battery, referred to from now on as APE . All chemical 

reactions have a certain activation barrier that must be 

overcome in order to proceed and the energy needed to 

overcome this barrier leads to the activation polarization 

voltage drop. The dynamics of this process is described by 

the Butler–Volmer equation. This process was represented 

by an exponential function in Saha and Goebel (2009). 

However, a log function is a more accurate representation, 

as abstracted from the Butler–Volmer equation. 

Concentration Polarization 

This process represents the voltage loss due to spatial 

variations in reactant concentration at the electrodes. This is 

mainly caused when the reactants are consumed by the 

electrochemical reaction faster than they can diffuse into the 

porous electrode, as well as due to variations in bulk flow 

composition. The consumption of Li-ions causes a drop in 

their concentration along the cell, between the electrodes, 

which causes a drop in the local potential near the cathode. 

This voltage loss is also referred to as concentration 

polarization, represented in this paper by the term CPE . 

The value of this factor is low during the initial part of the 

discharge cycle and grows rapidly towards the end of the 

discharge or when the load current increases.  

 
Figure 1. Typical polarization curve of a battery 

Figure 1 depicts the typical polarization curve of a battery 

with the contributions of all three of the above factors 

shown as a function of the current drawn from the cell. 

Since, these factors are current-dependent, i.e., they come 

into play only when some current is drawn from the battery, 

the voltage drop caused by them usually increases with 

increasing output current. 

Since the output current plays such a big role in determining 

the losses inside a battery, it is an important parameter to 

consider when comparing battery performance. The term 

most often used to indicate the rate at which a battery is 

discharged is the C-Rate (Huggins, 2008). The discharge 

rate of a battery is expressed as C/r, where r is the number 

of hours required to completely discharge its nominal 

capacity. So, a 2 Ah battery discharging at a rate of C/10 or 

0.2 A would last for 10 hours. The terminal voltage of a 

battery, as well as the charge delivered, can vary 

appreciably with changes in the C-Rate. Furthermore, the 

amount of energy supplied, related to the area under the 

discharge curve, is also strongly C-Rate dependent. Figure 2 

shows the typical discharge of a battery and its variation 

with C-Rate. Each curve corresponds to a different C-Rate 

or C/r value (the lower the r the higher the current) and 

assumes constant temperature conditions. 

 
Figure 2. Schematic drawing showing the influence of the 

current density upon the discharge curve (Reproduced from 

Figure 1.14 in (Huggins, 2008)) 
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3. HEALTH MANAGEMENT FRAMEWORK 

Before investigating the issues with modeling the battery, 

this section takes a look at how the BHM framework is 

implemented using Particle Filters. The framework has been 

described before (Saha et al., 2009), however, some basic 

elements are reproduced below in order to set the context.  

3.1 Particle Filter 

The Particle Filter (PF) framework (Gordon et al., 1993) 

assumes that the state equations can be modeled as a first 

order Markov process with additive noise and conditionally 

independent outputs. Under these assumptions the state 

equations can be represented as:  

  111       kkkk xfx  (1) 

  kkkk      xhz . (2) 

 

The filter approximates the posterior probability distribution 

denoted as p(xk|Zk), where Zk = [z1,z2,…,zk] is the set of all 

measurements until tk, by a set of N weighted particles 

{x
i

p,w
i

p; i =  1,…,N}, such that i
kiw  = 1, and the posterior 

distribution can be approximated as: 
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Using the model in Eq. (1) the prior distribution going from 

tk-1 to tk becomes: 
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Resampling is used to avoid the problem of degeneracy of 

the PF algorithm, i.e., avoiding the situation that all but a 

few of the importance weights are close to zero. If the 

weights degenerate, we not only have a very poor 

representation of the system state, but we also spend 

valuable computing resources on unimportant calculations. 

More details on this are provided in Saha et al. (2009). The 

basic logical flowchart is shown in Figure 3. 

Initialize PF Parameters

Propose Initial Population , x0,w0

Propagate Particles using State 

Model , xk-1xk

Update Weights, wk-1 wk

Measurement
zk

Weights 

degenerated?

Resample

Yes

No

 

Figure 3. Particle filtering flowchart 

During prognosis this tracking routine is run until a long-

term prediction is required, say at time tp, at which point Eq. 

(4) will be used to propagate the posterior pdf (probability 

density function) given by {x
i

p,w
i

p; i = 1,…,N} until xi fails 

to meet the system specifications at time t
i
EOL. The 

remaining useful life (RUL) pdf, i.e., the distribution of 

p(t
i
EOL – tp), is given by the distribution of w

i

p. Figure 4 

shows the flow diagram of the prediction process. 

Start Prediction at tp

Estimate Initial Population , xp,wp

Propagate Particles using State 

Model , xp+k-1xp+k

EOL threshold 

exceeded?

Generate RUL pdf from {wp}

Yes

No

 

Figure 4. Prediction flowchart 

3.2 Model Adaptation 

One of the key motivating factors for using Particle Filters 

for prognostics is the ability to include model parameters as 

part of the state vector to be estimated. This performs model 

adaptation in conjunction with state tracking, and thus, 

produces a tuned model that can used for long term 

predictions.  

Assume that the system health state is 1-dimensional, given 

by xk, and the state evolution model f and the measurement 

model h are stationary in nature with known noise 

distributions  and  respectively. Additionally, we also 

assume that the parameter values of h are known. This 

assumption can be relaxed in a more generic approach. 
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Indeed, considering a non-stationary measurement model 

can be used to account for progressive degradation in 

sensors caused by corrosion, fatigue, wear, etc. The 

parameters of f, denoted by αk = {αj,k; j = 1,…,nf}, nf  N, 

are combined with xk to give the state vector xk = [xk αk]
T, 

where T represents the transpose of a vector or matrix. 

Equations (1) and (2) can then be rewritten as: 

  111   ,    kkkk xx ωf  (7) 

  kkk xz ν    h . (8) 

 

The issue now is to formulate the state equations for αk. One 

easy solution is to pick a Gaussian random walk such that: 

1,1,       kjkjkj ωαα ,  (9) 

 

where j,k-1 is drawn from a normal distribution, N(0,
2
j), 

with zero mean and variance 
2
j. Given a suitable starting 

point αj,0, and variance 
2
j, the PF estimate will converge to 

the actual parameter valueαj, according to the law of large 

numbers.  

It is not necessary to include all model parameters as part of 

the state to be estimated. In fact, the smaller the subset of 

parameters to be estimated, the faster the convergence since 

the state dimensionality is lower (Daum, 2003). However, 

this leads to the notion that the higher the model fidelity 

with respect to the real system, the lesser the number of 

parameters that need to be identified at run-time leading to 

better convergence properties. 

4. MODEL DESIGN SPACE 

The issue of modeling is paramount in any model-based 

algorithm like the PF. There can be many approaches to 

modeling, and for well studied systems like batteries the 

model design space is very large. There are several models 

that exist in literature at various levels of granularity and 

abstraction, like Gao, Liu, and Dougal (2002), Hartmann II 

(2008), Santhanagopalan, Zhang, Kumaresan, and White 

(2008), etc. Building these models require significant 

expenses in time and expertise. However, there are still 

issues with applicability in the field, since complex models 

need identification of several parameters, which might be 

impractical. Sometimes the models may be too complex to 

be run in real time.  

For the purposes of the electric UAV BHM, we explore the 

model design space at a high level of abstraction of the 

underlying physics. It is desired to model the SOC of the 

battery in order to predict the EOD event as discussed 

below. In the results section the prediction performance for 

the different model choices are presented. 

4.1 Model 1 

For the empirical charge depletion model considered here, 

we express the output voltage E(tk) of the cell in terms of 

the effects of the changes in the internal parameters, as 

shown below: 

 
( )

( ) ( ) ( )

o
k

IR k AP k CP k

E t E

E t E t E t

 

  
 (10) 

 

where E is the Gibb’s free energy of the cell, ΔEIR is the 

Ohmic drop, ΔEAP is the drop due to activation polarizaton 

and ΔECP denotes the voltage drop due to concentration 

polarization. These individual effects are modeled as: 

1,( )IR k k k kE t I R t    , (11) 

2, 3,( ) exp( / )AP k k k kE t t    , (12) 

4, 5,( ) exp( )CP k k k kE t t   . (13) 

 

where ΔIk is the change in current that flows through the 

internal resistance R of the cell, and αk = {αj,k; j = 1,…,5} 

represents the set of model parameters to be estimated.  

The problem is to predict the time instant tEOD when the 

state x denoting the cell voltage E reaches the threshold 

level of 2.7 V. The PF representation of this problem is 

given by: 
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(14) 

kkk xz ν     . (15) 

 

This is a 6 dimensional state vector with 1 dimension being 

the system health indicator (cell voltage) and the other 

dimensions coming from the model parameters. The term 

ΔIk  is the change in the load current at the time instant tk. 

4.2 Model 2 

The model represented by Eqs. (14) – (15) does not 

represent the activation polarization process well. This is 

because the structure of the Butler Volmer equation is better 
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approximated by a log function rather than a negative 

exponential. Hence for Model 2, we change Eq. (12) to the 

following: 

 

2, 3,( ) ln(1 )AP k k k kE t t    . (16) 

 

Correspondingly, Eq. (14) changes to: 
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(17) 

 

The state vector is similar here as in Model 1. The level of 

granularity, indicating the different physical processes 

modeled, is the same although the abstraction of one of the 

processes has changed. 

4.3 Model 3 

It should be noted that for most batteries, the voltage as well 

as the charge delivered varies considerably with changes in 

I. This can be better represented by making two changes to 

the battery model described so far. Firstly, the parameters of 

the model must be load dependent. We model this by 

making 3 and 5 proportional to the load current I.  

Secondly, when we have step changes in the load, a higher 

load level followed by a lower one presents a peiod of 

relaxation for the battery. During this period the voltage 

does not immediately jump up but gradually rises which can 

be modeled by an exponential function. A similar effect can 

also be observed for a step increase in current level. These 

effects can be reconciled by considering the battery 

impedance as an RC equivalent circuit (Zhang, 2010). We 

can thus replace Eq. (11) by: 

6 7 1( ) (1 exp( ( )))
kIRC k k k I kE t I t t t          (18) 

where kI is the step change in current at time
kI

t . The 

other processes are represented as: 

2, 3,( ) ln(1 )AP k k k k kE t I t    , (21) 

4, 5,( ) exp( )CP k k k k kE t I t   . (22) 

The filter equations can be derived out as before and are 

shown in Saha et al. (2011). Model 3 represents a higher 

level of granularity in the model design space since some 

additional battery behavior to changes in load is being taken 

into effect. This leads to higher accuracy in the model 

output as well as a corresponding increase in the number of 

parameters. To maintain a tolerable rate of convergence, all 

but the parameters 3 and 5 are learnt from training data, 

while 3 and 5 are estimated by the PF online. 

5. APPLICATION EXAMPLE 

The test UAV platform for this research is a COTS 33% 

scale model of the Zivko Edge 540T. Details of this 

platform have been presented in Saha et al. (2011), but are 

also repeated here for the sake of readability. The UAV is 

powered by dual tandem mounted electric out-runner motors 

capable of moving the aircraft up to 85 knots using a 26 

inch propeller. The gas engine in the original kit 

specification was replaced by two electric out runner motors 

which are mounted in tandem to power a single drive shaft. 

The motors are powered by a set of 4 Li-Poly rechargeable 

batteries.  The batteries are each rated at 6000 mAh. The 

tandem motors are each controlled by separate motor 

controllers. 

Testing on the Edge 540 UAV platform was carried out with 

the airframe restrained on the ground. The propeller was run 

through various RPM (revolutions per minute) regimes 

indicative of the intended flight profile (takeoff, climb, 

multiple cruise, turn and glide segments, descent and 

landing). Figure 5 shows the voltages during a typical flight. 

It is desired to predict when the battery will run out of 

charge, i.e., when the EOD event indicated by the end of the 

voltage plots after landing will occur. 

0 5 10 15 20 25
15

16

17

18

19

20

21

22

23

Flight duration (mins)

B
a
tt

e
ry

 v
o
la

tg
e
 (

V
o
lt
s
)

 

 

T
a
k
e
o
ff

C
lim

b C
ru

is
e

T
u
rn

G
lid

e

L
a
n
d
in

g

Fwd Motor Battery 1

Fwd Motor Battery 2

Aft Motor Battery 1

Aft Motor Battery 2

 

Figure 5. Battery voltages during a typical flight 
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6. RESULTS 

In order to evaluate the prognostic algorithm we make 7 

predictions spaced 1 minute apart starting from 800 secs 

into the flight. It is not desired to make predictions till the 

end of the flight since there needs to be some time for the 

UAV pilot to land the aircraft with some safety margin on 

the remaining battery life. Figures 6 – 8 show sample 

predictions generated by the Models 1 – 3 respectively. The 

time instants when the predictions are made are shown in 

green vertical dashed lines, with lighter shades indicating 

earlier predictions. The corresponding EOD pdfs are shown 

in green patches on the 17.4 V EOD threshold voltage line 

(dashed gray). The pdfs themselves are given by the 

distribution {t
i
EOD – tp,w

i

p; i = 1,…,N}, where i is the 

particle index and t
i
EOD is the predicted time where the ith 

particle trajectory crosses the EOD threshold. The real 

voltages are shown as red ×s, while the PF estimates are 

shown as blue dots. The large spread of the blue dots is 

caused by the bias errors and noise in the Hall effect current 

sensors used. Since this uncertainty has not been expressly 

modeled, the actual EOD can sometimes lie outside the 

predicted pdf as shown in Figures 6 – 8.   

 
Figure 6. Sample prediction using Model 1 
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Figure 7. Sample prediction using Model 2 

 
Figure 8. Sample prediction using Model 3 

For statistical validation, we ran each model 100 times over 

the same data to generate the - metric plots as defined in 

Saxena et al. (2008). This prognostic metric measures 

whether RUL predictions continue improve in accuracy with 

time as more run-time data is made available, where t
i
RUL = 

t
i
EOD – tp. It also enforces the notion that the prediction error 

needs to reduce as the prediction time instant approaches the 

end of life (EOD in this case) since there is less time to take 

corrective action. For these experiments, the  value is 

chosen to be 0.1 and  is chosen to be 0.5 (i.e. it is desired 

that the prediction trajectories be within 90% accuracy with 

50% battery life left). Figures 9 – 11 show the - plots for 

Models 1 – 3 respectively for tp = [800, 860, 920, 980, 

Model 1 shows the worst performance, while Model 3 is the 

best as was expected from the model choices. The 

worsening performance of both Models 1 and 2 toward the 

end predictions is most likely due to the inability of these 

models to adapt to the low load glide modes as shown in 

Figure 5.   
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Figure 9. - metric for Model 1 
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Figure 10. - metric for Model 2 
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Figure 11. - metric for Model 3 

7. CONCLUSION 

In summary, this paper investigates the battery life 

prediction performance that result from different choice 

points in the model design space. This is meant as a first 

step in formalizing the effect of model choices with the goal 

of ultimately parametrizing the model design space to 

analyze the tradeoffs involved. Higher granularity and lower 

levels of abstraction might generally give more accurate 

models, but that also results in larger parameter sets which 

may not have good convergence properties if included in the 

state vector. To mange such models, we would need to 

estimate most of the parameters from training data and 

choose only a few for online adaptation. This predicates a 

higher model development cost and computational 

complexity. A more formal analysis of these concepts will 

be presented in future publications.  
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NOMENCLATURE 

E = battery voltage 

ΔE = voltage drop 

E
o

 = theoretical output voltage 

x = state variable 

y = measurement 

t = time 

Δt = time delay between consecutive time steps 

ΔI = change in load between consecutive time steps 

 = model parameter 
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ABSTRACT 
In this paper, an observer-based adaptive threshold is developed as 
part of a fault diagnosis scheme to detect and isolate commonly 
occurring faults in a vehicle alternator system. Since the 
mathematical model of the alternator subsystem is quite involved 
and highly nonlinear; in order to simplify the diagnostic scheme, 
an equivalent linear time varying model based on the input-output 
behavior of the system is used for threshold equations derivation. 
A novel approach using Gaussian distribution to obtain the 
parameters of the system is investigated. The validity of the 
proposed diagnosis scheme is tested through simulation and the 
results are presented. 

1. INTRODUCTION 
Modern vehicles optimal performance is highly dependent 
of the reliable power generation and storage system 
(EPGS). Furthermore, most of the modern safety features 
such as X-by-wire system (Pisu, P., Rizzoni, G., et al. 
(2000)) are highly dependent on a smooth operation of 
EPGS systems.  Thus, an effective diagnosis algorithm for 
EPGS system is necessary to maintain the optimal 
performance of the vehicle. Certain types of faults are 
commonly occurring in the alternator subsystem, namely 
belt slip fault, open diode fault, and voltage regulator fault. 
In this paper, the focus of diagnostic problem is on 
detecting and identifying these specific set of faults that 
may occur in the alternator in EPGS systems. In Scacchioli, 
Rizzoni, and Pisu, (2007) and Scacchioli, Rizzoni, and Pisu, 
(2006) model-based approaches are used to deal with the 
problem of fault detection and identification (FDI) for the 
EPGS system. In Scacchioli at al. (2006), a parity equation 
approach is used to compare the behaviour of the alternator 
with the behaviour of the equivalent model and the resulting 
residual  
 
Ali Hashemi et al. This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 

 
are used in the fault diagnosis algorithm design. In addition, 
the thresholds are derived statistically to minimize false 
alarms. Different methods to select the thresholds in fault 
detection and identification problems can be found in Ding, 
Guo and Frank, (1993), Ding and Guo, (1996), Emami-
Naeini, Akhter, Rock, (1988), Frank, (1990), Hashemi and 
Pisu, (2011), Li et al., (2007), Pisu, Serrani, You and Jalics, 
(2006). In this paper, however, a novel method based on 
observer-based approach to design an adaptive threshold for 
a linear system with Gaussian distributed parameters is 
presented. Adaptive threshold changes according to the 
inputs to the system; thus, it has many advantages over the 
fixed threshold. In case of the fixed threshold, if the 
threshold is set too high, sensitivity to fault detection will 
decrease, whereas if the threshold is set too low, false alarm 
rate will increase. Adaptive threshold, however, does not 
have these problems. One downside of using adaptive 
threshold is its high order. Two approaches for deriving low 
order threshold approximations and analysis of the trade-off 
have been recently presented in Hashemi et al., (2011). 
This paper is organized as follows. Section 2 describes the 
model of the system, while in section 3 the problem is 
formulated. Proposed fault diagnosis scheme is presented in 
section 4. Section 5 discussed the Gaussian distribution 
parameters approach. Simulation results are given in section 
6. Section 7 presents the conclusion of the paper. 

2. MODEL DESCRIPTION 
An automotive electric-power generation storage system 
(EPGS) comprises two basic subsystems, the alternator and 
the battery, which together supply power to the vehicles 
electrical loads. The alternator, which is driven by the 
engine through a belt, provides power to the electrical loads 
and charges the battery. The battery, on the other hand, 
provides power when the engine in not running, or when the 
electrical power demand exceeds the alternator output. The 
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typical alternator for an automotive electrical system 
comprises the following components: 

1) AC synchronous generator 
2) Three phase full bridge diode rectifier 
3) Voltage regulator 
4) Excitation field. 

When the engine is running, the alternator AC voltage is 
rectified through the three phase bridge. The DC output 
voltage is regulated to be 14.4V. The role of the excitation 
field is to produce the field current necessary to excite the 
three-phase synchronous generator. 
The details on mathematical model of the alternator can be 
found in Scacchioli et al. (2006) and details on battery 
mathematical model can be found in Li, Picciano, Rizzoni, 
Scacchioli, Pisu, and Salman, (2007). 

 
Figure 1. Functional block diagram of the automotive EPGS 

mathematical model with injected faults. 
 
The mathematical model of the alternator & rectifier is 
highly nonlinear and complex. In order to obtain a robust 
diagnosis algorithm, an equivalent simpler model that still 
describes the behaviour of the original model in terms of 
input-output relations will be developed. A closer 
examination of the alternator subsystem shows that the 
behaviour of the system is functionally similar to that of a 
DC machine; hence, it can be modelled with an equivalent 
DC generator model (enclosed in the big rectangle) for the 
alternator and diode bridge rectifier as shown in Fig. 1 . 
The equations of the equivalent model are based on a DC 
generator, as in Eq. (1), and the equivalent excitation field, 
as in Eq. (2) and mentioned in Scacchioli, Li, Suozzo, 
Rizzoni, Pisu, Onori, Salman, and Zhang, (2010) with 
details. 

 dc
dc e f dc

dI
I I V

dt
         (1) 

 f
f f

dI
I V

dt
     (2) 

where If is the alternator field current, Vf is the alternator 
field voltage, Idc is the rectified output current, ωe is the 
angular frequency of the alternator, and Vdc is the rectified 
output voltage. The parameters α, β, γ, κ, and λ are functions 
of ωe. In order to obtain the variance and mean of these 
parameters, each parameter variation data with respect to 

different speed cycles were collected. Afterwards, by fitting 
the proper Gaussian distribution, the variance and mean of 
each parameter were estimated. Note that vehicle speed and 
therefore ωe can be classified into few different driving 
behaviours such as city driving, highway driving, cross 
country, etc., and parameter distributions can be pre-
determined in each case. Then, in real-time, a pattern 
recognition algorithm can be used to identify in which class 
the current driving belongs therefore selecting the 
appropriate parameter distributions corresponding to that 
class.  
 Equations (1) and (2) in observable canonical form can be 
written as: 
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where, 
 1 f dcz I I    (4) 

 2 dcz I  (5) 

  For the system under consideration in this paper, if for 
example, we denote αγ as b12 (corresponding element in the 
B matrix in Eq. (3)), the data distribution and its Gaussian 
fit are shown in Fig. 2. 

 
Figure 2.b12(αγ)data distribution and its Normal distribution. 
 
The formulation in Eq. (3) is later used to develop the 
adaptive threshold equations. In the proposed model, input 
signals are engine speed ωe,, the alternator voltage Vdc, and 

the excitation field voltage Vf. and, alternator current Idc is 
the output signal. This model is utilized in the design of the 
diagnosis scheme as described in the following sections. 

3. PROBLEM FORMULATION 
In this paper, the problem of detection and isolation of 
commonly occurring fault for the alternator in an EPGS is 
considered. To find a solution for this problem, a fault 
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diagnostic scheme part of which utilizes observer-based 
adaptive threshold is developed. 
To this end, the following faults are considered in the 
system: 
1) Belt slip fault: It is an input fault that occurs when the 
alternator belt does not have the proper tension to keep the 
alternator pulley rotating synchronously with the engine 
shaft. Its effect is a decrease in alternator output voltage, 
which the voltage regulator compensates by increasing the 
field voltage.  
2) Open diode rectifier fault: This fault consists of a failure 
of one of the diodes in the three- phase bridge rectifier, 
causing unbalance in the bridge by loss of one phase. 
Characteristics of this type of fault are a large ripple in the 
output voltage and current. 
3) Voltage regulator fault: This fault consists of a reduction 
in the reference voltage that produces a reduction in the 
alternator output current.  
In the process of developing the fault diagnosis scheme, it is 
assumed that the faults occur separately. Moreover, to 
design the observer-based adaptive threshold, the 
measurable inputs and outputs of the system are defined. 
The inputs are Vdc, Vf, and ωe, and the output is Idc.  

4. FAULT DIAGNOSIS SCHEME 
The proposed diagnostic scheme combines observer design 
and adaptive thresholds in order to detect and isolate the 
three types of alternator faults (belt slip, open diode, and 
voltage regulator). Figure 3 shows the overall diagnosis 
scheme for FDI. 
 

 
Figure 3. Fault diagnostic scheme. 

 
The diagnostic scheme is comprised of three stages: a 
primary residual generation, a secondary residual 
generation, and a residual evaluation. The primary residual 
generation is constituted by the two observers generating 
two residuals e1 and e2. A third residual is generated from e1 
by a moving standard deviation algorithm which constitutes 
the secondary residual generation stage. Finally, from the 
comparison of the residuals with thresholds two signatures 
S1, S2, are generated that represent the residual evaluation 
stage. The signature S1 is obtained by comparing the 

adaptive threshold with the variance of the residual e1 from 
the first observer as described in the next section.  Signature 
S1 alone allows detecting all the previously described faults. 
For the purpose of isolation of the voltage regulator fault 
another signature must be introduced, namely signature S2. 
The following analysis demonstrates the method utilized to 
design an observer to isolate the voltage regulator fault. The 
alternator voltage regulator is implemented as a PI 
controller, with saturation on Vf that cannot be greater than 
Vdc  

 ( ) ( ( ))f P ref dc I ref dcV sat K V V sat K V V     (6) 

where KI, and KP are the integral and proportional controller 
gains.  Saturation in this case is defined as: 

if 0d c ref fV V V                              (7) 

 By defining U = Vdc-Vref, and the state ( )Ix K U t dt  , Eq. 

(8) away from the saturation of the integral can be 
represented by 
 

Ix K U   (8) 

 ( )f PV sat x K U   (9) 

Consider the observer: 
ˆˆ ( )f f Ix L V V K U  

                  
(10) 

ˆ ˆf pV x K U 
                           

(11)  

2
ˆ

f fV Ve                              (12) 

By defining ˆe x x  , the error dynamics in absence of 
faults and away from voltage saturation are 
 

2
ˆ( )f fe L V V Le Le      (13) 

In the presence of a voltage regulator fault, U and no 
saturation conditions, we have 

 2 ( )P IIL K U Le LK K Ue e         (14) 

 2 Pe e K U     (15) 

which explicitly shows the dependence on the fault. When 
Vf saturates, nothing can be said about the presence of a 
fault. 
Table 1 summarizes the fault isolation logic for the 
alternator fault diagnosis scheme. The main assumption in 
this fault diagnosis scheme is that faults are not occurring 
concurrently. 

 

Fault type S1 S2 
No Fault 0 0 

Belt Slip 1 0 
Open Rectifier Diode  Fault 1 0 

Voltage Regulator Fault 1 1 
Table 1. Error signature for the Alternator System 

 
In Table 1, a “zero” means ‘residual does not cross the 
threshold’; while a “one” means ‘residual crosses the 
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threshold’. With the current scheme all faults are detectable 
but belt slip fault cannot be distinguished from diode fault. 

5. ADAPTIVE THRESHOLDS IN THE CASE OF       
GAUSSIAN DISTRIBUTED PARAMETERS 

To obtain the signature S1, an observer-based adaptive 
threshold is designed based on the state space representation 
of the equivalent DC generator Eqs. (1) and (2). Details of 
the derivation for a general case are shown below. 
Consider a general state space presentation of a system with 
n states in observable canonical form: 
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where 0 0, , , , ,n m n n n mz u y A B          and
1

0
nC  . Assuming parameters uncertainties, Eqs. (18) 

and (19) can be written as: 
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designed for Eq. (20) as below: 
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With  1 2
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nL l l l  to be defined so that the 

eigenvalues of 
0 0

A LC are all negative and real. 

By defining ˆe z z  , the error dynamics can be written as: 
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where a , and 0B  are parameters uncertainties defined 

as  normally distributed random variables with zero mean 
and known variance. Define p as, 
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where Q is the covariance matrix defined as 
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The solution of the differential equation for the error 
dynamics given by Eq.  (20) is  
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where iE
 
have been introduced to write the solution in a 

compact for and are simply defined by 
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for i=2,...,n. 
By switching the summations with the integral, we have  
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Since the parameters have zero mean, the expected value of 
Eq. (24) can be easily calculated 

      0 0

01 0( )   0A LC tE e t C e e    (25) 

that can be made vanish at any desired rated by an 
appropriate selection of the matrix L. 
Considering auxiliary filters, that need to be found, for the 
threshold implementation, the last state n of these filters can 
be defined as 
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Utilizing Eq. (22), (26) and (27), the variance of Eq. (24)  
can be easily written as 
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If we define 1, , 10, 1,,n n n n n m
T

n         , 

according to Rayleigh-Ritz theorem, an upperbound of the 
variance can be obtained as 

 1

2

max 2
( ) ( ) ( ) ( ) ( )T

thVar e t t Q t t z t                 (29) 

with  max max ( )eigenvalue Q  . This upperbound 

constitutes the adaptive threshold dynamics.   
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The state space representation of the adaptive threshold zth 
in Eq. (29) can be obtained by observing that Eq. (26) and 
(27)  are the outputs of linear filters described by the triplet 

0 0 0
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A LC E C . Therefore, zth can be implemented as 

follows 
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where , , 1... ,n n i ni ij      0... 1j m  are the states 

of the auxiliary filters mentioned before with ,i n and 

,ij n satisfying Eq. (26) and Eq. (27) 

respectively, (0) 0,i  (0) 0ij  , and max an upperbound 

of max . 

In this case a fault is declared if Var{e1(t)}> zth(t) which 
corresponds to signature S1=1. The threshold just derived 
can be seen as (m+1)xn filters of order n. The high order of 
the threshold dynamics is the main drawback. The order can 
be further reduced to m+1 filters of order n by transforming 
the equations from observable form into controllable form, 
and combining the equations with the same input as shown 
in   Eq. (31)  

   

0 0

1

max
1 0

0

0 0 0

22

0

( ) ( )

,

( ) ( )

1 ; 0 1,

( ) , ,

T T

T
i

T T

T
i

n m

i

j

j

A LC C y t

Ei n

A LC C u tj j j

E i n j mij n

Z t i n ij nth 

 

 

 

 

  


 

 


  



  

   




 


 





 

(31) 

where ,n n

j    .  

As mentioned before, the signature S1 is obtained by 
comparing the adaptive threshold with the variance of the 
residual e1. The variance of residual e1 is here estimated by 
means of a recursive standard deviation algorithm described 
by 
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where k is the mean value of the residual and N is the 

moving window. Here a 1s moving window which contains 
10,000 sampling points was considered for the 
implementation of the standard deviation (STD) algorithm. 
 
Note that, as mentioned in section 2, parameter distributions 
and the corresponding covariance matrix can be pre-
calculated for different classes of driving conditions (city, 

highway, etc.). An upperbound max can then be evaluated 

in each case and stored on board of the vehicle. A pattern 
recognition algorithm, like the one presented by Bo and 
Rizzoni (2006), can then be used to determine the current 

driving conditions and select the appropriate value of max . 

 

7. SIMULATION RESULTS 

In order to test the effectiveness of the proposed diagnosis 
scheme, a system simulator was developed and the three 
different faults were injected into the system. The 
simulation time considered was 72s during which a portion 
of the Federal Urban Driving Schedule, Fig.4, was used to 
simulate the urban driving condition of the actual driving. 
Each fault is injected separately after 10s into the system. 
The belt slip  and the voltage regulator faults are modeled as 
additive faults. The belt slip fault amount is 0.4 of the 
engine speed, and the voltage regulator is 0.3 of the nominal 
value of the voltage regulator.  The residual along with 
thresholds plots are presented here. These plots show the 
effectiveness of the proposed fault diagnosis scheme in 
detecting and isolating the faults. This approach is capable 
in detecting the voltage regulator fault as it occurs whereas 
the belt slipping fault and open diode fault are detected at 
time 30s. That is when the input current takes effect 
combined with the change in speed. However, due to 
characteristics of the particular alternator chosen for this 
simulation, the movement of the threshold is limited. For S2 

signature, fixed thresholds at 13000, and -13000 are chosen 
as shown in Fig.8, Fig.10, and Fig.12. Figures 6, 7, 9 and 11 
show the simulation results utilizing Gaussian distributed 
parameters threshold in order to obtain S1 signature for the 
urban driving cycle. As it can be seen, this type of threshold 
is capable of detecting the fault when they occur specially in 
the case of voltage regulator fault. For the diode and belt 
slip fault, the detection occurs corresponding to a change of 
current load (Fig. 5). 
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One final note, this scheme can detect the belt slipping fault 
with fault amount as low as 30% with respect to the 
nominal value of the electrical frequency. Voltage regulator 
fault can be detected as low as 11% with respect to the 
nominal value of the voltage reference. 

 
Figure 4. Federal Urban Driving Schedule. 

 

 
Figure 5. Current load profile. 

 

 

Figure 6. Residual of S1 signal when no fault is injected. 

 
Figure 7.  Residual of S1 signal for open diode fault. 

 
Figure 8. Residual of S2 signal for open diode fault. 

 

 
 

Figure 9. Residual of S1 signal for belt slip fault. 
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Figure 10. S2 residual when belt slip fault is injected. 

 
Figure 11. S1 residual with voltage regulator fault. 

 
Figure 12. S2 residual with voltage regulator fault. 

 

8. CONCLUSION 
This paper demonstrates the utilization of an adaptive 
threshold approach in designing a fault diagnosis scheme 
for the alternator subsystem in the EPGS system. An 
equivalent DC generator model was used in obtaining the 

observer-based adaptive threshold for the fault diagnosis 
scheme. Simulation results show that the proposed fault 
diagnosis scheme is effective in detecting and identifying 
the faults occurring in the alternator. Furthermore, the 
Gaussian distributed parameters adaptive threshold shows 
its effectiveness in detecting the faults occurring in the 
system and obtaining S1 error signature. 
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ABSTRACT 

Based on two successfully and widely used control 

techniques in many industrial applications under normal 

(fault-free) operation conditions, the Gain-Scheduled 

Proportional-Integral-Derivative (GS-PID) control and 

Model Reference Adaptive Control (MRAC) strategies have 

been extended, implemented, and experimentally tested on a 

quadrotor helicopter Unmanned Aerial Vehicle (UAV) test-

bed available at Concordia University, for the purpose of 

investigation of these two typical and different control 

techniques as two useful Fault-Tolerant Control (FTC) 

approaches. Controllers are designed and implemented in 

order to track the desired trajectory of the helicopter in both 

normal and faulty scenarios of the flight. A Linear 

Quadratic Regulator (LQR) with integral action controller is 

also used to control the pitch and roll motion of the 

quadrotor helicopter. Square trajectory, together with 

specified autonomous and safe taking-off and landing path, 

is considered as the testing trajectory and the experimental 

flight testing results with both GS-PID and MRAC are 

presented and compared with tracking performance under 

partial loss of control power due to fault/damage in the 

propeller of the quadrotor UAV. The performance of both 

controllers showed to be good. Although GS-PID is easier 

for development and implementation, MRAC showed to be 

more robust to faults and noises, and is friendly to be 

applied to the quadrotor UAV. 

  

1. INTRODUCTION 

Safety, reliability and acceptable level of performance of 

dynamic control systems are key requirements in control 

systems not only in normal operation conditions but also in 

the presence of partial fault or failure in the components of 

the controlled system. Hence, the role of Fault-Tolerant 

Control Systems (FTCS) is revealed evidently  (Zhang & 

Jiang, 2008). In fact, when a fault occurs in a system, it 

suddenly starts to behave in an unanticipated manner with 

the originally designed baseline controller(s) under normal 

conditions. Therefore, fault-tolerant controller must be 

designed, implemented and executed on-line and in real-

time to be able to handle the fault and to guarantee system 

stability and acceptable performance even in the presence of 

faults in actuators, sensors and other system components.  

There are different techniques to handle such faults. As one 

of adaptive control techniques, Model Reference Adaptive 

Control (MRAC) is one of the recently widely investigated 

techniques for handling different fault situations with 

different types of aircraft applications as demonstrated in 

the recent AIAA Guidance, Navigation, and Control 

Conference (Bierling, Hocht, & Holzapfel, 2010; Crespo, 

Matsutani, & Annaswamy, 2010; Dydek & Annaswamy, 

2010; Gadient, Levin, & Lavretsky, 2010; Gregory, 

Gadient, & Lavretsky, 2011; Guo & Tao, 2010; Jourdan et 

al, 2010; Lemon, Steck, & Hinson, 2010; Levin, 2010; 

Stepanyan, Campbell, & Krishnakumar, 2010; Whitehead & 

Bieniawskiy, 2010). MRAC is concerned with forcing the 

dynamic response of the controlled system to asymptotically 

approach that of reference system, despite parametric 

uncertainties in the plant. In fact, adaptive control is 

originally a control technique which bases on a concept that 

controllers must adapt to a controlled system with 

parameters which vary slowly, or are initially uncertain. For 

example, as an aircraft flies, its mass will slowly decrease as 

a result of fuel consumption. To maintain good control 

performance under such varying conditions, an adaptive 

control law is needed to adapt itself to such changing 

conditions. Based on its adaptive and self-tuning capability 

in the presence of system parameters changes, including 

such changes due to faults/damages, there are a trend for 
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investigating the potential application of MRAC for fault-

tolerant control of aircraft and UAVs recently. However, 

there is no published research result for using MRAC to 

fault-tolerant tracking control of quadrotor helicopter 

UAVs, which in fact motivated the work to be presented in 

this paper.  

On the other hand, Proportional-Integral-Derivative (PID) 

controllers are the most widely used controllers in industry 

due to its unique feature without the need of a mathematical 

model of the controlled system for controller design, 

implementation and real-time execution. PID controllers are 

reliable and easy to use and can be used for linear and non-

linear systems with certain level of robustness to the 

uncertainties and disturbances. Although one single PID 

controller can handle even wide range of system 

nonlinearities, to handle the possible fault conditions of a 

quadrotor helicopter UAV, multiple PIDs need to be 

designed to control the quadrotor helicopter UAV with 

acceptable performance under both normal and different 

faulty flight conditions. For such a purpose, the Gain- 

Scheduled PID (GS-PID) control strategy was initially 

proposed to be applied to a quadrotor helicopter UAV for 

achieving fault-tolerant control by Bani Milhim, Zhang, & 

Rabbath (2010). However, such a work was based only on 

simulation due to the lack of a physical UAV test-bed at that 

time. At the same conference of the 2010 AIAA 

Infotech@Aerospace, Johnson, Chowdhary, & Kimbrell 

(2010) also investigated a GS-PID scheme to their GTech 

Twinstar fixed-wing research vehicle.  

In view of the advantages and potentials of using GS-PID 

for handling fault conditions, it motivated us to further 

investigate and most importantly to experimentally test the 

GS-PID controller in a physical quadrotor UAV test-bed at 

the Networked Autonomous Vehicles Lab of Concordia 

University, for fault-tolerant three-dimensional trajectory 

tracking control, instead of implementing the GS-PID only 

for one-dimensional height hold flight conditions. In this 

paper, GS-PID has been implemented for different sections 

of the entire flight envelope by properly tuning the PID 

controller gains for both normal and fault conditions. A 

Fault Detection and Diagnosis (FDD) scheme is assumed to 

be available for providing the time and the magnitude of the 

fault during the flight. Based on the decision of the FDD 

scheme about the fault occurring in the UAV during flight, 

the GS-PID controller will switch the controller gains under 

normal flight conditions to the pre-tuned and fault-related 

gains to handle the faults during the flight of the UAV. 

During recent years, Unmanned Aerial Vehicles (UAVs) 

have proved to hold a significant role in the world of 

aviation. These UAVs also provide the academic and 

industrial researchers and developers feasible and lost-cost 

test-beds for fault-tolerant control techniques development 

and flight testing verification (Jordan, et al, 2006; Jourdan et 

al, 2010; Gregory, Gadient, & Lavretsky, 2011), which was 

extremely difficult and costly by using manned aircraft, 

since flight testing verification with UAVs does not involve 

the main concern and the burden for flight testing the 

developed fault-tolerant control algorithms with human pilot 

sitting on the manned aircraft/aerial vehicles. These facts 

motivated also us for building and testing our developed 

fault-tolerant control algorithms with UAVs through 

financial supports of NSERC (Natural Sciences and 

Engineering Research Council of Canada) through a 

Strategic Project Grant (SPG) and a Discovery Project Grant 

(DPG) since 2007 leading by the third author. With 

consideration of an UAV with both in-door and out-door 

flying capability, a rotorcraft-type UAV, instead of a fixed-

wing UAV as developed in the above-mentioned NASA 

(National Aeronautics and Space Administration) and 

DRAPA (Defense Advanced Research Projects Agency) 

sponsored projects in USA (Jordan, et al, 2006; Jourdan et 

al, 2010), was selected for such an UAV test-bed 

development and flight tests. Among the rotorcrafts, 

quadrotor helicopters can usually afford a larger payload 

than conventional helicopters due to their four-rotor 

configuration. Moreover, small quadrotor helicopters 

possess a great manoeuvrability and are potentially simpler 

to manufacture. For these advantages, quadrotor helicopters 

have received much and continuously increasing interest in 

UAV research, development, and applications. The 

quadrotor helicopter we consider in this work is an under-

actuated system with six outputs and four inputs and the 

states are highly coupled. There are four fixed-pitch-angle 

blades whereas single-rotor helicopters have variable-pitch-

angle (collective) blades.  

Control of a quadrotor helicopter UAV is performed by 

varying the speed of each rotor. The configuration, 

structure, and related hardware/software of a quadrotor, 

especially the Quanser quadrotor unmanned helicopter, 

called as Qball-X4, which is used as the test-bed of this 

paper’s work and was developed in collaboration between 

Concordia University and Quanser Inc. through an NSERC 

Strategic Project Grant (SPG), will be presented in the 

Section 2 of this paper. Nonlinear and linearized state-space 

models are presented in Section 3 for the purpose of 

controller design with MRAC. Descriptions of the GS-PID 

and MRAC with applications to the Qball-X4 are presented 

in Section 4 and Section 5, respectively. Experimental flight 

testing results and comparison between GS-PID and MRAC 

are presented in Section 6. The conclusion and our future 

work are outlined in Section 7. 

 

2. GENERAL AND QBALL-X4 QUADROTOR HELICOPTER 

STRUCTURE 

In Fig. 1, the conceptual demonstration of a quadrotor 

helicopter is shown. Each rotor produces a lift force and 

moment. The two pairs of rotors, i.e., rotors (1, 3) and rotors 

(2, 4) rotate in opposite directions so as to cancel the 
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moment produced by the other pair. To make a roll angle 

(φ) along the x-axis of the body frame, one can increase the 

angular velocity of rotor (2) and decrease the angular 

velocity of rotor (4) while keeping the whole thrust 

constant. Likewise, the angular velocity of rotor (3) is 

increased and the angular velocity of rotor (1) is decreased 

to produce a pitch angle (θ) along the y-axis of the body 

frame. In order to perform yawing motion (ψ) along the z-

axis of the body frame, the speed of rotors (1, 3) is increased 

and the speed of rotors (2, 4) is decreased. 

The quadrotor helicopter is assumed to be symmetric with 

respect to the x and y axes so that the center of gravity is 

located at the center of the quadrotor and each rotor is 

located at the end of bars. 

 

 

 

  

 

 

 

-ded 

 

Figure 1. Quadrotor helicopter configuration with Roll-

Pitch-Yaw Euler angles [φ, θ, ψ] 

The quadrotor made by Quanser, known as Qball-X4 as 

shown in Fig. 2, is an innovative rotary-wing aerial vehicle 

platform suitable for a wide variety of UAV research and 

development applications. The Qball-X4 is a quadrotor 

helicopter propelled by four motors fitted with 10-inch 

propellers. The entire quadrotor is enclosed within a 

protective carbon fibre cage for the safety concern during 

flight to the quadrotor itself and for personnel using it in an 

in-door environment with limited flying space. 

 

Figure 2. The Qball-X4 quadrotor UAV (Quanser, 2010) 

The Qball-X4’s proprietary design ensures safe operation as 

well as opens the possibilities for a variety of novel 

applications. The protective cage is a crucial feature since 

this unmanned aerial vehicle was designed for use in an 

indoor environment/laboratory, where there are typically 

many close-range hazards (including other vehicles) and 

personnel doing flight tests with the Qball-X4. The cage 

gives the Qball-X4 a decisive advantage over other vehicles 

that would suffer significant damage if contact occurs 

between the vehicle and an obstacle. To obtain the 

measurement from on-board sensors and to drive the motors 

connected to the four propellers, the Qball-X4 utilizes 

Quanser's onboard avionics Data Acquisition Card (DAQ), 

the HiQ, and the embedded Gumstix computer. The HiQ 

DAQ is a high-resolution Inertial Measurement Unit (IMU) 

and avionics Input/Output (I/O) card designed to 

accommodate a wide variety of research applications. 

QuaRC, Quanser's real-time control software, allows 

researchers and developers to rapidly develop and test 

controllers on actual hardware through a MATLAB/ 

Simulink interface. QuaRC's open-architecture hardware 

and extensive Simulink blockset provides users with 

powerful control development tools. QuaRC can target the 

Gumstix embedded computer automatically to generate 

code and execute controllers on-board the vehicle. During 

flights, while the controller is executing on the Gumstix, 

users can tune parameters in real-time and observe sensor 

measurements from a host ground station computer (PC or 

laptop) (Quanser, 2010). 

The interface to the Qball-X4 is MATLAB/Simulink with 

QuaRC. The controllers are developed in Simulink with 

QuaRC on the host computer, and these models are 

downloaded and compiled into executable codes on the 

target (Gumstix) seamlessly. A diagram of this 

configuration is shown in Figure 3. 

 

Figure 3. The Qball-X4 communication hierarchy and 

communication diagram (Quanser, 2010) 

For Qball-X4, the following hardware and software are 

embedded: 

 Qball-X4: as shown in the Figure 2. 

 HiQ: QuaRC aerial vehicle data acquisition card (DAQ). 

 Gumstix: The QuaRC target computer. An embedded, 

Linux-based system with QuaRC runtime software 

installed. 

 Batteries: Two 3-cell, 2500 mAh Lithium-Polymer 

batteries. 
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 Real-Time Control Software: The QuaRC-Simulink 

configuration, as detailed in Quanser (2010). 

 
3.  MODELING OF THE QBALL-X4  

 
3.1 Non-linear Model of the Qball-X4 

 

In Qball-X4, there are four (E-flite Park 400) brushless 

motors, using a 10×4.7 inch propeller. As explained before, 

in order to cancel the moment of each pair of propellers, the 

motors 1 and 2 have clockwise rotation and the motors 3 

and 4 have counterclockwise rotation. 

For every attitude change the angular velocity of motors is 

changed, but the total thrust of all the four motors is 

constant in order to maintain the height. For instant, to make 

a pitch angle (θ) along the Y-axis of the body frame one can 

increase the angular velocity of motor (2) and increase the 

angular velocity of motor (1), while keeping the trust 

constant. Likewise the angular velocity of motor (3) is 

increased and the angular velocity of motor (4) is decreased 

in order to make a roll angle ( ) along the X-axis of the 

body frame. 

It can be understood easily that yaw motion along the Z-axis 

of the body frame will be implemented by increasing total 

angular velocity of motors (1, 2) and decreasing the angular 

velocity of opposite rotation motors (3, 4). Motors of Qball-

X4 are not exactly located at the end of the aluminum rods, 

but 6 inches from the end point for not to touch the fiber 

carbon cage by propellers and the L is the length between 

the rotational axis of each motor/rotor and the center of 

gravity (CoG) of the Qball-X4, as shown in Fig. 4. 

F1 F2

L

 

Figure 4. Roll/Pitch axis model 

While flying there are four downwash thrust vectors 

generated by four propellers, if we neglect the drag of four 

propellers we can present the equations of motion of the 

Qball-X4 as follows: 

 

          (1)        

           

                    

3 4 1

1 2 2

1 2 3 4 3
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                       (2) 

  

where J  is the moment of inertia with respect to each axis 

and  is the force-to-moment scaling factor; [x, y, z] are the 

position of the quadrotor in earth position and [φ, θ, Ψ] are 

roll, pitch and yaw angle respectively.  

As mentioned before, we need a transformation matrix 

which transforms variables from body frame to the Earth 

frame. Therefore, R represents the coordinate transformation 

matrix from body frame to earth frame and 
3 [0,0,1] .Te   
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We can assume that a certain height of the quadrotor, certain 

ground effects will affect Qball-X4 and we define ( )rg z for 

such an effect as follows:
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0
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0
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z z
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            (4) 

In this equation we consider A as ground effects and 
cgz is 

the Z component of CoG. Because it is very difficult to 

derive the exact equations for the ground effects, the term 

( )rg z  is considered as an unknown perturbation in control 

design, which requires compensation or adaptation. We can 

simplify (1) and (2), by defining input terms as in (5). u1 

represents the normalized total lift force, and u2, u3 and u4 

correspond to the control inputs of roll, pitch and yaw 

moments, respectively. 
 
 

                          (5)                                  

 

 

 

Then the equation of motion can be re-written as below: 

 

              1(cos sin cos sin sin )x u      
               (6) 

              1(cos sin sin sin cos )y u      
               (7) 

              1(cos cos ) ( )rz u g g z   
                        (8) 

                2u l                                                             (9) 

                3u l                                                           (10) 

                 4u                                                            (11) 
 

4

3 3

1

1
( ) Re ( ( ) )i r

i

x

y F g z g e
m

z


 
 

  
 
  



1 1 2 3 4

2 3 4 1

3 1 2 2

4 1 2 3 4

( ) /

( ) /

( ) /

( )

u F F F F m

u F F J

u F F J

u F F F F

   

 

 

    

Annual Conference of the Prognostics and Health Management Society, 2011

250
[paper 27]



Annual Conference of the Prognostics and Health Management Society, 2011 

 5  

By defining state and input vectors as x = [x, y, z, φ, θ, ψ] 

and u = [
1u , 

2u , 
3u , 

4u ], the matrix-vector form of the above 

equations of motion can be represented as: 

                                             

                     (12) 

                 

where 

                        

00

00

( )
( ) ,   ( ) ,

0 0

0 0

0 0

r

r

g zg
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                            (13) 

 

and g(x) is defined as follows: 

 

          

cos sin cos sin sin 0 0 0

cos sin sin sin cos 0 0 0

cos cos 0 0 0
( )

0 0 0
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0 0 0 1

g x
l
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     (14) 

 
3.2  Linearized State-Space Model of the Qball-X4 

This section describes the linearized dynamic model of the 

Qball-X4 for the purpose of designing linear controller, such 

as MRAC. For the following discussion, the axes of the 

Qball-X4 are denoted as (x, y, z) and defined with respect to 

the configuration of the Qball-X4 as shown in Figure 2. 

Roll, pitch, and yaw are defined as the angles of rotation 

about the x, y, and z axis, respectively. The global 

workspace axes are denoted as (X, Y, Z) and defined with 

the same orientation as the Qball-X4 sitting upright on the 

ground. 

Actuator Dynamics 

To count into dynamics of the actuators in Qball-X4 

modeling, the thrust generated by each propeller is modeled 

using the following first-order system: 

                              
F k u

s






                             (15) 

where u is the PWM input to the DC-motor actuator, ω is 

the actuator bandwidth and K is a positive gain. These 

parameters were calculated and verified through 

experimental studies. A state variable, v, will be used to 

represent the actuator dynamics, which is defined as 

follows: 

                                    

v u
s






                                 (16) 

Roll and Pitch Models 

Assuming that rotations about the x and y axes are 

decoupled, the motion in roll/pitch axis can be modeled as 

shown in Figure 4. As illustrated in the figure, two 

propellers contribute to the motion in each axis. The thrust 

generated by each motor can be calculated from Eq. (15) 

and used as corresponding input. The rotation around the 

center of gravity is produced by the difference in the 

generated thrusts. The roll/pitch angle can be formulated 

using the following dynamics: 

 

                              (17) 

 

where 

                      

                              roll pitchJ J J 
                               (18) 

are the rotational inertia of the device in roll and pitch axes. 

L is the distance between the propellers and the center of 

gravity, and 

 

                           ΔF = F1−F2                                     (19) 

 

represents the difference between the forces generated by  

the propeller pair (1, 2) . 

 

By combining the dynamics of motion for the roll/pitch axis  

and the actuator dynamics for each propeller the following  

state-space equations can be derived: 

                   

                            

                                                                       

                 (20) 

 

To facilitate the use of an integrator in the feedback 

structure a fourth state can be added to the state vector, 

which is defined as S  . 

Height Model 

The motion of the Qball-X4 in the vertical direction (along 

with the Z axis) is affected by all the four propellers. The 

dynamic model of the Qball-X4 in this case can be written 

as: 

             (21)                                       

where F is the thrust generated by each propeller, M is the 

total mass of the propeller, Z is the height and r and p 

represent the roll and pitch angular rates, respectively. As 

expressed in this equation, if the roll and pitch angular rates 

are nonzero the overall thrust vector will not be 

perpendicular to the ground. Assuming that roll and pitch 

angles are close to zero, the dynamic equations can be 

linearized to the following state space form:  

0 1 0
0

0 0 0

0 0

KL
F

J
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(22)             

 

X-Y Position Model 

The motions of the Qball-X4 along the X and Y axes are 

caused by the total thrust and by changes of the roll/pitch 

angles. Assuming that the yaw angle is zero, the dynamics 

of motion in X and Y axes can be written as: 

                             

                             

 

                             (23) 

Assuming that the roll and pitch angle rates are close to 

zero, the followinglinear state-space equations can be 

derived for X and Y positions.  
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                                       (25) 

 

Yaw Model 

The torque generated by each motor,  , is assumed to have 

the following relationship with respect to the PWM input, u 

 

                                   (26) 

 

where  Ky is a  positive gain. The motion  in the yaw axis is 

caused by the difference between the torques exerted by the 

two clockwise and  the two counterclockwise rotating props. 

The motion in the yaw axis can be modeled by: 

                           

                                 

                                 (27) 

where y is the yaw angle and Jy is the rotational inertia 

about the z axis. The resultant torque of the motors, , can 

be calculated by: 

 

1 2 3 4y         
                       (28) 

The yaw axis dynamics can be rewritten in the state-space 

form as: 

                       

0
0 1

0 0

yy

y y

yy
y

K

J






 
      

        
         

                     (29) 

 

4. GAIN-SCHEDULED PROPORTIONAL-DERIVATIVE- 

INTEGRAL (GS-PID) CONTROLLER 

In view of the advantages of widely used Proportional-

Integral-Derivative (PID) controller and gain scheduling 

control strategy in aerospace and industrial applications, a 

control strategy by using gain scheduling based PID 

controller is proposed for fault tolerant control (FTC) of our 

UAV test-bed Qball-X4. 

As described previously, PID controllers are designed and 

tuned in both fault-free and faulty situations to control the 

Qball-X4 under normal and faulty flight conditions.  

For GS-PID controller, several sets of pre-tuned gains are 

applied to the controllers in different flight conditions under 

both fault-free and faulty cases. In the next step, attempts to 

obtain the best stability and performance of Qball-X4 in 

trajectory tracking control under both cases and to switch 

the controller gains from one set of pre-tuned PID controller 

to another set of the gains in the presence of different levels 

of actuator faults are carried out. 

One of the main parameters to consider in GS-PID is the 

switching time between the time of fault occurrence and the 

time of switching to new set of gains. In other words, if this 

transient (switching) time is held long (more than one 

second) it can cause the Qball-X4 to hit the ground and 

cause a crash, since the operating height was considered as 

70 cm to 1 meter. The structure of a GS-PID controller 

implemented in the Qball-X4 software environment is 

shown in Figure 5. 

(a)    

   (b) 

 Figure 5. (a) PID and (b) GS-PID controller structures 
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5. MODEL REFERENCE ADAPTIVE FAULT/DAMAGE 

TOLERANT CONTROLLER 

Model Reference Adaptive Control (MRAC) is concerned 

with forcing the dynamic response of the controlled system 

to asymptotically approach that of a reference system, 

despite parametric uncertainties (faults) in the system. Two 

major subcategories of MRAC are those of indirect 

methods, in which the uncertain plant parameters are 

estimated and the controller redesigned online based on the 

estimated parameters, and direct methods, in which the 

tracking error is forced to zero without regard to parameter 

estimation accuracy (though under certain conditions related 

to the level of excitation in the command signal, the 

adaptive laws often can converge to the proper values). 

MRAC for linear systems has received, and continues to 

receive, considerable attention in the literature. Based on the 

advantages of the direct method without the need of 

estimation of unknown parameters for implementing the 

adaptive controller as required by the indirect method, direct 

method is selected in this work for fault-tolerant control of 

the Qball-X4. The control structure of such a MRAC 

scheme can be represented as in Fig. 6. 

Model

Controller Plant

Adjustment 

Mechanism

Output

Input

Control Parameters

Model Output

Set Points

 

Figure 6. Model reference adaptive control structure 

 

There are different approaches to MRAC design, such as: 

 The MIT rule 

 Lyapunov stability theory 

 Hyperstability and passivity theory 

 The error model 

 Augmented error 

 Model-following MRAC 

 Modified-MRAC (M-MRAC) 

 Conventional MRAC (C-MRAC) 

In this paper, the MIT rule is used to design the MRAC for 

the height hold and trajectory tracking of the Qball-X4. 

However, the schemes based on the MIT rule and other 

approximations may go unstable. We illustrate the use of the 

MIT rule for the design of an MRAC scheme for the plant                     

                                

                     (30) 

where 1a  and 2a  are the unknown plant parameters, and y  
and y are available for measurement. The reference model to 

be matched by the closed-loop plant is given by: 

 

                         
2m m my y y r   

                        (31) 

The control law is then given by: 

 

                  
* *

1 2u y y r   
                       (32) 

where  

               
* *

1 1 2 22,  1a a    
                    (33) 

will achieve perfect model following. The equation (33) is 

referred to as the matching equation. Because 1a  and 2a  

are unknown, the desired values of the controller parameters 
*

1  and 
*

2  cannot be calculated from (33). Therefore, 

following control law are used instead: 

                                 1 2u y y r   
                       (34) 

where 1  and 2  are adjusted using the MIT rule as: 

                     

1 1 2 2
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,
y y
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              (35) 

where 
1 me y y  . To implement (35), we need to 

generate the sensitivity functions 

1 2

,
y y

 

 

 
online. 

 

6. EXPERIMENTAL FLIGHT TESTING RESULTS 

6.1 Flight Testing Results with GS-PID 

For comparison purpose and as a baseline controller of the 

Qball-X4 under normal flight conditions, a single PID 

controller, which is tuned well for taking-off, hovering and 

landing scenario under normal flight condition is designed 

first. Such a controller is used also in a faulty scenario with 

an 18% of overall loss in power of all motors. Since the 

significantly deteriorated performance by using a single PID 

controller, in particular when the fault level increases, 

another set of PID gains is set for the fault case with gain 

scheduling strategy for a better handling of the fault 

comparing with a single PID controller mainly designed and 

turned for normal flight of the Qball-X4. To analyze the 

effect of time delay due to fault detection and diagnosis 

scheme, different levels of time delay were introduced when 

scheduling/switching the controller gains after a fault 

occurrence since such fault detection induced time delay is 

essential for maintaining the stability and the acceptable 

performance of the Qball-X4 after fault occurrence. 

1 2y a y a y u   
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Flight tests with a one meter circuit leg square trajectory 

tracking scenario for cases with different time delays have 

been carried out. As shown in Fig. 7, acceptable tracking 

deviation from the desired square trajectory after the fault 

occurrence can be obtained with the case of 0.5 sec time 

delay. Better tracking performance with a shorter time delay 

can be achieved which verified the importance of fast and 

correct fault detection and control switching 

(reconfiguration) after fault occurrence. 

 

To demonstrate the possible best performance without time  

delay, i.e. the fault occurrence and the switching of 

controller gains occur at the same time with the perfect fault 

detection and isolation, the best result can be achieved by 

the GS-PID is shown in Fig. 8 where the fault occurred and 

the PID controller is switched at the same time of 20s. 

Better tracking performance has been achieved compared to 

the case with 0.5 s time delay as shown in Fig. 7. Videos on 

the above flight testing results are available at 

http://users.encs.concordia.ca/~ymzhang/UAVs.htm. 

 

Figure 7. GS-PID with a time delay of 0.5 sec for controller 

switching in the presence of an actuator fault 

 

Figure 8.  GS-PID without time delay for controller 

switching in faulty condition (the best performance can be 

achieved with the designed GS-PID) 

6.2 Flight Testing Results with MRAC 

Regarding MRAC, hovering control as well as square 

trajectory tracking controls with fault injection are applied 

to Qball-X4 and the experimental flight testing results are 

shown in Figs. 9 and 10. In Fig. 9, a fault-free condition is 

applied to the Qball-X4 and the MRAC was able to track the 

trajectory close to real one. In Fig. 10, a fault is injected to 

the left and back motors at 20 sec with a loss of 18% of 

power during the flight. As can be seen from Fig. 10, Qball-

X4 can still track the desired trajectory with a safe landing. 

Relevant flight testing videos are also available at 

http://users.encs.concordia.ca/~ymzhang/UAVs.htm.  

 

Figure 9.  Square trajectory in fault-free condition with 

MRAC 

 

Figure 10. Square trajectory in faulty condition (left and 

back motors) with MRAC 

 

6.3 Comparison and Comments Based on This Research 

During this research many hours of flight tests have been 

spent at the Network Autonomous Vehicle Laboratory 
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(NAVL) of the Mechanical and Industrial Department at 

Concordia University in order to develop the GS-PID and 

MRAC for achieving the best fault-tolerant control 

performance of the Qball-X4 under fault flight conditions. 

By our experience and comparison of the flight testing 

results, it can be concluded that the MRAC yields a better 

response than GS-PID for trajectory tracking control 

although the GS-PID is easier to design and to implement in 

MATLAB/Simulink interface of the Qball-X4 as well as in 

the simulation environment. In fact, the GS-PID can give a 

better result if the tuning for controller gains at pre-fault and 

faulty cases be very precise. A good tuning for the GS-PID 

controller gains was very time consuming and gains could 

change from one flight to another even in our in-door lab 

environment. Any change in lab environment during flight 

could force the gains need to be tuned again. However, the 

MRAC is more reliable and robust to the lab noises and 

environment changes. Together with the advantages without 

the need of mathematical model in GS-PID design and 

implementation compared with MRAC (where a 

mathematical model is needed to design and implement the 

controller), GS-PID control technique can play an important 

role for fault-tolerant control of UAVs as the same as its 

wide and successful applications in normal/fault-free cases, 

with the support of an effective and efficient automatic 

control gains tuning techniques. 

 
7. CONCLUSION AND FUTURE WORK 

In this paper, two types of popular controllers, Proportional-

Integral-Derivative (PID) controller with Gain Scheduling 

(GS) technique and Model Reference Adaptive Control 

(MRAC), are applied and tested, in a quadrotor helicopter 

UAV test-bed and the results are presented. Both controllers 

showed good results for height control of the quadrotor 

UAV: Qball-X4. Unlike the GS-PID, the single PID which 

is tuned for normal flight was not able to handle the faults 

with larger fault level. 

The future work is considered to combine the GS-PID fault- 

tolerant control with an online fault detection and diagnosis 

scheme to achieve an entire active fault-tolerant GS-PID 

control of the Qball-X4 and other UAVs. Investigation and 

implementation of efficient auto-tuning strategies for GS-

PID is also an important future work although these GS-PID 

controller gains do not need to be designed on-line in real-

time. 
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ABSTRACT 

In this work, we will develop a fault detection system which 

is identified as a classification task. The classes are the 

nominal or malfunctioning state. To develop a decision 

system it is important to select among the data collected by 

the supervision system, only those carrying relevant 

information related to the decision task. There are two 

objectives presented in this paper, the first one is to use data 

mining techniques to improve fault detection tasks. For this 

purpose, feature selection algorithms are applied before a 

classifier to select which measures are needed for a fault 

detection system. The second objective is to use STRASS 

(STrong Relevant Algorithm of Subset Selection), which 

gives a useful feature categorization: strong relevant 

features, weak relevant and/or redundant ones. This feature 

categorization permits to design reliable fault detection 

system. The algorithm is tested on real benchmarks in 

medical diagnosis and fault detection. Our results indicate 

that a small number of measures can accomplish and 

perform the classification task and shown our algorithm 

ability to detect the correlated features.  Furthermore, the 

proposed feature selection and categorization permits to 

design reliable and efficient fault detection system. 

1. INTRODUCTION 

We work in conditional maintenance when the supervision 

system surveys the fault appearance. In a real supervision 

system, digital data collection devices and data storage 

technology allow organizations to store up huge data. The 

large amounts of data, has created a massive request for new 

tools to transform data into task oriented knowledge (The 

knowledge data discovery, and data mining area). Our work 

concentrates on real-world problems and fault detection 

system, where the learner has to handle problems dealing 

with datasets containing large amounts of irrelevant 

information [9],[13],[14]. Initial features are often selected 

subjectively based on human experience. However, when 

large amount of data are being monitored, expert judgement 

may be subject to errors and biases. It is therefore desirable 

to use fully automated feature selection algorithm to 

overcome these shortcomings.   

Over-instrumentation: monitoring too many metrics of a 

system poses significant problems, as a large number of 

threshold estimation, quantification, aggregation, situation 

identification and diagnostic rules exclude reliable manual 

design and maintenance, especially in evolving applications. 

On the other hand monitoring too many metrics also causes 

unnecessary performance overhead on the monitored 

systems, and data collection nodes especially in case of 

historic data collection. 

Under-instrumentation: the improper reduction of the set of 

monitored metrics, on the other hand can significantly 

compromise the capabilities of supervision, manifesting in 

large reaction times to workload changes, significantly 

reduced availability due to late error detection and 

diagnosis. The selection of a compact, but sufficiently 

characteristic set of control variables is one of the core 

problems both for design and run-time complexity [43]. 

Dimension reduction methods are usually divided into two 

groups: feature extraction and feature selection approaches. 

Feature extraction aims at applying a projection of the 

multidimensional problem space into a space of fewer 

dimensions thus resulting in aggregate measures that did not 

exist in the measured environment while feature selection is 

Senoussi et. al., This is an open-access article distributed under the terms 

of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 
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finding a subset of the measured variables or a subset of the 

transformed variables via feature extraction. 

Many descriptive features may affect the precision of a 

classifier and some can even parasitize the processing of 

data. However, it should be noted that features do not have 

the same importance in the development of the classifier. 

Therefore it is very useful to be able to identify, within the 

whole training set, the appropriate features‘ types to 

discriminate between the fault detection concepts being 

considered. Yu et al [25] counted four (4) different features 

types namely irrelevant ones, strongly relevant, weakly 

relevant and redundant ones. An entire feature set can be 

conceptually divided into four (4) basic disjoint parts: 

irrelevant features (I), redundant features (part of weakly 

relevant features (WRr1 and WRr2)), weakly relevant but 

non-redundant features (WRnr), and strongly relevant 

features (predominant). Fig. 2 illustrates this hierarchy. The 

optimal subset essentially contains all predominant features, 

WRnr and WRr1 or WRr2. WRr1 is a subset of weakly 

relevant features having theirs redundant or equivalent 

features in WRr2. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Hierarchy of feature‗s relevance and redundancy 

 

First of all, we have to reduce the number of sensors/metrics 

considered in order to avoid over instrumentation and to 

simplify the classification problem. The filter algorithm 

STRASS (STrong Relevant Algorithm of Subset Selection) 

[22] is initially used to select relevant information, construct 

a robust fault detection model and speed up training time. 

Moreover the proposed feature selection algorithm is based 

on two criteria of relevance which provide a useful features‘ 

categorization (Fig. 1): the strongly, weakly relevant 

features and the redundant ones. This features‘ 

categorisation is based on criteria developed in [22], [35]. In 

our precedent study [22], we define two complementary 

criteria, one Myopic and the other Contextual, to take into 

account partially redundant feature and privilege the quality 

detection of relevant subset feature. The proposed criteria 

attempt to explicitly address feature interactions by finding 

some low-order interactions 2-way (one feature and the 

class) and high order interactions k-way (k features and the 

class) interactions. Those criteria are associated with a 

greedy algorithm which is noted STRASS. STRASS proves 

its efficiency and effectiveness comparing with five 

representative algorithms on artificial benchmarks well 

known for their features interactions. The other paper‘s 

contribution is in the exploitation of redundant features to 

improve fault detection reliability by reducing false alarm 

and/or missed alarm. Reliability requires the minimization 

of undetectability and false alarm probability due to sensor 

readings, which is not only related with sensor readings but 

also affected by fault propagation. In engineering practice, 

sensors may often be faulty, meaning that they may fail to 

give adequate readings or the sensor may give an alarm for a 

normal operation state, known as a false alarm. We should 

therefore allow for some redundancy in sensors in case of 

failures. A robust strategy to identify faulty sensor readings 

and to discriminate among sensor failure and system failure 

has been developed. 

The rest of the paper is organized as follows: Section 2 

overviews the state of art of feature selection techniques for 

fault detection systems. The study highlights the importance 

of the pre-processing phase such as feature extraction and 

selection to improve the classifier. Section 3 introduces the 

features‘ categorization technique, the proposed criteria and 

STRASS features selection algorithm that take into account 

the type of features in a rather finer way than other methods. 

It is worth noting that the authors‘ contribution is not in the 

filtering algorithm, but rather in the features categorization 

that has been derived from it to build a reliable fault 

detection system. Section 4 is devoted to the proposed 

methodology using feature categorization to design reliable 

fault detection systems. In Section 5 the proposed algorithm 

is evaluated and compared with two well-known feature 

selection algorithms CFS (Correlation Based Feature 

Selection) [10] and FCBF (Fast Correlation Based Feature 

Selection) [25] and a feature extraction algorithm Principal 

Component Analysis (PCA). CFS and FCBF are considered 

to be among the best methods for their ability to treat 

different feature types and consequently provide a finer 

feature selection based on a minimal subset. Conclusions 

and recommendation for future work are summarized in 

Section 6. 

2. A SURVEY OF RELATED WORK ON FEATURE 

SELECTION 

Fault detection methods are generally based on either signal 

processing or physical models. Data-driven techniques for 

fault detection and diagnosis have also been extensively 

used. The following is a brief overview of some recently 

published papers on feature selection techniques for fault 

detection. 

Whole Set 

 

Weakly  

Relevant 

 

Predominant 

Strongly Relevant  
Irrelevant 

 

   WRr2: Redundant 

WRnr: Weakly Relevant  

and Not Redundant   

WRr1: Weakly Relevant  
and Redundant   

 

 

Optimal Subset 
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Paljak et al (2009) [31] considered the selection of a 

compact, but sufficiently characteristic set of control 

variables which can provide, in a simple way, good 

parameter estimators for predictive control. Their approach 

also provides the identification of the operational domain 

hence facilitating context-aware adaptive control, diagnostic 

and repair in large Infrastructure Monitoring. They used 

mRMR (minimum Redundancy Maximum Relevance) 

feature selection algorithm combined with linear 

approximation for selecting the few and most significant 

quantitative aspects of a system for the purpose of 

supervisory instrumentation. Yang et al (2008) [37] 

presented a survey on fault diagnosis using Support Vector 

Machine (SVM) classifiers combined with other methods. 

For the detection of faults in roller bearing, Jack et al (2002) 

used Genetic Algorithms to select an optimal feature subset 

for two SVM and artificial neural network based classifiers. 

Casimira et al (2006) [6] reviewed various pattern 

recognition methods for the diagnosis of faults in induction 

motors‘ stator and rotor. A set of 31 features were initially 

extracted by a time frequency analysis of stator currents and 

voltages and combined with others features. The most 

relevant features were selected using a sequential backward 

algorithm. The experimental results demonstrated the 

effectiveness of the proposed method to improve the k-

nearest neighbours classification rate in condition 

monitoring. The work by Sugumara et al (2007) [38] 

focussed particularly on fault conditions in the roller bearing 

of a rotary machine. They used vibration signals from a 

piezoelectric transducer in different functional mode (good 

bearing, bearing with inner race fault, bearing with outer 

race fault, and inner and outer race fault). First, a set of 11 

features were extracted by time frequency analysis. Among 

these, the 4 best features were selected from a given set of 

samples using the popular C4.5 decision tree algorithm. 

Second, Proximal Support Vector Machine (PSVM), was 

used to efficiently classify the faults using statistical 

features. Torkolan et al (2004) [23] constructed a driver‘s 

assistance system. This system uses feature selection to 

identify which sensors are needed for the classification of 12 

manoeuvres (changing left, crossing shoulder, on road...). 

Sensor data like accelerator, brake, speed, etc. were 

collected from a driving simulator and a total of 138 

features were extracted from this data set. The authors used 

Naïve Bayes and Random Forest classifiers. They combined 

CFS feature selection algorithm and Random Forest with 

various measures to calculate new features and evaluate 

which among the derived features were relevant to this 

problem in addition to selecting the best sensors. The results 

indicated that to some extent new sensor hardware can be 

exchanged with a software version by computing new 

variables based on existing ones. Feature selection in this 

case allows controlled collection of data using a desired 

number and type of sensors.  

Among existing feature selection methods applied to fault 

detection system, earlier methods often evaluate variables 

without considering feature-feature correlation and 

interaction. They rank feature according to their individual 

relevance or discriminative power to the targeted classes 

and select top-ranked features. These methods are 

computationally efficient due to linear time complexity in 

terms of dimensionality. However, (1) they cannot give the 

feature categorization that we have cited and (2) they cannot 

remove partially redundant features. 

3. FEATURE CATEGORISATION: CONCEPT AND CRITERIA 

OF RELEVANCE AND REDUNDANCY 

3.1. Feature Categorisation 

Definition 1:  Irrelevant  

A feature is useful if it is correlated with or predictive of the 

class; otherwise it is irrelevant [10]. 

 

Definition 2: Weakly relevant 

A feature xi is weakly relevant to a sample N of instances 

and distribution D if it is possible to remove a subset of the 

features so that xi becomes strongly relevant (Blum and 

Langley [4]). 

Definition 3: Strongly relevant 

A feature xk is strongly relevant to sample N if there exist 

examples A and B in N that differ only in their assignment to 

xk and have different labels (or have different distributions 

of labels if they appear an N multiple of times). Similarly, xk 

is strongly relevant to target c and distribution D if there 

exist examples A and B having non-zero probability over D 

that differ only in their assignment to xk and satisfy c(A) ≠ 

c(B) ) (Blum and Langley definition‘s [4]).  

 

Definition 4: Redundant 

A feature is said to be redundant if several features taken 

together play the same role as the underlying feature (they 

discriminate the population studied by the considered 

feature). 

3.2. Criteria of Relevance and Redundancy 

Two criteria have been introduced to categorise a whole set 

of features (Senoussi et al [22]). These criteria were 

elaborated from the discriminatory power in a pair-wise data 

representation approach. The categorized features types 

depend on: predominant (strongly relevant), weakly relevant 

and redundant ones. These criteria are briefly described 

below. 

3.2.1. Data representation 

Giving the input data tabulated as   samples. A signature 

is a vector of r features x called pattern vector denoted 

by                . The functional states are 
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represented by M classes                in an r-

dimensional space. Making a decision consists in assigning 

an incoming input vector to the appropriate class. This 

decision consists in recognizing the functional state of the 

system. Let‘s associate to a feature xk the function    
  

relative to each pairs of instances            .  

 

                       
   

           
                             

                                                        
                                                        

   

The function    
  relative to each pair of instances and their 

corresponding labels is obtained in the way. 

 

             
   

           
                           

                                                          
        

 

3.2.2. Weak relevance measure 

The weakly relevance of a set of feature is defined by the 

number of all pairs of objects who have at least one 

discriminating variable and different labels or different 

distributions of labels. 

 

Proposition 1: The discriminating capacity measure of a 

feature set DC (L,): 

 

   

                        
   

            
   

 
                                                                                                    

 

Given a subset of m features L = (x1… xm); the subset of 

feature group relevance is the number of pairs that are 

discriminate at least with one feature for each class.  

3.2.3. Strong relevance to the sample/distribution 

To measure the exclusiveness of a feature, the equivalent of 

a "relevance gain" is defined as the measure related to a 

feature compared to a subset of features and is termed the 

Discriminating Capacity Gain (DCG).  

First we define the relevance of a feature xk compared to a 

relevant pre-selected features subset L= (x1… xm) on pairs of 

instances        . 

The strong relevance (SR) of feature xk on the data pair 

       is given by:  

                                    
                 

                                                                      

 

Proposition 2: Discriminating capacity gain: DCG 

The aggregation of the Strong Relevance (SR) expression 

on the whole pairs will define the DCG as:  

 

                                
   

 
       

          
                                                   

(5) 

 

The DCG of a feature xk for a set of objects compared to a 

set of L features is equal to the number of object couples 

discriminated by only xk and no other features. 

3.2.4.   Redundant feature  

Let S be the current set of features if  

 

                           

                                                (6) 

 

Then xl is a redundant or irrelevant feature compared to the 

feature subset S on .   

3.3.   STRASS Algorithm  

The criteria are associated with an algorithm related to the 

greedy type algorithms and noted STRASS (Appendix A). 

STRASS detects the strongly relevant features, the partially 

redundant features, selects a minimum feature subset and 

ranks the features’ relevance. The algorithm breaks up into 

three stages depending on its initialisation: 

(1) Selection of strongly relevant features or predominant 

features which are impossible to exclude because they 

are the only ones which allow the discrimination of 

classes.  

(2) Selection of the remaining features or weakly relevant 

features which have the largest discriminating capacity 

and when combined with a subset of features, the 

resulting overall discriminating power is increased. 

The features having equivalent discriminating capacity 

are retained as weakly relevant and redundant and are 

denoted by WRr1 and WRr2.  

 

(3) Suppression of redundant features. At this stage, 

backward elimination is employed to detect the 

features that become redundant compared to the subset 

of the selected features when adding a new feature.  

 

STRASS, presented in our previous study [22], has proved 

to be more efficient when compared to five (5) 

representative algorithms on artificial benchmarks well 

known for their features interactions and satisfactory 

performance for the selection of a minimal set of relevant 

features and handling the k-way features interaction [11]. 

Reference list entries should be alphabetized by the last 

name of the first author of each work. 
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Figure. 2 The proposed fault detection system 

 

4. FEATURES  CATEGORIZATION TO CONSTRUCT A 

RELIABLE FAULT DETECTION SYSTEM 

Reliability requires the minimization of undetectability and 

false alarm probability due to sensor readings or fault 

propagation. In this study the feature categorization will be 

used to design reliable fault detection system. Due to their 

natural discriminating characteristics the selected features 

make it practical to develop a measure of confidence for the 

fault detection system show in Fig. 2.  

With reference to Fig. 2: 

 

 

1. Firstly, a fault detection classifier is built using all 

predominant features (SR), weakly relevant but non-

redundant features (WRnr) and weakly relevant 

features (WRr1). 

2. Secondly, redundant features can be used with the 

predominant and the WRnr ones to build another 

classifier. 

3. In the case of similar results, the second classifier 

confirms the result obtained with the first one. When 

the results obtained are different, it is an indication 

that there is a problem in the acquisition platform (a 

sensor is defiling) or in the data collection (a 

parameter is erroneous). The identification of the 

features is determined by a close examination of the 

redundant feature, or acquisition of another data. 

We should therefore allow for some redundancy in sensors 

for the predominant measure in case of failures, and the 

examination of the redundant feature to relay the 

information. Therefore, missed alarms and false alarms can 

be detected. 

 

5. EXPERIMENTS AND RESULTS 

Our algorithm was implemented in MATLAB 7.5 

environment. For the filtering algorithms and classifiers 

existing tools in WEKA machine learning platform [24] 

have been used. The experiments were run using WEKA 

with its default values.  

5.1. Feature Selection and Categorization Results  

The proposed algorithm has been evaluated on datasets from 

the UCI Machine Learning Repository [39]. Their 

characteristics are shown in Table 1.  

 

Datasets Instances Features Classes 

Heart 270 14 2 

Lung cancer 32 57 2 

Hepatitis 20 20 2 

Machine 12829 22 22 

RFM 3519 72 22 

 

Table 1. Summary of dataset 
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For the fault detection task Machine and RFM datasets 

(Appendix B) have been used. This data was originally 

taken at Texas Instruments as part of the SEMATECH J-88 

project. For more information about this data set, please see 

[2][3]. 

 

Most existing feature selection algorithms are adapted for 

discretized (qualitative) data. Therefore for data sets with 

continuous features, the authors propose to use the MDL 

(Multi-interval discretization of continuous attributes) 

discretization algorithm proposed by Fayyad et al [8] also 

implemented in WEKA environment [24]. Table 2 presents 

the number of features selected by each features selection 

algorithm. The proposed algorithm has substantially reduced 

the number of features necessary to construct a classifier 

(18% in average in feature space). Table 3 gives STRASS 

selected features and their categorization. Heart and 

Hepatitis have dominant features and redundant ones, thus 

make it possible to construct a second classifier to detect the 

same diagnosis and compare the results. For lung cancer and 

RFM datasets, the selected features are all predominant. 

 

Datasets ALL 

 

STRASS CFS FCBF ACP 

Heart 13 8 6 5 12 

Lcancer 56 3 8 6 25 

Hepatitis 19 9 9 6 16 

Machine 21 5 10 8 17 

RFM 71 8 18 11 12 

Average 36 6.6 10.2 7.2 16.4 

 

Table 2. Number of features selected by each features 

selection algorithm 

 

Data sets STRASS 

Selected feature 

SRp WRnr WRr1=WRr2 

Heart  8{3,7,8,1,2,12,9,13} {3,7,8,1,2,12,13}     4=5=6=9 

11=13 

L cancer 3 {9,43,34} {9,43,34}  3=7; 8=9 

Hepatitis 9{11,18,17,6,14,8,12,3,2} {11,18} {17,6,14,8,12,2} 3=7=10 

Machine 5 {1,3,7,17,13} {3,17, 13} {1} {7=11,12,14,16} 

RFM 8 {35,26, 22,14, 44,66,9,4} {35, 26, 22,14, 44,66,9,4}   

 

Table 3.  STRASS feature categorization 

5.2 Detection Results 

For the classification task, three different classifiers have 

been used decision tree (C4.5), K-nearest-neighbor (IBk), 

Support Vector Machines (SVM) and multilayer perceptron 

(MLP). In our experiments, k is set as 1. The classification 

results are obtained with 10-fold cross-validation. These 

results are compared with two Correlation-Based Feature 

Selection algorithms: CFS
1
 [10] and FCBF

2
 [25] and the 

Principal Component Analysis (PCA). TABLES 4-6 show 

results in both accuracy and kappa obtained with a two 

tailed test. The symbols ―+‖ and ―-‖ respectively identify 

significant improvement if an algorithm wins over or loses 

to the learning algorithm with the whole dataset. 

 

Datasets C4.5 

 

C4.5+ 

STRASS 

C4.5+ 

CFS 

C4.5+ 

FCBF 

C4.5+ 

ACP 

heart 83.7 85.18+ 83.3- 84.4 + 81.67- 

L cancer 78.12 84.35 + 78.21 85.5+ 57.92- 

hepatitis 81.3 81.3 81.91+ 80.6 - 79.75- 

machine 94.58 94.72+ 94.81+ 94.70+ 93.22- 

RFM 94.38 95.34+ 94.07- 94.13- 86.79- 

Average 86.41 88.17+ 86.4 87.86+ 79.87- 

Win/Loss  4+/0- 2+/2- 3+/2- 5-/0+ 

                                                           
1 CFS  with best first search 
2 FCBF with the relevance threshold SU set to 0. 

 

 

Datasets IBk IBk+ 

STRASS 

IBk+ 

CFS 

IBk+ 

FCBF 

IBk+ 

ACP 

Heart 83.2 82.5  - 82.5- 81.9 - 80.74- 

L cancer 75 78.5 + 71.3- 71.8- 65.42- 

Hepatitis 83.8 85.8+ 77.38- 84.5+ 83.96+ 

Machine 95.80 95.97+ 93.3- 94.95- 95.3- 

RFM 94.65 96.06+ 95.84+ 94.67 93.91- 

Average 86.49 87.76+ 84.06- 85.56- 83.86- 

Win/Loss  4+/1- 1+/4- 1+/3- 1+/4- 

 

Table 5. IBk  Classifier precision with and without filtering 

 

 

Datasets SVM SVM+ 

STRASS 

SVM+ 

CFS 

SVM+ 

FCBF 

SVM+ 

ACP 

heart  84 84.3+ 84.44+ 85.18+ 84.26+ 

L cancer 65.62 81.25+ 81.25+ 87.5+ 70.00+ 

Hepatitis 86.45 87.74+ 85.16- 85.80- 83.25- 

Machine 88.98 61.12- 73.40- 72.60- 78.12- 

RFM 90.12 94.32+ 89.78- 88.92- 87.45- 

Average 83.03 81.74- 82.8- 84+ 80.61- 

Win/Loss  4+/1- 2+/3- 2+/3- 2+/3- 

 

Table 6. SVM  Classifier precision with and without 

filtering  
Table 4. C4.5  Classifier precision with and without filtering 
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Datasets MLP STRASS CFS FCBF ACP 

heart 80.43   83.12+ 82.61+   79.35-   80.93+ 

L cancer 67.9 86.67+ 85.42+ 79.58+ 59.17- 

hepatitis 84.23 85.21+ 84.46+ 85.24+ 82.23- 

machine 79.28 59.87- 50.74- 58.90- 64.66- 

RFM 90.51 90.5 89.87- 89.61- 89.16- 

Average 80.47 81.07+ 78.62- 78.53- 75.23- 

Win/Loss  3+/1- 3+/2- 2+/3- 1+/4- 

 

Table 7. MLP  Classifier precision with and without 

filtering 

From these results it can be concluded that STRASS leads 

to a better performance than CFS, FCBF and ACP 

classifiers. The combination of C4.5 and STRASS produced 

the best results. For both classifiers, the reduction of 

features by STRASS gives results comparable or even 

superior when using all features: average accuracy 88.17% 

(STRASS) vs. 86.41% (Full Set) for C4.5, 87.76% 

(STRASS) vs. 86.49% (Full Set) for IBk and 81.07% 

(STRASS) vs. 80.47% (Full Set) for MLP. The application 

on Machine and RFM process demonstrates that this method 

is very effective for feature selection and classification.  

6. CONCLUSION AND FUTURE WORK 

In this paper we proposed to use STRASS, a contextual-

based feature selection algorithm for fault detection to 

categorize measures and to determine the interaction 

between features. This enabled us to detect the redundancy 

among measures. STRASS was initially evaluated in 

datasets related to medical diagnosis. The proposed feature 

selection algorithm was then applied to two well known 

fault detection benchmarks. STRASS has demonstrated its 

efficiency and effectiveness in reducing the dimensionality 

of datasets while maintaining or improving the 

performances of learning algorithms. The application of this 

feature categorization on Machine and RFM datasets has 

demonstrated that this method is very effective for fault 

detection.  

STRASS is based on two criteria of relevance that permit to 

obtain a useful feature categorization. In fact the algorithm 

detects the strongly relevant features, the weakly relevant 

and their corresponding partially redundant feature and 

selects a minimum feature subset. Moreover the proposed 

criterion in this study provides a useful ranking 

incorporating the context of others features and detects the 

equivalent measures (partially redundant features). Future 

work will focus on exploiting this features categorization to 

construct a reliable fault detection system by adding 

redundant measures for the predominant ones and use the 

redundant information from the redundant measures to 

construct an equivalent classifier to relay the information (in 

the case of same result for both classifier) or to point out a 

problem in the acquisition platform or in the data collection 

(in the case classifiers give different results). 
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Appendix A:  Algorithm STRASS 

 

E   The whole set of data pairs        . 

               A set of features to be treated  

S = Ø    Selected features   

SRp= Ø   Strongly relevant predominant features 

DCTot = DC (L)  

DCmax = 0  

WRnr= Ø  Weakly relevant and not redundant features 

WrR1=   Ø  Weakly relevant and redundant features 

WRr2= Ø   Weakly relevant and redundant features 

 

Table A1 STRASS algorithm pseudo-code 

1. Selection of predominant features 

for each feature xk of L do    

scan the examples  space E 

 

if DCG (xk, L-xk) ≠ 0        

   S=S+xk ; L=L-xk;  

SRp = S; 

E = E - {discriminated pairs} 

 

2. Selection of weak relevant features 

while DC (S)<DCtot do  

for each feature xk of L do    

scan the examples  space E 

 

if DC (xk+S)>DCmax  

 

DCmax = DC ( {xk}+S)   

xk max = xk ; S = S+{xk_max} ;  

L=L-{xk_max } 

WRnr = WRnr + {xk_max} 

 

if DC (xk + S) = DCmax  

 

WRr1 = WRr1+{xk_max} 

WRr2 = WRr2+{xk} // detection of redundant features 

E = E - {discriminated pairs} 

 

3. Detection of the partially redundant features  

for each feature xk of S do   

if DC (xk, S - {xk})=0  

S = S-{xk};      // suppression of the redundant features 

WRr2 = WRr2 + {xk}; // detection of redundant features 

 

return S, SRp, WRnr, WRr1, WRr2  
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Appendix B: Machine and RFM Datasets 
 

Machine and RFM datasets are elaborated for fault detection 

and diagnosis in semiconductor etch [2]. The data comes 

from the metal etch step in semiconductor processing, 

specifically the Al-stack etch process. Data was collected on 

the commercially available Lam 9600 plasma etch tool [3]. 

The metal etcher was equipped with the machine state 

sensors, built into the processing tool; it collects machine 

data during wafer processing. The machine data consists of 

measured and controlled variables sampled at 1 second 

intervals during the etch. These are engineering variables, 

such as gas flow rates, chamber pressure and RF power. 

These variables are listed in Table B1. The RFM sensors 

measure the voltage, current and phase relationships at the 

fundamental frequency of 13.56 MHz and the next four 

harmonics at four locations in the RF control system. The 

resulting 70 values are sampled every 3 seconds. 

 

Table B1 Machine state variables used for process 

monitoring. 

x1 : Time x12 : Phase Error 

x2  : Step Number x13 : RF Power  

x3 : BCl3 Flow x14 : RF Impedance 

x4 : Cl2 Flow x15 : TCP Tuner 

x5 : RF Bottom Power x16 : TCP Phase Error 

x6 : RFB Reflected 

Power 

x17 : TCP Impedance 

x7 : Endpoint A Detector x18 : TCP Top Power 

x8 : Helium Pressure x19 : TCP Reflected Power 

x9 : Chamber Pressure X20 : TCP Load 

x10 : RF Tuner  X21 : Vat Valve 

x11 : RF Load  
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ABSTRACT 

Condition Based Maintenance (CBM) aims at 
regulating maintenance scheduling based on data 
analyses and system condition monitoring. Clear 
advantages of optimizing maintenance scheduling 
include relevant cost savings and improved safety 
and plant availability. A critical aspect is the 
integration of CBM strategies with condition 
monitoring technologies for handling a wide range 
of information sources and eventually making 
optimal decisions on when and what to repair. In 
this work, a practical case study concerning 
maintenance of choke valves in offshore oil 
platforms has been investigated. Choke valves used 
in offshore oil platforms undergo erosion caused by 
the sand grains transported by the oil-water-gas 
mixture extracted from the well. Erosion is a 
critical problem which can affect the correct 
functioning of the valves, result in revenue losses 
and cause environmental hazards. In this respect, 
this work proposes a diagnostic-prognostic scheme 
for assessing the actual health state of a choke valve 
and eventually estimating its Remaining Useful 
Life (RUL). In particular, the focus has been on the 
identification of those parameters which contribute 
to the actual erosion of the choke valve, the 
development of a model-based approach for 
calculating a reliable indicator of the choke valve 
health state, the actual estimation of the choke RUL 
based on that indicator using statistical approaches 
and, finally, the investigation of methods to reduce 
the uncertainty of the RUL estimation by adding 

highly meaningful knowledge on the erosion state 
of the choke valve*. 

1. INTRODUCTION 

In oil and gas industries, choke valves are normally located 
on top of each well and are used to balance the pressure on 
several wells into a common manifold to control oil, gas and 
water flow rates and protect the equipment from unusual 
pressure fluctuations. Figure 1 sketches a choke valve. 

The throttle mechanism consists of two circular disks, 
each with a pair of circular openings to create variable flow 
areas. One of the disks is fixed in the valve body, whereas 
the other is rotated either by manual operation or by 
actuator, to vary or close the opening. For large pressure 
drops, the well stream containing gas, liquid and sand 
particles can reach 400-500 m/s and produce heavy metal 
loss mainly due to solids, liquid droplets, cavitation and 
combined mechanisms of erosion-corrosion, resulting in 
choke lifetimes of less than a year. Erosion management is 
vital to avoid failures that may result in loss of containment, 
production being held back, and increased maintenance 
costs. Moreover, several chokes are located subsea, where 
the replacement cost is high (Andrews et al., 2005; 
Bringedal et al., 2010; Haugen et al., 1995; Hovda and 
Andrews, 2007; Hovda and Lejon, 2010; Jarrel et al., 2004; 
Ngkleberg, and Sontvedt, 1995; Wallace et al., 2004). 

For these reasons, attention has focused on the 
maintenance of choke valves. Currently, fixed maintenance 
is the most common way to manage choke replacement. A 
                                                 
* This is an open-access article distributed under the terms of the Creative 
Commons Attribution 3.0 United States License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided 
the original author and source are credited. 
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more effective way to handle maintenance is to base it on 
indications of the actual condition (i.e. health state) of the 
choke valve and possibly on the estimations of its remaining 
useful life (RUL) (Gola and Nystad, 2011; Kiddy, 2003; 
Nystad et al., 2010; van Noortwijk and Pandey, 2003). 

In general, condition-based maintenance (CBM) 
approaches rely on data analysis and condition monitoring 
systems. In fact, the measurements of those parameters 
considered relevant to assess the health state of a component 
are first processed by condition monitoring systems which 
return the diagnostic indication of the current health state. 
This indication can be then used within prognostic systems 
to eventually estimate the remaining useful life of the 
component (Fig. 2). 

The integration of condition monitoring systems with 
CBM strategies is critical for handling a wide range of 
information sources and providing a reliable indication upon 
which optimal decisions can be made on when and what to 
repair. 

In this work, the diagnostic-prognostic scheme sketched 
above is applied to a real case study of choke valve erosion. 
In this respect, an empirical, model-based condition 
monitoring system is developed to process the collected 
measurements in order to give a reliable indication of the 
erosion state of the choke. A statistical prognostics system 
based on the gamma process is then used for the estimation 
of the remaining useful life of the choke. 

The work is organized as follows: Section 2 describes 
the parameters used to assess the choke valve erosion state; 
Section 3 reports the case study under analysis. Section 4 
illustrates the diagnostic-prognostic scheme hereby 
proposed to assess the choke erosion state and to estimate its 
remaining useful life. Conclusions are drawn in the last 
Section. 

2. CHOKE VALVE EROSION ASSESSMENT 

In the generic choke valve fluid dynamic model, the total 
flow w through the choke is proportional to the pressure 
drop p∆  through the choke: 

V
p

w C
ρ

∆=  (1) 

where ρ  is the average mixture density and VC  is called 

valve flow coefficient. VC  is related to the effective flow 

cross-section of the valve and is proportional to the choke 
opening according to a function depending on the type of 
choke valve and given by the valve constructors, i.e. for a 
given choke opening, VC is expected to be constant (Metso 

Automation, 2005). 
When erosion occurs, a gradual increase of the valve 

area available for flow transit is observed even at constant 
pressure drop. Such phenomenon is therefore related to an 

abnormal increase of the valve flow coefficient with respect 

to its expected theoretical value, hereby denoted as th
VC . 

For this reason, for a given choke opening the difference 

VCδ  between the actual value of the valve flow coefficient, 

hereby simply denoted as VC , and its theoretical value thVC  

is retained as an indication of the choke erosion. The 

difference 
V

th
C V VC Cδ = −  is expected to monotonically 

increase throughout the choke life since it should reflect the 
physical behaviour of the erosion process. When 

VCδ  

eventually reaches a pre-defined failure threshold, the choke 
must be replaced. 

The actual valve flow coefficient VC  cannot be directly 

measured, but it can be calculated from the following 
analytical expression which accounts for the physical 
parameters involved in the process: 

2
6

o w g go w
V

o wp in out g

w w w ff f
C

N F p p Jρ ρ ρ
+ +

= + +
−

 (2) 

where inp  and outp  are the pressures upstream and 

downstream of the choke, ow , ww  and gw  are the flow 

rates of oil, water and gas, of , wf  and gf  the 

corresponding fractions with respect to the total flow rate 
and oρ , wρ , gρ  and  the corresponding densities, J  is the 

gas expansion factor, pF  is the piping geometry factor and 

6N  is a constant equal to 27.3 (Andrews et al., 2005; Gola 

and Nystad, 2011; Hovda and Andrews, 2007; Metso 
Automation, 2005; Nystad et al., 2010). 

3. CHOKE VALVE EROSION: THE CASE STUDY 

A case study on a choke valve located top side on the 
Norwegian continental shelf is here considered. 

Measurements and calculations related to the physical 
parameters involved in the process are available as daily 
values. In particular, the pressures upstream and 
downstream of the choke are directly measured, whereas oil, 
gas and water flow rates are calculated based on the daily 
production rates of other wells of the same field. Pressure 
measurements are considered reliable since they are directly 
related to the well under analysis, whereas the calculations 
of oil, gas and water flow rates expected form that well 
might not be realistic and therefore might not reflect the 
actual physical composition of the extracted mixture. In 
addition to the daily measurements and calculations, seven 
well tests are carried out throughout the valve life at regular 
intervals, during which oil, gas and water flow rates are 
accurately measured using a multi-phase fluid separator. 
The valve choke opening is also provided as a parameter. 
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Since oil, gas and water flow rates are used to compute 
the actual VC  (Eq. 2), inaccuracies in their calculation 

might negatively affect the VC  calculation itself and thus 

the quality of the erosion indication 
VCδ . 

Figures 3 and 4 illustrate the parameters used to compute 
the actual VC  and the resulting erosion indication 

VCδ , 

respectively. 
The mismatch between the values of oil, water and gas 

flow rates daily calculated accounting for the other wells 
and the values of the same three parameters measured 
during the well tests is evident in the bottom graphs in 
Figure 3. Notice that there is instead no mismatch for the 
pressure drop and, obviously, for the choke opening 
indication (top graphs in Fig. 3). 

As a consequence of the inaccurate daily calculations of 
oil, water and gas flow rates, the daily erosion indication 

VCδ  (black line in Fig. 4) results non-monotonic and very 

noisy, generally showing an unphysical behaviour. On the 
other hand, when 

VCδ  is computed using the well test 

measurements of oil, water and gas flow rates, its behaviour 
results monotonic and provide a reliable information on the 
physical erosion process.  

Nevertheless, a diagnostic assessment on the erosion 
state of the valve and a prognostic estimation of its 
remaining useful life cannot be made based on the daily 
erosion indications. In the next Section, an empirical model-
based approach is used to produce a reliable daily 
calculation of the erosion state which is then fed to a 
prognostic system for estimating the choke remaining useful 
life. 

4. IMPROVING THE EROSION STATE CALCULATION FOR 

ASSESSING THE CHOKE REMAINING USEFUL LIFE 

A method developed at the Norwegian Institute for Energy 
Technology and called Virtual Sensor is here used 
(PCT/NO2008/00293, 2008). Virtual Sensor is an empirical 
method based on the use of an ensemble of feed-forward 
Artificial Neural Networks (ANNs). In general, given a 
number of input parameters correlated to a quantity of 
interest, the Virtual Sensor aims at providing a reliable 
estimate of that quantity. 

In general, a subset of the available data (in the format 
input-parameters/output-target) is used to train the ANN 
models, i.e. to tune its parameters, with the goal of learning 
the ANN to estimate the output target. Once the model is 
trained, it can be used on-line by providing a stream of input 
measurements in order to obtain an estimate of the 
(unknown) output. 

Virtual Sensor exploits the concepts of ensemble 
modelling which bear the advantages of ensuring high 
accuracy and robustness of the estimation without the need 
of developing one single optimal model. Critical aspects of 
ensemble modelling are the diversity of the individual 

models, hereby ensured by randomizing the training initial 
conditions of the ANNs, and the aggregation of the 
outcomes of the individual models, hereby performed by 
retaining the median of the individual estimates. 

In this work, Virtual Sensor is used to provide a reliable 
estimation of the actual VC  based on the set of available 

input parameters, namely the pressure drop, the choke 
opening and the oil, water and gas flow rates. Given the 
limited amount of available data, the Virtual Sensor has 
been trained by using as output target a VC  obtained by the 

linear interpolation of the VC  values calculated with the 

well test measurements. Figure 5 shows the erosion 
indication 

VCδ  obtained with the Virtual Sensor daily 

estimations of VC  compared with the one obtained using 

the Equation (2). Despite the erosion indication obtained 
with the Virtual Sensor is still not completely monotonic, 
the improvement with respect to the one obtained using 
Equation (2) is evident. 

The erosion indication obtained with the Virtual Sensor 
conveys a more physically reliable indication of the erosion 
state of the choke and can be used both within a diagnostic 
frame to assess the valve performance in the present and 
within a prognostic system for predicting the temporal 
evolution of the erosion, eventually estimating when the 
erosion will cross the failure threshold and the valve needs 
to be replaced. 

To this aim, a statistical approach based on gamma 
process (van Noortwijk and Pandey, 2003) is here used. 
Gamma process is a statistical analysis based on Markovian 
principles and gamma probabilistic distribution.  

In a generic prognostic problem, the gamma process 
exploits the knowledge embedded in the health state 
indications to calculate the parameters of the temporal 
evolution of such indication. According to the gamma 
process, the increments of the health indications are gamma-
distributed and can therefore be only positive representing a 
monotonic quantity. This makes the approach suitable to 
model the choke valve erosion process which is naturally 
monotonic. 

The expected temporal trend of the health indicator h  at 
time t  (i.e. the expected value of the gamma distribution at 

time t ) is ( ) ba
h t t

c
= , where b  is the parameter which 

regulates the concavity/convexity of the trend shape and a  
and c  determine the spread of the gamma probability 
distribution. 

Given a failure threshold for the health indicator, the 
gamma process calculates the conditional probability that 
the component fails at time t T>  given that it has survived 
up to time T  (hereby called time-based approach). The 
quality of this additional information is critical to define the 
failure time probability distribution.  
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In this work, a different approach (hereby called state-
based approach) has been adopted which accounts for the 
knowledge of the actual valve health state. In this view, the 
gamma process calculates the conditional probability that 
the component fails at time t T>  given the knowledge of 
its current health state is ( )h T H= . This approach exploits 

information of noticeably higher quality, given that a pre-
defined list of discrete health states for a component is 
available based on expert analysis (Gola and Nystad, 2011; 
Kiddy, 2003).  

Another critical issue is the calculation of the parameters 
of the expected gamma function. In particular, the accurate 
determination of b  is fundamental to obtain meaningful 
values of the remaining useful life. 

Different methods can be used to calculate b . In this 
work, b  is determined by a weighted least-square 
optimization. Given a time series of health state calculations 

( )b t , 1,...,t T= , b  at current time T  is determined by the 

least-square method using the log-transformed expression 

for ( )h t , i.e. ( )( ) ( )ln ln ln
a

h t b t
c

 = + 
 

. Parameter b  is 

therefore the angular coefficient of the straight line which 
best interpolates the log-transformed health state 
calculations up to time T  given the condition that the 
interpolation passes by the last available health state 

calculation, i.e. ( )( ) ( )ln ln ln
a

h T b T
c

 = + 
 

. 

The so-called weighted least-square optimization 
amounts to improving the calculation of b  by assigning 
more importance to the most recent health state calculations 
which are conjectured to be the most informative. In 
practice, this is done by artificially adding to the time series 
of the health state calculations a number K  of replicates of 
the last N  health state calculations, i.e. ( )h t , 

,...,t T N T= − . This way of proceeding forces the least-
square optimization to better approximate those health state 
calculations considered most relevant to determine the shape 
of the gamma function. Once the value of b  is set, 
parameters a  and c  can be analytically determined using 
the method of moments (van Noortwijk and Pandey, 2003). 

In this case study, measurements corresponding to 305 
operational days are available. Approximately 235 
operational days of measurements are collected and 
processed with the Virtual Sensor to produce reliable 
erosion state indications 

VCδ  before the gamma process is 

devised to estimate the choke remaining useful life. This 
amount of measurements is conjectured to be sufficient to 
achieve reliable calculations of parameters a , b  and c . 
The weighted least-square optimization is done by 
considering 1000K =  replicates of the last 50N =  erosion 
state indications. This augmented virtual measurement set 
forces the gamma process to provide the best fit, in terms of 

least-square error, for the last 50 collected measurements, 
which indeed bear the most recent and therefore valuable 
information on the valve erosion state. 

The estimation of the RUL and its uncertainty is then 
carried out every operational day until the choke is actually 
replaced. The failure threshold for the erosion indicator 

VCδ  

is set equal to 16. Since the gamma process requires a 
monotonic data series, the erosion indicator 

VCδ  is first 

filtered with a combination of moving average and moving 
maxima. 

Results of the remaining useful life estimation are shown 
in Figure 6 and compared to those obtained when the b  
parameter is set constant and equal to 2.2 which is the value 
that best fits the last 50 available erosion state indications 

VCδ  in terms of least-square error. 

The slowly increasing values calculated for the erosion 
indicator 

VCδ  up to 273 operational days (Fig. 5) lead to 

having values of b  with the weighted least-square 
optimization smaller than 1. As a consequence, the resulting 
convex shape of the expected gamma function hits the 
failure threshold at considerably large times, thus returning 
an overestimated value of the choke remaining useful life. 

On the other hand, when values of the erosion indicator 

VCδ  show a sharp increase towards the end of the choke 

life, the weighted least-square optimization allows to 
quickly update the value of b  with the effect of obtaining a 
more precise estimation of the remaining useful life, which, 
after 290 operational days is comparable to that obtained by 
fixing b  equal to the value which best fits the last 50 
measurements. 

5. CONCLUSIONS 

In this paper, a practical case study concerning erosion in 
choke valves used in oil industries has been analysed with 
the aim of defining a diagnostic-prognostic frame for 
optimizing maintenance scheduling of such components. 

Two objectives have been identified: 1) the development 
of a condition monitoring system capable of providing 
reliable calculations of the erosion state based on collected 
measurements of physical parameters related to the choke 
erosion and 2) the development of a prognostic system to 
accurately estimate the remaining useful life of the choke. 

An empirical, model-based approach has been used to 
fulfil the diagnostic objective of providing reliable 
calculations of the erosion state, whereas a statistical 
method based on the gamma probability distribution has 
been adopted to reach the prognostic goal of accurately 
estimating the remaining useful life of the choke. 

Although the results obtained so far are encouraging 
with respect to the goal of defining a diagnostic-prognostic 
frame for optimizing maintenance scheduling of choke 
valves, a strong limitation of the proposed procedure has 
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been envisioned in the amount and the quality of the 
available data. In fact, it is evident that having data 
corresponding to one single valve considerably affect the 
general applicability of the approach which has not been yet 
demonstrated. With a larger amount of data related to many 
similar valves one could in fact perform a more consistent 
training of the Virtual Sensor and eventually define an 
optimal value for the shape-parameter of the gamma 
function. In this respect, more measurements are currently 
collected and further analysis and research is planned. 

ACKNOWLEDGEMENTS 

The authors wish to thank Erling Lunde and Morten Løes at 
Statoil ASA for proving us with the operational choke valve 
data and the IO Center for Integrated Operations in the 
Petroleum Industry (www.ntnu.no/iocenter) for funding this 
research project. 

REFERENCES 

(Andrews et al., 2005) J. Andrews, H. Kjørholt, and H. 
Jøranson, Production Enhancement from Sand 
Management Philosophy: a Case Study from Statfjord 
and Gullfaks, SPE European Formation Damage 
Conference, Sheveningen, The Netherlands, 2005. 

(Bringedal et al., 2010) B. Bringedal, K. Hovda, P. Ujang, 
H.M. With, and G. Kjørrefjord, Using Online Dynamic 
Virtual Flow Metering and Sand Erosion Monitoring 
for Integrity Management and Production Optimization, 
Deep Offshore Technology Conference, Houston, 
Texas, US, 2010. 

(Gola and Nystad, 2011) G. Gola, B.H. Nystad. Comparison 
of Time- and State-Space Non-Stationary Gamma 
Processes for Estimating the Remaining Useful Life of 
Choke Valves undergoing Erosion. Proceedings of 
COMADEM, Stavanger, Norway, 2011. 

(Haugen et al., 1995) K. Haugen, O. Kvernvold, A. Ronold, 
and R. Sandberg. Sand Erosion of Wear Resistant 
Materials: Erosion in Choke Valves. Wear 186-187, pp. 
179-188, 1995. 

(Hovda and Andrews, 2007) K. Hovda and J.S. Andrews, 
Using Cv Models to Detect Choke Erosion - a Case 
study on Choke Erosion at Statfjord C-39, SPE Applied 
Technonogy Workshop on Sound Control, Phuket, 
Thailand, 2007. 

(Hovda and Lejon, 2010) K. Hovda and K. Lejon, Effective 
Sand Erosion Management in Chokes and Pipelines - 
Case studies from Statoil, 4th European Sand 
management Forum, Aberdeen, Scotland, UK, 2010. 

(Jarrel et al., 2004) D.B Jarrell, D.R Sisk. and L.J. Bond, 
Prognostics and Condition-Based Maintenance: A New 
Approach to Precursive Metrics, Nuclear Technology, 
145, pp. 275-286, 2004. 

(Kiddy, 2003) J.S. Kiddy, Remaining Useful Life Prediction 
based on Known Usage Data. Proceedings of SPIE, 
5046(11), 2003. 

(Metso Automation, 2005) Metso Automation. Flow 
Control Manual. Metso Automation, 4th edition, 2005. 

(Ngkleberg, and Sontvedt, 1995) L. Ngkleberg, T. Sontvedt. 
Erosion in Choke Valves - Oil and Gas Industry 
Applications. Wear, 186-187, Part 2, pp. 401-412 1995. 

(Nystad et al., 2010) B.H. Nystad, G. Gola, J.E. Hulsund, 
and D. Roverso. Technical Condition Assessment and 
Remaining Useful Life Estimation of Choke Valves 
subject to Erosion. Proceedings of the Annual 
Conference of the Prognostics and Health Management 
Society, Portland, Oregon, US, 2010. 

(PCT/NO2008/00293, 2008) PCT/NO2008/00293, System 
and Method for Empirical Ensemble-based Virtual 
Sensing. 

(van Noortwijk and Pandey, 2003) J.M. van Noortwijk and 
M.D. Pandey. A Stochastic Deterioration Process for 
Time-dependent Reliability Analysis, in Proceeding of 
IFIP WG 7.5 Working Conference on Reliability and 
Optimization of Structural Systems, Banff, Canada, 
2003. 

(Wallace et al., 2004) M.S. Wallace, W.M. Dempster, T. 
Scanlon, J. Peters, and S. McCulloch. Prediction of 
Impact Erosion in Valve Geometries. Wear 256, pp. 
927-936, 2004. 

 
Giulio Gola MSc in Nuclear Engineering, PhD in Nuclear 
Engineering, Polytechnic of Milan, Italy. He is currently 
working as a Research Scientist at the Institute for Energy 
Technology (IFE) and OECD Halden Reactor Project (HRP) 
within the Computerized Operations and Support Systems 
department. His research topics deal with the development 
of artificial intelligence-based methods for on-line, large-
scale signal validation, condition monitoring, instrument 
calibration, system diagnostics and prognostics. 
 
Bent Helge Nystad was awarded an MSc in Cybernetics by 
RWTH, Aachen in Germany, 1993, and a PhD in Marine 
Technology by the University of Trondheim (NTNU), 
Norway, 2008. He has work experience as a condition 
monitoring expert from Raufoss ASA (a Norwegian missile 
and ammunition producer) and he has been a Principal 
Research Scientist at the Institute for Energy Technology 
(IFE) and OECD Halden Reactor Project (HRP) since 1998. 
He is the author of 15 publications in international journals 
and conference proceedings. His experience and research 
interests have ranged from data-driven algorithms and first 
principle models for prognostics, performance evaluation of 
prognostic algorithms, requirement specification for 
prognostics, technical health assessment and prognostics in 
control applications. 

Annual Conference of the Prognostics and Health Management Society, 2011

271
[paper 29]



Annual Conference of the Prognostics and Health Management Society, 2011 

 6 

 
Figure 1: Typical choke valve of rotating disk type: by rotating the disk the flow will be throttled (picture taken from 

www.vonkchokes.nl) 

 
Figure 2. General diagnostic-prognostic frame. 

Figure 3. Choke opening and pressure drop (top graphs) and oil, water and gas flow rates (bottom graphs) during daily 
measurements (black line) and well tests (red stars). 
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Figure 4. Erosion indication ( ) obtained with  calculations based on daily measurements and calculations (black line) 
and computed using the measurements of the well tests (red stars). 

 

Figure 5. Erosion indication ( ) obtained with  calculated with Eq. (2) (black line) and with the Virtual Sensor (light 
blue line). 
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Figure 6. RUL estimation and uncertainty obtained with the gamma process when parameter  is calculated with the 
weighted least-square optimization (red lines) and when it is fixed to 2.2 (black line). The actual RUL is indicated by the 

green dashed line. 
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ABSTRACT

There is no established threshold or limit for gear 
vibration based condition indicators (CI) that indicates 
when a gear is in need of maintenance. The best we can 
do is set CI thresholds statistically, based on some 
small probability of false alarm. Further, to the best of 
our knowledge, there is no single CI that is sensitive to 
every failure mode of a gear.  This suggests that any 
condition based maintenance system for gears will have 
some form of sensor fusion.  

Three statistical models were developed to define a 
gear health indicator (HI) as a function of CI:  order 
statistics (max of n CIs), sum of CIs and normalized 
energy.  Since CIs tend to be correlated, a whitening 
process was developed to ensure the HI threshold is 
consistent with a defined probability of false alarm. 
These models were developed for CIs with Gaussian or 
Rayleigh (skewed) distributions.  Finally, these 
functions, used to generate HIs, were tested on gear test 
stand data and their performance evaluated as 
compared to the end state of the gear (e.g. photos of
damage). Results show the HIs performed well 
detecting pitting damage to gears. *

1 INTRODUCTION

Vibration based gear fault detection algorithms have 
been developed to successfully detect damaged on 
gears (McFadden and Smith 1985). Significant effort 
has also been expended to validate the efficacy of these 
                                                          
* Bechhoefer et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution 3.0 
United States License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the 
original author and source are credited.

algorithms (Zakrajsek 1993, Lewicki et al. 2010). 
These studies have demonstrated the ability of gear CI 
algorithms to detect damage. However, they have not 
established standardized threshold values for a given 
quantified level of damage. Additionally, it has been 
shown (Wemhoff et al. 2007, Lewicki et al. 2010) that 
different algorithms are sensitive to different fault 
modes (Tooth Crack, Tooth Spacing Error, Tooth 
surfacing Pitting).

The concept of thresholding was explored by Byington 
et al. (2003), where for a given, single CI, a Probability 
Density Function (PDF) for the Rician/Rice statistical 
distribution was used to set a threshold based on an 
probability of false alarm (PFA).  No single CI has 
been identified that works with all fault modes. This 
suggests that any functioning condition monitoring will 
use n number of CIs in the evaluation of gear health. A 
need exists for a procedure to set a PFA for a function 
using n number of CIs.

All CIs have a probability distribution (PDF). Any 
operation on the CI to form a health index (HI), is then 
a function of distributions (Wackerly et al. 1996). 
Functions such as:

 The maximum of n CI (the order statistics)
 The sum of n CIs, or
 The norm of n CIs (energy)

are valid if and only if the distribution (e.g. CIs) are 
independent and identical (Wackerly et al. 1996). For 
Gaussian distribution, subtracting the mean and 
dividing by the standard deviation will give identical Z
distributions. The issue of independence is much more 
difficult.  

Two CIs are independent if the probability (P) of CI1

and CI2 are equal to:
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P CI1 CI2  P CI1 P CI2          (1)

Equivalently, CI1 and CI2 are independent random 
variables if the covariance of CI1, CI2 is 0. This is, in 
general, not the case, where the correlation coefficient 
is defined as the covariance divided by the standard 
deviation:

 
Cov CI1,CI2 

1 2
( 2)

The range of correlation coefficients used in this study 
for pairs of gear CIs are listed in Table 1. 

ij
CI 1 CI 2 CI 3 CI 4 CI 5 CI 6

CI 1 1 0.84 0.79 0.66 -0.47 0.74

CI 2 1 0.46 0.27 -0.59 0.36

CI 3 1 0.96 -0.03 0.97

CI 4 1 0.11 0.98

CI 5 1 0.05

CI 6 1

Table 1: Correlation Coefficients for the Six CI Used 
in the Study

This correlation between CIs implies that for a given 
function of distributions to have a threshold that 
operationally meets the design PFA, the CIs must be 
whitened (e.g. de-correlated). Fukinaga (1990) presents 
a whitening transform using the Eigenvector matrix 
multiplied by the square root for the Eigenvalues 
(diagonal matrix) of the covariance of the CIs. 

A  1 2T
          (3)

where T is the transpose of the eigenvector matrix,
and  is the eigenvalue matrix. The transform can be 
shown to not be orthonormal, illustrating that the 
Euclidean distances are not preserved in the transform. 
While ideal for maximizing the distance (separation) 
between classes (such as in a Baysian classifier), the 
distribution of the original CI is not preserved. This 
property of the transform makes it inappropriate for 
threshold setting.

If the CIs represented a metric such as shaft order 
acceleration, then one can construct an HI which is the 
square of the normalized power (e.g. square root of the 
acceleration squared). This can be defined as 
normalized energy, where the health index is: 

HI  CI  cov(CI)1  CIT
         (4)

Bechhoefer and Bernhard (2007) were able to whiten 
the CI and establish a threshold for a given PFA. 

The objective of this analysis is to broaden the 
diagnostic capability available for gear health indexes 
by generalizing a method to develop HIs across CIs 
with other functions and statistical distributions.  

1. GENERALIZED FUNCTION OF 
DISTRIBUTIONS

The desired linear transformation operates on the vector 
CI such that:

)(0

,

Y

LY

ncorrelatio

CI T





  (5)

where Y preserves the original distribution of the CIs.

The Cholesky Decomposition of Hermitian, positive 
definite matrix results in A = LL*, where L is a lower 
triangular, and L* is its conjugate transpose. By 
definition, the inverse covariance is positive definite 
Hermitian.  It then follows that:

LL*  1     (6)
and 

Y  L  CIT          (7)
where Y is 1 to n independent CI with unit variance 
(one CI representing the trivial case). The Cholesky 
Decomposition, in effect, creates the square root of the 
inverse covariance. This in turn is analogous to 
dividing the CI by its standard deviation (the trivial 
case of one CI). In turn, Eq. (7) creates the necessary 
independent and identical distributions required to 
calculate the critical values for a function of 
distributions. 

1.1 Gear Health as a Function of Distributions 

Prior to detailing the mathematical methods used to 
develop the HI, background information will be 
discussed. A common nomenclature for the 
user/operator of the condition monitoring system will
be presented, such that the health index (HI) has a 
common meaning. The critical values (threshold) will 
be different for each monitored component, because the 
measured CI statistics (e.g. covariance) will be unique 
for each component type. The threshold will be 
normalized, such that the HI is independent of the 
component. Further, using guidance from GL 
Renewables (2007), the HI will be designed such that 
there are two alert levels: warning and alarm.  Then the 
HI is defined such that the range is:

 0 to 1, where the probability of exceeding an 
HI of 0.5 is the PFA

 A warning alert is generated when the HI is 
greater than or equal to 0.75

 An alarm alert is generated when the HI is 
greater than or equal to 1.0
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2. HI BASED ON RAYLEIGH PDFs

The PDF for the Rayleigh distribution uses a single 
parameter,  , resulting in the mean ( = *(/2)0.5) and 
variance (2 = (2 - /2) * 2) being a function of . 
Note that when applying Eq. (7) to normalize and 
whiten the vector of CI data, the value for  for each CI 
will then be: 

5264.122

,1
2

2









           (8)

The PDF of the Rayliegh is:

   22 2exp  xxxf         (9)

The cumulative distribution function, the integral of (9) 
is:

F (x) 1 exp x 2 22          (10)

It can be shown that the PDF of the magnitude of a 
frequency of a random signal is a Rayleigh PDF 
(Bechhoefer and Bernhard 2006). This property makes 
the Rayleigh an appropriate model for thresholds for 
shaft (Shaft order 1, etc) and bearing energies. The next 
section will demonstrate how this can be used 
appropriately for gears.

2.1 The Rayleigh Order Statistic

Consider a HI function which takes the maximum of n 
CIs. If the CIs are Independent and Identical (IID), then 
the function defines the order statistic. Given the order 
statistic PDF as (Wackerly 1996):

g x   n F x  n1
f n 

   (11)

The threshold is then calculated for t, from the inverse 
Cumulative distribution function (CDF):

    dxnfxFnPFA
t

x

n 

 11
      (12)

For n = 3, PFA of 10-3, after solving the inverse CDF 
(Eq 12), the threshold t equals 6.1 (Note, the solution to 
Eq 12 can sometime require significant effort. See the 
Appendix for solution strategies). The HI algorithm, 
referred to as the Rayleigh Order Statistics (OS) is then:

  1.6
5.0max  YHI

       (13)

Here Y = L x CIT (e.g. whitening and normalizing the 
CIs by applying Eq (7), which is scaled by 0.5 over the 
threshold. This then is consistent with the definition of 
the HI presented in 2.1, or a HI of 0.5 for the defined 
PFA.

2.2 The Sum of n Rayleigh

Consider a HI function which takes the sum of n CIs. If 
the CIs are Independent and Identical (IID), then the 
function defines a distribution with a Nakagami PDF 
(Bechhoefer and Bernhard 2007). Given the mean and 
variance for the Rayleigh, the sum of n normalized 
Rayleigh distributions is n * *(/2)0.5, with variance 
2 = n. Given the Nakagami PDF as:

 
  2

1212
x

ex 






 






       (14)

where  is the gamma function. Then, the statistics for 
the Nakagami are calculated as: 

     2222 , xExVarxE           (15)

which are used in the inverse Cumulative distribution 
function (CDF) to calculate the threshold. 

For n = 3 CIs, the threshold is 10.125 and the HI 
algorithm, referred to as the Rayleigh normalized 
energy (NE) is then:




3

1125.10
5.0

i iHI Y
    (16)

For a more in depth treatment of the Nakagami, see
Bechhoefer and Bernhard (2007). Again, the dividing 
0.5/10.125 allows Eq (15) to be consistent with the HI 
paradigm.

2.3 The Total Energy of n Rayleigh

Consider a HI function which takes the norm of n CIs, 
which represents the normalized energy. If the CIs are 
IID, it can be shown that the function defines a 
Nakagami PDF (Bechhoefer and Bernhard 2007). The 
mean is now 2*n*1/(2-2)0.5. Then, the statistics for the 
Nakagami are calculated as: 

  nn *2*221,           (17)

which are used in the inverse CDF to calculate the 
threshold. For our n = 3 CIs, the threshold is 6.259 and 
the HI algorithm, referred to as the Sum of Raleigh 
(SR) is then:




3

1

2

259.6
5.0

i iHI Y
       (18)

3. HI BASED ON GAUSSIAN PDFs

If it is found that the distribution of the CI data follows 
a Gaussian distribution a comparable mathematical 
process can be applied.  Using similar constructs as 
applied to the Rayleigh PDF, we can generate 
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thresholds for the Gaussian distribution. The PDF of 
the Gaussian is:

    22 2exp2   xxxf    (19)

The cumulative distribution function, the integral of Eq 
(19) is

  dttxxF
x




 22 2exp2)( 
       (20)

3.1 The Gaussian Order Statistic

Eq. 11 can be applied to the Gaussian PDF and CDF to 
derive the order statistic PDF of the Gaussian HI 
function:

    
  22

2

22

2exp2

2exp23















 



xx

dttxxf
x

    (21)

Again, we find the threshold by solving the inverse 
CDF of Eq (12). The PDF of the order statistic (OS) for 
a zero mean Gaussian is not bounded at zero, such as 
the Rayleigh. As such, to be consistent without the HI 
paradigm of lower HI range of 0, the OS PDF is shifted 
such the probability of the HI being less than or equal 
to zero is small. In this example, that probability is 
defined at 0.05%, corresponding to a PFA of 0.95 (e.g. 
a lower threshold). For n = 3, for a PFA of 0.95, lower 
threshold, t is -0.335, and upper threshold for a PFA of 
10-3, the threshold t is 3.41 (for HI of 0.5). The CIs are 
now a z distribution (Gaussian normalized with zero 
mean and unit variance). An additional rule is set such 
that any HI less than the lower 5% (corresponding to a 
PFA of 0.95) is an HI of zero. The HI algorithm is:

 
    34.041.3

5.034.max 



Y

mLY

HI

CI T

  (22)

where m is the mean of the CIs. Subtracting the mean 
and multiplying by L transforms the CIs into n, Z 
distributions (zero mean, IID Gaussian distributions).

3.2 The Sum of n Gaussian

Consider a HI function that takes the sum of n Gaussian 
CIs. Then the mean and variance of the sum of the CI 
are:

  E Li 
i1

3 ,  2  n
          (23)

Again the inverse normal CDF is used to calculate the 
threshold.  Similar to (22), an offset and scale value is 

needed to ensure the HI is lower bounded to 0. For n = 
3 CI, the mean,  = 3 and variance 2 = 3. Using the 
inverse normal CDF, the lower threshold (PFA of .95) 
is -0.15 and the and upper threshold (PFA 10-3), is 
8.352, then the HI algorithm is then:

   



3

1
15.015.0352.8

5.0
i i

T

HI

CI

Y

LY

   (24)

3.3 The Total Energy of n Gaussian

Finally, we will consider a HI function that takes the 
norm of n Gaussian CIs. Again it can be shown that the 
function defines a Nakagami PDF (Bechhoefer and 
Bernhard 2007). The mean is 2*n* 1/sqrt(2-2), with 
= n and  is /2. Using the inverse Nakagami CDF to 
calculate the threshold for n = 3 CIs and a PFA of 10-3, 
the threshold is: 3.368.  The HI algorithm is then:

Y L  CIT

HI  0.5
3.368 Yi

2

i1

3
                 (25)

4. APPLICATION TO GEAR FAULT

Vibration data from experiments performed in the 
Spiral Bevel Gear Test facility at NASA Glenn was 
reprocessed for this analysis. A description of the test 
rig and test procedure is given in Dempsey et al. 
(2002). The rig is used to quantify the performance of 
gear material, gear tooth design and lubrication 
additives on the fatigue strength of gears. During this 
testing, CIs and oil debris monitoring were used to 
detect pitting damage on spiral bevel gears (Figure 1
Test Rig and Gears (Dempsey et al. 2002).

Figure 1 Test Rig and Gears (Dempsey et al. 2002)

The tests consisted of running the gears under load 
through a “back to back” configuration, with 
acquisitions made at 1 minute intervals, generating time 
synchronous averages (TSA) on the gear shaft (36 
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teeth). The pinion, on which the damage occurred, has 
12 teeth.
TSA data was re-processed with gear CI algorithms 
presented in Zakrajsek et al. (1993) and Wemhoff et al.  
(2007), to include:

 TSA: RMS, Kurtosis (KT), Peak-to-Peak 
(P2P), Crest Factor (CF)

 Residual RMS, KT, P2P, CF
 Energy Operator RMS, KT
 Energy Ratio
 FM0
 Sideband Level factor
 Narrowband (NB) RMS, KT, CF
 Amplitude Modulation (AM) RMS, KT
 Derivative AM KT
 Frequency Modulation (FM) RMS, KT

From these CIs, a total of six CIs were used for the HI 
calculation: Residual RMS, Energy Operator RMS, 
FM0, NB KT, AM KT and FM RMS. These CIs were 
chosen because they exhibited good sensitivity to the 
fault. Residual Kurtosis and Energy Ratio also were 
good indicators, but were not chosen because; 

 It has been the researcher’s experience that 
these CIs become ineffective when used in 
complex gear boxes, and

 As the faults progresses, these CIs lose 
effectiveness.  The residual kurtosis can in fact 
decrease, while the energy ratio will approach 
1.

Covariance and mean values for the six CI were 
calculated by sampling healthy data from four gears 
prior to the fault propagating. This was done by 
randomly selecting 100 data points from each gear, and 
calculating the covariance and means over the resulting 
400 data points.
The selected CI’s PDF were not Gaussian, but 
exhibited a high degree of skewness. Because of this, 
the PDFs were “left shifted” by subtracting an offset 
such that the PDFs exhibited Rayleigh like 
distributions. Then, the threshold setting algorithms 
were tested for:

 Rayleigh order statistic (OS): threshold 8.37 
for n = 6 and a PFA of 10-6, 

 Rayleigh normalized energy (NE): threshold 
10.88 for n = 6 and a PFA of 10-6, 

 Sum of Rayleigh (SR): threshold 24.96 for n
= 6 and a PFA of 10-6, 

Figures 2, 4 and 6 are HI plots that compare the OS, 
NE and SR algorithms during three experiments in the 
test rig. The HI trend (in black) is plotted on top of the 
raw HI values (in blue).  Figures 3, 5 and 7 show the 
amount of pitting damage on the pinion teeth at each 
test completion.

Figure 2 Test BV2_10_15_01EX4

Note that the spikes corresponded to changes in torque 
on the rig. All the HI algorithms where sensitive to 
damage, although in general, the best system response 
was from both the OS and NE.  

Figure 3 Pitting Damage on EX4

Note that the decrease in the HI rate of change 
corresponds to a decrease in torque load towards the 
end of the test. 

Figure 4 Test BV2_10_26_01EX5
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For the data plotted in figure 4, this test appears to have 
been halted prior to heavy pitting damage, as the gear 
HI is reach only 0.5. However, the photo of gear EX5 
(Figure 5) shows extensive pitting damage.

Figure 5 Damage on Gear EX5

Figure 6 Test BV2_1_4_02EX6

Figure 7 Damage on Gear EX6

5. DISSCUSION AND OBSERVATIONS

After the three statistical models were applied to the 
test rig CI data, it was observed that each HI algorithm 
performed well, although the OS and NE is clearly 
more sensitive to fault than the SR algorithm. 
Additionally, the measured RMS noise of the OS was 
15% to 25% higher than the NE, that RMS value being 
approximately 0.05 HI. However, the most important 

contribution is that a process has been developed to 
whiten CI data so that different HI algorithms can be 
explored with some assurance that, mathematically, the 
PFA performance was being met. 

Additionally, it is encouraging that, based solely on 
nominal data (statistics taken prior to fault 
propagation), it was observed that:

 An HI of 1 displays damage warranting 
maintenance. 

 That nominal data is approximately 0.1 to 0.2 
HI, where the PFA was set for 0.5 HI

 That while no one CI seemed to work for 
every gear tested, the HI function captured the 
damage consistently (even for a small sample 
set).

 The HI trends were low noise. This can 
facilitate prognostics. 

6. CONCLUSION

Thresholding is critical for the operation of a condition 
monitoring system. If the probability of false alarm 
(PFA) is too high, then the operator is flooded with 
numerous false alarms and tends to disregards alerts. 
Unfortunately, some of the alerts will be true, resulting 
in collateral equipment damage. If the PFA is low, but 
the probability of fault detection is low, then the 
operator cannot perform maintenance “on condition”. 
Again, there are missed faults resulting in collateral 
damage.
Because the condition indicators (CI) are correlated, 
without some pre-processing, it is difficult to 
operationally achieve the design PFA. A method was 
presented for whitening the CIs used in gear fault 
detection. The whitening was achieved by a linear 
transformation of the CI using the Cholesky 
decomposition of the inverse of the CIs covariance. 
With this transformed, whitened CI data, a health 
indexed based on a specified PFA was demonstrated. 
Three candidate HI algorithms (order statistics, 
normalized energy and sum of CI) for two different CI 
probability distribution functions (Gaussian and 
Rayleigh), were presented and tested on three data sets 
of pitted gears from a test stand. 
It was observed that the HI algorithms performed as 
designed: low PFA (e.g. noise) and good fault detection 
capability. Given this process, we will now expand the 
class of distributions that this can be applied to, for 
example, the Rice and Weibull distribution.

APPENDIX: Monte Carlo Techniques to Solve the 
Inverse CDF

The solution of the inverse CDF can be difficult for 
none standard distribution. In fact, most function of 
distributions are non-standard. Solutions for order 
statistic on Gaussians distribution are very problematic: 
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even solving using optimization techniques is 
nontrivial. 

Alternatively, Monte Carlo techniques are relatively 
simple to set up, and give accuracy limited only by 
patients. For example, since the order statistic is 
defined as the maximum of n IID distribution, it is 
relatively easy to call 10 million random tuples of n 
distribution, take the maximum of each tuple, and sort 
to generate the CDF. The critical value corresponds to 
the index of the sorted values at 10 million x (1-PFA). 

As an experiment, find the inverse CDF for the normal 
Gaussian with a PFA of 10-3. For 10 million, the index 
is 9990000. Running 100 experiments, the estimated 
critical value was: 3.090155199948529 vs. the actual 
value of 3.090232306167824. The PFA calculate from 
the Monte Carlo generated threshold was: 0.00100025, 
or an error of .025%. 
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ABSTRACT

This paper describes a simple approach for integrating
all the time synchronous average (TSA) signals from
multiple shafts of a gearbox to generate a composite
time synchronous average which can be subtracted
from the original signal to generate a second-order
cyclostationary residual. This approach is compared
with other techniques including an all-shaft TSA over
the least common multiple of shaft rotation periods,
high-pass filtering, and self-adaptive noise cancellation
(SANC). The results demonstrate that the proposed
approach produces an integrated TSA signal that
includes only the shaft components, gear mesh
components and the sidebands associated with all the
shafts, while the residual contains the random vibration
components and noise. The results produced by three
alternative techniques do not separate the components
as well or have a lower signal-to-noise ratio.*

1. INTRODUCTION

Gearboxes are an important component in a wide
variety of machinery including helicopters, wind
turbines, aero-engines, and automobiles. Gearboxes
tend to be complex with ever increasing needs of power
transmission, speed change and compact size of
modern equipments. A complex gearbox (e.g., the
planetary gearboxes used in wind turbines and
helicopters) may have several dozen gears, as many
bearings, and five or more shafts rotating at different
speeds. Failures in any of the components may cause
the malfunction of the entire gearbox and the
maintenance or replacement of the gearbox is of very
high cost.

Fault diagnostics, prognostics and health
management (PHM) for gearboxes is a great challenge
and has attracted a lot of attention for the past over

* This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are
credited.

thirty years (Welbourn, 1977; Randall, 1982;
McFadden, 1986). The separation of vibration sources
in a complex gearbox is critical for effectively and
accurately diagnosing gearbox failures. Due to the
complexity of the gearbox, there are typically more
vibration sources than sensors; thus the use of fully
determined source-separation techniques like
independent component analysis (ICA) is limited.

In this work, we propose a source separation method
based on the single shaft TSA. Specifically, it
integrates the TSA components from each shaft and
produces a composite signal including vibration
sources from all the shafts and gears. When the
resulting composite signal is subtracted from the
original signal, one obtains a residual signal that
contains the vibration components from bearings and
random noise. The paper is organized as follows.
Section 2 is a brief review of existing work on gearbox
vibration source separation. Section 3 describes the
algorithm for the proposed method and a demonstration
using gearbox vibration data. Section 4 provides a
justification for the proposed algorithm. Section 5
compares the source separation results obtained by the
proposed method with those produced by other existing
techniques. Section 6 and Section 7 contain a
discussion and conclusion.

2. BRIEF REVIEW OF GEARBOX VIBRATION SOURCE

SEPARATION TECHNIQUES

Vibration monitoring is the most widely used health-
monitoring method for gearbox and other rotating
machinery. A basic source separation technique long
employed for gearbox health monitoring is the time
synchronous average. The time synchronous average
extracts periodic waveforms from a vibration mixture
by averaging the vibration signal over several
revolutions of the shaft of interest. This can be done in
either the time or frequency domain. The time
synchronous average technique enhances vibration
features that are synchronous with a particular shaft,
and attenuates features that are not synchronous with
that shaft. The technique has proved to be useful for
monitoring of gear and shaft health.
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Techniques for the separation of bearing vibration
from other gearbox vibration sources are also available.
The high-frequency resonance technique is one
specifically designed for extracting features of local
defects in bearings.

Adaptive noise cancellation (ANC) can be used to
extract a faulty bearing signal in cases where the
primary signal can be measured near the faulty bearing
of a gearbox, and a secondary reference signal
measured near another remote healthy bearing is also
available. When one of the two components to be
separated is deterministic (gear and shaft signals) and
the other random (bearing signal), the reference signal
can be made a delayed version of the primary signal.
This is based on the fact that the random signal has a
short correlation length while deterministic signal has
long correlation length. Thus the adaptive filter will
find the transfer function between the deterministic part
of the signal and the delayed version of itself. The
separation of the deterministic and random parts can
also be achieved using one signal only, and this
technique is called self-adaptive noise cancellation
(SANC). The performance of the SANC algorithm
depends on the choice of three parameters: the time
delay, the filter length and the forgetting factor (Antoni
and Randall, 2004, Zeidler, 1990). In practice, there are
trade-offs between the parameter settings and signal
properties such as the length of the measured signal.

Independent component analysis (ICA) is a standard
technique for blind source separation. It has been
applied to separate signals from two independent
vibration sources recorded at two separate locations on
a gearbox (Zhong-sheng, et al., 2004). The utility of
this technique is limited to cases where the number of
sensors is equal to or greater than the number of
vibration sources, a condition that does not generally
hold for gearbox vibration monitoring.

Principal component analysis (PCA) has also been
used to identify the number of gearbox vibration
sources (Gelle et al., 2003, Serviere et al., 2004). The
utility of this dimensionality-reduction technique is
limited by the fact that the reduced-dimension vibration
features may not have physical significance and thus it
is difficult to create a mapping between features and
physical vibration sources.

3. THE INTEGRATED TIME SYNCHRONOUS

AVERAGE

Although the TSA is a powerful tool for isolating gear
and shaft components synchronous with a particular
shaft, it fails to isolate random vibration components
because the subtraction of a single TSA from the
original signal results in a combination of random
signals and other shaft-synchronous components.

A natural way to deal with the issue of separating
shaft/gear components from random signals is to extend
the standard single-shaft TSA to multiple shafts by
conducting an average over the least common multiple
of shaft rotation periods to include the components
associated with all the shafts. Thus the residual only
contains random components with the exclusion of the
deterministic parts. However, this technique is
impractical because the time period corresponding to
the least common multiple of the shaft revolutions for
an actual gearbox is usually several hours.

Recently, two methods have been described for
subtracting a composite TSA from a vibration signal to
produce a residual signal (Randall and Antoni, 2011).
A frequency domain method consists of computing the
FFT of the entirety of a signal, and simply removing
spectral peaks at the discrete harmonics of the known
periodic signals.

A second method, a time domain method, consists
of multiple resampling and subtraction of time
synchronous averages from a signal (Randall and
Antoni, 2011).

Both of these issues have shortcomings. The
frequency-domain approach must deal with the fact that
the frequency of the harmonics leaks into adjacent bins,
except for the very special case in which the numbers
of sample per period and the number of periods are
powers of two. In the case where there is leakage,
removal of discrete peaks at shaft harmonics will not
completely remove the periodic signal.

The time-domain approach described in (Randall
and Antoni, 2011) has the issue that there are certain
time-domain features that are common to the time
synchronous average of two or more shafts – the signal
corresponding to the gear mesh frequency being a
universal example. Thus, repeated subtraction of
individual TSAs will “over-subtract” certain features of
the periodic signals.

In this work, an alternative method is proposed to
integrate all the single shaft TSA signals to obtain a
combination of the components synchronous with each
shaft in a gearbox. The proposed method overcomes
the limitations of the existing methods based on a time
synchronous average, is simple, and performs better
than other techniques not based on the time
synchronous average.

The new algorithm is presented in Table 1 and
justified in Section 4. To obtain the integration of the
TSAs, all the single shaft TSA signals should have the
same number of data points (this is actually the same
spatial angle of one chosen reference shaft after angular
resampling), and this can be achieved by interpolating
and/or repeating the TSA time series. An FFT is then
applied to each of the TSAs to get a complex series in
the Fourier domain. Next, the magnitudes of each
complex series are computed and a new series with the
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same length is formed by taking the complex value
which has the maximum magnitudes of all the single
shaft TSA signals. The maximum magnitude series is
used to create a time series using an inverse FFT
operation. The new time series contains all the shaft
components, mesh frequencies and their sidebands, and
we call it the integrated TSA. A residual signal can be
obtained by subtracting the integrated TSA from the
original signal.

1. Read the original vibration data and tachometer

data.

2. Conduct TSA for each shaft: Tsa1, Tsa2, Tsa3, …

3. Interpolate and repeat data to obtain TSA1, TSA2,

TSA3, …, of the same length N.

4. FFT to get complex series: CTSA1 = fft(TSA1), CTSA2

= fft(TSA2), CTSA3 = fft(TSA3),…

5. Compute magnitude series: ATSA1 = abs( CTSA1),

ATSA2= abs( CTSA2), ATSA3 = abs(CTSA3 =),…

6. Obtain maximum magnitude series: MaxATSA =

max(ATSA1, ATSA2, ATSA3,…)

7. For i = 1:N

if ATSA1(i) == MaxATSA (i)

CTotal(i) = CTSA1(i)

elseif ATSA2(i) == MaxATSA (i)

CTotal(i) = CTSA2(i)

elseif ATSA3(i) == MaxATSA (i)

CTotal(i)= CTSA3(i)

……

end

End

8. Inverse FFT: TCTotal = iFFT(CTotal )

9. Integrated TSA time waveform = real(TCTotal )

____________________________________________

Table 1. Integrated TSA algorithm

4. ALGORITHM JUSTIFICATION

The objective of the time synchronous average is to
extract a periodic signal synchronous with a particular
shaft from a mixture of signals. If (ݐ)ݕ is a signal that
is periodic with period ܶ, then it can be represented
with the Fourier series expansion

ሻൌݐሺݕ ܽ   ቀܽ  cos
గ௧

்
 ܾ sin

గ௧

்
ቁ

ஶ

ୀଵ
(1)

Conceptually, the objective of the time synchronous
average is to extract only those portions of the signal

that have frequency
గ

்
ǡ݊ ൌ ͳǡǥ ǡλ .

In actuality, the time synchronous average
consisting of the average of ܰ periods for a signal with
period ܶ is equivalent to a comb filter with a frequency

response given by )ܪ| )݂| =
ଵ

ே

ୱ୧୬(గே்)

ୱ୧୬(గ்)
(Braun, 2011),

which is plotted in Figure 1 as a function of ݂Ȁܶ . The
lobes of the comb filter naturally address the leakage
issue. As ܰ becomes large, the lobes of the filter
become more tightly centered on the frequencies

݂ൌ
ߨ݊

ܶ
ǡ݊ ൌ ͳǡǥ ǡλ Ǥ (2)

A filter selective for K periodic components
corresponding to different shafts, each with period�ܶ,
should be selective for the frequencies

݂ ൌ
ߨ݊

ܶ݅
ǡ݊ ൌ ͳǡǥ ǡλ Ǣ݅ ൌ ͳǡǥ ǡܭǤ (3)

This filter should be windowed to address leakage.
Such a filter can be formed by merging multiple comb
filters with a maximum-select rule,

)ܪ| )݂| = max୧ቄ
ଵ

ே

ୱ୧୬(గே்)

ୱ୧୬(గ்)
ቅ. (4)

Figure 1. Frequency response of a comb filter
equivalent to the time-synchronous average, as a

function of f/T

The spectrum of this maximum-select comb filter is
equivalent to the spectrum produced by Step 7 of the
algorithm presented in Table 1. The maximum-select
algorithm is actually equivalent to that selection of one
of the non-zero complex values from the FFT series of
the single-shaft TSAs along the frequency axis. This
operation avoids producing redundant components in
the integrated TSA.
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5. EXPERIMENT

5.1 Application to Gearbox Vibration Data

In this section, the integrated TSA method described
above is applied to vibration signals collected from a
two-stage gearbox. This method is also compared with
other source separation techniques, namely, the all-
shaft TSA in which an average is conducted over the
least common multiple of shaft revolutions; high/low-
pass filtering; and self-adaptive noise cancellation
(SANC).

5.2 Data

The data used for the demonstration of the proposed
method is from the 2009 PHM Challenge.

The gearbox has three shafts (an input shaft, an idler
shaft, and an output shaft), each with input side and
output side bearings, and a total of four gears, one on
the input shaft, two on the idler shaft, and one on the
output shaft. During the experiments, a tachometer
signal was collected from the input shaft with 10 pulses
per revolution and two accelerometers were mounted
on the input side and output side to collect vibration
acceleration signals. The gear mesh configuration and
sensor locations are illustrated in Figure 2.

For the method demonstration, selected data sets
from the 2009 PHM Challenge were used. The data
sets collected from the gearbox include both spur gear
pair and helical gear pair configuration. The operating
condition for the data sets used in this paper was the
spur gear configuration, operating at high torque, with
an input shaft speed is 3000 rpm (50Hz). The number
of teeth for the two spur gear pairs are 32/96 and 48/80,
respectively. The sampling frequency is 66.667 kHz
and the sampling period is about 4 seconds for each
data set.

The feature frequencies of the shafts and gears are
listed as follows: the 1st and the 2nd mesh frequency are
1598 Hz and 799 Hz respectively, and the three shaft
frequencies are 50 Hz, 16.7 Hz, and 10 Hz for the input,
idler, and output shafts, respectively.

5.3 Demonstration of the integrated TSA method

In the following the results were generated from data
set Spur 3 in which the gear of 48 teeth on the idler
shaft is eccentric.

Figure 2. Configuration of the testing gearbox

Figure 3 shows the single shaft TSA waveforms for
the input shaft, idler shaft and the output shaft (one
revolution for each shaft), respectively. The
corresponding time periods for the three shafts are
different due to the different rotation speeds of the
shafts. The eccentric feature is clearly evident in the
TSA waveform of the idler shaft.

Figure 4 shows the original time waveform of the
same acceleration signal (Spur 3), the integrated TSA
waveform and the residual waveform.

Figure 5 shows magnitude spectra corresponding to
the time waveforms shown in Figure 4. Only the
frequency range below 2000 Hz is shown which covers
the lower orders of the shaft harmonics, the two mesh
frequencies (1598 Hz and 799 Hz) and their sidebands
in Figure 5. From Figure 5 it can be seen that in the
residual signal the shaft components and the gear mesh
components are removed or attenuated significantly. It
can also be seen from the magnitude spectrum of the
original signal that the peak at the second mesh
frequency (799 Hz) is significantly larger than that of
the first mesh frequency (1598 Hz), and the peak at the
input shaft frequency (49.9 Hz) is also one of the
dominant components. The spectrum of the integrated
TSA basically contains the shaft frequencies and their
harmonics, as well as the mesh frequencies with the
sidebands from the three shafts, and this can be seen
most clearly in the following zoomed-in plots.

Figure 6 provides a comparison of the spectra of the
original signal, the integrated TSA, and the residual
signal at lower frequency band. From Figure 6 it can be
seen that the integrated TSA basically contains the
harmonics of the three shafts and in the residual signal
the major periodic components (mainly the three shaft
frequencies and their harmonics) are removed.

Figure 7 show the spectral comparison between the
original signal and the integrated TSA zoomed-in
around the two mesh frequencies. From Figure 7 it can
be seen that the integrated TSA mainly contains the
mesh frequencies and the sidebands associated with all
the three shafts. And the dominant sidebands are caused
by the idler shaft on which there is an eccentric gear.
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Figure 3. Single-shaft TSA waveforms

Figure 4. Waveforms for the original signal, the
integrated TSA, and the residual

Figure 5. Magnitude spectra of the signals shown in
Figure 4

Figure 6. Spectrum comparison at lower frequency
band

49.9 Hz

799 Hz

Annual Conference of the Prognostics and Health Management Society, 2011

286
[paper 31]



Annual Conference of the Prognostics and Health Management Society, 2011

6

Frequency (Hz)

Figure 7. Spectrum comparison around the two gear
mesh frequencies

5.4 Comparison with other techniques

In this section, the integrated TSA is compared with
other techniques, namely, all-shaft TSA, high/low-pass
filtering and SANC, using data from the PHM 2009
Challenge.

In these comparisons, data set Spur 6 with a rotation
speed of 3000 rpm for the input shaft and a high load
condition is used. There are some compound faults
seeded in this data set, specifically, a broken tooth on
the gear (80 teeth) installed on the output shaft, a defect
on the bearing inner race, a ball defect, and an outer
race defect in the bearings supporting the input side of
the input shaft, idler shaft and the output shaft
respectively. The input shaft is also imbalanced.

The cut-off frequency used in the high/low-pass
filtering method is set to 5000 Hz which is roughly
equal to three times the gear mesh frequency of 1598
Hz plus the fourth order sideband of the input shaft
frequency 50 Hz (the highest shaft frequency among
the three shafts).

Figure 8 shows the time-domain waveform of the
data set, which evidences strong impulses caused by the
broken tooth.

Figure 9 shows the magnitude spectrum of the
original signal. From Figure 9 it is seen that the rotation
frequency of the input shaft is the dominant component
for this data set and has a much higher magnitude than
the gear mesh vibration components.

Figure 10 (a), (b), (c) and (d) show the separated
periodic components and the random transient
components produced by the integrated TSA, all-shaft
TSA, high/low-pass filtering and SANC, respectively.
From Figure 10 it can be seen that the results from the
separated results by using integrated TSA and all-shaft
TSA look very close to each other. The other two
methods -- high/low-pass filtering and SANC -- cannot
filter out the broadband impulses from the periodic
portion of the signal. One also notes some over-
attenuation at the start of the filtered signal in the
results of the SANC.

Figure 11 (a), (b), (c) and (d) provides a comparison
of the magnitude spectra of the separated components
in the lower frequency bands (<500Hz). It can be seen
that the all-shaft TSA includes a more components than
that of the integrated TSA in the low frequency band,
while in the filtered parts of the other two filtering
approaches almost all the components in low frequency
bands are kept. The magnitudes of the residual spectra
for high/low-pass filtering and SANC are close to zero,
while some larger peaks (random components) could be
found in the residual spectra of the integrated TSA and
all-shaft TSA.

Figure 8. Original time waveform (Spur 6)

Figure 9. Magnitude spectrum of the original signal
(Spur 6)
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(a) Integrated TSA

(b) All-shaft TSA

(c) High-Pass filtering

(d) SANC

Figure 10. Comparison of the separated signals

Figure 12 provides a comparison of the magnitude
spectra of the separated components for the integrated
TSA, all-shaft TSA and SANC methods around the
second gear-pair mesh frequency (GMF2 = 799 Hz).
And Figure 13 provides a comparison of the magnitude
spectra of the separated components for the integrated
TSA, all-shaft TSA and SANC methods around the first
gear-pair mesh frequency (GMF1 = 1598 Hz). The
result of high-pass filtering are not shown here as the
cut-off frequency of 5000 Hz is much higher that these
frequency bands and thus all the original components
are kept in the filtered signals and the magnitudes of
the residual signals are basically zero in the frequency
bands compared here. It can be seen from Figure 12
and Figure 13 that the integrated TSA contains the
mesh frequencies and their sidebands from all three
shafts. The all-shaft TSA includes more periodic
components than that of the integrated TSA and it is
seen that there are some peaks between the mesh
frequencies and the sidebands in the all-shaft TSA
spectrum. From the spectrum of the filtered signal by
SANC, it is seen that it covers all the major peaks and
its residual signal is of very small magnitudes. It can
also be seen from these spectra that the residual is
complementary with the TSA or filtered signal to form
the original signal, as expected.
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(a) Integrated TSA

(b) All-shaft TSA

(c) High-Pass filtering

(d) SANC

Figure 11. Spectrum comparison of the separated
signals (in low frequency bands)
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(a) Integrated TSA

(b) All-shaft TSA

(c) SANC

Figure 12. Spectrum comparison of the separated
signals (zoomed in around GMF2

(a) Integrated TSA

Figure 13. Spectrum comparison of the separated
signals (zoomed in around GMF1)
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(b) All-shaft TSA

(c) SANC

Figure 13 (continued). Spectrum comparison of the
separated signals (zoomed in around GMF1)

6. DISCUSSION

Based on the analysis results in the above section, the
following observations can be made:

1. The integrated TSA keeps all the shaft
synchronous components including the shaft rotation
frequencies and their harmonics, gear mesh
frequencies and their harmonics with the sidebands
from all the shafts. Vibration components other than
these are significantly attenuated or eliminated.

2. The all-shaft TSA includes more vibration
components than the integrated TSA. There are
basically two reasons for this: (a) averaging over the
least common multiple of the shaft revolutions
includes the components with period of the least
common multiple of the periods of the shafts (the
peaks between the mesh frequencies and the shaft
sidebands); (b) averaging over longer period also
makes the number of averages smaller and this makes
the signal-to-noise ratio lower (equivalent to higher
side lobes of the comb filter). The data used in this
paper is a special case in which all-shaft TSA can be
applied. However, as mentioned in Section 3, for
industrial gearboxes the least common multiple of the
shaft revolution periods is usually several hours,
making the technique impractical.

3. The high/low-pass filtering method separates
the data according to the frequency range. Ideally the
low frequency part should include the vibration
components of the shafts and the gear mesh. However,
the low frequency part surely includes all the periodic
components not associated with the shafts and gears
and noise components in the frequency bands lower
than the cut-off frequency.

4. The filtered part of SANC is determined by
the time delay factor, forgetting factor, and filter
length. These should be optimized with the specific
data type and data length to reach some trade-offs and
in practice this is somewhat arbitrary and difficult to
obtain satisfactory results.

5. Both high/low pass filtering and SANC fail to
filter out broadband impulses. The transient feature is
clearly seen in the deterministic part.

7. CONCLUSIONS

This paper describes a simple approach for integrating
the TSA of individual shafts to generate a composite
time synchronous average which can be subtracted
from the original signal to generate a second-order
cyclostationary residual. This approach is applied to
vibration signals collected from a two-stage gearbox
and compared with other techniques including an all-
shaft TSA in which angular re-sampling over the least
common multiple of shaft revolutions is conducted,
high/low pass filtering and self-adaptive noise
cancellation.

The results demonstrate that by using the proposed
approach, the integrated parts contain only the
components synchronous with each of the shafts
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including the shaft frequencies and their harmonics,
mesh frequencies and their harmonics, and the
sidebands caused by all the shafts around the harmonics
of the mesh frequencies. The all-shaft TSA signal
contains more components than that of synchronous
with each shaft and has a lower signal-to-noise ratio
than the integrated TSA. High/low pass filtering and
SANC induce more noise in the filtered part and the
results are less satisfactory.

The integrated TSA is a simple but powerful
approach for the separation of a gearbox vibration
signal into first-order and second-order cyclostationary
components. The new technique will facilitate the
diagnosis of faults in complex gearbox systems.
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ABSTRACT 

 The objective of this work is to present a method to 

monitor the health of Auxiliary Power Units (APU) 

using a Dynamic Computational Model, Gas Path 

Analysis and Classification and Regression Trees 

(CART). The main data used to train the CART 

consists of measurements of the exhaust gas 

temperature, the bleed pressure and the fuel flow. 

 The proposed method was tested using actual APU 

data collected from a prototype aircraft. The method 

succeeded in classifying several relevant fault 

conditions. The few misclassification errors were found 

to be due to the insufficiency of the information content 

of the measurement data.
*
 

1. INTRODUCTION  

Increased aircraft availability is one of the most 

desirable fleet characteristics to an airliner. Delays due 

to unanticipated system components failures cause 

prohibitive expenses, especially when failures occur on 

sites without proper maintenance staff and equipments. 

In recent years researches have focused on providing 

new technologies which could prevent some failures or 

notify maintenance staff in advance when any 

component is about to fail. Health Monitoring (HM) 

provides this knowledge by estimating the current 

health state of components. This may guide the 

maintenance activities and spare parts logistics to 

properly remove or fix the component at the most 

suitable time and place. 

                                                           
* Vianna, W. O. L. et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 United 

States License, which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original author and source 

are credited. 

 Since the Auxiliary Power Unit (APU) represents a 

significant maintenance cost to an airliner, several HM 

studies have been conducted on this component (Vieira 

et al, 2009; Urban, 1967; Jones, 2007). Many of them 

exploit similar approaches to methods devoted to the 

main engines, due to the similarities in physical 

behavior. 

 Methods based on thermodynamic models, or gas 

path analysis, may provide more precise information as 

compared to data-driven methods. However, the use of 

model-based techniques still presents challenges when 

dealing with a large and heterogeneous fleet.  

 This paper aims to provide a HM solution based on 

a classification and regression tree (CART) employing 

data obtained from a mathematical model of an APU 

derived from thermodynamic principles. The proposed 

method is validated with APU field data. 

 The work is organized as follows. Section 2 

contains a brief description of the system under 

analysis. Section 3 presents the methodology adopted. 

Section 4 contains the model description used on the 

implementation. Section 5 presents the implementation 

steps and the results of the method applied on the APU 

performance data. The last section presents the 

conclusion of the study and some remarks. 

2. SYSTEM DESCRIPTION 

An APU is a gas turbine device on a vehicle with the 

purpose of providing power to other systems apart from 

engines. This power can either be of pneumatic nature, 

extracted from a bleed system, or of electrical type, 

extracted from the generator. APUs are commonly 

found on large aircraft, as well as some large land 

vehicles. Its primary purpose is to provide bleed to start 

the main engines. It is also used to run accessories such 
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as air conditioning and electric pumps. It is usually 

located at the tail end of the aircraft as represented in 

Figure 1. 

 

Figure 1: APU at the tail end of an aircraft. 

 A typical gas turbine APU contains a compressor, a 

burner and a turbine as every conventional gas turbine. 

It also has a bleed system that controls the amount of 

extracted pneumatic power, a fuel system, a gearbox 

and a generator. Protective components such as anti-

surge, and guide vane may also be present. The logics 

and control are executed by the Full Authority Digital 

Engine Control (FADEC). A simplified APU 

representation is illustrated in Figure 2. 

Generator

Gearbox

Air Inlet

Bleed

Turbine

Fuel Injection

Burner

Compressor

 

Figure 2: Simplified APU representation. 

 In order to provide proper information to the 

FADEC, the system must contain sensors for several 

variables, such as speed, exhaust gas temperature 

(EGT) and bleed pressure. A fuel flow meter may also 

be valuable but it is not an essential sensor. The EGT is 

a useful parameter for health monitoring and can 

indicate several failures such as core degradation and 

inlet blockage (SAE, 2006). A typical EGT profile 

during APU operation is indicated in Figure 3. 
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Figure 3: Typical EGT profile during the operation of 

an APU. 

 During the APU start an EGT peak is observed and 

can be used as a health monitoring feature (SAE, 2006). 

After the speed has reached its operational value the 

EGT stabilizes until the air conditioning system turns 

on. This produces an increase in EGT, which then 

reaches another steady-state value. When the engine 

starts, usually all other pneumatic sources are turned off 

so the APU can provide the required bleed.  

3. HEALTH MONITORING METHODOLOGY 

Gas path analysis is a methodology for monitoring gas 

turbines proposed by (Urban, 1967), which has been 

used in several studies for the purpose of health 

performance analysis (Saravanamuttoo et al, 1986) , 

(Li, 2003). Within the scope of APU monitoring, one of 

the main challenges consists of discriminating among 

possible failure modes affecting different components. 

In this context, promising results have been obtained 

with the use of classification methods (Vieira et al, 

2009), (Sabyasachi, 2008). 

 Classification and Regression Trees (CART) are a 

popular set of classification methods that have as one of 

its key characteristics the easiness of interpretation of 

the results. This feature facilitates the validation of the 

results or the adjustment of the classification rules on 

the basis of the knowledge of a system specialist.     

 CART uses a “learning sample” of historical data 

with assigned classes for building a “decision tree”, 

which expresses a set of classification rules in terms of 

a sequence of questions. The use of CART involves 

three stages (Timofeev, 2004): 

 1. Construction of the maximum tree 

 2. Selection of an appropriate tree size 

 3. Classification of new data using the resulting tree 

 The classification tree uses some rules to split the 

“learning sample” into smaller parts, thus creating the 

nodes and the tree itself. Such rules are called “splitting 
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rules”. Some examples are the “Gini splitting rule” and 

the “Twoing splitting rule”. The first one is the most 

broadly used (Timofeev, 2004) and uses the following 

“impurity” function: 

∑
≠

=
lk

tkpti )|()(  (1) 

where k and l are class indexes, t is the node under 

consideration and p(k|t) is the conditional probability of 

class k  provided in node t. 

 At each node the CART solves a maximization 

problem of the form: 
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where lP  and  rP  are probabilities of the left and right 

node respectively. 

 Using the Gini impurity function, the following 

maximization problem must be solved to isolate the 

larger class from other data 
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 The health monitoring algorithm proposed in the 

present work employs CART for failure classification 

based on residuals from faulty and healthy data in 

steady state condition. The first implementation step 

was choosing the failure modes, variables used for 

model seeded fault, list of sensors and operational data 

snapshots for analysis. 

 Eight types of faults were considered: 

1. Increase in shaft torque extraction; 

2. Increase in bleed; 

3. Reduction in compressor efficiency; 

4. Reduction in turbine efficiency;  

5. Speed sensor bias; 

6. EGT sensor bias; 

7. Reduction in combustor efficiency; 

8. Decrease in fuel flow. 

 The measured variables were assumed to be fuel 

flow, EGT and bleed pressure. Healthy data and faulty 

data were generated using the mathematical model of 

an APU derived from thermodynamic principles. The 

residuals used as inputs for CART were calculated as 

shown in Figure 4.  
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Parameters
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Fuel Flow
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Figure 4: Calculation of the residuals employed in the 

proposed HM methodology. 

4. MODEL DESCRIPTION 

The thermodynamic model used in this work is 

represented schematically in Figure 5. 

Compressor

Ambient
Temperature

Ambient
Pressure
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Bleed Flow Burner Turbine

Generator
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Bleed
Pressure

Controller

Fuel Flow

 

Figure 5: Block diagram of the APU model. 

 The model contains four inputs and three outputs, 

which represent the APU sensors. Three of the blocks 

model the thermodynamic behavior: the compressor, 

burner and turbine. 

 The inputs to the compressor block consist of 

ambient pressure and temperature, as well as shaft 

speed. The outputs are compressor torque, air flow, 

compressor pressure and temperature. The compressor 

behavior is based on a map which relates pressure ratio, 

airflow, speed and temperature as illustrated in Figure 

6. 
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Figure 6: Compressor map. 

  

 The pressure ratio (PR) is defined as: 

 in

out

P

P
PR =

 (4) 

where Pout is the outlet pressure and Pin is the inlet 

pressure. 

 The corrected air flow is defined as: 

δ

θ
WWc =

 (5) 

where W is the absolute air flow and δ and θ are given 

by: 

ref

in

P

P
=δ

 (6) 

ref

in

T

T
=θ

 (7) 

where Pref is the standard day pressure, Tref is the 

standard day temperature and Tin is the inlet 

temperature. 

 The corrected speed (Nc) is defined as:  

θ

N
Nc =

 (8) 

where N is the absolute shaft speed. 

 The inputs to the burner block are air flow, 

compressor pressure and temperature, as well as fuel 

flow. The outputs are burner pressure and temperature, 

air flow and Fuel Air Ratio (FAR). The input-output 

characteristic of this component is represented as: 

 fuelair

fuelinair

out
WW

WLHVhW
h

+

+
=

..

 (9) 

where hin and hout are respectively the burner inlet and 

outlet enthalpies, Wfuel is fuel flow, Wair is the burner 

exhaust air flow and LHV is the fuel heating value. 

 The turbine is represented by a map as illustrated in 

Figure 7. 

 

Figure 7: Turbine map. 

 Apart from the thermodynamic blocks, two other 

components are modeled in Fig. 5. The first one is the 

controller, which reproduces one of the main features 

of the FADEC, namely the control of shaft speed by 

manipulation of fuel flow. Here, a PID controller is 

used. The other block represents the energy balance of 

the shaft speed, which can be described by the 

following equation: 

 
∫
∑∑ =⇒=

I
NNI

τ
τ &.

 (10) 

where I is the moment of inertia and Στ is the sum of 

compressor, turbine and generator torques. The latter 

represents the torque extracted from the APU to supply 

electrical components such as electrical pumps and 

lights. 

  

5. RESULTS 

For the construction of the initial classification tree, a 

set of 180 data vectors was generated. This dataset 

generation consisted of 20 simulations of APUs 
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startups for each of the failure modes and other 20 

simulations for the APU operating without faults. 

Different loads, simulating pumps, engines and air 

cycle machine were used. 

 The data vectors collected comprised residual 

values of EGT, fuel flow and bleed pressure.    

  The resulting classification tree is presented in 

Figure 8. 
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Figure 8: Initial classification tree. 

 Analyzing the initial classification tree it is possible 

to notice the great number of nodes possibly resulting 

in overfitting of the training data. This problem was 

solved by pruning some nodes of the tree using expert 

knowledge provided by an APU system specialist. 

Some of the failure modes were very similar and it 

would be a better strategy to group them into a reduced 

number of nodes. The resulting tree is presented in 

Figure 9. 

System Ok

Speed SensorExcessive

torque 

extraction

EGT SensorFuel Module

Combustor 

Efficiency Loss

Compressor 

Efficiency Loss
Turbine

Efficiency Loss

Excessive Bleed  

Figure 9: Classification tree resulting from the pruning 

procedure. 

  It is possible to observe in Figure 9 that some of the 

failure modes were grouped into the same node, 

indicating that they could not be separated based on the 

sensors that were used. Although the initial objective 

was to classify all failure modes, some ambiguities 

could not be resolved. However, the level of isolation 

provided by the proposed tree was considered adequate, 

as it helps to reduce significantly the troubleshoot time 

on an event of failure. 

 The proposed method was tested using actual 

data collected in the field. The dataset consisted of 18 

data vectors comprising 6 healthy states and 12 failure 

events. The data were collected with the engine, the 

electric pump and the air cycle machine in either on or 

off state, as shown in  

Table 1.  

 

Table 1: Field data. 

 ACM Pump Engine 

Healthy off off off 

Healthy off off on 

Healthy off off on 

Healthy on on off 

Healthy on on on 

Healthy off off on 

Excessive Bleed off off off 

Excessive Bleed on on off 

Excessive Bleed off off off 

50% Inlet Blockage off off off 

50% Inlet Blockage on on off 

50% Inlet Blockage off off off 

75% Inlet Blockage off off off 

75% Inlet Blockage on on off 

75% Inlet Blockage off off off 

Fuel Filter Blockage off off off 

Fuel Filter Blockage on on off 

Fuel Filter Blockage off off off 

 

 Although the "Inlet Blockage" was neither modeled 

nor used for the training of the classification tree, the 

effects due to this type of failure are very similar to 

those of an “EGT sensor bias”.  Therefore, it is 

expected that these particular conditions should be 

classified as “EGT sensor bias” failures. 

 The results for the classification are presented in 

Table 2. 

Table 2: Classification results for the field data. 

Ground Truth Classification 

Healthy No failure 

Healthy No failure 

Healthy No failure 

Healthy No failure 

Healthy No failure 

Healthy No failure 

Excessive Bleed Compressor Eff. loss 

Excessive Bleed Excessive Bleed 

Excessive Bleed Excessive Bleed 

50% Inlet Blockage EGT Sensor 

50% Inlet Blockage EGT Sensor 

50% Inlet Blockage No failure 

75% Inlet Blockage Excessive Bleed 

75% Inlet Blockage Excessive Bleed 

75% Inlet Blockage EGT Sensor 

Fuel Filter Blockage Fuel Module 

Fuel Filter Blockage Fuel Module 

Fuel Filter Blockage No failure 
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 Observing the results presented in Table 2, one can 

notice that the classification algorithm was able to 

classify correctly all healthy states, that is, no healthy 

system was classified as faulty. On the other hand, the 

algorithm was not able to classify correctly all  failure 

events. 

 In order to identify possible improvements on the 

method proposed, all classification errors were 

analyzed observing the raw data. 

 Looking at the data from “50% inlet blockage” and 

“fuel filter blockage” faults, both classified as “no 

failures”, no significant difference in the parameters 

were observed, as compared to a situation without fault. 

The conclusion is that the "Inlet Blockage" and the 

"Fuel Filter Blockage" were not sufficient to cause any 

modification on the monitored variables. One factor 

that could contribute to these errors is the difference in 

the behavior of the APU in hot and cold starts. This 

effect was not modeled in the present work.    

 Lack of precise calibration and modeling data, 

specifically compressor and turbine maps and lack of 

precise bleed flow test data lead to errors on “Excessive 

Bleed” being classified as “compressor efficiency loss” 

and the “75% Inlet Blockage” classified as “Excessive 

Bleed”. 

6.  CONCLUSION 

This paper presented an APU health monitoring method 

using a Dynamic Model and a Classification and 

Regression Tree (CART). The CART was used to 

classify APU failure modes based on measurements of 

the exhaust gas temperature, the bleed pressure and the 

fuel flow. 

 After designing the CART, the method was tested 

using real APU data. Although the method was not 

capable to classify correctly all failure modes, it 

showed promising results.  
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ABSTRACT
 

This paper presents statistical model parameter 
identification using Bayesian inference when parameters are 
correlated and observed data have noise and bias. The 
method is explained using the Paris model that describes 
crack growth in a plate under mode I loading. It is assumed 
the observed data are obtained through structural health 
monitoring systems, which may have random noise and 
deterministic bias. It was found that strong correlation exists 
(a) between two model parameters of the Paris model, and 
(b) between initially measured crack size and bias. As the 
level of noise increases, the Bayesian inference was not able 
to identify the correlated parameters. However, the 
remaining useful life was predicted accurately because the 
identification errors in correlated parameters were 
compensated by each other. 

1. INTRODUCTION 

Condition-based maintenance (CBM) provides a cost 
effective maintenance strategy by providing an accurate 
quantification of degradation and damage at an early stage 
without intrusive and time consuming inspections 
(Giurgiutiu, 2008). Structural health monitoring (SHM) has 
the potential to facilitate CBM. Most proposed SHM 
systems utilize on-board sensors/actuators to detect damage, 
to find the location of damage, and to estimate the 
significance of damage (Mohanty et al., 2011). Since the 
SHM systems can assess damage frequently, they can also 
be used to predict the future behavior of the system, which 
is critically important for maintenance scheduling and fleet 
management. SHM systems can have a significant impact 
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unrestricted use, distribution, and reproduction in any medium, provided 
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on increasing safety by allowing predictions of the 
structure's health status and remaining useful life (RUL), 
which is called prognostics. 

In general, prognostics methods can be categorized into 
data-driven (Schwabacher, 2005), physical model-based 
(Luo et al., 2008), and hybrid (Yan and Lee, 2007) 
approaches, based on the usage of information. The data-
driven method uses information from collected data to 
predict future status of the system without using any 
particular physical model. It includes least-square regression 
and Gaussian process regression, etc. The physical model-
based method assumes that a physics model that describes 
the behavior of the system is available. This method 
combines the physics model with measured data to identify 
model parameters and predicts future behavior. Modeling 
the physical behavior can be accomplished at different 
levels, for example, micro- and macro-levels. Crack growth 
model (Paris and Erdogan, 1963) or fatigue life model (Yu 
and Harris, 2001) are often used for macro-level damage, 
and first principle models (Jaw et al., 1999) are used for 
micro-level damage. The hybrid method combines the 
abovementioned two methods, and includes particle filters 
(Orchard and Vachtsevanos, 2007; Orchard et al., 2008; Zio 
and Peloni, 2011) and Bayesian techniques (Sheppard  et al., 
2005; Saha and Goebel, 2008; Sankararaman et al., 2010; 
Ling et al., 2010). Since the data-driven method identifies 
abnormality based on the trend of data, it is powerful in 
predicting near-future behaviors, while the physical model-
based method has advantages in predicting long-term 
behaviors of the system. It is noted that in the physical 
model-based method for fatigue applications, the history of 
load is required in addition to the measured crack data.  

In this paper, a physics-based model for structural 
degradation due to damage is applied for prognostics since 
damage grows slowly and the physics governing its 
behavior is relatively well-known. The main purpose of 
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prognostics is to identify and repair those damages that 
threaten the system safety (condition-based maintenance) 
and to predict an appropriate maintenance schedule. Paris-
family models are commonly used in describing the growth 
of cracks in aircraft panels under fatigue loading (Paris et al., 
2008). In this paper, the original Paris model (Paris and 
Erdogan, 1963) is used because it has the least number of 
parameters. The main purpose of the paper is to present the 
usage of Bayesian inference in identifying model parameters 
and predicting the RUL—the remaining cycles before 
maintenance. The study focuses on crack growth in a 
fuselage panel under repeated pressurization loading, which 
can be considered regular loading cycles. In this type of 
application, the uncertainty in applied loading is small 
compared to other uncertainties. The improved accuracy in 
these model parameters allows more accurate prediction of 
the RUL of the monitored structural component.  

Identifying the model parameters and predicting damage 
growth, however, is not a simple task due to the noise and 
bias of data from SHM systems and the correlation between 
parameters, which is prevalent in practical problems. The 
noise comes from variability of random environments, while 
the bias comes from systematic departures of measurement 
data, such as calibration error. However, there are not many 
research results for identifying model parameters under 
noise and bias, without mentioning correlated parameters 
(Orchard et al., 2008; Bechhoefer, 2008). 

The main objective of this paper is to demonstrate how 
Bayesian inference can be used to identify model 
parameters and to predict RUL using them, especially when 
the model parameters are correlated. In order to find the 
effects of noise and bias on the identified parameters, 
numerical studies utilize synthetic data; i.e., the 
measurement data are produced from the assumed model of 
noise and bias. The key interest is how the Bayesian 
inference identifies the correlated parameters under noise 
and bias in data. 

The paper is organized as follows. In Section 2, a simple 
damage growth based on Paris model is presented in 
addition to the uncertainty model of noise and bias. In 
Section 3, parameter identification and RUL prediction 
using Bayesian inference and MCMC simulation method 
(Andrieu et al., 2003) is presented with different levels of 
noise and bias. Conclusions are presented in Section 4. 

2. DAMAGE GROWTH AND MEASUREMENT UNCERTAINTY 

MODELS 

2.1 Damage growth model 

In this paper, a simple damage growth model is used to 
demonstrate the main idea of characterizing damage growth 
parameters. Although some experimental data on fatigue 
damage growth are available in the literature (Virkler et al., 
1979), they are not measured using SHM systems. 

Therefore, the level of noise and bias is much smaller than 
the actual data that will be available in SHM systems. In this 
paper, synthetic damage growth data are used in order to 
perform statistical study on the effect of various levels of 
noise and bias. It is assumed that a through-the-thickness 
center crack exists in an infinite plate under the mode I 
loading condition. In aircraft structure, this corresponds to a 
fuselage panel under repeated pressurization loadings (see 
Figure 1). In this approximation, the effect of finite plate 
size and the curvature of the plate are ignored. When the 
stress range due to the pressure differential is sD , the rate 
of damage growth can be written using the Paris model 
(Paris and Erdogan, 1963) as 

 ( )d
,

d

ma
C K K a

N
s p= D D = D                (1) 

where a  is the half crack size, N  is the number of cycles, 
which is close to real time when the cycle is very short, 
KD  is the range of stress intensity factor, and other 

parameters are shown in Table 1 for 7075-T651 aluminum 
alloy. Although the number of cycles, N , is an integer, it is 
treated as a real number in this model. The above model has 
two damage growth parameters, C  and m , which are 
estimated to predict damage propagation and RUL. In Table 
1, these two parameters are assumed to be uniformly 
distributed. The lower- and upper-bounds of these 
parameters were obtained from the scatter of experimental 
data (Newman et al., 1999). They can be considered as the 
damage growth parameters of generic 7075-T651 material. 
In general, it is well-known that the two Paris parameters 
are strongly correlated (Sinclair and Pierie, 1990, but it is 
assumed initially that they are uncorrelated because there is 
no prior knowledge on the level of correlation. Using 
measured data of crack sizes, the Bayesian inference will 
show the correlation structure between these two parameters. 
Since the scatter is so wide, the prediction of RUL using 
these distributions of parameters is meaningless. The 
specific panel being monitored using SHM systems may 
have much narrower distributions of the parameters, or even 
deterministic values. 

The half crack size 
i
a  after 

i
N  cycles (flights) of fatigue 

loading can be obtained by integrating Eq. (1) and solving 

for 
i
a  as  

 ( )
2

21
2

0
1
2

m mm

i i

m
a N C as p

--é ùæ ö÷çê ú÷= - D +ç ÷ê úç ÷çè øê úë û
            (2) 

where 
0
a  is the initial half crack size. In SHM, the initial 

crack size does not have to be the micro-crack in the panel 
before applying any fatigue loading. This can be the crack 
size that is detected by SHM systems the first time. In such 

a case, 
i
N  should be interpreted as the number of cycles 
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since detected. It is assumed that the panel fails when 
i
a  

reaches a critical half crack size, 
C
a . Here we assume that 

this critical crack size is when the stress intensity factor 

exceeds the fracture toughness 
IC
K . This leads to the 

following expression for the critical crack size: 

2

IC
C

K
a

s p

æ ö÷ç ÷ç= ÷ç ÷ç ÷è øD
                               (3) 

Even if the above crack growth model is the simplest form, 
it requires identifying various parameters. First, the damage 
growth parameters, C  and m , need to be identified, which 
can be estimated from specimen-level fatigue tests0. 
However, due to material variability, these parameters show 
different values for different batches of panels. In addition, 

the initial crack size, 
0
a , needs to be found. Liu and 

Mahadevan (2009) used an equivalent initial flaw size, but it 
is still challenging to find the initial crack size. In addition, 

the fracture toughness, 
IC
K , also shows randomness due to 

variability in manufacturing. 

2.2 Measurement uncertainty model 

In SHM-based inspection, the sensors installed on the panel 
are used to detect the location and size of damage. Even if 
the on-line inspection can be performed continuously, it 
would not be much different from on-ground inspection 
because the structural damage will not grow quickly. In 
addition, the on-ground inspection will have much smaller 
levels of noise than on-line. The on-ground inspection may 
provide a significant weight advantage because only sensors, 
not measurement equipment, are on-board. Our preliminary 
study showed that there is no need to inspect at every flight 
because the damage growth at each flight is extremely small. 

A crack in the fuselage panel grows according to the applied 
loading, pressurizations in this case. Then the structural 
health monitoring (SHM) systems detect the crack. In 
general, the SHM system cannot detect a crack when it is 
small. Many SHM systems can detect a crack between the 
sizes of 5~10mm (Jerome and Kenneth, 2006). Therefore, 
the necessity of identifying the initial crack size becomes 

unimportant by setting 
0
a  to be the initially detected crack 

size. However, 
0
a  may still include noise and bias from the 

measurement. In addition, the fracture toughness, 
IC
K , is 

also unimportant because airliners may want to send the 
airplane for maintenance before the crack becomes critical. 

The main objective of this paper is to show that the 
measured data can be used to identify crack growth 
parameters, and then, to predict the future behavior of the 
cracks. Since no airplanes are equipped with SHM systems 

yet, we simulate the measured crack sizes from SHM. In 
general, the measured damage includes the effect of bias 
and noise of the sensor measurement. The former is 
deterministic and represents a calibration error, while the 
latter is random and represents a noise in the measurement 
environment. The synthetic measurement data are useful for 
parameter study, that is, the different noise and bias levels 
show how the identification process is affected. In this 
context, bias is considered as two different levels, ±2mm, 
and noise is uniformly distributed between u- mm and 
u+ mm. Four different levels of u  are considered: 0mm, 

0.1mm, 1mm, 5mm. The different levels of noise represent 
the quality of SHM systems. 

The synthetic measurement data are generated by (a) 

assuming that the true parameters, 
true
m  and 

true
C , and the 

initial half crack size, 
0
a , are known; (b) calculating the 

true crack sizes according to Eq. (2) for a given 
i
N  and 

sD ; and (c) adding a deterministic bias and random noise 
to the true crack size data including the initial crack size. 
Once the synthetic data are obtained, the true values of 
crack sizes as well as the true values of parameters are not 
used in the prognostics process. In this paper, the following 
true values of parameters are used for all numerical 

examples: 
true

3.8m = , 10

true
1.5 10C -= ´ , and 

0
10mma = . 

Table 1 shows three different levels of loading; the first two 
( sD = 86.5 and 78.6MPa) are used for estimating model 

σ

σ

sensor

Bayesian
inference

damage 
size

Paris 
model

damage 
growth 

parameter

RUL

Figure 1. Through-the-thickness crack in a fuselage panel 

Propert
y 

Nominal 
stress 
∆σ (MPa)

Fracture 
toughness 

KIC 

(MPa m ) 

Damage 
parameter

m 

Damage 
parameter

log(C) 

Distribu
tion 
type

case 1: 86.5
case 2: 78.6
case 3: 70.8

Deterministic 
30 

Uniform
(3.3, 4.3)

Uniform 
(log(5E-11), 
log(5E-10))

Table 1 Loading and fracture parameters of 7075-T651 
Aluminum alloy 
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parameters, while the last ( sD = 70.8) is used for validation 
purposes. The reason for using two sets of data for 
estimating damage growth parameters is to utilize more data 
having damage propagation information at an early stage. 
Theoretically, the true values of parameters can be identified 
using a single set of data because the Paris model is a 
nonlinear function of parameters. However, random noise 
can make the identification process slow, especially when 
parameters are correlated; i.e., many different combinations 
of correlated parameters can achieve the same crack size. 
This property delays the convergence of Bayesian process 
such that meaningful parameters can only be obtained 
toward the end of RUL. Based on preliminary study, two 
sets of data at different loadings can help the Bayesian 
process converge quickly. 

Figure 2 shows the true crack growth curves for three 
different levels of loading (solid curves) and synthetic 

measurement data meas

i
a (triangles) that generated in two 

levels of loading including noise and bias. It is noted that 
the positive bias shifts the data above the true crack growth. 
On the other hand, the noises are randomly distributed 
between measurement cycles. It is assumed that the 
measurements are performed at every 100 cycles. Let there 

be n  measurement data. Then the measured crack sizes and 
corresponding cycles are represented by  

 

meas meas meas meas meas

0 1 2

0 1 2

{ , , , , }

{ 0, 100, 200, , }

n

n

a a a a

N N N N

=

= = = =

a

N




     (4) 

It is assumed that after 
n
N , the crack size becomes larger 

than the threshold and the crack is repaired. 

3. BAYESIAN INFERENCE FOR CHARACTERIZATION OF 

DAMAGE PROPERTIES 

3.1 Damage growth parameters estimation 

Once the synthetic data (damage sizes vs. cycles) are 
generated, they can be used to identify unknown damage 

growth parameters. As mentioned before, m , C , and 
0
a  

can be considered as unknown damage growth parameters. 
In addition, the bias and noise are used in generating the 
synthetic data are also unknown because they are only 
assumed to be known in generating crack size data. In the 
case of noise, the standard deviation, s , of the noise is 
considered as an unknown parameter. The identification of 
s  will be important as the likelihood function depends on it. 
Therefore, the objective is to identify (or, improve) these 
five parameters using the measured crack size data. The 
vector of unknown parameters is defined by 

0
{ , , , , }m C a b s=y . 

Parameter identification can be done in various ways. The 
least-squares method is a traditional way of identifying 
deterministic parameters. For crack propagation, Coppe et al. 
(2010) used the least-square method to identify unknown 
damage growth parameter along with bias. However, in the 
least-squares method, it is non-trivial to estimate the 
uncertainty in the identified parameters. In this paper, 
Bayesian inference is used to identify the unknown 
parameters as well as the level of noise and bias. Coppe at al. 
(2010) used Bayesian inference in identifying damage 
growth parameter, C  or m . They used the grid method to 
calculate the posterior distribution of one variable and 
discussed that updating multi-dimensional variables can be 
computationally expensive. The grid method computes the 
values of PDF at a grid of points after identifying the 
effective range, and calculates the value of the posterior 
distribution at each grid point. This method, however, has 
several drawbacks such as the difficulty in finding correct 
location and scale of the grid points, spacing of the grid, and 
so on. In addition, it becomes computationally expensive 
when the number of updating parameters increases. Markov 
Chain Monte Carlo (MCMC) simulation is a 
computationally efficient alternative to obtain the PDF by 
generating a chain of samples (Andrieu et al., 2003). 
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(a) bias = +2mm and noise = 0mm 
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(b) bias = +2mm and noise = 5mm 

Figure 2. Crack growth of three different loading conditions 
and two sets of synthetic data 
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In Baye’s theorem (Bayes, 1763), the knowledge of a 
system can be improved with additional observation of the 
system. More specifically, the joint probability density 
function (PDF) of y  will be improved using the measured 

crack sizes measa . The joint posterior PDF is obtained by 
multiplying the prior PDF with the likelihood as 

 meas meas1
( | ) ( | ) ( )

A
p p p

K
= =

Y Y
y a a Y y y         (5) 

where ( )p
Y
y  is the prior PDF of parameters, 

meas( | )
A
p =a Y y  is the likelihood or the PDF values of 

crack size at measa  given parameter value of y , and K  is a 
normalizing constant. It is noted that the likelihood is 
constructed using n  measured crack size data. For prior 
distribution, the uniform distributions are used for the 
damage growth parameters, m  and C , as described in 
Table 1. For other parameters, no prior distribution is used; 
i.e., non-informative. The likelihood is the probability of 

obtaining the observed crack sizes measa  given values of 
parameters. For the likelihood, it is assumed to be a normal 
distribution for given parameters: 

 

( )
( )

meas

2
meas

2
1

|

( )1 1
exp

22

A

n
n

i i

i

p

a a

sps =

=
é ù

-æ ö ê ú÷ç ê ú÷çµ -÷ç ê ú÷÷çè ø ê ú
ë û

å

a Y y

y  (6) 

where 

 ( )
2

21
2

0
( ) 1

2

m mm

i i

m
a N C a bs p

--é ùæ ö÷çê ú÷= - D + +ç ÷ê úç ÷çè øê úë û
y     (7) 

is the crack size from the Paris model and meas

i
a  is the 

measurement crack size at cycle 
i
N . In general, it is 

possible that the normal distribution in Eq. (6) may have a 
negative crack size, which is physically impossible; 
therefore, the normal distribution is truncated at zero. 

A primitive way of computing the posterior PDF is to 
evaluate Eq. (5) at a grid of points after identifying the 
effective range. This method, however, has several 
drawbacks such as the difficulty in finding correct location 
and scale of the grid points, the spacing of the grid, and so 
on. Especially when a multi-variable joint PDF is required, 
which is the case in this paper, the computational cost is 

proportional to 5M , where M  is the number of grids in 
one-dimension. On the other hand, the MCMC simulation 
can be an effective solution as it is less sensitive to the 
number of variables (Andrieu et al., 2003). Using the 
expression of posterior PDF in Eq. (5), the samples of 
parameters are drawn by using MCMC simulation method. 

The Metropolis-Hastings (M-H) algorithm is a typical 
method of MCMC and used in this paper. 

3.2 The effect of correlation between parameters 

Since the original data of crack sizes are generated from the 
assumed true values of parameters, the objective of 
Bayesian inference is to make the posterior joint PDF to 
converge to the true values. Therefore, it is expected that the 
PDF becomes narrower as n  increases; i.e., more data are 
used. This process seems straightforward, but preliminary 
study shows that the posterior joint PDF may converge to 
values different from the true ones. It is found that this 
phenomenon is related to the correlation between 
parameters. For example, let the initially detected crack size 

be meas

0
a  and let the measurement environment have no 

noise. This measured size is the outcome of the initial crack 
size and bias: 

meas

0 0
a a b= +                                (8) 

Therefore, there exist infinite possible combinations of 
0
a  

and b  to obtain the measured crack size. It is generally 
infeasible to identify the initial crack size and bias with a 
single measurement when the measured data is linearly 
dependent on multiple parameters. It was also well known 
that the two Paris model parameters, m  and C , are 
strongly correlated (Carpinteri and Paggi, 2007). This can 
be viewed from the crack growth rate curve, as illustrated in 
Figure 3. In this graph, the parameter m  is the slope of the 
curve, while C  corresponds to the y-intercept at 1KD = . 
If a specific value of crack growth rate d / da N  is 

observed, this can be achieved by different combinations of 
these two parameters. However, in the case of Paris model 
parameters, it is feasible to identify them because the stress 
intensity factor gradually increases as the crack grows. 
However, the embedded noise can make it difficult to 
identify the two model parameters because the crack growth 

 

Figure 3. Illustration of showing the same crack growth rate 
with different combinations of parameters 
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rate may not be consistent with the noisy data. In addition, 
this can slow down the convergence in the posterior 
distribution because when the crack is small, there is no 
significant crack growth rate. The effect of noise becomes 
relatively diminished as the crack growth rate increases, 
which occurs toward the end of life.  

In order to handle the abovementioned difficulty in 
identifying correlated parameters, the bias is removed from 
the Bayesian identification process using Eq. (8), assuming 
that they are perfectly correlated. Once the posterior PDF of 

0
a  are obtained, Eq. (8) is used to calculate the posterior 

PDF of bias. The two Paris model parameters are kept 
because they can be identified as the crack grows. 

Figure 4 shows the posterior PDFs for the case of true bias 
of 2mm (a) when n = 13 (N13 = 1,200 cycles) and (b) when n 
= 17 (N17 = 1,600 cycles). The posterior joint PDFs are 
plotted separately by three groups for the plotting purpose. 
In this case, it is assumed that there is no noise in the crack 
size data. The true values of parameters are marked using a 
star symbol. Similar results were also obtained in the case 
with bias = -2mm. Firstly, it is clear that the two Paris 
model parameters are strongly correlated. The same is true 

for the initial crack size and bias—in fact the PDF of bias is 
calculated from that of initial crack size and Eq. (8). 
Secondly, it can be observed that the PDFs at n = 17 is 
narrower than that of n = 13, although the PDFs at n = 13 is 
quite narrow compared to the prior distribution. Lastly, the 
identified results look different from the true values due to 
the scale, but the errors between the true values and the 
median of identified results are at a maximum of around 5% 
except for bias. The error in bias looks large, but that is 
because the true value of bias is small. The error in bias is 
about 0.5mm. The same magnitude of error exists for the 
initial crack size due to the perfect correlation between them. 
Table 2 lists all six cases considered in this paper, and all of 
them show a similar level of errors. It is noted that the 
identified standard deviation of noise, s , does not converge 
to its true value of zero. This occurred because the original 
data did not include any noise. Zero noise can cause a 
problem in the likelihood calculation as the denominator 
becomes zero in Eq. (6). However, this would not happen in 
practical cases in which noise always exists. 

The next example is to investigate the effect of noise on the 
posterior PDFs of parameters. The results of identified 
posterior distributions with different levels of noise were 
shown in Figure 5 when the true bias is 2mm. Similar 
results were obtained when bias is -2mm. The black, blue 
and red colors, respectively, represent noise levels of 0.1mm, 
1mm, and 5mm. The median location is denoted by a 
symbol (a circle for 0.1mm noise, a square for 1mm noise, 
and a star for 5mm noise). Each vertical line represents a 
90% confidence interval (CI) of posterior PDF. The solid 
horizontal line is the true value of the parameter. In the case 
of noise level = 0.1mm, all parameters were identified 
accurately with very narrow CIs. In the case of noise level = 
1mm, the initial crack size and bias were identified 
accurately as the number of data increased, whereas the CIs 
of two Paris parameters were not reduced. In addition, the 
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Figure 4. Posterior distributions of parameters with zero 

noise and true bias of 2mm 

num.
of 

data

para
meter

s 

true 
value

b=+2mm b=-2mm 

median 
error 
(%) 

median
error 
(%) 

n =
13

m 3.8 3.82 0.49 3.78 0.40 
log(C) -22.6 -22.8 0.57 -22.5 0.50 

a0 10 10.6 5.67 9.50 4.96 

b ±2 1.37 31.7 -1.44 28.0 

n =
15

m 3.8 3.81 0.32 3.78 0.40 
log(C) -22.6 -22.7 0.37 -22.5 0.48 

a0 10 10.4 4.00 9.51 4.94 

b ±2 1.53 23.6 -1.41 29.5 

n =
17

m 3.8 3.82 0.47 3.78 0.55 
log(C) -22.6 -22.7 0.44 -22.5 0.55 

a0 10 10.4 3.84 9.49 5.11 
b ±2 1.52 24.2 -1.35 32.7 

Table 2 The median of identified parameters and the errors 
with the true values 
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median values were somewhat different from the true 
parameter values. Worse results were observed in the case 
of noise level = 5mm. Therefore, it is concluded that the 
level of noise plays an important role in identifying 
correlated parameters using Bayesian inference. However, 
this does not mean that it is not able to predict RUL. Even if 
these parameters were not accurately identified because of 
correlation, the predicted RUL was relatively accurate, 
which will be discussed in detail next subsection. 

3.3 Damage propagation and RUL prediction 

Once the parameters are identified, they can be used to 
predict the crack growth and estimate RUL. Since the 
parameters are available in terms of joint PDF, the crack 
growth and RUL will also be estimated probabilistically. 
Then the quality of prediction can be evaluated in terms of 
how close the median is to the true crack growth and how 
large the prediction interval (PI) is. First, the results of crack 
growth calculated by Eq. (2) are shown in Figure 6 when the 
true bias is 2mm. Different colors represent the three 
different loading conditions. The solid curves are true crack 
growth, while the dashed curves are medians of predicted 
crack growth distribution. The results are obtained as a 
distribution due to the uncertainty of parameters, but the 
medians of predicted crack growth are only shown in the 
figures for visibility. In addition, the critical crack sizes with 
different loadings are using horizontal lines. 

n=13 n=15 n=17
3.2

3.4
3.6
3.8

4
4.2
4.3

m

n=13 n=15 n=17

-23.5

-23

-22.5

-22

-21.5

lo
g(

C
)

 

n=13 n=15 n=17

5

10

15

20

a 0
 (

m
m

)

n=13 n=15 n=17
-10

0

10

bi
as

 (
m

m
)

Figure 5. Posterior distributions with three different levels 
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Figure 6. Prediction of crack growth with bias=+2mm 
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The figures show that the results closely predicted the true 
crack growth when noise is less than 1mm. Even if the level 
of noise is 5mm, the results of predicted crack growth 
become close to the true one as the number of data increases. 
This means that if there are many data (much information 
about crack growth), the future crack growth can be 
predicted accurately even if there is much noise. However, 
when the level of noise is large, the convergence is slow 
such that the accurate prediction happened almost at the end 
of life. 

As can be seen from Figure 6, crack growth and RUL can be 
predicted with reasonable accuracy even though the true 
values of the parameters are not accurately identified. The 
reason is that the correlated parameters m  and C  work 

together to predict crack growth in Eq.(2). For example, if 
m  is underestimated, then the Bayesian process 
overestimates C  to compensate for it. In addition, if there is 
large noise in the data, the distribution of estimated 
parameters becomes wider, which can cover the risk that 
comes from the inaccuracy of the identified parameters. 
Therefore it is possible to safely predict crack growth and 
RUL. 

In order to see the effect of the noise level on the 
uncertainty of predicted RUL, Figure 7 plots the median and 
90% prediction interval (PI) of the RUL and compared them 
with the true RUL. The RUL can be calculated by solving 
Eq. (2) for N  when the crack size becomes the critical one:  

1 /2 1 /2

2
(1 )( )

m m

C i
f mm

a a
N

C s p

- --
=

- D
                    (9) 

The RUL is also expressed as a distribution due to the 
uncertainty of the parameters. In Figure 7, the solid diagonal 
lines are the true RULs at different loading conditions 
( 86.5, 78.6, 70.8)sD = . The precision and accuracy are 

fairly good when the noise is less than 1mm, which is 
consistent with the crack growth results. In the case of a 
large noise, 5mm, the medians are close to the true RUL, 
and the wide intervals are gradually reduced as more data 
are used. That is, the accuracy and precision can be better as 
more data are used in spite of large nose and bias in data. In 
the case that there are not as much data as covering large 
noise, the results also can be used to define the acceptable 
limits on system noise for useful RUL prediction. Therefore, 
it is concluded that the RULs are predicted reasonably in 
spite of nose and bias in data. 

4. CONCLUSIONS 

In this paper, Bayesian inference and the Markov Chain 
Monte Carlo (MCMC) method are used for identifying the 
Paris model parameters that govern the crack growth in an 
aircraft panel using structural health monitoring (SHM) 
systems that measure crack sizes with noise and bias. 
Focuses have been given to the effect of correlated 
parameters and the effect of noise and bias levels. The 
correlation between the initial crack size and bias was 
explicitly imposed using analytical expression, while the 
correlation between two Paris parameters was identified 
through the Bayesian inference. It is observed that the 
correlated parameter identification is sensitive to the level of 
noise, while predicting the remaining useful life is relatively 
insensitive to the level of noise. It is found that greater 
numbers of data are required to narrow the distribution of 
parameters when the level of noise is large. When 
parameters are correlated, it is difficult to identify the true 
values of the parameters, but the correlated parameters work 
together to predict accurate crack growth and RUL. 
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Figure 7. Median and 90% of prediction interval of the 
predicted RUL (bias = 2mm) 
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ABSTRACT

Bayesian networks, which may be compiled to arithmetic cir-
cuits in the interest of speed and predictability, provide a prob-
abilistic method for system fault diagnosis. Currently, there
is a limitation in arithmetic circuits in that they can only rep-
resent discrete random variables, while important fault types
such as drift and offset faults are continuous and induce con-
tinuous sensor data. In this paper, we investigate how to
handle continuous behavior while using discrete random vari-
ables with a small number of states. Central in our approach is
the novel integration of a method from statistical quality con-
trol, known as cumulative sum (CUSUM), with probabilistic
reasoning using static arithmetic circuits compiled from static
Bayesian networks. Experimentally, an arithmetic circuit
model of the ADAPT Electrical Power System (EPS), a real-
world EPS located at the NASA Ames Research Center, is
considered. We report on the validation of this approach using
PRODIAGNOSE, which had the best performance in three of
four industrial track competitions at the International Work-
shop on Principles of Diagnosis in 2009 and 2010 (DXC-09
and DXC-10). We demonstrate that PRODIAGNOSE, aug-
mented with the CUSUM technique, is successful in diagnos-
ing faults that are small in magnitude (offset faults) or drift
linearly from a nominal state (drift faults). In one of these
experiments, detection accuracy dramatically improved when
CUSUM was used, jumping from 46.15% (CUSUM disabled)
to 92.31% (CUSUM enabled).

First Author et.al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. INTRODUCTION

Arithmetic circuits (ACs) (Darwiche, 2003; Chavira & Dar-
wiche, 2007), which may be compiled from Bayesian net-
works (BNs) (Lauritzen & Spiegelhalter, 1988; Pearl, 1988)
to achieve speed and predictability, provide a powerful prob-
abilistic method for system fault diagnosis. While arith-
metic circuits represent a significant advance in many ways,
they can currently only represent discrete random variables
(Darwiche, 2003; Chavira & Darwiche, 2007; Darwiche,
2009). At the same time, systems that one wants to diagnose
are often hybrid–both discrete and continuous (Lerner, Parr,
Koller, & Biswas, 2000; Poll et al., 2007; Langseth, Nielsen,
Rumı́, & Salmeron, 2009). For example, important fault types
such as drift and offset faults are continuous and also induce
continuous evidence (Poll et al., 2007; Kurtoglu et al., 2010).
The literature describes two main approaches to handling hy-
brid behavior in a discrete probabilistic setting: discretization
(Kozlov & Koller, 1997; Langseth et al., 2009) and uncertain
evidence, in particular soft evidence (Pearl, 1988; Chan &
Darwiche, 2005; Darwiche, 2009). Naive discretization per-
formed off-line leads to an excessive number of states, which
is problematic both from the point of view of BN construction
and fast on-line computation (Langseth et al., 2009). Dis-
cretization can be performed dynamically on-line (Kozlov &
Koller, 1997; Langseth et al., 2009), however this is inconsis-
tent with this paper’s focus on off-line compilation into arith-
metic circuits and fast on-line inference. Uncertain evidence
in the form of soft (or virtual) evidence (Pearl, 1988) can be
used to handle, in a limited way, continuous random vari-
ables (Darwiche, 2009). Typically, soft evidence is limited
to continuous children of discrete random variables with two
discrete states (0/1, low/high, etc.). In addition, the soft evi-
dence approach requires changing the probability parameters
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on-line, in the AC or BN, and is thus more complicated from
a systems engineering or verification and validation (V&V)
point of view.
In this paper, we describe an approach to handle continuous
behavior using discrete random variables with a small number
of states. We integrate a method from statistical quality con-
trol, known as cumulative sum (CUSUM) (Page, 1954), with
probabilistic reasoning using arithmetic circuits (Darwiche,
2003; Chavira & Darwiche, 2007). We carefully and for-
mally define our approach, and demonstrate that it can di-
agnose faults that are small in magnitude (continuous offset
faults) or drift linearly from a nominal state (continuous drift
faults).
Experimentally, we show the power of integrating CUSUM
calculations into our diagnostic algorithm PRODIAGNOSE
(Ricks & Mengshoel, 2009a, 2009b), which uses arithmetic
circuits. We consider the challenge of diagnosing a broad
range of faults in electrical power systems (EPSs), focus-
ing on our development of an arithmetic circuit model of the
Advanced Diagnostics and Prognostics Testbed (ADAPT), a
real-world EPS located at the NASA Ames Research Center
(Poll et al., 2007). The experimental data are mainly from
the 2010 diagnostic competition (DXC-10) (Kurtoglu et al.,
2010). In addition to the challenge of hybrid behavior, this
data is sampled at varying sampling frequency, may contain
multiple faults, and may contain sensor noise and other be-
havioral characteristics that are considered nominal behav-
ior of ADAPT. Using the DXC data, we perform a compar-
ison between experiments (i) with CUSUM and (ii) with-
out CUSUM, and find significant improvements in diagnostic
performance when CUSUM is used. In fact, PRODIAGNOSE
was the best performer in the two competitions making up the
industrial track of DXC-09, and a winner of one of the com-
petitions in the industrial industrial track of DXC-10.1

In this paper, we extend previous research on the use of
CUSUM with BNs and ACs (Ricks & Mengshoel, 2009b) in
several ways. Specifically, we use CUSUM for drift faults
(previously it was used for offset faults only); provide a more
detailed discussion and analysis; and report on experimental
results for a new dataset (DXC-10) that contains a broader
range of faults, including abrupt faults, intermittent faults,
and drift faults. Our CUSUM approach is crucial for han-
dling two types of continuous faults, namely offset faults and
drift faults.
The rest of this paper is structured as follows. In Section 2.
we introduce concepts related to Bayesian networks, arith-
metic circuits, CUSUM, and the fault types we investigate.
Section 3. presents integration of CUSUM into our fault di-
agnosis approach, the PRODIAGNOSE algorithm, and discuss
both the modeling and diagnostic perspectives. We present
strong experimental results for electrical power system data
in Section 4., and conclude in Section 5..

1Please see http://www.dx-competition.org/ for details.

2. PRELIMINARIES

2.1 Bayesian networks and Arithmetic Circuits

Diagnostic problems can be solved using Bayesian networks
(BNs) (Lauritzen & Spiegelhalter, 1988; Pearl, 1988; Dar-
wiche, 2009; Choi, Darwiche, Zheng, & Mengshoel, 2011).
A Bayesian network is a directed acyclic graph (DAG) where
each node in the BN represents a discrete random variable,2

and each edge typically represents a causal dependency be-
tween nodes. Distributions for each node are represented as
conditional probability tables (CPTs). Let X represent the set
of all nodes in a BN, Ω(X) = {x1, . . . , xm} the states of a
node X ∈ X, and |X| = |Ω(X)| = m the cardinality (num-
ber of states). The size of a node’s CPT is dependent on its
cardinality and the cardinality of each parent node. By taking
a subset E ⊆ X, denoted the evidence nodes, and clamping
each of these nodes to a specific state, the answers to vari-
ous probabilistic queries can be computed. Formally, we are
providing evidence e to all nodes E ∈ E, in which E =
{E1, E2, . . . , En}, e = {(E1, e1), (E2, e2), . . . , (En, en)},
and ei ∈ Ω(Ei) for 1 ≤ i ≤ n and n ≤ m. Probabilis-
tic queries for BNs include the marginal posterior distribu-
tion over one node X ∈ X, denoted BEL(X, e), over a set
of nodes X, denoted BEL(X, e), and most probable explana-
tions over nodes X−E, denoted MPE(e).
While Bayesian networks can be used directly for inference,
we compile them to arithmetic circuits (ACs) (Chavira & Dar-
wiche, 2007; Darwiche, 2003), which are then used to answer
BEL and MPE queries. Key advantages to using ACs are
speed and predictability, which are important for resource-
bounded real-time computing systems including those found
in aircraft and spacecraft (Mengshoel, 2007; Ricks & Meng-
shoel, 2009b, 2010; Mengshoel et al., 2010). The benefits of
using arithmetic circuits are derived from the fact that BEL
computations, for example, amount to simple addition and
multiplication operations over numbers structured in a DAG.
Compared to alternative approaches to computation using
BNs, for example join tree clustering (Lauritzen & Spiegel-
halter, 1988) and variable elimination (Dechter, 1999), AC
computation has substantial advantages in terms of speed and
predictability, even when implemented in software as done in
this paper and previously (Chavira & Darwiche, 2007; Dar-
wiche, 2003; Ricks & Mengshoel, 2009b; Mengshoel et al.,
2010). The fundamental limitation of ACs is that they may,
in the general case, grow to the point where memory is ex-
hausted. In particular, this is a problem in highly connected
BNs. The BNs investigated in this paper, as well as in similar
fault diagnosis applications, are typically sparse (Mengshoel,
Poll, & Kurtoglu, 2009; Ricks & Mengshoel, 2009a, 2009b;
Mengshoel et al., 2010; Ricks & Mengshoel, 2010), and
memory consumption turns out not to be a problem.

2Continuous random variables can also be represented in BNs, however
in this article we focus on the discrete case.
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2.2 Cumulative sum (CUSUM)

Cumulative sum (CUSUM) is a sequential analysis technique
used in the field of statistical quality control (Page, 1954).
CUSUMs can be used for monitoring changes in a continuous
process’ samples, such as a sensor’s readings, over time. Let
δp(t) represent the CUSUM of process p at time t. Then,
taking sp(t) to be the unweighted sample (or sensor reading)
from process p at time t, we formally define CUSUM as:

δp(t) = [sp(t)− sp(t− 1)] + δp(t− 1). (1)

If δp(t) crosses a threshold, denoted as v(i), a change in pro-
cess p’s samples can be recorded. These thresholds represent
points at which an interval change occurs in p—a transition
from one interval to another (indicating a change from nom-
inal to faulty in a closely related health node, for example).
In other words, thresholds provide discretization points for
our continuous CUSUM values. It is assumed that a process
p starts out with δp(t) such that v(i − 1) ≤ δp(t) < v(i)
for some i. Formally, an interval change for process p occurs
when, at any time t, δp(t) < v(i−1) or δp(t) ≥ v(i), in which
v(i− 1) and v(i) are a pair of thresholds at levels i− 1 and i,
respectively. Thresholds themselves are independent of time,
in that they can be crossed at any time t. Values of thresholds
are configurable, and obtained through experimentation.
Often, a set of thresholds for a sensor will only contain two
thresholds. For these cases, we refer to v(0) as the lower
threshold and v(1) as the upper threshold. This implies that
the interval set of p has a cardinality of 3. The initial CUSUM
value (δp(0)) with respect to v(0) and v(1) will be v(0) ≤
δp(0) < v(1). A lower and upper threshold are thus used to
trigger an interval change if δp(t) ventures outside a nominal
range bounded by the interval [v(0), v(1)) of the real line <.

2.3 Continuous Offset and Drift Faults
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Figure 1. Graph illustrating an abrupt battery degradation
over a span of 10 seconds, manifested as a voltage drop for
sensor E240. The vertical dotted line on the graph indicates
when the fault occurred.

We consider a system consisting of parts.3 For example, a
system might be an electrical power system, and parts might

3A “part” is either a “component” or a “sensor” according to the termi-

be a battery, a wire, a voltage sensor, a temperature sensor,
etc. Let p(t) denote a measureable property of a part at time t.
We now consider how a persistent fault, which is the emphasis
of this paper, takes place.4 Let pn(t) denote the value of the
property before fault injection, and pf (t) denote the value of
the property after fault injection. More formally, let t∗ be the
time of fault injection. We then have:

p(t) =

{
pn(t) for t < t∗

pf (t) for t ≥ t∗ .

We can now formally introduce continuous offset and drift
faults. A simple model for a continuous (abrupt) offset fault
at time t is defined as follows (Kurtoglu et al., 2010):

pf (t) = pn(t) + ∆p, (2)

where ∆p is an arbitrary positive or negative constant repre-
senting the offset magnitude. In other words, we do not know
the values of ∆p or t∗ ahead of time, however once ∆p is
injected at time t∗, it does not change.
A key challenge is that ∆p will be small for small-magnitude
offset faults. For example, degradation of a battery (Figure 1),
is often very small in magnitude (low voltage drop). When
discussing the change in a sensor reading of a property, the
notation ∆sp (sensed offset) rather than ∆p (actual offset) is
used. Sensor noise, while not reflected in (2), can mask the
fault almost completely. In Figure 1, the magnitude of sensor
noise would make diagnosis very difficult without first filter-
ing data. An orthogonal issue is the large number of states
needed in a discrete random variable, if a naive approach is
used by representing a large number of offset intervals di-
rectly, which we would like to avoid.
A simple model for a continuous drift fault for a process p at
time t is defined as follows (Kurtoglu et al., 2010):

pf (t) = pn(t) +m(t− t∗), (3)

in which m is the slope. For example, a drifting sensor could
output values that start gradually increasing at a roughly lin-
ear rate (Figure 2). As seen in Figure 2, drift faults may not
be so obvious at first, due to sensor and other noise not re-
flected in (3). In a static Bayesian environment, the lack of
time-measurement may make these faults appear as continu-
ous offset faults. Not only would that diagnosis be incorrect,
but the time of diagnosis may be quite a while after the ini-
tial fault, depending on the time t from t∗ the drifting value
crossed a threshold v(i).
A major goal of our research is to correctly and quickly diag-
nose continuous offset and drift faults while minimizing the
number of discretization levels of random variables.

nology used in this paper. In the DXC-10 documentation (Kurtoglu et al.,
2010), the term “component” rather than “part” is used.

4The case of intermittent faults has been discussed previously (Ricks &
Mengshoel, 2010).
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Figure 2. Graph of continuous drift fault behavior for a cur-
rent sensor IT267 during a 10 second time span.

3. PROBABILISTIC DIAGNOSIS ALGORITHM

The PRODIAGNOSE diagnostic algorithm takes input from
the environment, translates it into evidence, and computes a
posterior distribution. The posterior distribution is then used
to compute a diagnosis (Ricks & Mengshoel, 2009a, 2009b;
Mengshoel et al., 2010; Ricks & Mengshoel, 2010). In this
section we first summarize how PRODIAGNOSE computes di-
agnoses (Section 3.1) and the types of BN nodes it uses (Sec-
tion 3.2). We then discuss how sensor readings, CUSUM, and
Bayesian discretization fit together (see Section 3.3), and fi-
nally how PRODIAGNOSE handles continuous offset and drift
faults by means of CUSUM techniques (Section 3.4 and Sec-
tion 3.5).

3.1 The PRODIAGNOSE Diagnostic Algorithm

Environment
Sensor Data

Commands

Diagnoses
Evaluator

Diagnostic
Algorithm

E
vidence

Q
ueries

ACE

S
ta

te

AC

s(t)

c(t)

dg(t)

q(t)e(t)

sa(t)

Figure 3. The PRODIAGNOSE DA architecture.

The PRODIAGNOSE diagnostic algorithm (DA) integrates the
processing of environmental data (Figure 3) with an inference
engine and post-processing of query results. At the highest
level, the goal of PRODIAGNOSE is to compute a diagnosis
dg(t) from sensor data s(t) and commands c(t). Input from
the environment takes the form of sensor data, s(t), and com-
mands, c(t). PRODIAGNOSE performs diagnosis when it re-
ceives sets or subsets of sensor data, which is expected at reg-
ular sample rate(s). It uses s(t) and c(t) to generate evidence,
e(t), reflecting the state of the system, which is then passed to
the AC inference engine (ACE). The generation of e(t) from
s(t) and c(t) is non-trivial, and includes the use of CUSUM
as discussed below. The health state of the system, sa(t),

is returned in response to a probabilistic query q(t), which
is either an MPE or BEL query, MPE(e(t)) or BEL(H, e(t))
respectively. PRODIAGNOSE then uses sa(t) to generate a di-
agnosis of the system, dg(t), by extracting the faulty states (if
any) of the BN nodes H that represent the health of the system
being diagnosed. The algorithms used to compute CUSUM
and perform offset and drift diagnosis (see Equation 5 and
Algorithm 1) are called from within PRODIAGNOSE (Figure
3) as further discussed in the following subsections.
One strength of PRODIAGNOSE is its configurability. The BN
representation of each part (a physical component or sensor)
in an environment is configured individually, and this data is
used by PRODIAGNOSE to initially calibrate itself to the envi-
ronment and guides its behavior when receiving s(t) or c(t).
In addition, PRODIAGNOSE is controlled by several global
parameters, including:

• Diagnosis Delay, tDD: Measured in milliseconds, this
parameter gives the delay to start diagnosis output dg(t).
In other words, dg(t) is empty for t < tDD. Diagnosis
delay is used at the beginning of environment monitor-
ing, and is useful to filter out false positives (often due to
transients) during the initial calibration process.

• Fault Delay, tFD: This parameter delays the output of
a new diagnosis (for a short while). Suppose that sa(ti)
contains, for the first time, a fault state f for a health node
H . Then we hold off until time tj , such that tj − ti >
tFD, to include f in dg(tj). In many environments, one
can get spurious diagnoses because of system transients
(perhaps due to mode switching, perhaps due to faults),
and this is a way to filter them out.

3.2 Bayesian Network Structures

A Bayesian network model of a system, for example an EPS,
consists of structures modeled after physical components of
the EPS (Ricks & Mengshoel, 2009a, 2009b). We discuss the
following BN node types:

• S ∈ S: All sensors utilize a sensor node S to clamp a
discretized value of the physical sensor’s reading s(t).
S nodes typically consist of three states, and thus have
lower and upper thresholds.

• H ∈ H: Consider H ∈ H, namely a health node H .
A health state h ∈ Ω(H) is output in dg(t), based on
the result of BEL or MPE computation, to describe the
health state of the component represented by H . We as-
sume that Ω(H) is partitioned into nominal (or normal)
states Ωn(H) and faulty (or abnormal) states Ωf (H).
Only a faulty state h ∈ Ωf (H) is output in dg(t), This
is done for all H ∈ H.

• CH ∈ CH: A change node CH is used to clamp ev-
idence for the purpose of change detection. CH nodes
have a varying number of thresholds, depending on the
purpose of the node (see Section 3.4).
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• DR ∈ DR: The drift node DR is used to clamp ev-
idence about drift-type behavior. Typically, DR nodes
use four thresholds, though this is configurable (see Sec-
tion 3.5).

• A ∈ A: An attribute nodeA is used to represent a hidden
state, such as voltage or current flow.

Note that there are other nodes types besides S, CH , and
DR nodes used to input evidence e(t) (Ricks & Mengshoel,
2009a, 2009b; Mengshoel et al., 2010; Ricks & Mengshoel,
2010). Since they are not the focus in this paper, we represent
these by nodes E1, . . . , En in Figures 6 and 9.

3.3 Sensors, CUSUM, and Bayesian Network
Discretization

To help filter out sensor noise, we take a weighted average of
the raw sensor readings, and these weighted averages are then
the basis for CUSUM computation. Let s̄p(t) be the weighted
average of readings {sp(t−n), . . . , sp(t)} for sensor p at time
t. Specifically, we have:

s̄p(t) =

n∑

i=0

sp(t− i)w(t− i), (4)

in which sp(t − i) is the raw sensor reading and w(t − i) is
the weight at time t − i. The summation is over all sensor
readings from time t to time t − n. In other words, we keep
a history of the past n sensor readings. The values of n and
of all weights {w(t − n), . . . , w(t)} are configurable and set
based on experimentation.
The weighted sensor averages in (4) can be used when calcu-
lating CUSUM (Ricks & Mengshoel, 2009b), and (1) can be
modified accordingly:

δ̄p(t) = [s̄p(t)− s̄p(t− 1)] + δ̄p(t− 1), (5)

in which δ̄p(t) is the weighted average CUSUM of sensor p
at time t. Weighted averages help to smooth spikes in sensor
readings that could otherwise lead to false positives or nega-
tives, and (5) is the CUSUM variant used in PRODIAGNOSE.
Figure 4 shows, for voltage sensor E240, the weighted
CUSUM values δ̄p(t) overlaid with the raw sensor readings
for the same time period. A downward trend after the offset
fault occurrence is visually seen when looking at the CUSUM
values, which makes setting appropriate thresholds to catch
the fault possible. After the lower threshold, v(0), is reached,
the voltage sensor’s CH node changes state. The CUSUM
values in Figure 4 are calculated by keeping a history of the
past n = 6 sensor readings, for any time t.
In this paper, CUSUM intervals are mapped to BN node states
in a natural way. If we have k CUSUM intervals defined on
the real line < (so k − 1 thresholds), then the corresponding
BN evidence node E has k states Ω(E) = {e1, . . . , ek} also.
If a CUSUM δp(t) crosses a threshold into an interval [v(i),
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Figure 4. Graph illustrating raw voltage sensor readings, for
sensor E240, and corresponding CUSUM values over a time
span of 10 seconds. The vertical dotted line on the graph
indicates when a very small offset fault occurred, and the hor-
izontal dashed line represents the lower threshold, v(0). The
E240 CUSUM shows a very distinct downward trend after the
fault.

v(i+ 1)), the corresponding BN evidence node Ep has a cor-
responding transition into state ei+1.
We now describe CUSUM’s characteristics and benefits, tak-
ing (5), the discretization, and Figure 4 as starting points.
First, CUSUM amplifies a small offset, along the y-axis, by
making it larger such that it becomes easier to create a thresh-
old for and detect. Second, CUSUM normalizes by shifting
offsets that can take place at different y-values to a normalized
y-value, such that offsets can be detected using thresholds that
apply to many y-values. Please see Figure 5 for an example.
There is a clear impact on IT240, which can easily be detected
with upper and lower thresholds, while the impact on IT267
is minimal since this sensor is downstream of a compensating
inverter.
CUSUM’s normalization works in combination with weight-
ing the sensor values to give better discretization points. A
key point here is that our algorithm calibrates in the begin-
ning of a scenario. The algorithm computes a zero (or nom-
inal) line based on initial sensor readings, and does not flag
diagnoses. To the left in Figure 5, both IT240 and IT267 are
close to this zero line. This zero line can help compensate for
early transients, which may trigger diagnoses, but more im-
portantly, it makes the nominal value of a sensor something
we do not need to know ahead of time. Without CUSUM, we
would have to know this nominal value ahead of time, which
becomes difficult as a system naturally ages. With CUSUM,
we use the first time period tDD of a scenario to figure this
out (calibration). After tDD, CUSUM is relative number to
the nominal reading, with zero being the nominal (weighted)
value of the sensor. After the fault injection, we see in Figure
5 that IT267 CUSUM stays well above the v(0) lower thresh-
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Figure 5. Graph illustrating the impact of an abrupt battery degradation offset fault on two current sensors. One sensor is
immediately downstream from the battery (IT240), while the other sensor is farther away, downstream of an inverter (IT267).
The vertical dotted line on the graph indicates when the fault occurred during the 3 minute time inteval shown.

old, while IT240 CUSUM drops below v(0).

3.4 Handling Continuous Offset Faults: Change Nodes
and CUSUM

A

Evidence Nodes Health Nodes

H DR

Rest
of

BN

E1

En

A

S

H

S

H

C

A

H
CH

Battery Circuit Breaker

Voltage Sensor

A A

Figure 6. Bayesian network structure for a battery. The CH
node provides additional evidence to the health state of the
battery.

Suppose that we have a battery, a circuit breaker, a voltage
sensor, and a load (say, a light bulb or a fan) connected in se-
ries. We assume that all these components and loads may fail,
in different ways, and a realistic EPS will contain additional
components and sensors that may also fail. Now consider the
case of a continuous offset fault in the battery. There is the
challenge of diagnosing an offset fault, which might be very
small, using a discrete BN with relatively few states per node.
In addition, there is the challenge of detecting an offset fault

Change voltage e140
CH

nominal drop A (Battery) A (Breaker) H (Sensor)
0.95 0.05 enabledHigh

closed

healthy

0.05 0.95 enabledLow
0.5 0.5 disabled
0.5 0.5 enabledHigh

open0.5 0.5 enabledLow
0.5 0.5 disabled
0.5 0.5 enabledHigh

closed

(not healthy)

0.5 0.5 enabledLow
0.5 0.5 disabled
0.5 0.5 enabledHigh

open0.5 0.5 enabledLow
0.5 0.5 disabled

Table 1. Conditional probability table (CPT) of the CH node
from Figure 6. Each row shows the probabilities for the
CH node’s nominal and drop states (first two columns) for
each combination of states from the battery’s A node, circuit
breaker’sA node, and voltage sensor’sH node (columns 3-5).
Since the probabilities remain identical for all rows when the
H node is unhealthy, we simplified the table by combining all
these unhealthy states into (not healthy).

in an upstream component (the battery) using a downstream
sensor (the voltage sensor). Clearly, we want to retain the
capabilty of diagnosing other types of faults (see (Ricks &
Mengshoel, 2009a, 2009b; Mengshoel et al., 2010; Ricks &
Mengshoel, 2010)) in the battery, the circuit breaker, and the
voltage sensor.
Figure 6 illustrates how we meet these challenges using BNs
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and CUSUM computation. Specifically, Figure 6 shows the
BN representation of a battery, a circuit breaker, and a voltage
sensor connected in series. Under nominal conditions, power
flows from the battery, through the circuit breaker and voltage
sensor, and to one or more loads (not depicted). Traditionally,
voltage sensor readings sp(t) for a sensor p lie on the real line
<, but can be discretized so they end up being in one of the
BN states Ω(S) = {voltageLo, voltageHi, voltageMax}
for BN node S. The resulting set of thresholds will con-
tain two levels for the S node in the BN (the lower and
upper threshold). In the case in which the current state is
S = voltageHi, the transition from this state to another oc-
curs when sp(t) < v(0) or sp(t) ≥ v(1) (see Section 2.2).
If the current state is S = voltageLo, a state change would
occur when sp(t) ≥ v(0).
While the simple discretization approach discussed above is
sufficient in many cases, in other cases it does not help, and
this is the case for example for offset faults. If ∆p (Equation
2) is small such that no state change among Ω(S) occurs, then
it is possible that an offset fault may go undiagnosed.
To handle this problem, we use CH nodes and CUSUM. In-
tuitively, the purpose of theCH node in Figure 6 is to provide
additional information about the battery, and specifically con-
tinuous offsets in sensor readings, while at the same time be
influenced by the circuit breaker and voltage sensor. Offsets
in sensor readings (∆sp) that are too small in magnitude to
cross a threshold are handled using CH nodes and CUSUM
techniques. Evidence e(t) that is clamped to a CH node is
derived from the readings sp(t) of a sensor assigned to it,
called the source. The readings from this source sensor are
converted to CUSUM values, which are then discretized and
clamped to the CH node.
In Figure 6, it is the battery, and specifically its health node
H , that the CH node should influence when clamped with
evidence e(t) that indicates a continuous offset fault. We will
call the battery the target. To understand in more detail how
this BN design works, consider in Figure 6 the parent nodes
of the CH node. Both the circuit breaker and voltage sensor
parent nodes have evidence nodes as children or parents. This
is not true, however, for the battery’s A node, which is also
a parent node of the CH node. This design makes sure that
evidence e(t) clamped to CH has less influence on the health
nodes of the circuit breaker and voltage sensor compared to
the influence on the battery’s health node. And it is after all
battery health, specifically offset faults, that we are targeting
with this CH node.
More generally, any component between a source sensor and
a target could affect the relevance of the CH node’s evidence
e(t) for the target. For these intermediary components, it is
the physical state that we are concerned about. For a circuit
breaker, this is either open or closed. An open state should
increase the probability that any voltage drop downstream is
the result of this circuit breaker state and not due to a degra-

dation of the battery. The physical state of these components
are usually represented as the state of an A node that belongs
to the component structure, as in Figure 6. These A nodes
will have a parent-child relationship to the CH node that is
similar to the relationship of the source sensor’s H node.
Table 1 shows the CPT for the CH node depicted in Figure 6.
Notice that for all rows in which the voltage sensor (column
5) is not healthy, the probabilities for all CH node states are
equal. Therefore, despite the discretized CUSUM value that
gets clamped to theCH node, the impact on the posterior dis-
tribution of the battery’s health node H (from the additional
evidence provided by the CH node) will be very small in this
case.

A

Evidence Nodes

Health Nodes

H

Rest
of

BN
A

S

H

S

H

C

A

H

CH

Battery Circuit Breaker

Voltage Sensor

A A

evidence = hi
sensor_voltage_sensor

evidence = closed
sensor_circuit_breaker

evidence = closed
command_circuit_breaker

evidence = nominal
change_battery

0.00% - stuck
0.00% - offsetToMax
1.23% - offsetToHi
0.00% - offsetToLo
98.77% - healthy

health_voltage_sensor

0.00% - disabled
0.58% - degraded
99.42% - healthy

health_battery

Figure 7. The marginal posterior distributions for theH nodes
of the voltage sensor and battery from Figure 6 when no fault
is present.

A CH node used for offset fault diagnosis is typically dis-
cretized into the same number of states as its source. For
instance, the CH node for Figure 6 only has three states,
Ω(CH) = {drop, nominal, rise}, to indicate a downward
change, no change, or upward change, respectively. Thus, as
its source sensor, the CH node will utilize a lower and upper
threshold. In the case of a battery degradation, the state of the
voltage sensor’s S node (Figure 6) may not change at all, but
the CH node’s state will become CH = drop after crossing
v(0) to indicate the slight voltage drop due to the degradation.
Figure 7 shows the marginal posterior distributions for the H
nodes of the source sensor and battery (Figure 6) under nom-
inal conditions. In this example, the circuit breaker’s state is
closed, and the source sensor is deemed to be healthy. The
state of the CH node is nominal. Thus, the state of the bat-
tery’s health node is healthy with very high probability.
Now suppose the source sensor’s value drops, but the mag-
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Voltage Sensor

A A

evidence = hi
sensor_voltage_sensor

evidence = closed
sensor_circuit_breaker

evidence = closed
command_circuit_breaker

evidence = drop
change_battery

0.00% - stuck
0.01% - offsetToMax
7.92% - offsetToHi
0.00% - offsetToLo
92.07% - healthy

health_voltage_sensor

0.00% - disabled
59.42% - degraded
40.58% - healthy

health_battery

Figure 8. The marginal posterior distributions for theH nodes
of the voltage sensor and battery from Figure 6, after a slight
voltage drop.

nitude of the drop is too small to cross a threshold v(i) in
the source sensor. In such a scenario, the state of the source
sensor would not change, and assuming all other evidence
clamped in the BN stays the same, this slight drop would not
cause the target’s health state to change in the absense of the
CH node. With the CH node present however (Figure 6),
this voltage drop could be detected. In Figure 8, the state of
the CH node changes from nominal to drop, and thus, the
probability of the degraded state for the battery’s H node in-
creases to become the most probable explanation.
Figure 9 shows another use forCH nodes and CUSUM. Here,
we have a bank with many loads, but very few sensors to
provide evidence concerning their state. Some of these loads
have no sensors at all, and hence diagnosing these loads be-
comes difficult. Here, we create additional CUSUM evidence
e(t), and clamp it to a single CH node. The CUSUM values
are derived from the single current flow sensor (the source)
that measures current flow into the load bank (the target). The
CH node provides discretization of this CUSUM at a higher
resolution (with more states) compared to the CH node from
our previous example (Figure 6).
In a configuration such as this, the CH node will have many
thresholds, {v(0), v(1), . . . , v(n)}, that correspond to n + 1
states. Taking v(i − 1) and v(i) to be the bounds on a
nominal range (nominal state) for the CH node’s CUSUM
values, each sequential crossing of a threshold {v(i), v(i +
1), . . . , v(n)} or {v(i− 1), v(i− 2), . . . , v(0)} represents an
offset of increasing magnitude, and typically corresponds to
a specific fault in a component in the bank. These faults are
usually offset faults or component failures.

Evidence Nodes

Health Node

Rest
of

BN
A

Load

DR E1

En

Current Flow Sensor

S

Load

A Load

Load

A

H

CH

A

A

A

A

A

A

A

A

A

Load Bank

current flow
attribute node

Figure 9. A simplified model of a BN model for a load bank.
Evidence e(t) clamped to the CH node is derived from the
current sensor’s readings. The CH node forms the leaf of a
tree, which is structured to limit the CPT size of CH .

Figure 9 contains a tree-like structure that connects the com-
ponents in the bank to the CH node. This serves to sum the
current flows (providing the source sensor measures current
flow) of each component, so that the CPT size of the CH
node is minimized (Table 2). Note that this does not affect the
number of states, |Ω(CH)|, but rather the number of parents
of a CH node, and hence the size of its CPT. This technique
serves to combine similar states along the tree that would oth-
erwise be present in the CH node’s CPT if each load bank
component was a parent of the CH node. For example, all
components in the load bank have a state that corresponds to
no current draw. In Figure 9, this would equal a total of four
no current states. The two parent A nodes of the CH node
(Figure 9) themselves have two parents. Each of these par-
ents has a state which corresponds to no current and thus the
CH node’s CPT only has to have probabilities for no current
states pertaining to its two parents (see Table 2) rather than all
four parents if all load bank component A nodes were parents
of the CH node.
Using Figure 9 as an example, consider a simple situation
in which all loads in the bank are healthy with a state set
of Ω(X) = {healthy, failed}. Assuming this corresponds
to an A state of w60 for each load and the source sensor is
healthy, we would see the most probable state of the CH
node as w240. This state would be based on the CUSUM
generated from the source sensor’s values. Now suppose one
of the loads failed. Since the source sensor is the sole sensor
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Change current it167
CH

w0 w30 w60 ... w420 w450 A A H
0.95 0.05 0.0 ... 0.0 0.0 w0

w0

0.0 0.05 0.9 ... 0.0 0.0 w60
0.0 0.0 0.05 ... 0.0 0.0 w90

... ...
0.0 0.0 0.0 .. 0.0 0.0 w240
0.0 0.0 0.0 ... 0.0 0.0 w270
0.05 0.9 0.05 ... 0.0 0.0 w0

w30

0.0 0.0 0.05 ... 0.0 0.0 w60
0.0 0.0 0.0 ... 0.0 0.0 w90 heal-

... ... thy
0.0 0.0 0.0 ... 0.0 0.0 w240
0.0 0.0 0.0 ... 0.0 0.0 w270

... ... ...
0.0 0.0 0.0 ... 0.0 0.0 w0

w150

0.0 0.0 0.0 ... 0.0 0.0 w60
0.0 0.0 0.0 ... 0.0 0.0 w90

... ...
0.0 0.0 0.0 ... 0.05 0.0 w240
0.0 0.0 0.0 ... 0.9 0.05 w270
0.06 0.06 0.06 ... 0.06 0.06 w0

... ... w0
0.06 0.06 0.06 ... 0.06 0.06 w270 (not

... ... ... heal-
0.06 0.06 0.06 ... 0.06 0.06 w0 thy)

... ... w150
0.06 0.06 0.06 ... 0.06 0.06 w270

Table 2. Conditional probability table (CPT) of the CH node
from Figure 9. This table is laid out in the same format as Ta-
ble 1. Some simplifications were made to the CPT so it would
fit, including taking out some intermediary states (represented
by ’...’) from the CH node and its parents.

for the entire bank, and considering it only has three states,
this load failure may not cause enough of a current drop to
cause a change of state in the source sensor. If this were the
case, the fault would be missed completely. Fortunately, the
CH node would detect this drop and its state would change
to w180.5

3.5 Handling Continuous Drift Faults: Drift Nodes and
CUSUM

Drift faults are characterized by a gradual, approximately lin-
ear change of behavior (see Section 2.3), though sensor noise
may disrupt strict linearity. While abrupt offset faults are di-
agnosed as soon as a threshold is crossed, due to their near
vertical slope at the moment the fault occurs, drift faults usu-
ally do not cross these same offset thresholds immediately,
and our diagnosis of them utilizes time t alongside thresholds
that are specific for drift faults. Utilizing time and new thresh-
olds help to differentiate an abrupt fault that trips a threshold,
from a drift fault that would also trip this same threshold after

5The additional evidence from the CH node would be enough to deter-
mine that a failure had occurred, but not for a specific load. We assume that
a few more sensors would be available to provide additional evidence to the
load bank.

a certain period of time.
A DR node (see Figure 6, voltage sensor) is used to clamp
a boolean drift state, Ω(DR) = {nominal, faulty} for a
component structure. By default, it is clamped to DR =
nominal, or no drift present.
Drift tracking uses threshold values and times on multiple lev-
els, defined as i ∈ {0, . . . , n}. For the i-th level we have:

λ(i) = [v(i), tmin(i), tmax(i)], (6)

where v(i) is a threshold value (see Section 2.2), tmin(i) is
a threshold minimum time, and tmax(i) is a threshold maxi-
mum time. Here, v(i) represents the threshold that must be
reached to move to the next level. Level i = 0 is the ini-
tial level and has these thresholds associated with it: λ(0) =
(v(0), 0,∞). Once v(i) is reached, PRODIAGNOSE moves to
level i + 1 only if tmin(i) ≤ t(i) < tmax(i), in which t(i) is
the time elapsed since the last threshold was reached.6 If v(i)
is reached but t(i) < tmin(i) or t(i) ≥ tmax(i), drift tracking
resets to i = 0. Once the maximal level n has been reached,
there is no reset. Pseudo-code for the DRIFTTRACKER is pro-
vided in Algorithm 1.
The number of levels is configurable. Currently, i ∈
{0, 1, 2, 3}; thus λ(3) represents evidence e(t) of a drift fault,
and DR = faulty at this point. In other words, DR is
clamped to faulty once level i = 3 has been reached.

Algorithm 1 DRIFTTRACKER(λ(i), t(i), i, n)
th← v(i) ∈ λ(i)
min← tmin(i) ∈ λ(i)
max← tmax(i) ∈ λ(i)
if i = n then

return faulty
end if
if |δ̄p(t)| > th and min ≤ t(i) < max then

if i < n then
i← i+ 1

else
return faulty

end if
else
i← 0

end if
return nominal

To bring out the underlying behavioral patterns in a sensor’s
readings and help filter out noise, a threshold v(i) is compared
against the sensor’s CUSUM value, δ̄p(t), at each timestep t,
and not its raw reading sp(t).
Algorithm 1 is integrated into PRODIAGNOSE for DR nodes
similar to how CUSUM is integrated for CH nodes (Ricks &
Mengshoel, 2009b, 2010). The raw sensor data for S nodes
are handled first, which includes assigning the raw sensor val-
ues and discretization of these values (Ricks & Mengshoel,

6To handle both upward and downward drift faults, we take the absolute
value of δ̄p(t). We can safely do that here, under the assumption that drift
faults are consistently one or the other.
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2009b). We then process CUSUM values for all CH nodes
and call the DriftTracker (Algorithm 1) for all DR nodes
(which also uses CUSUM values and thus shares much code
with that for CH node processing). CH and DR node types
take input from their S node source sensors. Similar to S
node processing, the CUSUM value for each CH and DR
node is discretized after being calculated. These discretized
values are then clamped to their respective evidence nodes in
the BN before inference is performed.

Drift voltage e140
DR

nominal faulty H (Sensor)
0.99 0.01 healthy
0.99 0.01 offsetToLo
0.99 0.01 offsetToHi
0.99 0.01 offsetToMax
0.01 0.99 drift
0.99 0.01 stuck

Table 3. Conditional probability table (CPT) of the DR node
from Figure 6. If the DR node is clamped to nominal, then
the H node (column 3) has a high probability of being in any
state except for drift. Conversely, if faulty is clamped to the
DR node, the H node has a high probability of being in the
drift state.

Using Figure 6 as an example, consider a situation in which
no drift fault is present. This would result in a DR state of
nominal. According to the DR node’s CPT (Table 3), with a
clamped state of nominal, the parent H node has equal prob-
ability of being in any state except for the drift state. Now
if a drift fault were to be detected for the voltage sensor, the
DR clamped state would become faulty. This would greatly
increase the probability of the voltage sensor’s health state
changing to drift (Table 3). Note that since drift is an un-
healthy state, the CH node from Figure 6 would no longer
have much influence over the battery under this condition (see
Section 3.4).

4. EXPERIMENTAL RESULTS

For experimentation, the ADAPT EPS was used. ADAPT is
a real-world EPS, located at the NASA Ames Research Cen-
ter, that reflects the characteristics of a true aerospace vehicle
EPS, while providing a controlled environment for injecting
faults and recording data (Poll et al., 2007). Data from each
ADAPT run is stored in a scenario file, which can later be
ingested by the diagnostic software. This design means the
diagnostic algorithm can be repeatably run on any scenario
file, supporting iterative improvement of the BN and diagnos-
tic system during the development process.
In this section, we report on experimental results for PRODI-
AGNOSE using two ADAPT data sets, namely DXC-09 and
DXC-10 data used for competitions arranged as part of the

DX Workshop Series.7

4.1 Experiments Using DXC-10 Training Data

The Diagnosis Workshop’s 2010 competition (DXC-10)8 was
divided into two tiers: Diagnostic Problem 1 (DP1) and Diag-
nostic Problem 2 (DP2). A main difference, compared to the
2009 competition (DXC-09), was the inclusion of drift (or in-
cipient) and intermittent faults in DXC-10. Abrupt faults (in-
cluding abrupt offset faults) were included in DXC-10, as in
DXC-09. Consequently, these data sets test the performance
of PRODIAGNOSE on drift and abrupt offset faults, which
is where our CUSUM-based technique are intended to help.
These experimental results were obtained by running training
set scenarios provided to all DXC-10 competitors.

4.1.1 Diagnostic Problem 1
DP1 uses a subset of the ADAPT EPS. This subset consists of
one battery, connected to a DC load, and an inverter with two
AC loads. ADAPT is in a fully powered-up state throughout
a scenario. Scenarios generated from this configuration of the
EPS are either single-fault or nominal. DP1 contains both
offset faults and drift faults, both of which test our CUSUM-
based diagnosis technique.
DP1 consists of 39 scenarios in its training set. Of these, 5
are nominal (no fault injection), 12 involve sensor faults, and
22 involve component faults. Of these 39 scenarios, 7 con-
tain offset faults, and 7 contain drift faults. Note that 9 other
scenarios in the DP1 training set contain intermittent offset
faults. While PRODIAGNOSE handles these similar to the
abrupt case, details have been discussed previously (Ricks &
Mengshoel, 2010) and are beyond this paper’s scope.
The DP1 Bayesian network currently has a total of 148 nodes,
176 edges, and a cardinality range of [2, 10]. The DP1 BN
has the same overall structure as the DP2 BN (see Section
4.1.2). Some notable differences are the inclusion, in DP1, of
additional evidence nodes (such as DR nodes) for fault types
that are not present in DP2, specifically intermittent and drift
faults, and additional CH nodes to aid in load fault diagnosis
of fault types such as drift faults.
The metrics in Table 4 are briefly summarized here to aid in-
terpretation of the results. Mean Time To Isolate refers to the
time from when a fault is injected until that fault is diagnosed.
Mean Time To Detect refers to the time from when a fault is
injected until any fault is detected. False Positives occur when
PRODIAGNOSE diagnoses a fault that is not actually present.
False Negatives occur when PRODIAGNOSE fails to diagnose
a fault that is present. Low False Positive Rates are important
because it is undesirable to perform corrective action when
the system is operating correctly. A low False Negatives Rate

7More information about the diagnostic competitions, including these
data sets, can be found here: http://www.dx-competition.org/.

8More information on DXC-10, including scenario files, can be found
here: https://www.phmsociety.org/competition/dxc/10.
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CUSUM
Metric Enabled Disabled
Detection Accuracy 92.31% 46.15%
False Positives Rate 0% 0%
False Negatives Rate 8.82% 61.76%
Mean Time To Detect 17.97 s 28.36 s
Mean Time To Isolate 72.27 s 51.14 s

Table 4. Experimental results with CUSUM enabled and dis-
abled using electrical power system scenarios for DP1.

indicates that few system faults will remain undetected.
In these experiments, PRODIAGNOSE achieved an impres-
sive False Positives Rate of 0% and a False Negatives Rate
of 8.82% when CUSUM was enabled. When CUSUM was
disabled, on the other hand, detection accuracy plummeted to
46% with a false negative rate of almost 62%. Detection times
also increased with CUSUM disabled, due to increased detec-
tion time of certain offset faults that now must rely solely on
an S node state change. Note that when CUSUM is disabled,
drift faults are difficult to diagnose correctly (they will appear
as abrupt offset faults) due to drift tracking’s dependence on
CUSUM. However, this actually lowers isolation times due to
no isolation time being recorded for a mis-diagnosis.9

4.1.2 Diagnostic Problem 2

DP2 represents the entire ADAPT EPS. ADAPT consists of
three batteries as the source, connected to two DC load banks,
and two inverters each connected to an AC load bank. Sce-
narios generated from the full ADAPT EPS can be single,
double, or triple-fault; or nominal. ADAPT is initially in a
powered-down state, and various relays are closed and opened
through a scenario to provide power to various components
of the EPS. DP2 contains offset faults, but no drift faults, and
thus our CUSUM-based diagnosis approach is not as exten-
sively tested as in DP1.
DP2’s training set contains 34 scenarios in total: 7 nominal, 9
with sensor faults, and 21 with component faults (some sce-
narios have both sensor and component faults). Among DP2
scenarios, 6 contain offset faults.
Since DP2 does not contain scenarios with drift and intermit-
tent faults, the DP2 Bayesian network does not implement
support for all the fault types seen in DP1. Thus, additional
evidence nodes (such as DR nodes) for these fault types are
omitted from the DP2 BN. The DP2 BN currently has a total
of 493 nodes, 599 edges, and a cardinality range of [2, 16].
Experimental results for DP2 are summarized in Table 5.
Compared to DP1, the DP2 data set did not have as many
scenarios that might benefit from CUSUM (though it is worth

9This is according to the DXC definition of Mean Time To Isolate; one
could certainly make the argument that a mis-diagnosis should be punished
more harshly.

CUSUM
Metric Enabled Disabled
Detection Accuracy 90.91% 87.88%
False Positives Rate 3.03% 3.03%
False Negatives Rate 7.69% 11.54%
Mean Time To Detect 5.74 s 10.56 s
Mean Time To Isolate 36.78 s 39.97 s

Table 5. Experimental results with CUSUM enabled and dis-
abled using electrical power system scenarios for DP2.

noting that 13 scenarios which involved component faults are
diagnosed by catching offsets in sensor readings). Conse-
quently, DP2’s increase in accuracy when using CUSUM is
not as pronounced, although it does improve from 87.88% to
90.91%. Most of DP2’s faults could be diagnosed without
needing the additional evidence provided by CH nodes. DP2
also does not contain drift faults, for which PRODIAGNOSE
is dependent on CUSUM techniques to diagnose. In addition,
with CUSUM enabled, the mean detection time decreased by
almost half, due to the role it plays in load bank component
diagnosis (see Section 3.4). This is significant, as quick di-
agnosis is very important in aircraft and spacecraft. Finally,
using CUSUM should not adversely impact the overall diag-
nostic performance of PRODIAGNOSE, and we see that all
metrics in Table 5 are equally good or better when CUSUM
is enabled compared to when it is disabled.

4.2 DXC-09 and DXC-10 Competition Results

PRODIAGNOSE had the best performance in three of four
of the Diagnosis Workshop’s industrial track competitions in
2009 and 2010 (DXC-09 and DXC-10). In both DXC-09
and DXC-10 the CUSUM techniques discussed in this pa-
per played a crucial role. DXC-10 competition data indi-
cate strong performance of PRODIAGNOSE (Kurtoglu et al.,
2010), implementing the CUSUM approach for diagnosis of
offset and drift faults, against algorithms relying on alter-
nate techniques. In the official competition, PRODIAGNOSE
achieved an overall scenario detection accuracy of 82.5% in
DP1 and 89.2% in DP2, surpassing the second-best DP2 en-
trant by 19%. In the DP2 category, PRODIAGNOSE also had
the fewest fault classification errors and the quickest fault de-
tection time. Data from the 2009 competition (DXC-09) indi-
cate PRODIAGNOSE as the top performer with detection ac-
curacies of 96.7% and 88.3% in Tier 1 and Tier 2, respectively
(Kurtoglu et al., 2009).

5. CONCLUSION

For fault diagnosis in complex and resource-constrained en-
vironments, we would like a diagnosis algorithm to be exact,
fast, predictable, able to handle hybrid (discrete and contin-
uous) as well as dynamic behavior, and easy to verify and
validate (V&V).
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Fulfilling all these requirements is certainly a tall order. How-
ever, we have in this paper extended previous work on the
PRODIAGNOSE diagnostic algorithm (Ricks & Mengshoel,
2009a, 2009b; Mengshoel et al., 2010; Ricks & Mengshoel,
2010), and discussed the promise of using static arithmetic
circuits, compiled from static Bayesian networks. In particu-
lar, we have shown how fault diagnosis using static arithmetic
circuits can be augmented with a cumulative sum (CUSUM)
technique, resulting in dramatically improved performance in
situations with continuous fault dynamics. In experiments
with data from a real-world electrical power system, we have
observed that our CUSUM-based technique leads to signif-
icantly improved performance in situations with continuous
offset and drift faults. In addition, the CUSUM techniques
discussed in this paper played a crucial role in the strong
performance of PRODIAGNOSE in the Diagnosis Workshop’s
industrial track competitions in 2009 and 2010 (DXC-09
and DXC-10). In DXC-09 and DXC-10, PRODIAGNOSE
achieved the best performance in three of four industrial track
competitions.
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ABSTRACT

The success of model-based approaches to systems health
management depends largely on the quality of the underly-
ing models. In model-based prognostics, it is especially the
quality of the damage progression models, i.e., the models
describing how damage evolves as the system operates, that
determines the accuracy and precision of remaining useful life
predictions. Several common forms of these models are gen-
erally assumed in the literature, but are often not supported
by physical evidence or physics-based analysis. In this paper,
using a centrifugal pump as a case study, we develop differ-
ent damage progression models. In simulation, we investigate
how model changes influence prognostics performance. Re-
sults demonstrate that, in some cases, simple damage progres-
sion models are sufficient. But, in general, the results show
a clear need for damage progression models that are accurate
over long time horizons under varied loading conditions.

1. INTRODUCTION

Model-based prognostics is rooted in the use of models that
describe the behavior of systems and components and how
that behavior changes as wear and damage processes oc-
cur (Luo, Pattipati, Qiao, & Chigusa, 2008; Saha & Goebel,
2009; Daigle & Goebel, 2011). The problem of model-based
prognostics fundamentally consists of two sequential prob-
lems, (i) a joint state-parameter estimation problem, in which,
using the model, the health of a system or component is de-
termined based on its observations; and (ii) a prediction prob-
lem, in which, using the model, the state-parameter distri-
bution is simulated forward in time to compute end of life
(EOL) and remaining useful life (RUL). The model must de-
scribe both how damage manifests in the system observations,

Daigle et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

and how damage progresses in time. Clearly, the prognostics
performance inherently depends on the quality of the models
used by the algorithms.
In modeling the complex engineering systems targeted by
prognostics algorithms, many modeling choices must be
made. In particular, one must decide on the appropriate
level of abstraction at which to model the system in order
to estimate system health and predict remaining life. The
choice is mainly one of model granularity, i.e., the extent
to which the model is broken down into parts, either struc-
tural or behavioral. The selected models must then provide
enough fidelity to meet the prognostics performance require-
ments. But, model development cost, available level of ex-
pertise, model validation effort, and computational complex-
ity all constrain the models that may be developed. For ex-
ample, finer-grained models may result in increased model
fidelity and thus increased prognostics performance, but may
take more effort to construct and increase computational com-
plexity. Therefore, a clear need exists to investigate the im-
pact of such modeling choices on prognostics performance.
In this paper, we use a centrifugal pump as a case study with
which to explore the impact of model quality on prognos-
tics performance. Typically, developing a reliable model of
nominal system operation is relatively straightforward, as the
dynamics are usually well-understood in terms of first prin-
ciples or physics equations, and, most importantly, there is
typically sufficient data available with which to validate this
model. The major difficulty lies in developing models of dam-
age progression, because these models are often component-
dependent, and so the understanding of these processes is gen-
erally lacking. Further, the data necessary to properly vali-
date these models are, in practice, rarely available. Using the
pump model, we develop several damage progression mod-
els and evaluate their effect on prognostics performance using
simulation-based experiments. To the best of our knowledge,
this, along with a companion paper exploring these issues
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with application to battery health management (Saha, Quach,
& Goebel, 2011), is the first time this type of analysis has
been performed within the context of prognostics.
The paper is organized as follows. Section 2 describes the
model-based prognostics framework. Section 3 presents the
modeling methodology and develops the centrifugal pump
model with several damage progression models. Section 4
generalizes the different models within the framework of
model abstraction. Section 5 describes the particle filter-
based damage estimation method, and Section 6 discusses
the prediction methodology. Section 7 provides results from
a number of simulation-based experiments and evaluates the
effect of the different damage progression models on prog-
nostics performance. Section 8 concludes the paper.

2. MODEL-BASED PROGNOSTICS

We assume the system model may be described using

ẋ(t) = f(t,x(t),θ(t),u(t),v(t))

y(t) = h(t,x(t),θ(t),u(t),n(t)),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the pa-
rameter vector, u(t) ∈ Rnu is the input vector, v(t) ∈ Rnv is
the process noise vector, f is the state equation, y(t) ∈ Rny is
the output vector, n(t) ∈ Rnn is the measurement noise vec-
tor, and h is the output equation. The model may be nonlinear
with no restrictions on the functional forms of f or h, and the
noise terms may be nonlinearly coupled with the states and
parameters. The parameters θ(t) evolve in an unknown way.
The goal of prognostics is to predict EOL (and/or RUL) at
a given time point tP using the discrete sequence of obser-
vations up to time tP , denoted as y0:tP . EOL is defined as
the time point at which the component no longer meets a
functional or performance requirement. In general, these re-
quirements do not need to be directly tied to permanent fail-
ure, rather, they refer to a state of the system that is undesir-
able. The system can leave this state through repair or other
actions, and sometimes no action is needed and the compo-
nent needs only to rest (e.g., with power electronics, or self-
recharge of batteries). These functional requirements may be
expressed through a threshold, beyond which the component
is considered to have failed. In general, we may express this
threshold as a function of the system state and parameters,
TEOL(x(t),θ(t)), where TEOL(x(t),θ(t)) = 1 if a require-
ment is violated, and 0 otherwise.
So, EOL may be defined as

EOL(tP ) , inf{t ∈ R : t ≥ tP ∧ TEOL(x(t),θ(t)) = 1},
i.e., EOL is the earliest time point at which the threshold is
reached. RUL may then be defined with

RUL(tP ) , EOL(tP )− tP .

Due to various sources of uncertainty, including uncertainty in
the model, the goal is to compute a probability distribution of

the EOL or RUL. We compute, at time tP , p(EOL(tp)|y0:tP )
or p(RUL(tP )|y0:tP ).
In model-based prognostics, there are two fundamental prob-
lems: (i) joint state-parameter estimation, and (ii) predic-
tion. In discrete time k, we estimate xk and θk, and use
these estimates to predict EOL and RUL at desired time
points. The model-based prognostics architecture is shown in
Fig. 1 (Daigle & Goebel, 2011). Given inputs uk, the system
provides measured outputs yk. If available, a fault detection,
isolation, and identification (FDII) module may be used to
determine which damage mechanisms are active, represented
as a fault set F. The damage estimation module may use
this result to limit the dimension of the estimation problem.
It determines estimates of the states and unknown parame-
ters, represented as a probability distribution p(xk,θk|y0:k).
The prediction module uses the joint state-parameter distribu-
tion, along with hypothesized future inputs, to compute EOL
and RUL as probability distributions p(EOLkP |y0:kP ) and
p(RULkP |y0:kP ) at given prediction times kP . In this paper,
we assume a solution to FDII that provides us with the single
active damage mechanism, initiating prognostics.
Prognostics performance is evaluated based on the accuracy
and precision of the predictions. We use the relative accuracy
(RA) metric (Saxena, Celaya, Saha, Saha, & Goebel, 2010) to
characterize prediction accuracy. For a given prediction time
kP , RA is defined as

RAkP = 100

(
1− |RUL

∗
kP
− R̂ULkP |

RUL∗kP

)
,

where RUL∗kP is the true RUL at time kP , and R̂ULkP is the
mean of the prediction. The prognostic horizon (PH) refers
to the time between EOL and the first prediction that meets
some accuracy requirement RA∗ (e.g., 90%):

PH = 100
EOL∗ −min{kP : RAkP ≥ RA∗}

EOL∗
,

where EOL∗ denotes the true EOL. A larger value means an
accurate prediction is available earlier. This is a version of the
PH metric given in (Saxena et al., 2010) normalized to EOL.
Prediction spread is computed using relative median absolute
deviation (RMAD):

RMAD(X) = 100
Mediani (|Xi −Medianj(Xj)|)

Medianj(Xj)
,

where X is a data set and Xi is an element of that set.

3. PUMP MODELING

In our modeling methodology, we first describe a nominal
model of system behavior. We then extend the model by in-
cluding damage progression functions within the state equa-
tion f that describe how damage variables d(t) ⊆ x(t) evolve
over time. The damage progression functions are parameter-
ized by unknown wear parameters w(t) ⊆ θ(t). We use

2
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Figure 1. Prognostics architecture.

Figure 2. Centrifugal pump.

a centrifugal pump as a case study. In this section, we first
describe the nominal model of the pump, and then describe
common damage progression models.

3.1 Nominal Model

A schematic of a typical centrifugal pump is shown in Fig. 2.
Fluid enters the inlet, and the rotation of the impeller, driven
by an electric motor, forces fluid through the outlet. The radial
and thrust bearings help to minimize friction along the pump
shaft. The bearing housing contains oil which lubricates the
bearings. A seal prevents fluid flow into the bearing housing.
Wear rings prevent internal pump leakage from the outlet to
the inlet side of the impeller, but a small clearance is typically
allowed to minimize friction. The nominal pump model has
been described previously in (Daigle & Goebel, 2011), and
we review it here for completeness.
The state of the pump is given by

x(t) =
[
ω(t) Tt(t) Tr(t) To(t)

]T
,

where ω(t) is the rotational velocity of the pump, Tt(t) is the
thrust bearing temperature, Tr(t) is the radial bearing temper-
ature, and To(t) is the oil temperature.
The rotational velocity of the pump is described using a
torque balance,

ω̇ =
1

J
(τe(t)− rω(t)− τL(t)) ,

where J is the lumped motor/pump inertia, τe is the electro-
magnetic torque provided by the motor, r is the lumped fric-

tion parameter, and τL is the load torque. In an induction
motor, a voltage is applied to the stator, which creates a cur-
rent through the stator coils. A polyphase voltage applied to
the stator creates a rotating magnetic field that induces a cur-
rent in the rotor, causing it to turn. The torque produced on
the rotor is nonzero only when there is a difference between
the synchronous speed of the supply voltage, ωs and the me-
chanical rotation, ω. This slip is defined as

s =
ωs − ω
ωs

.

The expression for the torque τe is derived from an equiva-
lent circuit representation for the three-phase induction motor
based on rotor and stator resistances and inductances, and the
slip s (Lyshevski, 1999):

τe =
npR2

sωs

V 2
rms

(R1 +R2/s)2 + (ωsL1 + ωsL2)2
,

where R1 is the stator resistance, L1 is the stator inductance,
R2 is the rotor resistance, L2 is the rotor inductance, n is
the number of phases (typically 3), and p is the number of
magnetic pole pairs. The dependence of torque on slip creates
a feedback loop that causes the rotor to follow the rotation
of the magnetic field. The rotor speed may be controlled by
changing the input frequency ωs.
The load torque τL is a polynomial function of the pump flow
rate and the impeller rotational velocity (Wolfram, Fussel,
Brune, & Isermann, 2001; Kallesøe, 2005):

τL = a0ω
2 + a1ωQ− a2Q2,

whereQ is the flow, and a0, a1, and a2 are coefficients derived
from the pump geometry (Kallesøe, 2005).
The rotation of the impeller creates a pressure difference from
the inlet to the outlet of the pump, which drives the pump flow,
Q. The pump pressure is computed as

pp = Aω2 + b1ωQ− b2Q2,

where A is the impeller area, and b1 and b2 are coefficients
derived from the pump geometry. The discharge flow, Q, is
comprised of the flow through the impeller, Qi, and a leakage
flow, Ql:

Q = Qi −Ql.

3
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The flow through the impeller is computed using the pressure
differences:

Qi = c
√
|ps + pp − pd|sign(ps + pp − pd),

where c is a flow coefficient, ps is the suction pressure, and
pd is the discharge pressure. The small (normal) leakage flow
from the discharge end to the suction end due to the clearance
between the wear rings and the impeller is described by

Ql = cl
√
|pd − ps|sign(pd − ps),

where cl is a flow coefficient.
Pump temperatures are often monitored as indicators of pump
condition. The oil heats up due to the radial and thrust bear-
ings and cools to the environment:

Ṫo =
1

Jo
(Ho,1(Tt − To) +Ho,2(Tr − To)

−Ho,3(To − Ta)),

where Jo is the thermal inertia of the oil, and the Ho,i terms
are heat transfer coefficients. The thrust bearings heat up due
to the friction between the pump shaft and the bearings, and
cool to the oil and the environment:

Ṫt =
1

Jt
(rtω

2 −Ht,1(Tt − To)−Ht,2(Tt − Ta)),

where Jt is the thermal inertia of the thrust bearings, rt is the
friction coefficient for the thrust bearings, and the Ht,i terms
are heat transfer coefficients. The radial bearings behave sim-
ilarly:

Ṫr =
1

Jr
(rrω

2 −Hr,1(Tr − To)−Hr,2(Tr − Ta))

where Jr is the thermal inertia of the radial bearings, rr is the
friction coefficient for the radial bearings, and the Hr,i terms
are heat transfer coefficients.
The overall input vector u is given by

u(t) =
[
ps(t) pd(t) Ta(t) V (t) ωs(t)

]T
.

The measurement vector y is given by

y(t) =
[
ω(t) Q(t) Tt(t) Tr(t) To(t)

]T
.

Fig. 3 shows nominal pump operation. Input voltage and line
frequency are varied to control the pump speed. Initially, slip
is 1, and this produces an electromagnetic torque that causes
the rotation of the motor to match the rotation of the magnetic
field, with a small amount of slip remaining (depending on
the load). Fluid flows through the pump due to the impeller
rotation. The bearings heat and cool as the pump rotation
increases and decreases.
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Figure 3. Nominal pump operation.

3.2 Damage Modeling

The most significant forms of damage for pumps are impeller
wear, caused by cavitation and erosion by the flow, and bear-
ing failure, caused by friction-induced wear of the bearings.
In each case, we map the damage to a particular parameter
in the nominal model, and this parameter becomes a damage
variable in d(t) that evolves by a damage progression func-
tion. Several types of damage progression models have been
explored in literature. In this paper, we focus on macro-level,
lumped-parameter models. Within this modeling style, dam-
age evolves as a function of dynamic energy-related variables.
Several common forms may be assumed here, including lin-
ear, polynomial, and exponential, as these forms have been
observed in practice. We derive these forms for the consid-
ered damage modes as well as wear-based models based on
physics analysis.
Impeller wear is represented as a decrease in impeller area
A (Biswas & Mahadevan, 2007; Tu et al., 2007; Daigle &
Goebel, 2011). Impeller wear can only progress when flow
through the impeller, Qi, is nonzero. So, the rate of change of
impeller area, Ȧ, must be a function of Qi. We consider the
following damage progression models based on the common
observed forms:

Ȧ = −wAQi (1)

Ȧ = −wAQ
2
i (2)

Ȧ = −wA1Qi − wA2Q
2 (3)

Ȧ = −wA1 exp(wA2Qi), (4)

4
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where wA, wA1, and wA2 are unknown wear parameters.
From a physics analysis, we see that the erosive wear equation
applies here (Hutchings, 1992). The erosive wear rate is pro-
portional to fluid velocity times friction force. Fluid velocity
is proportional to volumetric flow rate, and friction force is
proportional to fluid velocity, so, lumping the proportionality
constants into the wear coefficient wA, we obtain

Ȧ = −wAQ
2
i . (5)

Note that this agrees with one of the commonly assumed dam-
age forms, equation 2, above.
A decrease in the impeller area will decrease the pump pres-
sure, which, in turn, reduces the delivered flow, and, therefore,
pump efficiency. The pump must operate at a certain minimal
efficiency. This requirement defines an EOL criteria. We de-
fine A− as the minimum value of the impeller area at which
this requirement is met, hence, TEOL = 1 if A(t) < A−.
The damage progression up to EOL for impeller wear is
shown in Fig. 4a for equation 5, for the rotational velocity
alternating between 3600 RPM for the first half of every hour
of usage and 4300 RPM for the second half, causing the pump
flow to alternate as well. Within a given cycle, shown in the
inset of Fig. 4a, the damage progresses at two different rates,
but over a long time horizon, the damage progression appears
fairly linear. This suggests that a linear approximation may
suffice for accurate long-term predictions if the future inputs
cycle in the same way. The damage progression rate actu-
ally decreases slightly over time, because as impeller area de-
creases, flow will decrease, and therefore Ȧ will diminish.
Bearing wear is captured as an increase in the corresponding
friction coefficient (Daigle & Goebel, 2011). Bearing wear
can only occur when the pump is rotating, i.e., ω is nonzero.
So, the rate of change of the bearing friction coefficient, ṙt
for the thrust bearing, and ṙr for the radial bearing, must be
a function of ω. For the thrust bearing wear, we consider the
following damage progression models based on the common
observed forms:

ṙt(t) = wtω (6)

ṙt(t) = wtω
2 (7)

ṙt(t) = wt1ω + wt2ω
2 (8)

ṙt(t) = wt1 exp(wt2ω), (9)

where wt, wt1, and wt2 are unknown wear parameters. For
the radial bearing, the equations are the same, but with the t
subscript replaced by an r subscript:

ṙr(t) = wrω (10)

ṙr(t) = wrω
2 (11)

ṙr(t) = wr1ω + wr2ω
2 (12)

ṙr(t) = wr1 exp(wr2ω). (13)

From a physics analysis, we observe that sliding and rolling
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Figure 4. Damage progression for the pump.

friction generate wear of material which increases the coeffi-
cient of friction (Hutchings, 1992; Daigle & Goebel, 2010):

ṙt(t) = wtrtω
2 (14)

ṙr(t) = wrrrω
2, (15)

where wt and wr are the wear parameters. Note that equa-
tions 6–9 neglect the direct relationship between ṙt and rt.

5
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Changes in bearing friction can be observed by means of the
bearing temperatures. Limits on the maximum values of these
temperatures define EOL for bearing wear. We define r+t and
r+r as the maximum permissible values of the friction coeffi-
cients, before the temperature limits are exceeded over a typ-
ical usage cycle. So, TEOL = 1 if rt(t) > r+t or rr(t) > r+r .
Damage progression up to EOL for bearing wear is shown in
Figs. 4b and 4c, for equations 14 and 15, with the rotational
velocity again alternating between 3600 RPM and 4300 RPM.
In this case, the rate of damage progression increases over
time. Therefore, a simple linear approximation would not be
accurate. This behavior occurs because ṙt(t) increases with
rt(t), and ṙr(t) increases with rr(t).

4. MODEL ABSTRACTION

The previous section presented a number of different models.
In general, these differences may be captured by the idea of
model abstraction (Frantz, 1995; Lee & Fishwick, 1996; Zei-
gler, Praehofer, & Kim, 2000). Abstraction is driven by the
questions that the model must address. For prognostics, the
models must address the question of the EOL/RUL of a sys-
tem. In order to do this, the models must (i) describe how
damage manifests in the system outputs (i.e., measured vari-
ables or computed features), so that damage estimation can
be performed; and (ii) describe how damage evolves in time
as a function of the system loading, so that prediction can be
performed. The chosen level of model abstraction must be
such that these tasks can be accomplished at the desired level
of performance.
Abstraction is a process of simplification. Common ab-
stractions include aggregation, omission, linearization, de-
terministic/stochastic replacement, and formalism transfor-
mation (e.g., differential equations to discrete-event sys-
tems) (Zeigler et al., 2000). These abstractions may manifest
as structural abstraction, in which the model is abstracted by
its structure, or behavioral abstraction, in which the model
is abstracted by its behaviors (Lee & Fishwick, 1996). For
example, a structural abstraction might ignore the individual
circuit elements of an electric motor and aggregate them into
a lumped component. A behavioral abstraction might omit
the individual processes and effects comprising a damage pro-
gression process and instead consider their lumped effects.
Or, perhaps a given process might really take on an exponen-
tial form, but is abstracted to a linear form. The linear form
consists of a simpler relationship that is described by fewer
free parameters.
Model granularity is a particular measure of model abstrac-
tion. The granularity of a model is the extent to which it is
divided into smaller parts. The concept of granularity does
not address the degree of complexity of the specific func-
tional relationships within a part of the model. Granularity
can manifest both structurally and behaviorally. For exam-
ple, a lumped parameter model is coarser-grained than a fi-

nite element model. In the context of physics-based prognos-
tics models, a model with fine granularity may include more
lower-level physical processes (e.g., micro-level effects rather
than macro-level effects), or model processes at a greater level
of detail, than a model with coarse granularity.
In quantifiable terms, granularity may be expressed using
the number of state variables, the number of relationships
between them, and the number of free (unknown) parame-
ters. By definition, the state variables are the minimal set
of variables needed to describe the state of the system as it
progresses through time. So a finer-grained model may en-
tail an additional number of state variables because aspects
of the physical description that were not captured before are
now described. With the same state variables, a model may
also become more granular by adding functional relation-
ships between the state variables. In a linear system, with
ẋ(t) = Ax(t) + Bu(t), this would correspond to zeros in
the A matrix becoming nonzero. Note that this is only a fair
comparison between two models capturing the same process.
The different damage models developed in Section 3.2 can be
viewed within this framework. For a particular damage mode,
the different damage models each capture the same physical
process, i.e., the damage progression, but make different as-
sumptions about the complexity of the process. Thus, these
models capture damage progression at different levels of be-
havioral abstraction. For example, for the impeller wear, the
polynomial form (equation 3) may be viewed as less abstract
than both the linear (equation 1) and squared forms (equa-
tion 2), because it is a sum of these individual processes. For
the bearing wear, equations 6–9 are all coarser-grained mod-
els than 14, because they neglect the direct relationship be-
tween ṙt and rt.
One may describe the system behavior in very low-level phys-
ical relationships, but, of course, there are trade-offs to be
made among the modeling constraints. A finer-grained model
takes more effort to develop and validate, and may result in
an increased computational cost. It also may result in an
increase in the number of free parameters, which increases
the complexity of the joint state-parameter estimation prob-
lem. The increase in model development cost to create mod-
els with finer granularity is justified only when it results in
an appropriate increase in fidelity (i.e., the extent to which
a model reproduces the observable behaviors of the system
being modeled) and a corresponding increase in prognostics
performance. Also, higher levels of abstraction make sense
when the computation associated with lower levels of abstrac-
tion becomes too complicated for practical implementation.
Requirements on prognostics performance and constraints on
model size, development cost, level of modeling expertise,
and computational complexity all drive the model develop-
ment process.

6
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5. DAMAGE ESTIMATION

Damage estimation is fundamentally a joint state-parameter
estimation problem, i.e., computation of p(xk,θk|y0:k). The
damage states and wear parameters must be estimated along
with the other state variables and unknown parameters of the
system. We use the particle filter (Arulampalam, Maskell,
Gordon, & Clapp, 2002) as a general solution to this problem.
In a particle filter, the state distribution is approximated by a
set of discrete weighted samples, or particles:

{(xi
k,θ

i
k), w

i
k}Ni=1,

where N denotes the number of particles, and for particle i,
xi
k denotes the state vector estimate, θi

k denotes the parameter
vector estimate, and wi

k denotes the weight. The posterior
density is approximated by

p(xk,θk|y0:k) ≈
N∑

i=1

wi
kδ(xik,θik)(dxkdθk),

where δ(xik,θik)(dxkdθk) denotes the Dirac delta function lo-
cated at (xi

k,θ
i
k).

We use the sampling importance resampling (SIR) particle fil-
ter. Each particle is propagated forward to time k by first sam-
pling new parameter values, and then sampling new states us-
ing the model. The particle weight is assigned using yk. The
weights are then normalized, followed by the resampling step.
Pseudocode is given in (Arulampalam et al., 2002; Daigle &
Goebel, 2011).
Parameter values are sampled using a random walk, i.e., for
parameter θ, θk = θk−1 + ξk−1, where ξk−1 is sampled from
some distribution. Particles generated with parameter values
closest to the true values should be assigned higher weight
and allow the particle filter to converge to the true values.
The random walk variance is modified dynamically online
to maintain a user-specified relative spread of the unknown
wear parameters using the variance control algorithm pre-
sented in (Daigle & Goebel, 2011). The algorithm increases
or decreases the random walk variance proportional to the
difference between the desired spread and the actual spread,
computed with relative median absolute deviation (RMAD).
The algorithm behavior is specified using four parameters:
the desired spread during the initial convergence period, v∗0
(e.g., 50%), the threshold that specifies the end of the con-
vergence period, T (e.g., 60%), the final desired spread v∗∞
(e.g., 10%), and the proportional gain P (e.g. 1× 10−3). The
spread is first controlled to v∗0 until the spread reaches T , at
which point it is controlled to v∗∞.

6. PREDICTION

Given the current joint state-parameter estimate at a desired
prediction time kP , p(xkP ,θkP |y0:kP ), the prediction step

computes p(EOLkP |y0:kP ) and p(RULkP |y0:kP ). The par-
ticle filter provides

p(xkP ,θkP |y0:kP ) ≈
N∑

i=1

wi
kP δ(xikP ,θikP

)(dxkP dθkP ).

We approximate a prediction distribution n steps forward
as (Doucet, Godsill, & Andrieu, 2000)

p(xkP+n,θkP+n|y0:kP ) ≈
N∑

i=1

wi
kP δ(xikP+n,θ

i
kP+n)

(dxkP+ndθkP+n).

Similarly, we approximate the EOL as

p(EOLkP |y0:kP ) ≈
N∑

i=1

wi
kP δEOLikP

(dEOLkP ).

To compute EOL, then, we propagate each particle forward
to its own EOL and use that particle’s weight at kP for the
weight of its EOL prediction. The prediction is made using
hypothesized future inputs of the system. In this work, we
assume these inputs are known in advance. Pseudocode for
the prediction algorithm is given in (Daigle & Goebel, 2011).

7. RESULTS

We ran a number of simulation experiments for the different
pump models in order to evaluate the relative performance.
We took the damage models using the physics-based wear
equations as the reference models that generated the measure-
ment data. The model used by the prognostics algorithm was
either the reference model M (using equations 5, 14, and
15), the linear model MLinear (using equations 1, 6, and
10), the squared modelMSquared (using equations 2, 7, and
11), the second order polynomial modelMPoly (using equa-
tions 3, 8, and 12), or the exponential model MExp (using
equations 4, 9, and 13). In each experiment, the pump speed
cycled from 3600 RPM for the first half of every hour of usage
to 4300 RPM for the second half hour.
In order to analyze results on a per-damage mode basis, in
each experiment we assumed only a single damage mode was
active. We selected the reference model’s wear parameter val-
ues randomly in each experiment, within [0.5 × 10−3, 4 ×
10−3] for wA, in [0.5 × 10−11, 7 × 10−11] for wt and wr,
such that the maximum wear rates corresponded to a mini-
mum EOL of 20 hours. The particle filters had to estimate
the states and the wear parameters associated with their as-
sumed damage progression models. We considered the case
where the future input was known in order to focus on the dif-
ferences in performance based on the different assumed dam-
age models. We also varied the process noise variance from
0, to nominal, and 10 times nominal, in order to artificially
represent the nominal model at various levels of granularity.
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Model v RA RMADRUL

M 0 97.87 10.33
1 97.42 10.30
10 97.63 10.41

MLinear 0 94.12 10.42
1 92.28 10.91
10 83.68 12.42

MPoly 0 97.55 3.35
1 96.97 6.62
10 89.98 10.55

MExp 0 87.27 12.87
1 88.83 13.01
10 81.78 12.90

Table 1. Prognostics Performance for Impeller Wear

The assumption here is that the process noise represents finer-
grained unmodeled processes that are not incorporated into
the model and therefore look like noise.
Prognostics performance is dependent on both the underlying
models used and on the prognostics algorithm. In order to
focus on the dependence on modeling, we fix the algorithm
and its parameters. The particle filter used N = 500 in all
cases. The variance control algorithm used v∗0 = 50%, T =
60%, v∗∞ = 10% in all cases, and used P = 1 × 10−3 for
the damage models with one unknown wear parameter and
P = 1× 10−4 for those with two unknown wear parameters.
The prognostics performance results for impeller wear us-
ing different damage models and different levels of process
noise variance are shown in Table 1. The process noise vari-
ance multiplier is shown in the second column of the table.
We average RA over all prediction points to summarize the
accuracy, denoted using RA, and we average RMAD over
all prediction points to summarize the spread, denoted using
RMADRUL. Multiple experiments were run for each case,
and the table presents the averaged results. We can see that
the linear damage model actually does fairly well. Its per-
formance decreases as process noise increases, but for small
amounts of process noise the accuracy is over 90%. The poly-
nomial model also does well, which is expected since the sec-
ond term by itself is the reference damage model. The particle
filter still estimates a linear component which tracks damage
progression over a short term fairly well, and it is the pres-
ence of this linear term that causes the accuracy to decrease.
The exponential model does not do as well, partly because the
behavior is very sensitive to the wear parameter inside the ex-
ponential function, wA2, and so estimating both wear param-
eters simultaneously is more difficult for the particle filter.
The estimation performance using the reference model and
the linear model is compared in Fig. 5. In both cases, the

0 5 10 15 20 25
0

2

4

6
x 10

−3

t (hours)

w
A

(s
/
m

4
)

 

 
Mean(ŵA)
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Figure 5. Impeller wear parameter estimation.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

t (hours)

R
U

L
(h

o
u
rs

)

 

 
M R̂UL
MLinear R̂UL

MPoly R̂UL

MExp R̂UL
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damage variable, A, was tracked well. When using the same
damage model as in the reference model, the wear parameter
is tracked easily and after convergence remains fairly con-
stant. As a result, the predictions, shown in Fig. 6, using the
mean, denoted by R̂UL, are very accurate and appear within
10% of the true value at all prediction points (shown using the
gray cone in the figure). Because the rate of damage progres-
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where at tP , Qi increases by 30%.

sion in the reference model decreases slowly over time, and
the linear model does not accurately capture that behavior, its
wear parameter estimate decreases over time in order to keep
tracking the short-term damage progression. This is reflected
also in the RUL predictions. Although the RUL accuracy is
also very good, it is clear that it consistently underestimates
the true RUL, because at any point in time it is overestimating
the rate of damage progression that would occur in the future.
However, the prognostic horizon is still very high. As shown
in Fig. 6, by the second or third prediction, the predictions
are all within the desired accuracy cone, except for the expo-
nential model, which has PH of around 60%, meaning that at
60% life remaining, the exponential model is making accurate
predictions. In many practical situations that may, in fact, be
enough time for decision-making.
For impeller wear, the linear model does well in this case
because the future loading is the same as the current load-
ing. If Qi is held constant, then the reference damage model
Ȧ = wAQ

2
i , which equals (wAQi)Qi, looks exactly like the

linear form because the product wAQi is constant. So the
particle filter would estimate a wear parameter for the linear
model that is the product of the wear parameter for the ref-
erence model multiplied by Qi. So under constant loading,
the linear model, or any other damage model that predicts a
constant Ȧ under uniform loading, will produce accurate pre-
dictions. But, if the future loading is different than the current
loading, then the product wAQi will change and the wear pa-
rameter estimated for the linear model will no longer be valid.
This is illustrated in Fig. 7. At tP , Qi increases by 30%. The
algorithm using the reference damage model captures the re-
lationship between Ȧ andQi consistently with the simulation,
and predicts EOL to be a little over 25 hours. In contrast, the
linear model overestimates the RUL, because its wear param-
eter was tuned to the previous value of Qi, and results in a
RA of only around 80%. So for complex loading situations,
it is important to correctly capture the relationship between
loading and damage progression.

Model v RA RMADRUL

M 0 97.80 11.61
1 97.57 11.43
10 97.50 11.18

MLinear 0 79.93 10.72
1 83.93 10.79
10 82.45 9.41

MSquared 0 78.05 11.59
1 79.68 12.15
10 74.59 11.17

MPoly 0 78.43 6.07
1 78.94 9.09
10 76.48 11.76

MExp 0 82.34 9.23
1 79.87 12.43
10 69.37 21.32

Table 2. Prognostics Performance for Thrust Bearing Wear

The prognostics performance results for thrust bearing wear
using different damage models and different levels of process
noise variance are shown in Table 2. Results for radial bearing
wear are similar, since the same damage models were used,
and are omitted here. For the thrust bearing wear, only the
case using the correct damage model obtains reasonable ac-
curacy. The estimation results for some of the damage models
are shown in Fig. 8. In all cases, the damage variable, rt, was
tracked well. With the algorithm using the reference damage
model, the wear parameter is tracked well and after conver-
gence remains approximately constant. In contrast, the lin-
ear model does not capture the relationship with ω correctly
(i.e., in the reference model it is really a function of ω2), so
as ω changes between the two RPM levels, the estimate of
the wear parameter must constantly increase and decrease to
correctly track the damage progression. Further, because the
rate of damage progression in the reference model increases
over time (since it is a function of rt), and the linear model
does not capture that behavior, its wear parameter estimate
must increase over time. With the polynomial model also,
the parameter estimates do not take on constant values. This
is also due partly to the fact that a wide number of pairs of
wt1 and wt2, i.e., multiple solutions to the damage progres-
sion equation, can track the short-term damage progression
well. Hence, the wear parameter estimates can change over
the long-term while still tracking short-term, leading also to
an increased variability in the prediction accuracy.
The prediction performance is compared in Fig. 9. The algo-
rithm using the reference model obtains accurate predictions.
On the other hand, the other models consistently overestimate
the RUL, because at any point in time they are underesti-
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Figure 8. Thrust bearing wear parameter estimation.

mating the rate of damage progression that would occur in
the future. So, early on, the predictions are overly optimistic
and could result in poor decisions based on that information.
These models also produce very similar predictions. For the
reference modelM, PH is around 95%, but for the remaining
models, PH is around 30% or worse, so, for these models, ac-
curate predictions are only being obtained with less than 30%
life remaining, as observed in Fig. 9.
Note also that as the process noise increased, the algorithm
using the reference model had only small decreases in perfor-
mance, whereas for the other models, performance decreased
quite significantly. In this case it was more difficult for the
particle filters using these models to track damage over the
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Figure 9. Thrust bearing RUL prediction performance.

short term, which resulted in a greater variation in the wear
parameter estimates, leading to large decreases in accuracy.
Overall, this analysis illustrates the trade-off in the develop-
ment of models of damage progression. In some cases, sim-
ple, more abstract or less granular models may suffice, es-
pecially if the system load remains constant. But with more
complex operational scenarios, the need for a damage model
that accurately captures the relationship with the load is nec-
essary. In the case of the thrust bearing wear, even though the
current and future inputs were the same, the fact that all of the
less granular models did not account for the relationship be-
tween ṙt and rt, which caused the damage progression rate to
increase over time, resulted in poor prognostics performance,
even for the more complex models. The more complex mod-
els, i.e., those with more unknown wear parameters, allowed
more flexibility to correctly approximate the correct damage
progression function, but this also increased the dimension
of the joint state-parameter space and made estimation more
difficult.

8. CONCLUSIONS

We presented a model-based prognostics methodology, and
investigated the effect of the choice of damage progression
models on prognostics performance. In prognostics mod-
eling, accurate damage progression models are crucial to
achieving useful predictions. Using a centrifugal pump as a
simulation-based case study, we developed several different
damage progression models, and, assuming some physics-
based wear equations as the reference form, compared the
performance of the prognostics algorithm using the different

10
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models. In some cases, such as under cyclic or constant load-
ing, it was shown that simple linear models may suffice. Some
models also performed poorly early on but achieved accurate
predictions before 50% life remaining. But, omitting addi-
tional interactions within the damage progression models may
cause inaccurate results, even under simple loading scenar-
ios. Further, even though the prognostics algorithm was ro-
bust enough to track the damage with all the different models,
this did not translate to accurate predictions when a different
damage progression model was used relative to the reference
model.
In future work, we will extend this analysis to other domains
such as electrochemical systems and electrical devices, in
order to establish general design guidelines for prognostics
models. For a desired level of prognostics performance, we
want to be able to determine what level of model granularity
is necessary. These ideas also apply to data-driven models,
and models for diagnosis, which will be addressed in future
work as well.
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ABSTRACT 

In this study the opportunity to introduce PHM (prognostic 
and health monitoring) concepts into a cracked railway axle 
management is investigated. 
The performances of two different prognostic algorithm are 
assessed on the basis of their RUL (remaining useful life) 
predictions accuracy: a prognostic model based on the 
Bayesian theory and a physical prognostic model. Both 
models rely on the measured crack size. The measured crack 
growth measure has been built from simulated probabilistic 
crack growth path by adding measurements errors. The 
effect of monitoring frequency and the measurement HW 
and SW infrastructure size error to RUL predictions’ 
accuracy is assessed as well, trying to evaluate the 
hypothetical measuring infrastructure capabilities’ (sensors 
+ layout) effect on the overall PHM predictions. 
Furthermore the PHM approach is compared to the classical 
preventive maintenance approach to railway axle 
maintenance management based on expensive and regular 
NDT. 

1. INTRODUCTION  

Railway axles are designed to have an infinite lifetime 
(EN13103, 2001). However occasional failures have been 
and are observed in service. The typical failure positions are 
the press-fits for wheels, gears, and brakes or the axle body 
close to notches and transitions. Such failures always occur 
as fatigue crack propagations whose nucleation can be due 
to different causes (U. Zerbst M. V., 2005). In the case of 
railway axles, the presence of widespread 
corrosion(Hoddinot, 2004)(C.P. Lonsdale, 2004) or the 
possible damage due to the ballast impacts (M. Carboni, 
2007) may constitute such causes. 

This kind of failures is usually tackled by employing the 
‘damage tolerance’ methodology, whose philosophy 
consists (U. Zerbst M. V., 2005)(U. Zerbst K. M., 2005) in 
determining the most opportune inspection interval given 
the ‘probability of detection’ (PoD) of the adopted non-

destructive testing (NDT) technique or, alternatively, in 
defining the needed NDT specifications given a 
programmed inspection interval. 

The negligible number of axle failures is reached thanks to 
role played by inspections carried out with the aim of 
keeping developing fatigue problems at bay. As reported by 
(R.A. Smith, 2004) in the United Kingdom there have been 
about 1.6 axle failures per year over the last 25 years, out of 
a population of about 180,000 axles. (A similar number of 
new axles are introduced every year in PR China, where 
some 2.5 x 106 wheelsets are in fleet service.) These large 
numbers of axles are subjected to inspections in order to try 
to identify cracks before failures occur. In general, the 
examinations are expensive, time consuming and not 
particularly effective in finding cracks. Furthermore, the 
dismantling needed to examine axles, such as the drawing-
off of bearings, can cause scratching damage that is 
sufficiently severe to cause an axle to be retired. The 
rationale behind the frequency of testing is that the largest 
crack that would not be detected in an inspection should not 
grow to failure during the service interval to the next 
inspection. This implies that crack propagation calculations 
should be performed with sufficient accuracy to set the 
inspection interval. However, as stated by (R.A. Smith, 
2004) some difficulties arises: 

• Due to the difficulty in determining the reliability and 
sensitivity of the inspection techniques, the initial crack 
length chosen for the life calculation must be set larger, 
leading to shorter intervals between inspections than are 
really necessary. 

• The service loads are much more stochastic in nature 
than the well-defined hypothetical loads used for the 
initial design rule suggest. In many cases, in the absence 
of experimental measurement, the magnitudes and 
frequencies of these events are unknown, thus making 
cycle-by-cycle crack growth predictions unreliable. 

• Important inputs to fatigue calculations are material 
properties such as crack growth data, fatigue limits and 
fatigue thresholds, which are very sensitive to material 
condition, manufacturing route, surface treatment, 
orientation and load sequence. In many cases these data 

M.Vismara.  This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 Uni0074ed States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
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are lacking, particularly from large specimens 
representative of axles. 

• Abnormal conditions may arise in service. There is 
debate about the best means of protecting axles from 
corrosion and the extent to which coatings may hinder 
inspection. The interactions between fatigue and 
corrosion mechanisms in extending defects are still 
inadequately understood. Higher speeds have led to 
increased examples of damage of axles from flying 
ballast, which may be of the form of crack-like 
indentations on axle surfaces that initiate premature 
failure. 

These considerations can lead to think that maybe, instead 
of using a preventive maintenance approach a predictive 
maintenance approach based on prognostics could be 
convenient. Several aspects has to be considered in order to 
assess the technical and economical feasibility of this 
approach. The first and the most important is the assessment 
of the prognostic algorithm predictions accuracy and its 
sensibility to the goodness of the diagnostic and monitoring  
equipment used. 

This section constitute the first attempt to answer to this  
question through an explanatory assessment of two 
prognostic algorithms. The first one is based on statistical 
method, the second one exploit the good understanding of 
the crack propagation physical process to estimate the time 
to fail of a cracked axle. Moreover, the predictive 
maintenance approach is qualitatively compared to the 
classical preventive approach.  

2. PROBLEM  FORMULATION  

2.1 Simulation of the crack growth paths – The 
stochastic crack growth algorithm 

In this paragraph the stochastic crack growth model used in 
this work is presented. The non-powered railway axle 
considered in the present study is manufactured in A1N 
steel and used in Y25 bogie with a diameter D equal to 160 
mm. 

Service loads acting on railway axles are the result of 
vertical and lateral forces (EN13103, 2001) due to their 
normal functioning, and the maximum bending moments 
can be found in the area of the wheels press-fit (U. Zerbst 
M. V., 2005)(M. Carboni, 2007). On the basis of these 
considerations, fatigue crack growth has here been analyzed 
at the typical T-transition between the axle body and the 
press-fits. 

Different algorithms for simulating the crack growth of 
cracked components are available in literature. Some of 
them consider the crack growth modeling as stochastic 
process, see for example (K.Ortiza, 1988),(D.A. Virkler, 
1979).(J.L Bogdanoff, 1985). However, the likelihood of 
lifetime calculations depends on the adopted FCG algorithm 

and only the most complex algorithms are able to 
adequately describe crack propagation under variable 
amplitude loading in railway axles (S. Beretta M. C., 2006). 

In the present work the NASGRO algorithm (Anonymus, 
2006) will be considered. This FCG model has been chosen 
because it is the reference algorithms in analyses where 
random loadings are involved, since it takes into account the 
‘‘plasticity-induced crack closure’’ phenomenon (EN13103, 
2001). Moreover, NASGRO has been used in several papers 
addressing the propagation of fractures in railway axles (U. 
Zerbst M. V., 2005) (S.Beretta M. , Simulation of fatigue 
crack propagation in railway axles, 2005)(S. Beretta M. C., 
2004). 

The considered software adopts the Paris-based crack 
propagation law called ‘‘NASGRO equation’’: 

 

 
da

dN
= C ��1 − f

1 − R
�∆K�� �1 −

∆K��

∆K
��

�1 −
∆K�1 − R�∆K����

�� 2.1 

 

where ‘‘C’’, ‘‘ n’’, ‘‘ �’’ and ‘‘�’’ are empirical constants, 
‘‘ �’’ is the stress ratio, ‘‘∆K��’’ is the threshold SIF range 
and ‘‘∆K����’’ the critical SIF. 

To analyze cracked bodies under combined loading, the 
stress intensity factor is expressed as: 

 
∆K�	
 = 	
 α� �a

D
���

��

+ β� �1 − R��S + ε�√πa 2.2 

Where α� and β are empirical constants, S is the applied 
bending stress, a is the crack size and ε is a random 
coefficient (introduced later in the paragraph). The bending 
stress is considered plane since NASGRO is not able to 
consider rotating bending conditions. This assumption has 
not a significant influence on estimated life predictions as 
demonstrated in (S.Beretta M. , Rotating vs. plane bending 
for crack growth in railway axles, 2005)(S.Beretta M. M., 
2006). 

The closure function is defined as: 

 

 f = A� + A�R 2.3 

Where 

 

A� = 0.825 − 0.34ϑ + 0.05ϑ� cos �π
2

S���� 

A = �0.415 − 0.071ϑ�S� 

 

2.4 

ϑ is a plane stress/strain constraint and S� is the ratio of the 
maximum applied stress to the flow stress. 
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Since NASGRO does not consider the geometry of the 
typical transitions of axles, equation 2.5 is modified in terms 
of the maximum SIF present at the notch root and calculated 
as 

 ∆K = K�∆K�	
 2.6 

K� represents the experimental stress concentration (S. 
Beretta M. C., 2004). 

As demonstrated by (S. Beretta M. C., 2006), the crack 
growth randomness can be described considering the stress 
intensity factor threshold as a random variable. Particularly, 
it is demonstrated that ∆K�� can be considered as belonging 
indifferently to a lognormal distribution or normal 
distribution. In this work is considered as a normal variable 
with mean ∆K�� and standard deviation �∆���

. The empirical 
calibration of all the other parameters is carried out by 
means of dedicated fracture mechanic experiments. Their 
values are listed in Appendix. Another relevant source of 
uncertainty is the randomness of the applied load (U. Zerbst 
M. V., 2005)(M. Carboni, 2007). Therefore service loads 
have been considered derived from experimental results on 
a high speed train. Next, the service stress spectrum has 
been approximated with a simple block loading consisting 
of twelve blocks (Table 1). To take into account the within 
block variability a random term ε is added in the Eq.2.9. It is 
assumed to be uniformly distributed with mean equal to 0 
and with a span of 2ε. 

The so defined block loadings were then applied to growth 
calculations with a time sequence in accordance to Gassner 
suggestions (Gassner, 1956). Starting from the discrete 
spectrum in Table 1, the random history loads sequence is 
built by permutations of the whole set of the blocks. Each 
load sequence is 3.222.887 km long, composed of 20 
consecutive complete permutations. Some simulated crack 
growth path, considering all the uncertainties described 
(load history, ∆K�� and ε) are shown in  Figure 1. 

 

Cycles Load [MPa] 
1 145 

8 135 

75 125 

825 115 

15,000 105 

110,025 95 

357,675 85 

678,900 75 

1,621,725 65 

3,046,500 55 

8,165,775 45 

39,718,275 35 

Table 1 The 12 service time blocks 

 

Figure 1 Examples of simulated crack growth paths 

Eventually, once determined an initial crack size and a 
limiting crack depth value at failure, through the Monte 
Carlo technique is possible to estimate the TTF pdf. Each 
simulation run is characterized by a random ∆K�� and a 
random load history. Considering an initial crack size of 2 
mm and a limiting crack size of 60 mm, the TTF pdf is 
shown in Figure 2. 

 

Figure 2 TTF probability distribution 

The TTF pdf for the purposes of this work is considered as a 
lognormal distribution as can be observed in Figure 3. It can 
be noticed how a lognormal distribution fits well the TTF 
data for almost the whole TTF variability range, only the 
right hand tail significantly diverge for the TTF. This is 
demonstrated also by Beretta et al. (S. Beretta M. C., 2006) 
and Schijve (Schijve, 2001). 
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Figure 3 Lognormal fit plot for TTF pdf 

2.2 Design of the preventive maintenance approach  

The preventive maintenance approach is designed according 
to the damage tolerant approach well described by (U. 
Zerbst M. V., 2005) (U. Zerbst K. M., 2005). The steps that 
have to be followed to design a design an axle preventive 
maintenance plan are: 

1. establishment of the initial crack shape and size for 
further analysis 

2. within a damage tolerance concept the initial crack size, ��, is not identical to the size of a real flaw, e.g., from 
the manufacturing process but is a fictitious size, which 
usually refers to the detection limit of the NDI 
technique. The basic idea is that the largest crack that 
could escape detection is presupposed as existent. 

3. simulation of sub-critical crack extension, 
This kind of crack growth is designated as sub-critical 
since it will not lead to immediate failure until a critical 
length of the crack is reached. For railway applications 
the common mechanism is fatigue. 

4. determination of critical crack size for component 
failure. The sub-critical crack extension is terminated 
by the failure of the component. This may occur as 
brittle fracture or as unstable ductile fracture. Critical 
states may, however, also be defined by other events 
such as stable ductile crack initiation or the break-
through of a surface crack through the wall or setting a 
maximum allowable crack size threshold. 

5. determination of residual lifetime of the component, 
The residual lifetime is that time or number of loading 
ycles which a crack needs for extending from the initial 
crack size, ��, (step 1) up to the allowable crack size, ��� , established in step (3). 

6. specification of requirements for non-destructive 
testing. 

The constitution of an inspection plan is the aim of a 
damage tolerance analysis. From the requirement that a 
potential defect must be detected before it reaches its critical 
size it follows immediately that the time interval between 
two inspections has to be smaller than the residual lifetime. 
Sometimes inspection intervals are chosen to be smaller 
than half this time span. The idea is to have a second chance 
for detecting the crack prior to failure if it is missed in the 
first inspection. It is, however, also obvious that frequently 
even two or more inspections cannot guarantee the crack 
being detected since this would require a 100% probability 
of detection. 
The procedure described by (U. Zerbst M. V., 2005) aims to 
define the NDT specifications following the ‘last chance’ 
approach introduce in (M. Carboni, 2007). In this case, the 
PoD is not a variable to be optimized but is given. Therefore 
the maximum inspection interval was defined instead of the 
requirements for non destructive testing. The steps from 1 to 
4 has already been done in the previous paragraph. 

2.2.1 The PoD curve 

The PoD can be derived from the calibration function of the 
particular NDE equipment used  that relates the crack 
dimension (length,depth or area) to the output. In this case, 
the NDE method considered is the ultrasonic inspection. 
Since output from an NDE measurement process is a 
continuous response, the calibration curve is modeled as a 
linear function in which the measurement (dB of the signal) 
is given by a linear combination of two parameters and the 
crack area (�� [���]) plus a normal zero mean error with 
constant variance (Eq.2.7). 

 �	��
 =  �� +  �� log�� �� + � 	0, ��
 2.7 

The parameters �� , ��, �� are estimated through the LSE or 
through the MLE methods. Is assumed that 1000 dB and -
1000dB are respectively the saturation and observable 
limits. 

The data provided from which the parameters are estimated 
have been obtained from real inspections of railway axles.  
The parameters’ values are reported in Table 2. 

Parameter Value* 

�� Xxo �� Yyo �� Zzo 

Table 2: Calibration Curve Parameters 

In order to use the calibration curve in the following 
analysis, the crack size has to be expressed in term on depth 
instead of  surface area. The crack geometry is assumed  to 

                                                 
* Values are omitted for confidentiality reasons 
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be semicircular (M. Carboni, 2007). Therefore, the resulting 
calibration curve function becomes: 

 � =  �� +  �� log�� ���
2

� + � 	0, ��
 2.8 

In order to derive the PoD function, a threshold is fixed that 
represents the measure’s bound that if it’s overcame, the 
presence of a crack is diagnosed. This limit is set at 50.6 dB 
that corresponds to a crack depth of 5.492 mm.  

The reference limit and the final calibration curve with the 
constant 3��  confidence limits is shown in Figure 4. 

 

Figure 4: Final Calibration Curve 

At this point the PoD curve can be derived as it represents 
the probability that a crack of size � can be detected, given 
that the threshold is set at ���. According to this statement 
and making the hypothesis of a normal distributed error, the 
PoD of a crack depth � is: 

 ������ =  ������ > ������� = 

= 1 − Φ������� − ��� +  � log� ����2
���� � 

= 1 − Φ�50.6 − ��� +  � log� ����2
���� � 

2.9 

 

where Φ is the standard normal cdf. In Figure 5 is shown the 
resulting PoD curve.  

 
Figure 5: PoD 

The PoD as discussed above in paragraph 2.2 is used to 
determine the maximum inspection interval in order to 
detect with a probability � the maximum allowed crack size ��� . In the following paragraph, according to the problem 
defined in paragraph 2.2, the  maximum inspection interval 
is determined. 

2.2.2 Identification of the maximum inspection interval 

The maximum safe inspection interval is determined 
through examining the effect of the interval of inspection on 
the overall probability of detection in the case of a fast 
growing crack. The inspection interval is therefore the 
maximum interval of inspection that allows the detection of 
the maximum allowable crack size with a defined reliability. 
The worst case is when the time (or distance) before the 
failure occurs (TTF) is minimum. This happen when, once 
the maximum defect present in the system is set, the crack 
growth rate is the highest. The inspection interval is 
therefore dependent on the largest defect present in the 
system, that is the defect that will eventually cause failure.  

The maximum defect size is set at 2 mm as suggested by the 
literature reviewed(M. Carboni, 2007)(U. Zerbst M. V., 
2005) and as set in the crack growth simulations. At this 
point the fastest growth crack has to be chosen as the 
reference upon which the maximum allowable inspection 
interval has to defined. 

Starting from the TTF distribution shown in Figure 2, the 
fastest growth crack has been chosen. It is the crack growth 
path with the minimum TTF in 300 simulations and that 
falls in the first bin of the TTF distribution. In Figure 6 is 
shown the path selected and its relative position with respect 
to the TTF distribution (blue line). As can be seen it falls in 
the left tail of TTF pdf. 
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Figure 6 Fastest growth crack 

Once the worst case is chosen and the reference PoD has 
been defined, the maximum inspection interval can be 
found.  

Given an inspection interval, ‘� ’, the cumulative PoD 
PCDET of a defect, potentially observable in a given number 
of inspections, �, is calculated from the PoD curve of the 
adopted NDT technique. Figure 7 shows how the 
cumulative probability of detection is calculated, that in 
formulae results. 

 ����� = 1 – �������

���

 

����� = 1 − ����  
 

2.10 

Here, �����   is the theoretical cumulative ��� and ���� 
(‘probability of non-detection’) represents the probability of 
failing to detect in a given inspection.  

(a) 

 

(b) 

Figure 7 Calculation of the cumulative probability of 
detection (a) and the fault tree of the inspection (b) (adopted 

from (M. Carboni, 2007)) 

The ���� depends on the actual crack size � that 
corresponds to the cycle � according to the Eq. 2.9. The 
more the  inspections the more the �����  will be. 

Since a 100% ����� is impossible to reach theoretically, a ����� threshold was set at 0.99. 

In order to determine the inspection interval the final ����� 
is evaluated at different intervals of inspection. Particularly, 
the final ����� was evaluated starting from 1 to 60 
inspections that result in the same number of intervals. 

The final �����  is the ���� that results from the last 
inspection. Figure 8 shows the results of the assessment, it 
shows the �����  as a function of the inspection interval. 
The figure confirm what stated previously: as the number of 
inspection increases and the inspection interval decreases ����� increases. The optimal inspection interval is the 
largest that guarantee a ����� = 0.99.  

From Table 3, can be seen that the inspection interval at 
0.99 falls between 34,988 km and 32,297 km. By linear 
interpolation we can find that the interval at 99% PCDET is 
33,663 km. 

N° 
inspections 

Inspection 
Interval [km] ����� 

1 419,856 0.000000 

3 209,928 0.000014 

5 139,952 0.003680 

7 104,964 0.003694 

9 83,971 0.007346 

11 69,976 0.007360 

13 59,979 0.010992 

15 52,482 0.011006 

17 46,651 0.026369 

19 41,986 0.026967 

21 38,169 0.397817 

23 34,988 0.834808 

25 32,297 0.999981 

Table 3 PCDET with different inspection interval  
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Figure 8 �����  as function of the inspection intervals 

The literature reviewed (U. Zerbst M. V., 2005)(M. 
Carboni, 2007) (S. Beretta M. C., 2006) suggests to 
determine the inspection intervals referring to the average  
crack growth path, i.e whose TTF is equal to the mean TTF. 
In this case, once selected the right crack propagation 
lifetime, the maximum inspection interval is computed as 
well. The result is that the optimal inspection interval should 
be performed each 153,197.8 km. It is worth noting that in 
case of the fast crack growth crack, with an inspection 
interval equal to 153,197.8 km the PCDET is equal to 
0.2986%. 

2.3 Prognostic Modeling of the Crack Size Growth 

In this section two methods able to predict the RUL of 
cracked railway axles  are introduced and compared  in term 
of their prediction performances. 

The first model uses a statistical approach based on the 
Bayesian probabilistic theory and the second one uses the 
physical model introduced in the paragraph 2.1, the same 
used to generate the crack growth paths. Since the model 
accurately describe the real crack growth in railway axles(S. 
Beretta M. C., 2006), it can be used both to substitute 
experimental tests and to generate the database needed to 
support a statistical approach to evaluate the axles’ TTF and 
RUL. 

The aim of the section is to introduce and give evidence of 
the capability of a prognostic approach based on these 
algorithms to reduce the uncertainties associated to the 
prediction of the TTF of a continuously monitored cracked 
axle meanwhile  it operates. This approach can be helpful to 
increase the inspection interval and, as a best result, inspects 
the axle only when the wheels have to be maintained 
without reducing the system’s safety.  

2.3.1 Setting the threshold 

In order to design a prognostic algorithm capable of 
updating the axle’s TTF the concept of failure has to be 

clearly determined. In this case it is trivially derived since 
the axle is considered faulty when the maximum allowable 
crack size is reached. Obviously, the threshold has to fixed 
considering the errors that affects the whole monitoring and 
prognostic system. Figure 10 shows a scheme of the 
different types of errors that has to be considered in setting 
the threshold. A safety margin has to be introduced against 
the errors that affect the estimation. The first error was 
introduced in the paragraph 2.2.1.  

 

Figure 9 Illustration of the meaning of the size error 

It is the error associated with the calibration curve of the 
ultrasonic inspection. This error introduces an uncertainty in 
the determination of the crack size given that the ultrasonic 
probe measures x dB. 

Figure 9 illustrates what is meant for the size error. Given 
the calibration curve in Eq.2.8, the size error �� is defined 
as: 

 �� =
��� 

�� = � �0,
����� 

2.11 

 

Figure 10 The errors affecting the monitoring and 
prognostic system 

The other errors that are present are those associated with 
the model describing the crack growth, that are the residuals 
between the actual crack size and the that one predicted by 
the model and eventually the noise that affects the 
measurements process.  
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In this case the size error is only considered since no data 
are available about the other error sources. The error 
considered can be considered as the sum of those making 
the hypothesis that the used diagnostic system’s 
performances are better.  

Given a crack depth ��� as the maximum crack size 
allowed, the threshold that will be used as a reference for 
estimating the axle TTF is that one that guarantees at 99% 
of confidence that ��� won’t be missed.  

Starting from the calibration function in Eq.2.8 we have to 
find ���� that corresponds to �	��� ≤ ����
 = 0.99. 

Starting from Eq.2.9, given the measure �, the related crack 
size is: 

 � = �2� 10
����
�� 10

�

�� 2.12 

Remembering that �� =
�

 �
, we have: 

 � = �2� 10
����
�� 10�� 2.13 

Given that �  corresponds to the measurement of the crack 
size ���, we have: 

 ��� = !�

!
10

��	
�

�   2.14 

The crack size that corresponds to the measurement �  is: 

" � = !�

!
10

��	
�

� 10��  

� = ���  10
��
�  2.15 

 

From Eq.2.15 we have that given a real crack depth of ��� 
the crack size associated � (estimated from the 
measurement) is a random variable distributed as a 
lognormal with an associated mean of log��	���
 and a 
standard deviation of 

"

���
. 

 
log�� � = log�� #���10

��
� $ 

log�� � = log��	���
 + log��
��
2

 

log��
��
2

= � �0,
��

2��� 

2.16 

Now we can define the threshold ����: 

 �	���� − ��� ≤ 0
 ≥ 0.99 

%& log�� ���� − log�� �����
2�� ' ≥ 1 − 0.99 

2.17 

 

The result is ���� = (. ()). 

If we let vary both �� and ���  and calculate the 
corresponding ���� we obtain a surface plotted in Figure 11. 
As we can see the relation is not linear and as the standard 
error increases, given a maximum crack size, the 
corresponding crack depth threshold decreases. 

 

Figure 11 Crack size threshold as a function of �� and ���  

2.3.2 Bayesian updating algorithm 

This section develops methods that combine two sources of 
information, the reliability characteristics of a axle’s 
population and real-time sensor information from a 
functioning axle, to periodically update the distribution of 
the axles’s residual life. 

We first model the degradation signal for a population of 
axles with an appropriate model assuming error terms from 
an iid random error process. A Bayesian updating method is 
used to estimate the unknown stochastic parameters of the 
model for an individual component. Once we have 
determined the posterior distribution for these unknown 
parameters, we derive the residual-life distribution for the 
individual component. 

In this case there is not simple functional form that fit well 
the simulated crack growth pattern. Nevertheless, an 
approximation of the paths can be performed by splitting the 
signal in two parts, that can be modeled as two exponential 
functions as shown in Figure 12. 
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Figure 12 The two exponential models 

The shift from the first model to the second is based on a 
crack depth threshold that is plotted in Figure 12 as a black 
dash dotted line. The TTF of the axle monitored is therefore 
defined as: 

 **+ = *� + *� 2.18 

Where *�is a random variable that express the predicted 
time to reach the threshold ,-�� and *�is a random variable as 
well that denote the time that takes the crack to grow from 
the threshold to ����.  

Let ,(.) denote the degradation signal as a continuous 
stochastic process, continuous with respect to cycle �. We 
observe the degradation signal at some discrete points in 
cycles, ��, ��, . . ., where �� ≥ 0. Therefore, we can model 
the degradation signal at cycles �� = ��, ��, . . ., as follows: 

 ������ =   + !exp���� + "�
����� =  � + !�exp����� + "�� � ≤ ���� 

���� ≤ � ≤ ���� 
2.19 

 

If we redefine /�	��
 =  ,	��
 − 0� for  , ≤ ,-�� and /�	��
 =  ,	��
 − 0� for ,-�� ≤ , ≤ ���� we obtain: 

 

 

1/�	��
 = 2�exp3���� + ��	��
4
/�	��
 = 2�exp3���� + ��	��
45 

� ≤ ���� 

 

���� ≤ � ≤ 
���� 

2.20 

The choice of threshold ,-�� has to be based on an 
optimization rule. In this case, the threshold is that one that 
bound the maximum residual of the first fitted model to 
0.0012. Obviously the rule can be changed, for example the 
threshold could be that one that minimize the overall fitting 
error. The value 0.0012 at which the first residual error is 

bounded is chosen upon that willingness to prefer a better fit 
in the first part of the signal in order to achieve better 
predictions in the first stage of the degradation process. The 
reason is that good predictions (more precise) in the first 
part of the degradation path can restrict the uncertainties on 
the final RUL estimation form the beginning. As matter of 
facts, the main part of the uncertainty on the TTF comes 
from the uncertainty associated with the variable *�. In other 
words, the variance of the cycles taken by the crack to grow 
from the initial size to ,-�� is much greater that the number 
of cycles taken by the crack to grow from ,-�� to ����. 

After several simulations, the threshold that bound the 
maximum residual error of the first part of , is a random 
variable as shown in Figure 13. 

 

Figure 13 Threshold ,-�� distribution 

Eventually the final threshold chosen is the mean value of  
distribution, that is 67#$ = 8, 9 ::. 

Once determined the threshold, through an appropriate 
number of crack growth simulations, we can build our a 
priori information on the crack growth behavior. Our a 
priori information, a part form the a priori TTF distribution 
shown in Figure 2, is composed of the random parameters 2�, 2�, ��and �� probability distributions. Their values are 
obtained through the LSE technique though fitting the crack 
growth functions with the models in Eq.2.19. The final 
distribution PDFs are plotted in Figure 14.  
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 (a) (b)

(c) (d)

Figure 14 (a) log 2� PDF, (c) log 2� PDF, (b) �� PDF, (d) �� 
PDF 

As can be noted from the figure above, 2�,2�,  �� and �� can 
be approximated by lognormal distributions† with 
parameters: 2� = /�(;%�, �%�) 2� = /�(;%�, �%�) �� = /�(;��, ���) �� = /�(;��, ���) 

The probability charts of those distributions can be found in 
the Appendix. 

For these exponential models, it will be convenient to work 
with the logged signal ,. We can then define the logged 
signal at cycle ��  as follows: 

 1/,�	��
 = log 2� +���� + ��	��

/,�	��
 = log 2� +���� + ��	��
5 

� ≤ ����

���� ≤ � ≤ ����
2.21

We will use the observations /,�,� , /,�,�‡, ..., obtained at 
cycles ��, �� , ..., as our data.  Next, suppose we have 
observed  /,�,� , ..., /,�,& at cycles ��, ..., �'. 
Since the error terms, ∈� 	��
, � =  1, 2 and . = 1, … <, are 
assumed to be iid normal random variables, if we know 2�,� 
and ��,�, then the likelihood function of /,�,� , ..., /,�,&, 
given  2�,� and ��,�, is: 

                                                 
† In the Appendix can be found the probability charts of 
those distributions. 
‡ � is used to denote the belongings of /, to the first (� = 1) 
or second model ( � = 2) in Eq 2.19. 

#$ %�, , . . . ,%�,�&!,�'
= ( 1)2����*exp+−
(%�,� − log! − ���

2��� *�

��

, 

� ≤ �-�� 

2.22 

#$ %��, , . . . , %��,�&!�,��'
= ( 1)2�����*exp+−
(%��,� − log!� − ����

2���� *�

��

, 

�-�� ≤ � ≤ �.�� 

2.23 

Assumed that 2�,2�,  �� and �� are lognormal random 
variables with parameters defined above, their a posteriori 
joint distributions, according to the Bayes theorem are: 

=>2�, �� ?/,�,� , … , /,�,&@
=  

=> /,�,� , . . . , /,�,&?2�, ��@A	2�
A	��
B => /,�,� , . . . , /,�,&?2�, ��@A	2�
A	��
(∞

�)
�2���

, ≤ ,-�� =>2�, �� ?/,�,� , … , /,�,&@
=  

=> /,�,� , . . . , /,�,&?2�, ��@A	2�
A	��
B => /,�,� , . . . , /,�,&?2�, ��@A	2�
A	��
(∞

�)
�2���,-�� ≤ , ≤ ���� 

2.24 

Where => /,�,� , . . . , /,�,&?2�, ��@ and => /,�,� , . . . , /,�,&?2�, ��@ are defined in Eq.2.22 and 
Eq.2.23 respectively and: 

A	2�
 =

C
D 1

!2�2���%��E
F exp1

2
�log 2� − ;%��%� ��� 

A	��
 =

C
D 1

!2��������E
FexpG1

2
log �� − ;����� ��H 

A	2�
 =

C
D 1

!2�2���%��E
F exp1

2
�log 2� − ;%��%� ��� 

A	��
 =

C
D 1

!2��������E
F expG1

2
log �� − ;����� ��H 

2.25 

The a posteriori mean of the parameters can be obtained 
from: 
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/̂� = 1 !1 #$! ,� &%�, , … , %�,�'2�2!��

��

��

��

 

/̂� = 1 �1 #$! ,� &%�, , … , %�,�'2�2!��

��

��

��

 

/̂�� = 1 !�1 #$!�,�� &%��, , … , %��,�'2��2!���

��

��

��

 

/̂�� = 1 ��1 #$!�,�� &%��, , … , %��,�'2��2!���

��

��

��

 

2.26 

And their a posteriori variances from: 

���� = � 	
� − �̂���� ��
�,�� ����,� , … , ���,������
�
��

	�

��

	�

 

��
� = � ��� − �̂
���� ��
�,�� ����,� , … , ���,������
�
��

	�

��

	�

 

���� = � 	
� − �̂���� ��
�,�� ����,� , … , ���,������
�
��

	�

��

	�

 

��
� = � ��� − �̂
���� ��
�,�� ����,� , … , ���,������
�
��

	�

��

	�

 

2.27 

Since the solution to the problem stated has not been found 
in the statistical literature and recognizing the computation 
problem associated with solving the equations numerically, 
we have to make other assumptions on the parameters’ pdf 
functional forms. In order to reduce problem complexity the 
assumption of  �� and �� as normal distributed parameters is 
reasonable. This assumption let us to exploit the problem 
solution proposed by Lindley (D. V. Lindley, 1972) and  
Gebraeel (N. Gebraeel J. P., 2008). Therefore, 
log 2�,log 2�,  �� and �� are assumed to be normal random 
variables with parameters: 

log 2� = I� = �(;*�, �*�) log 2� = I� = �(;*�, �*�) 

�� = �(;��, ���) �� = �(;��, ���) 

Before proceeding to the formal definition of the problem 
statement, an assessment of the errors computed after 
relaxing the hypothesis of lognormal distributed  �� and �� 
can be done through a comparison of the a priori TTF 
calculated by the model with  �� and �� as normal random 
variables with the true TTF computed through the crack 
growth simulations. 

The a priori TTF probability distribution, given the model 
described by the Eq.2.20, can be computed as the 
probability that the degradation signal (crack size) /, is 
smaller than the crack maximum size allowed for each cycle �� > 0, given the a priori model parameters pdfs. The 
statement, remembering the Eq.2.18, can be formally 
written as, 

 **+	�' = 0
 = *�J + *�J  2.28 

Where *�J and *�J  are the a priori pdf distributions of *� and *�. They can be expressed as: 

 *�J 	��|n' = 0

= P>LS�	��
 ≥ ,-�� ?ωL�, β �@ 2.29 

 *�J >�+?n' = 0@
= P>LS�>�+@ ≥ ����?ωL�, β �@ 2.30 

Where  ωL�, β �, ωL� and β � are the a priori pdf of  I�,I�,  �� 
and �� respectively. 

Given that ωL�, , ωL�, β �and β � are normal random variables, 
the degradation signal LS� and LS� computed at cycles �� 
and �+ respectively, are normal variables as well (N. 
Gebraeel J. P., 2008)(N. Gebraeel M. L., 2005)(C.J. Lu, 
1993) with mean variance given by: 

 μ,-�	��
 = ;*� + ;���� 
 

σ�,-�	��
 = ��*� + �������
+ 2M��*���� + ���� 

2.31 

 μ,-�>�+@ = ;*� + ;���+ 
 

σ�,-�>�+@ = ��*� + �����+�
+ 2M��*���� + ���� 

2.32 

Remembering the Eq.2.29 and 2.30, we can write for *�J : 

 *�J 	��|n' = 0
 =

1 − P>LS�	��
 ≤ ,-�� ?ωL�, β �@= 

= 1 − �
C
DN <

,-�� − μ,-�	��
!σ�,-�	��
 E
F 

= Φ

C
D,-�� − μ,-�	��
!σ�,-�	��
 E

F 

 

 

 

 

2.33 

And for *�J : 

Annual Conference of the Prognostics and Health Management Society, 2011

344
[paper 36]



Annual Conference of the Prognostics and Health Management Society, 2011 

 12  

 *�J >�+?n' = 0@ =

1 − P>LS�>�+@ ≤ ���� ?ωL�, β �@= 

= 1 − �
C
DN <

���� − μ,-�	��
!σ�,-�	��
 E
F 

= Φ

C
D���� − μ,-�>�+@!σ�,-�>�+@ E

F 

 

 

 

 

2.34 

Where Φ stands for the standard normal cdf. The domain of  *�J and *�J ,  is ≤ 0 , thus can take on negative values, which 
is practically impossible from an implementation 
standpoint. Consequently, we use the truncated cdf for *�J  
and *�J  with the constraint *.J ≥ 0,  i=1,2  which is given as: 

 *�J =
*�J − *�J 	�� = 0
*�J 	�� = 0
  

 

*�J =
*�J − *�J >�+ = 0@*�J >�+ = 0@  

 

2.35 

As observed by (N. Gebraeel M. L., 2005),  *�J  and *�J  are 
three parameter truncated Bernstein distributed random 
variables for which the first and second moment closed form 
don’t exist(A.K Sheikh, 1983). As suggested by (N. 
Gebraeel M. L., 2005) the median is taken as the central 
moment. This can be justified, from one side by the not-
existence of a closed form for the mean, and for the other 
hand, considering that the *� pdfs  are skewed and therefore 
the use of the median is more appropriate and conservative. 

To compute the sum of the two random variables the Monte 
Carlo technique is followed, given the *�J  and *�J  numerical 
pdfs shown in Figure 15. The ωL�, β �, ωL� and β � a priori 
pdfs parameters are reported in Table 4. 

 OL/ PJ/ OL0 PJ0 Q/ Q0 

R -10.35 6.95e-009 -8.85 1.07e-007 0 0 

S0 0.69 6.92e-035 47.65 3.55e-029 
1.76e-
008 

  1.5e-
005 T -0.1421 -0.2039   

Table 4  ωL�, β �, ωL� and β � a priori pdfs parameters 

The pdfs are simply obtained differentiating the two cdfs 
with respect to �. 

(a)

 

(b)

 

Figure 15 (a) *�J  pdf (b) *�J  pdf 

Eventually the modeled a priori TTF is shown in Figure 16 
compared to the simulated a priori TTF on a lognormal 
probability plot. The green circles belong to the simulated a 
priori TTF, while the black ones belong to the modeled a 
priori TTF. 

 

Figure 16 Simulated a priori TTF and a priori modeled  TTF 
comparison – probability plot 
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A further comparison is between the two TTF pdfs is shown 
in Figure 17 in which both the cdfs are plotted. From the 
two figures can be observed that the left hand distributions’ 
tail are similar, while for large values of  TTF the two 
distributions differs. The modeled TTF has the right hand 
tail longer than the simulated one. However, for our 
purposes the left hand tail is much more important than the 
right one. For this reason the β � and β �  normality 
assumption can be acceptable. 

 

Figure 17 Simulated a priori TTF and a priori modeled  TTF 
comparison – cdf 

It is worth noting that if the two model’s parameters are 
somehow correlated, It would be possible to update the 
second model’s parameter instead of using the a priori 
information to compute the **+ till the threshold  ,-�� is 
reached. This situation would be valuable to exploit because 
better predictions could be performed since the beginning of 
the crack growth. Unfortunately this is not the case since the 
two pairs of coefficients are not significantly correlated as 
can be observed  from Figure 18. 

 !3 − !3� !3 − β3�

−�4 − θ3� �4 − β3�

Figure 18 Correlations between the couple of model 
parameters 

Now, once we have computed the a priori parameters’ pdfs, 
we can write the equations that update these pdfs’ 
parameters once obtained the signals /,�,� , … , /,�,&  or  /,�,� , … , /,�,& from the monitoring system, depending in 
which  , interval the signals are. Below is just reported the 
final formulas form which the updated pdfs parameters are 
obtained.  

The models can be rewritten as: 

 

1/,� = U�3V4�
/,� = U�3V4� 5 

, ≤ ,-��  

 ,-�� ≤ , ≤����  

2.36 

Where: 3V4�
= Wω�

β�

X 
U�
= W1 ��

⋮ ⋮
1 ��X 

3V4�
= Wω�

β�

X 
U�
= Y1 ��,�

⋮ ⋮

1 ��,�

Z 
At a cycle ��, given the measures /,�,�,   /,�,�, … , /,�,�, � = 1,2 the updated ω�,β�, ω�, β�  pdfs parameters are: 

 ;��� = [>U��U�@��U��/,�\� U��U�����
+ ;̂��  ̂

�

��� U��U�����
+  ̂

�

����� 
2.37 

 7̂
� = U��U����� +  ̂

�

����� 2.38 

 ;��� = [>U��U�@��U��/,�\�� U��U�����
+ ;̂��  ̂

�

���U��U�����
+  ̂

�

����� 

2.39 
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 7̂
� = U��U����� +  ̂

�

����� 2.40 

Where: 

;̂� = [;*� ;��] ;̂� = [;*� ;��] 

 ̂
� = [ �*� �*�,���*�,�� ��� \  ̂

� = [ �*� �*�,��*�,�� ��� \ 
are the vectors of the a priori pdfs means and the covariance 
matrixes while: 

;�� = [;�*� ;���] ;�� = [;�*� ;���] 

7̂
� = _ ��*� ��*�,����*�,�� ���� ` 7̂

� = _ ��*� ��*�,���*�,�� ���� ` 
are the vectors of the a a posteriori pdfs means and the 
covariance matrixes. 
Now, given the a posteriori pdfs’ parameters the  *� or *� 
distribution can be computed.  

Remembering Eq.2.31 and 2.32 the updated mean and the 
variance of the degradation signal at a cycle �� or �+ will be: 

 μ�,-�	��
 = ;�*� + ;����� 
 

σa�,-�	��
 = ���*� + ��������
+ 2M���*����� + ���� 

2.41 

 μ�,-�>�+@ = ;�*� + ;����+ 
 

σa�,-�>�+@ = ���*� + ������+�
+ 2M����*����� + ���� 

2.42 

And therefore from Eq.2.33 and 2.34 the updated *� or *� 
pdf will be: 

 *�b >��? /,�,�   /,�,�, … , /,�,�@
= Φ

C
D,-�� − μ,-�	��
!σ�,-�	��
 E

F 

��12�cde   
*7� − *7�	0
*7�	0
  

2.43 

And for *7�: 

 *�b >�+?/,�,�   /,�,�, … , /,�,�@
= Φ

C
D���� − μ,-�>�+@!σ�,-�>�+@ E

F 

��12�cde   
*7� − *7�	0
*7�	0
  

2.44 

An Example: 
Given a crack growth path shown in Figure 19, at each time 
step we can update the a priori **+ given in Figure 2, 
exploiting the information gained form monitoring the crack 
growth.  

Using Eq.2.37, 2.38 for the first part of the degradation 
pattern (*� in Figure 19) and the Eq.2.39 and 2.40 for the 
second part, we can compute the a posteriori 
ωL�, β �, ωL� and β � pdfs’ parameters, that are the means and 
the standard deviations. 

 
���ℎ  

 ���ℎ  

Figure 19 Crack growth path 

From the initial cycle to that one that corresponds to a crack 
size of 5.1 mm the updated  **+ is given by Eq.2.7 where *� is given by Eq.2.35, that is the a priori modeled *�. 
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a)

b)

Figure 20 a) updated  ;�*� and b) updated ;��� 
b) shows the updated ;�*� as a function of cycles, while the 

plot b)  shows the updated ;���. 
At each time step, given the updated ;�*� and ;��� we can 
compute the a actual **+ where *�b  is given by the Eq.2.43. 
For each time step the  **+  median and the 1st percentile is 
stored. These two values are plotted in Figure 21. As can be 
observed, cycle after cycle the predictions converge to the 
true TTF even before the second degradation phase. In this 
case, both the 1st percentile and the mean fall within the 5% 
error interval. The interval in which the **+ median and its 
1st percentile lines are interrupted means that the predicted  **+ falls beyond the timescale. 

 

Figure 21 Predicted TTF - 1st phase 

Once the threshold ,-�� is passed, the **+ is equal to the 
cycle *�, that is no more a random variable (it is 
deterministic), plus the predicted  *7�.  *7� is given by Eq.2.44, once computed the updated ;�� , ;*� 
and the related variances given by  Eq.2.39 and 2.40.  

Figure 22  shows the  updated  ;�� and ;*� respectively.  

a)
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b)

Figure 22 a) updated  ;�*� and b) updated ;��� 
As previously done for the first degradation phase, the **+ 
pdf can be computed using Eq.2.39, 2.40, 2.42 and 
eventually 2.44. The updated **+  median and its 1st 
percentile are shown in Figure 23. 

 

Figure 23 Predicted TTF – 2nd phase 

Can be observed how the predictions converge to actual 
failure time. This time the prediction variances are smaller 
than those of the first phase. This is due to the fact that the 
1st phase predictions include the uncertainties related to the 
a priori *� pdf. 

2.3.3 Prognostic through the physical model 

The same problem faced by the Bayesian prognostic model 
can be pursued through a recursive application of the crack 
growth model presented in paragraph 2.1. The physical 
phenomenon analyzed in this context has been faced by 
numerous researches, therefore numerous models have been 
proposed capable of describing and highlighting the main 
variables and their relations that influence the crack growth. 
The NASGRO model used in this context is recognized to 
be the most reliable to describe crack growth in railway 

axles(S. Beretta M. C., 2006)(U. Zerbst M. V., 2005)(S. 
Beretta M. C., 2004), therefore can be used to predict 
accurately the **+. 

The main idea at the basis of this approach is that, once 
measured and estimated the actual crack size and the loads 
history, we can estimate the **+ through simulating the 
possible growth paths by using a Monte Carlo technique. 

Figure 24 TTF prediction through the NASGRO crack 
growth model 

This approach is shown in Figure 24. Let suppose that 
through the monitoring infrastructure we have measured the 
crack size at the time now, we can simulate the crack 
propagation considering as random variables the load 
applied and the SIF threshold and the initial crack size equal 
to the measured one. The functions plotted and originating 
from the time now, are some simulated crack growth paths. 
Starting from the crack growth paths set, it is possible to 
estimate the **+ pdf. In Figure 24 the black dotted line 
represents the predicted **+ pdf, while the red line 
represents the actual failure time. 

The estimated  **+ at each time step can be approximated 
by lognormal distribution, as shown in Figure 25.  
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Figure 25 The approximated TTF probability plot 

As in the Bayesian approach, at each time step, the **+ 1st 
percentile, the  median and the TTF at 98% level of 
confidence is stored. However, for computational reasons, 
the **+ up dating times are set at the 5%, to the 99% of the 
actual  **+ with a 5% gap. Figure 27 shows the **+ 
estimations at different time steps. Can be observed how the 
predictions converge to the actual failure. At the last 
updating time step all the  **+ distributions’s lower and 
upper bounds fall into the 5% error interval. 

Figure 26 The approximated TTF probability plot 

Figure 27 TTF predictions 

Figure 28 shows how the confidence interval diminish as we 
approach to the actual failure. The green dotted line 
represents the difference between the **+ median and the **+ at the 0.01 confidence level, while the red dashed 
dotted line represents the **+ pdf upper bound, at the 0.99 
confidence level.   

 
Figure 28 Estimated TTF at the 0.01 and 0.98 confidence 

level 

2.3.4 The size error and the updating frequency effect   
on TTF predictions 

In the case of the physical model, the size error and the 
updating frequency effect on the estimations can be 
approximately evaluated through simple geometrical 
considerations. The assessment of these effects on the 
predictions performances is an important issue since they 
characterize the monitoring and diagnostic equipment 
goodness. Higher size errors characterize low performance 
diagnostic, while lower updating frequency entails lower 
monitoring equipment cost.  
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In this case the effect of the updating frequency on the 
prediction performances is not relevant since the **+ 
estimation relies on just the last crack size measurement and 
not, as in the Bayesian case, on the complete set of 
measurements. The  **+ updating frequency effect can be 
considerable when maintenance scheduling decisions is 
considered. By this point of view, high frequency updating 
is preferable since the decisions can be based on an updated **+.  

In this case we can apply a predictive maintenance policy 
similar to that one proposed by Kaiser et.al. in (N.Z 
Gebraeel, 2009). The stopping rule, i.e the cycle �& at which 
the axle should be substituted, is defined as in Eq.2.45. 

 �& → **+34	�&
 − �& − g ≤ 0 2.45 

Where �& is the first cycle at which the rule is verified, **+34	�&
 is the TTF prediction computed at a 0.01 
confidence level at the cycle �&, g is the updating interval. 
From this simple rule is self-evident that the greater g the 
lower �&.  

This simple rule can be easily understood by analyzing the 
graph shown in  Figure 29. The blue line represents the 
estimated **+ at the 0.01 confidence level while the black 
dotted line represents the equality n = TTF56. The dashed 
line represents the equality � = **+34 + δ. Therefore, for 
Eq.2.45, the cycle �& is the first intersection point of the **+34 (blue line) with the black dashed line. Particularly, 
referring to what stated in the previous chapters, the 
quantity **+34	�&
 − �&  is the RUL computed at the 0.01 
confidence level (RUL_ in  Figure 29). The main idea 
associated with this rule is that the axle can be safely run till 
it reaches the last **+34 estimation. 

 Figure 29 The effect of updating frequency on TTF 
predictions 

The size error effect on the **+ predictions can be 
approximately computed making the hypothesis that the 
crack growth path can be approximated with an exponential 
function. Generally, as described in 2.3.1, the more the size 
error the lesser the threshold. The analysis framework is 
shown in Figure 30. Let us suppose that for a given size 
error , the failure threshold is set at the value ��� and that 
we are at the cycle ��  and we measure the crack size 
exp (/,�).  Through the method explained in paragraph 
2.3.3, we can compute the  **+ pdf (blue line) and 
therefore we know the **+�78�� and the  **+���9 at the 
0.01 confidence level.  

Next, suppose that the new size error is greater to the 
previous one, consequently, from Eq.2.17 keeping ���  
constant, we obtain the failure threshold ���� lower than ���. This threshold shift causes a change in the **+ pdf 
parameters and therefore to the reference points  **+�78�� 
and  **+���9. 

The new reference points  **+ ′
�78�� and  **+ ′

���9 
computed at cycle ��, thanks to the hypothesis made, can be 
computed as follows: 

 ����
�����  = �������� −

log a�� − log a���

�  2.46 

 ���′
���� = ������� −

log a�� − log a���

�  2.47 

Where: 

 h =
log a�� − LS�**+���9 − �� 2.48 

 � =
log a�� − LS�**+���9 − �� 2.49 
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Figure 30 The error size effect on TTF predictions 

The lower confidence interval �� = (**+�78�� −**+���9), decreases when the size error increases, i.e the 
prediction is more accurate. This can be easily 
demonstrated, subtracting term by term Eq. 2.46 with Eq. 
2.47 we obtain: 

 ��′ = �� − ∆	log���
 �1� −
1h� 2.50 

Since � <  h and ∆	log ���
 > 0 for increasing size errors ��′ < ��. 
It is worth noting that, from Eq. 2.47, the ratio  

��:
����

��:�
����

 is 

not linear with respect to the ratio 
;��

;���
 and from Eq.2.17 the 

ratio 
;��

;���
 is not a linear function of the size error ratio.  

The updating frequency and size error combined effect on 
the cycle �& normalized with respect the actual failure (i.e 
% of the life exploited) on particular crack growth curve is 
shown in Figure 31. As we can see the relationship between 
the size error and the ratio 

��

�������
. As the size error 

increases, for a given updating frequency,  the life exploited 
decreases, while the relationship between the updating 
frequency and the life exploited  for a given size error is 
linear: the more frequent the **+ updating the greater the 
life exploited. 

 
Figure 31 The updating frequency and size error combined 

effect 

3. RESULTS 

Our goal, as stated in paragraph 2, is to assess the predictive 
performances of both the prognostic models and eventually 
highlight the differences between the predictive and 
preventive maintenance policy.  

The probabilistic aspect of the issue has clearly arisen 
during the dissertation, therefore a reliable and a definitive 
answer to the questions proposed has to be given after 
numerous simulations that guarantee a reliable 
representation of the probabilistic aspects involved. 
However, some preliminary considerations can be outlined 
analyzing a limited number of instances.  

The method used to select the instances analyzed is based 
on the stratified sampling technique. Particularly, the TTF 
pdf represented in Figure 2 has been divided in 10 equal 
spaced intervals, that corresponds to the bins shown in the 
same figure. For each bin a crack growth path was selected 
obtaining a set of 10 possible degradation curves as shown 
in Figure 32. 
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Figure 32: The 10 crack growth paths 

For the whole set of track selected, the Bayesian prognostic 
algorithm and the physical model was applied. Moreover, 
the maximum number of inspections N��<=  and the 
expected number of inspections N>�<=

iiiiiii was computed.  

In order to evaluate the prognostic algorithms described, 
two metrics were used, one of which suggested by 
(A.Saxena, 2008). 

This metric, called Timeliness 0, exponentially weighs 
RUL prediction errors through an asymmetric weighting 
function. Penalizes the late predictions more than early 
prediction. The formula is: 

 

  

%(�) =

jkl
kmexp |n(�)|� �

exp |n(�)|o �
5 n ≥ 0

n ≤ 0

 3.1 

 0 =
1� p%(�)

?

���

 3.2 

Where n(�) = **+@�A3 − **+�78��(�) is the prediction 
error computed at cycle �, while � and o are two constants 
where � > o. In this case � = 100 and o = 10. 

Ideally the perfect score is 0=1. To be comparable, the 
updating frequency has to be the same between the two 
algorithms, therefore the TTF predictions in the physical 
model case have been linearly interpolated.   

The other metric chosen is simply the predictions 
percentage error computed at fixed time steps �& = 0.25+*,

0.5+*, 0.75+*, 0.98+* , where FT is the cycle at which 
the failure occurs. 

In the appendix the comparison of the predictions at 
different time steps and the PCDET  for each of 10 sampled 

paths can be found. Moreover, the size error and the 
updating frequency effect on the exploited life are plotted 
for each instance. 

As can be noticed form these figures, both the algorithms’ 
predictions converge to the actual failure time. The 
information about the actual degradation path increase as 
time elapses, resulting in an improved knowledge about the 
actual TTF. Better knowledge of the crack growth behavior 
allow more accurate predictions. The advantage of 
continuous monitoring with respect to the a priori 
information is clearly evident observing  Figure 33. It shows 
the TTF pdf obtained from the prognostic algorithms 
described and the a priori TTF pdf (black line). It is clearly 
noticeable how prognostics can improve the knowledge on 
the actual failure path followed by an individual axle.  

 

Figure 33 Comparison of the a priori TTF pdf and the 
updated TTF pdf obtained from the prognostics algorithms 
described (green-Bayesian, blue physical based model, 
black - a priori) 

However, substantial differences among the two prognostic 
approach exists. Particularly, what differs is the distribution 
of the prediction errors along the degradation timeline and 
the prediction confidence interval. The last statement is 
evident observing the figures in the appendix in which the 
predictions paths are compared. In all the instances selected 
the physical model confidence interval is larger than that 
one computed by the Bayesian approach.  

However, the most important differences among the two 
approaches have to be evaluated  in term of the prediction 
errors. The following graphs display the prediction errors 
for both the algorithms and for the whole crack growth track 
set at fixed residual life percentile (i.e 0.25, 0.5, 0.75, 0.98). 
The same information are displayed in a tabular form in 
Table 5. The percentage prediction error is simply calculated 
as: 
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 qrr% =
+* − **+�78��+* 100 3.3 

From the graphs can be concluded that: 

1. Physical model prediction errors decrease 
approaching the FT 

2. Bayesian algorithm prediction errors decreases till 
the 75° percentile of the residual lifetime, while at 
98% the errors are greater that in the 75 percentile  

3. Physical model predictions are lower for FT near 
the average (bins 3,4,5) 

4. Bayesian predictions seems to outperform the 
physical model predictions for till the 75th 
percentile, while for the 98th the physical model 
predictions are more accurate.  

 
Figure 34 Percentage prediction error @ 25% FT 

 

 
Figure 35 Percentage prediction error @ 50% FT 

 
Figure 36 Percentage prediction error @ 75% FT 
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Figure 37 Percentage prediction error @ 98% FT 

% 
Lif e 

Model c_1 c_2 c_3 c_4 c_5 

25 
Physical 
model 

-98,50% -66,59% -1,20% 
-

26,69% 
-

11,19% 

 
Bayes 44,95% -3,96% -4,85% 58,58% 62,57% 

50 
Physical 
model 

-86,08% -66,11% -0,55% 
-

32,95% 
-

20,08% 

 
Bayes 19,36% 5,77% 4,00% 30,77% 35,70% 

75 
Physical 
model 

-31,09% -39,44% 10,52% 
-

20,11% 
-

11,21% 

 
Bayes 2,31% -4,42% 7,53% 11,24% 15,22% 

98 
Physical 
model 

-5,52% -3,31% 0,84% 1,72% 0,39% 

 
Bayes 1,87% 1,81% 

-
17,90% 

-
40,00% 

-5,68% 

       % 
Life 

Model c_6 c_7 c_8 c_9 c_10 

25 
Physical 
model 

32,56% 27,98% 41,74% 28,29% 57,91% 

 
Bayes 25,64% 39,37% 40,14% 41,39% 31,19% 

50 
Physical 
model 

18,24% 11,76% 22,84% 12,63% 35,59% 

 
Bayes 15,11% 12,08% 12,15% 15,37% 19,54% 

75 
Physical 
model 

8,09% 4,64% 10,39% 6,87% 16,52% 

 
Bayes 4,38% -3,27% 2,87% 2,34% 9,91% 

98 
Physical 
model 

1,44% -0,76% -0,61% 0,48% 0,61% 

 
Bayes 1,90% -12,61% 

-
10,32% 

-9,04% -3,06% 

Table 5 Percentage prediction errors 

General considerations can be drafted form the conclusive 
graph in Figure 38 that displays the mean squared 
percentage error among the whole set for each residual life 
percentile. The statements of the list above are confirmed.  

 
Figure 38 MS of the percentage prediction errors for each 

residual life percentile 

Using the other metric chosen, expressed by Eq.3.2 the 
results displayed in Table 6 are obtained. The main 
difference between the metric defined before, is that this 
metric considers the whole set of predictions and not only 
those that corresponds to particular moments. The results 
found are very similar among the two approaches. The 
physical model index is slightly smaller than the Bayesian 
one. 

 Physical model Bayes NDI - max NDI - mean 

c_1 1.07595 1.02061 34 33.24 

c_2 1.05471 1.00486 40 39.49 

c_3 1.00225 1.02235 47 42.41 

c_4 1.02188 1.01337 61 58.98 

c_5 1.01014 1.01547 71 68.61 

c_6 1.00199 1.00774 75 73.04 

c_7 1.00143 1.00769 86 82.14 

c_8 1.00251 1.00787 100 96.19 

c_9 1.00163 1.00240 105 100.35 

c_10 1.00355 1.00484 115 110.70 

MS 1.01791 1.01074   

Table 6 Results – 0, ����9 and �.��9iiiiiii 
The last two columns of Table 6 reports respectively the 
maximum non destructive inspections  number and the 
expected NDI number. The last result is obtained 
multiplying the NDI cumulative number with the 
corresponding PCDET.   
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Obviously, the expected NDI number increases as the FT 
increases. The NDI number that should be performed to 
guarantee a 99% chance to detect a crack before it reaches 
the length of 6cm is relevant. As a consequence, the 
availability of the asset is highly affected from this 
maintenance policy. The loose of availability and the 
numerous maintenance activities imply a considerable 
maintenance costs build up. 

In Figure 39 the effect of an increase of the size error is 
displayed§, considering the updating frequency of 90 km. 
Can be noticed that generally, as previously stated, the 
greater the size error, the lower the life exploited. However, 
the life exploited reduction is not relevant. An increase of 3 
times of the size error causes a life exploited reduction of 
about 5% on average. For the figures in appendix can be 
noticed that the effect of the updating frequency is lower 
with respect to the error size effect.  

The scarce effect of this important variables to the exploited 
life is due to the fact that an increase of the size error cause 
a reduction of the threshold ��� that however corresponds to 
a negligible life loss reduction thanks to the high crack 
growth rate that characterize the last part of the degradation 
phase. Greater effects shall be noticed when the size error is 
large enough to force the threshold ��� to be set at crack 
sizes at which the growth rate is lower (i.e at the end of the 
first degradation phase). 

 

Figure 39 The size error effect on life exploited given g = 90 <�** 

                                                 
§ Computed considering the physical model predictions only 

**  Life exploited is normalized with respect to the life 
exploited that corresponds to the first size error considered 

4. CONCLUSIONS 

The objective of this research was to propose an approach to 
a condition based maintenance policy assessment in order to 
preliminary evaluate its benefits and to understand the main 
variables that influence the overall approach performance. 
Particularly, an explanatory study was carried out to 
evaluate the possibility to introduce prognostic concepts 
into railway axle maintenance management.  

Through a reliable probabilistic crack growth model a 
comparison between a prognostic maintenance approach 
based on Bayesian probabilistic theory, a prognostic 
maintenance approach based on the same crack growth 
physical model and the classical preventive maintenance 
policy based on regular NDT was carried out. The 
probabilistic crack growth model considers the SIF as a 
random normal variable and a random load history derived 
from measured load spectra. The diagnostic-monitoring 
infrastructure precision was described by a size error, 
directly derived from the calibration curve of an ultrasonic 
NDT. Assuming the hypothesis introduced in paragraph 
2.3.4, the results suggests that further research should be 
conducted validating the approach proposed on a real case 
study. As matter of facts both the prognostic algorithms 
described guarantee an average absolute predictions errors 
lower than 50 % at 25% of the actual axle life. The later 
predictions guarantees lower prediction errors, approaching 
the 7% on average. Earlier predictions errors are generally 
lower for the Bayesian prognostic algorithm than those 
computed through the physical model. Whereas, for later 
predictions the physical model seem to provide more 
accurate RUL estimations. However, the gap between 
predictions error computed by the two models are, on 
average, comparable. The effect of the updating frequency 
and the size error on predictions errors in case of prognostic 
physical model algorithm scenario and therefore, on the 
overall approach performance (life exploited with a 
determined reliability threshold) is assessed as well. The 
results show that the higher the size error and the lower 
updating frequency the lower life exploited. However the 
effect of updating frequency and size error in terms of life 
exploited is limited till the maximum crack size threshold, 
derived from the error size of the diagnostic infrastructure, 
becomes lower than about 5 mm, i.e the crack size at which 
the crack growth rate significantly increases. 

Generally speaking, a PHM approach needs a deep 
system/component knowledge. This need implies high 
investment costs to perform experimental tests (high fixed 
costs). System/component knowledge in high safety 
requirement environments, such as in the aviation industry, 
has to be known before commissioning for obvious safety 
reasons. Low Accuracy PHM May Be Worse Than No 
PHM. Costs and the benefits resulting from a prognostic 
approach could be distributed differently across the actors 
involved, therefore  an “integrator” that manages all the 
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process is suggested or partnership between  the main actors 
involved  committed to  share the  investment  costs. 
Moreover it is worth noting that a trade off exists between  
system usage pattern and the resulting benefits, higher usage 
allows  a better return on investment but  lowers tADV , i.e 
the main prognostic benefits driver. 

After all these considerations, it is possible to sum up the 
results in the matrix displayed in Figure 40. Profitability of 
a PHM approach can be thought as a function of two 
variables: 

• Component  criticality  
• Easiness to acquire data of component’s failure 

modes 

 

Figure 40: PHM applicability 

Difficulties to describe and acquire data on the component’ 
failure behavior imply high R&D costs while the 
components criticality and value can boos the benefits 
allowed by a PHM approach. The case in which a PHM 
approach is suggested is the case in which it is easy to 
acquire and data and knowledge on the component failure 
behavior and in which the component monitored and 
maintained is critical for the whole system availability 
and/or it has a very high value. In the other two situations 
further investigation aimed to better estimate the costs and 
the benefits involved is suggested. 
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APPENDIX 

In this paragraph graphs related to the first simulated crack 
growth path. They represent respectively: 

• The predictions (lower bound, median and upper 
bound) on the TTF for  

o the prognostic physical model (blu lines) 
o the bayesan model (green lines) 

• The probability of detection at each inspection 

• The effect of the updating  interval in km and the size 
error on the % of life exploited (physical model only) 

The first four probability plots represent the coefficients of 
the two exponential models used in the bayesan prognostic 
model. 
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†† 

 

 

                                                 
†† Blue line: Physical model TTF estimation with 

confidence bounds (dotted) 
Green Line: Bayesian model TTF estimations with lower 

confidence bound (dotted) 

DATA  

∆K�� = N (11.32,0.857) MPa√m � =1.9966 

∆K��� =5.96 MPa√m C�� = −0.02 

R = −1 α� = −194.024 

∆K���� = 24  MPa√m α� = 322.544 

� = 1.3 α� = −177.24 

� = 0.001 α� = 41.957 

α� = −1.916 D = 160 mm 

α� = −0.3927 K� = 1.2 

β = 0.656  

ε = 10 ���  

ϑ = 2.5  

S� = 0.2  
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ABSTRACT 
The battery state of health (SOH) is a measure of the 
battery’s ability to store and deliver electrical energy.  
Typical SOH methods characterize either the battery power 
or energy.  In this paper, new SOH estimation methods are 
investigated based on the battery energy represented by the 
Ampere-hour throughput (Ah).  The methods utilize 
characteristics of the Ah to estimate the battery capacity or 
the useable energy for state of health estimation.  Three new 
methods are presented and compared.  The simulation 
results indicate the effectiveness of the methods for state of 
health estimation.    

1. INTRODUCTION 

Battery diagnostic and prognostic methods are important to 
maintain proper battery operation.  Battery damage occurs 
due to a number of reasons, such as over-charging and over-
depleting the battery.  Also, battery operation is dynamic 
and its performance varies significantly with age.  An 
important aspect of battery diagnostics is the battery state of 
health (SOH) which is a qualitative measure of the battery’s 
ability to store energy and deliver power.  Battery 
diagnostics track the degradation of battery’s performance 
to estimate battery SOH.  There are two common methods 
to calculate the battery SOH.  One method uses the battery 
impedance, or equivalently the battery power, to determine 
the battery SOH.  The SOH using the impedance, , can be 
calculated using Eq. (1).  

 (1) 

where Ri is the ith impedance measurement in time and R0 is 
the initial value.  In the other method, the battery capacity, 

, is used to determine the battery SOH as given in Eq. (2).   

 (2) 

where Ci is the ith capacitance measurement in time and C0 
is the initial value.  There are many studies that have 
researched the degradation of the battery as it ages (Zhang, 
2011).  As the battery ages, the battery’s performance 
degradation is related to changes in the battery chemistry.  
First, the growth of a solid electrolyte interface (SEI) layer 
reduces the electrical efficiency of the battery.  This 
contributes to an increase of the high-frequency resistance 
of the battery, reducing the maximum power output of the 
battery (Troltzsch, 2006).  Considerable loss of battery 
power will result in ineffective vehicle operation or vehicle 
failure, i.e. vehicle inoperation.  Second, the battery capacity 
degrades as the battery ages (Liaw, 2005).  Capacity 
degradation results from several factors, such as loss of 
bonding sites in the active material and loss of active 
Lithium-ions.  Considerable loss of battery capacity will 
result ineffective battery operation and reduced vehicle 
range.   
There have been several attempts to estimate the battery 
SOH using the battery impedance or the battery capacity.  
Haifeng et al (2009) defined SOH as a function of the 
battery’s high-frequency resistance.  Using a Kalman Filter, 
the authors estimated the battery resistance to estimate the 
battery SOH.   Also, Kim (2010) developed a technique to 
estimate the battery capacity for SOH estimation.  The 
author implements a dual-sliding mode observer to estimate 
battery capacity fade.  
Although there has been much progress in the area of SOH 
estimation, it is still uncertain and still requires research to 
develop new and more accurate methods.  The research 
presented in this paper investigates new methods which are 
based on the battery energy storage capability to estimate 
the battery SOH.  The Ampere-hour throughput (Ah) is the 
current throughput by the battery and represents the energy 
that is delivered or stored by the battery.  The battery 
terminal voltage and open-circuit voltage varies with the 
battery state of charge.  The Ampere-hour throughput can be 
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related as a function of the battery terminal or open-circuit 
voltage, i.e. Ah-V.  The methods presented in this paper 
capitalize on unique characteristics of the Ah-V function as 
the battery ages to estimate the battery SOH.     

2. PROBLEM FORMULATION 

As stated above, there are two main methods used to 
estimate the battery state of health (SOH).  One method is 
based on the battery impedance and the other based on the 
battery capacity.  For this paper, the battery capacity is used 
as the baseline method for SOH calculation.  The battery 
capacity is especially important to electric vehicles (EV) 
and plug-in hybrid electric vehicles (PHEV) due to the 
range constraint of the battery.  In this section, the problem 
of SOH estimation will be discussed and the basis for a 
practical method for online SOH estimation.   
The battery capacity degrades over the life of the battery 
and varies with temperature.  As the battery ages, 
irreversible losses reduce the amount of energy that can be 
stored and delivered.  Also, over-charging and over-
depleting the battery also cause the battery capacity to be 
reduced further.  Determining the battery’s state of health 
(SOH) provides a qualitative measure of its ability to 
function properly.  The battery SOH can be calculated based 
on capacity measurements from the capacity test shown in 
Figure 1.  The capacity test cycles the battery through 
constant current charge and discharge profiles.  The battery 
is initially discharged to achieve 0% SOC, ie the terminal 
voltage is 2.5 V.  The battery is charged to 100% SOC, i.e. 
the terminal voltage is 4.15V.  These values are values are 
defined by the battery manufacturer.  The    

 
Figure 1. Measured terminal battery current and voltage 

during capacity test 
As the battery ages, battery capacity slowly degrades as 
shown in Figure 2.   The figure shows the measured 
capacity for three battery data sets.  The battery for each 
data set was subject to capacity tests, performance tests, and 
accelerated ageing.  The capacity test, shown in Figure 1, 
for the battery in each data set was conducted at 25 °C and 
was repeated to obtain an average capacity value.  The 
performance tests included Charge Rate, Hybrid Pulse 

Power Characterication (HPPC), Charge Depleting (EV 
mode), and Charge Sustaining battery current profiles.  
During the performance tests, the temperature of the battery 
for each data set, Data Set 1, Data Set 2, and Data Set 3, was 
maintained at 20, 30, and 40 °C, respectively.  Each battery 
then underwent accelerated aging at 35 °C.  The battery 
voltage rails, i.e. lower and upper operating voltage limits, 
were set at 2.5 and 4.15 V, which spans the nonlinear 
battery operating range.  The terminal current and voltage 
were measured during all tests.   
The battery SOH is calculated using the measured battery 
capacity, as given in Eq. (2) where i is the measured 
capacity of the ith ageing iteration.  The battery SOH over 
time is shown in Figure 3.  The SOH is an indication of the 
battery health over the age of the battery.  As the battery 
continues to age, the capacity will degrade further.  At some 
point, the SOH will indicate that the battery is unhealthy, 
meaning the battery is unable to store and deliver energy for 
proper vehicle operation.  In an ideal scenario, the battery 
capacity would be readily available to provide an accurate 
estimation of the battery SOH.  However, in practical 
vehicle operation, this is not the case.  In this context, new 
methods must be developed which can accurately estimate 
the battery SOH using online algorithms with the available 
battery data during vehicle operation.    

 
Figure 2. Battery capacity over time. 

 
Figure 3. Battery state of health over time using battery 

capacity value 

Annual Conference of the Prognostics and Health Management Society, 2011

362
[paper 37]



 

T
b
u
o
r
t
d
b
h
u
m
e
t
“
t

D
r
i
b
d
b
b
V
I
a
v
c
t
t
b
w
O
c
c
s
f
v
m
c
t
I
b
i
w
c
c

Th
be
us
op
ra
th
de
ba
ho
us
m
en
th
“u
th

Du
re
in
ba
de
ba
be
V
In
ar
vo
cu
th
th
ba
wh
On
cu
cu
sto
fu
vo
m
cir
tec
In
ba
ite
wh
cy
cir

he
etw
sin
pe
an
he 
ep
att
ou
se

mad
ne
hro
us
he 

F

ur
st

nh
att
ev
att
etw
, w

n t
re 
ol
ur
he 
he 
att
hi
nb

ur
ur
or

un
ol

mea
rc
ch

n 
att
er
hi

yc
rc

e 
w
ng
er
ng

b
ple
te
ur
eab
de

erg
ou
se

r

Fi

ri
tr
ib
te

ve
te
w
w
th
u

ta
rre

A
A

te
ic
bo

rre
rre
re

nc
ta
as
cu
hn
F
te
ra
ic

cle
cu

we
g 
at
e 
ba
et
ery
r t
b
e 
gy
ug
ab

res

gu

in
ic
bi
ery
elo
ery

we
wh
his
us
ag
en
A
Ah
ery
ch
oa
en
en
ed
ti
ag
su
uit
ni
ig

ery
ti

ch
e.
uit

b
ee

t
tio
t

at
tio
y 
th
le
b

y”
gh
bl
st

ur

ng
cte
its
y 
op
y 

ee
hic
s 
se
ge
nt
h
h-
y 

h c
ar
nt
nt
d 
io
ge
ur
t 
iq
gu
y 
io
h c
  
t 

ba
n
th
on
to
tte
on
o

hr
e 
be
”.
hp
le
tri

re

g 
ed
s 

pe

n
ch
st

ed
e a
t p
-V
-V

l
ca
rd
t. 
t 
b
n

e. 
re
v

qu
ur

a
n
co
T

v

att
n t
he
n,

o m
er
n.
op
ro
e

et
.  
pu
e 
ic

e 4

v
d 
th
c

ed
S

n t
h 
tu

d t
an
pr
V
V 
lo
an
d 

 
ov

by
n o

d 
vo
ue
re
ag

n, 
om
Th

vo

ter
th
e 
, t
m
ry
. 
pe
u

en
tw

T
ut
e

cte

4

ve
a

he
ca
d 
SO
th
v

ud
to
nd
ro

V p
p

oa
n b
se
T

v
y 
of
 

d o
olt
es
e 
ge
t

m
h
lt

ry
he 
ca
th

ma
y 
 T
er

ug
ner
we
Th
t b
n
ed

. I

eh
an
e 
ap

w
O
he
va
dy
o 
d 

ofi
pr
pr
ad
b
en
Th
er
th
f 
A

on
ta
.  
5
es
th

mp
e 
ta

y 
v

ap
he
ain
fr
T
ra
hp
rg
ee
h
b
er
d 

Il
v

hic
nd

a
pa
w
H

e A
ari
y, 
g
o

fil
ro
ro
ds 
e 
ns
h
r 
he
th

Al
nl
ag
 
, 
s, 
he 
pri

t
g

vo
pa
e v
nt

fro
Th
ati
pu
gy
en
e 
et
rg
v

llu
vo
cl

d t
ab
ac
h

H 
A
ie
c

gen
op
es

of
ofi
 
u

so
e 
t

e 
he
lth
lin
ge

A
i
b

is
te
e 

c
ol
ac
vo
ta
om
he 
io
ut
y 
n 

“
tw
gy
vo

us
olt
le 
th
bil
it
ic

Am
es 
co
n

pe
s 

fil
ile
an

us
or

A
im
b

e 
ho
ne
e 

Ah
i.e
ba
se
rm
w

cap
ta
cit
ol
ain
m

r
on
t 
d
th

“b
we
y”
olt

str
ta

he
lit
ty
ch
u

mp
w

on
er

en
w

le
e 
nd
ed

rs 
A
m
ba
b
ou
e,
ca

h 
e. 
at
d 
m
wa

pa
ag
ty
lta
n 

m 
re

n 
b

du
he
ba
ee
” 
ta

ra
ag

b
 b
ty

y. 
h 
si
pe
wi
ns
ra

n-c
wi
s 
u

d 
d 
m

Am
me 
att
ba
ug
 s
an

i
t

tte
o

min
as

ac
ge
y 
ag
l

da
ela
is

be
ur
e 
att
en
is

ag

at
ge 
ba
ba
y 

c
in
er
ith
ta

ate
ci
ill
c

us
m
to

m
mp

a
te

att
gh
se
n 

s 
th
er
of
na
s 

ci
e r
te

ge
lin
am
at
s 
etw
in
t

te
n 
s 
e 

io
r

att
att
to
 

ca
ng
re
h 
an
e 
irc
l b
ca
in
m
o 

me
pe
an
ery
te
h 
ev

b

s
he
ry
f a
al
es

ity
ra
es
e 
ne
m
tio
il
w
ng
ter
ery
th
th
r

on
rai
te
te
o 

H
an
g 
e-h

th
nt 

th
cu
be

an
ng

ma
e
as
er
nd
y.
ry

ve
be

sh
e t
y 
a 
l v
st

y 
ail
st
ra
ea

ma
on
llu
ee

g 
rm
y 
he
he
ai

n 
il
ry

ery
c

H
n 

c
ho
he
c

h
ui
e 

n r
g 
ay 
est
su
re
d 
. 
y 
th

era
e 

ho
te
w
c
vo
tim

ls
t. 
ai
ar 
ag
ns
us
en
v

m
c

e 
e 
il

of
s 
y 
y 
ca

Ho
p
ch
ou
e 
cu
e 
it 
li
re
o
 b
ti
ur
e-h

r
 
te

he
al
a

ow
es
wa
on
ol
m

is
s o

 
ls

r o
ge 
sh
str
n 
ve

ms 
ca
v
A

s 

f 
a

c
alc
ow
pro
ha
ur
a

ur
A
v

im
efl
p
be
m
re
ho
re
T
er
e 
l s
ac

wn
st 
as
n
lt

ma

s 
of
H

s a
op

d
hip
ra
t

eh
“

ap
vo
Am
o

th
an
op

ca
cu

we
ov
ar
r 
g

rre
Ah
vo
mi
fle
en
e 

ma
e t
ou

ep
Th
rm

o
st
cu

n 
it

s 
st
ag
te

A

f 2
Ho
ar
pe
du
p 
at
th
hic
“b
pa
ol
m

of 

he
nd
pe

ap
ul
ev
vi
ra
th
e 
en
h-

olt
ite
ec
n-
u

at
th
ur

pre
he
mi
op
tu
ur

a
te
c

ta
ge
ed

An

th
2.
ow
re
er
ue
b

ted
he 
cl
ba
ac
ta

mp
f 3

e r
d o
er

pa
la
ve
id
ct
hr
o

nt
-V
ta
ed

ct 
-c
us
e 

he
r 
es
e 
in
pe

ud
ra

as
er
cy
an
e 
d 

nn

he
.5
w
e r
ra
e 
be
d 
r

e 
at
cit
ag
pe
3.4

re
op
ra
ci

ate
er,
de
te
ro
of 
t c
V 
ag
d,
b

cir
se
th

e 
t

se
A

na
en

die
ate

s 
rat
yc
nt 

w
of

nu

e 
5 a

we
re

ati
t

et
i

re
o

tte
ty
ge
er
4-

el
pe
ati
ity
e 
, 

e 
er
ou
f t
ch

f
ge
, t
ba
rc
ed
he
b

th
en
Ah
al 
n-
es
el

a 
ti
le
c

wa
ff

ua

an
ev
es
in
to
tw
in
es
op
er
y”
e 
re-
-4

at
er
io
y 
th

a
is

ug
h
ha
fu
e. 
th
att
cu
d 
e 

bat
hro
nts
h 
v

-c
s h
ly

f
o
ed
cu
as
fli

al 

A
nd

ver
tr

ng
o 
we
n 
tr
pe
ry
” i

ra
-h
4 V

ti
rat
on

c
he
o

acc
sti
gh
e 
ar
un
 A

his
te
uit
to
b
tt
ou
s 
c

vo
cir
ha

y 

fu
n 

d 
urr
s 
in

C

Am
d 
r,
ric
g b
o

ee
F

ric
er

y 
is
ai
ho
V

on
ti

n, 
ca
e 
n
cu
ic

hp
b

rg
nc
A
s 
ery
t 
o 

ba
ter
ug
t

ca
ol
rc
av
e

un
n
th

re
m

ne

Co

m
4
 
ct
b

ov
en
Fig
ct
ra
c

s t
ils
ou

V. 

n
n

an
b

li
ur
cs 
pu
ba
e 

cti
Alt

st
y 
v
p

att
ry
gh
th
an
lta
cu
ve

est

nc
nu
hr

en
me
e. 

nf

mp
4.1
du
te
eh

ve
n 
gu
te
ati
ap
th
s 
ur

sh
g 
th

nn
ba
in
ra

ut 
att

a
io
th
tu
a

vo
pr
te
y 
hp
e 

n 
ag
uit
e 
tim

cti
um
ro

nt 
ea
 T

fe

pe
15
ur

ed
ha
r-
th
ur
d 
io
pa
he
o

r 

hi
b

he
no
att
ne 
ate

o
a

te
an
on
ho
ud
ag
lt
ro
ry
te

pu
e

th
ge
t 
sh
m

io
m
ou
c

as
Th

ere

re
5 
ri

d t
av
-c
he
re

v
on
ac
e 
of
th

ip
be
e 

ot 
te

e 
of
an
ery
nd
n, 
ou
dy
ge
ta
ov
y 
er
ut
en
he
e 

v
ho

ma

on
mb
ug
ch
su
h

en

e-
V

in
to
vi
ch
e 
e 
vo

n. 
ci
to

f 2
hr

p b
eh

v
b

ery
m
e

f 
nd
y.
d d

u
ug
y w
ein
ge

vid
S
rm
t 
ne
en
o

vo
ow

ate

n 
be
gh
ha
ur
e 

nc

-h
V 
ng 

a
io
har

v
4
ol
 
ty
ot
2.
ro

be
ha
vo
e 
y 
m
es

t
d v
.  
di

us
gh
w
ng
e 
de

SO
mi
is

er
n 
r 

olt
w
ed

o
r 

h 
rg
ed
f

ce

ho
a
v

a s
or 
rg

vo
. 
lta
A

y”
ta
.5

ou

etw
av
ol
m
S

et
sti
th
vo
 
is

sin
h o
wil
g.
is

e 
OH
in
s 
rg
b
th
ta

wn
d 

f 
(
a

ge
d 

fig

 o

u
an
ve
sm
a

gi
olt
 

ag
A 
” 
al 
5-4
ug

w
vio
lta
m
SO
th
im

he
ol

sch
ng
on
ll 
.  
s 
A

H
na

t
gy
be
he
ag
n t

u

v
(It
a 
e 

a
gu

of 

ur 
d 
eh
m
an
in
ta
T
ge
d
a
A
4
hp

we
or
ag
ea
O
ho
ma
e 
lta

h
g 
nl
i
I
n

Ah
.  

al 
th
y 
e 
e 

ge
th
us

vo
tr
c
an
an
ur

f th

i
hi

ma
nd
ng
ag
Th
e 
di
an
Am
.1
pu

ee
r 
ge
as

OH
od
at
r

ag

ar
th
lin
ill
In
no
h-
 
v

he 
d
re
o

e 
ha
sin

olt
r).
ap
nd
nd
re 

he

th
is 
ic

all
d 
g 
ge
he
ra
st

nd
m
15
ut

en

e 
su
H 
ds
tio
re
ge

rg
he
ne
lu
n p
ot 
-V

vo

del
el
op

c
at 
ng

ta
  
pa
d 
d 

s

e P

hr
m

cle
ler
to
an
 r

e A
ai
tin

d 
mp
5 
t 

n b

r
ur

u
s 
on

ela
e,

ge
e 
e 

ust
pa
s

V 

ol
in
liv
la
pe
ca
th

g 

ag
F

ac
d
th

sh

Pr

ro
me
e 
r 
o 
nd
ra
A
ils
nc
“

pe
V
b

ba

ra
red
us

c
n 
at
 i

e p
te
c
tr
ar
ub
p

ta
nt
ve

ate
en
an
he
f

ge
Fo
ci
dis
he

ho

ro

ou
ea
b
v
p

d 
ai

Am
s 
ct

“u
ere
V.
be

at

ai
d

sin
ca

o
tio
i.e

pr
er

co
ra
rt

ubj
pr

ag
te
er
ed
n-
nn
e 
fil

e 
or
ity
sc
e 

ow

og

ug
as
ba
vo
pr

o
ls

mp
i

tio
use
e-
. 
etw

tte

ls
.  
ng
an
of
on
e.

ro
rm

on
ate
tic
je
ro

ge
eg
re
d 
ci

no
o

lte

a
r 
y 
ch
o

ws

gn

gh
su
att
olt
ro
ov
s 
pe
s 
on
ea
-h
 T
w

er

s 
T

g 
n 
f 
ns
. A

of
m
ns
e 
cu
ec
of

e 
gra
ed

a
ir

ot 
op
er

s 
e
t

ha
op
s 

no

hp
ur
te
ta

ote
ve
an
er
t

n 
ab
ho
T

we

ry

a
Th

t

t
sh
A

fil
min

ta
th

ul
ct 
fil

a
at
d 
as
rcu

pe
rin

t
ea
te
ar
pe
th

ost

pu
re
ery
ag
ec
er
n
re
th

i
bl
ou
Th
een

y 

ar
hi
th
b

th
hip

Ah

le
na
an
ha
ar
t

le

n
te
o

s 
ui
b

en
n

th
ach
est
rg
en
ha

tic

 

ut 
d 
y 

ge 
ct 
r-
d 

e-
he 
is 
le 
ur 
he 
n 

re 
is 

he 
e 

he 
p 

h-

es 
al 
nt 
at 
r, 
o 

es 

d 
d 

or 
a 
it 

be 
n-
g 

he 
h 
t, 

ge 
n-
at 

cs

 

s aannd

th
o
th
a
p
lo
c
g
S
d
f
T
m
a
th
c
b
im
p
is
T
u
b
S

v

3

A
c
c
th
b
S
a
c

d H

he
or 
he

an
pr
ow

ch
ge
Se
de
fun
Th
me
av
he

cu
ba
m

pr
s 

Th
uti
ba
SO

vo

3. 

As
ca
ch
he

ba
SO
ap
co

He

e 
t

e 
nd
o
w

ha
en
ev
ev
n
he
et

va
e 

urr
att
mp

o
re

he
il

att
OH

F
ol

s 
an
ha
e 

att
OH
pp
on

ea

A
th
b

d 
fi

we
arg
ne
ve
ve
ct
e 
th

ail
c

re
te
pl
fi
ea
e 
iz
te
H

Fi
lta

M

th
n b
ara

b
te
H

pli
nti

alt

Ah
he
ba
D
ile
er 
ge
ra

era
lo
tio
A

ho
la
cu
en
ery
em
ile
ad
fo

ze
ery
H c

ig
ag

M

he
be
ac
ba
ery
H. 
ie
in

th

h-
e e
att
Da
es

m
e 
at
al
op
on

Ah
od
ab
urr
nt 
y 
m
es
di
fol
e t
y 
ca

gu
ge

ME

e 
e 
ct
att
y 
 

ed
nu

h M

-V
es
te
ata
s a
m
c

te
l 
pe
n 
h-
ds 
le
re
c
r

me
s. 
ly
llo
th
S

al

ur
e 

ET

b
s

er
te
c
A

d t
ua

M

V 
st
ery
a 
ar

mo
cy
d 
m

ed
to

-V
f

e t
en
ch
rec
en

 T
y 
ow

he
SO
cu

e 
du

TH

ba
se
ri

ery
ca
A
to
all

Ma

f
tim
y 
S

re
os
yc

d 
m
d 
o 

V 
fo
th

nt
ha
ch

nt 
T
a
w

e c
O
u

5
du

H

att
ee
iz
y 
ap

Als
o o
ly

an

fu
m

i
Se
e 
st 
cl
u

me
w
e
p

or 
ho
t w
ar
ha
a

Th
av
win
ch

OH
la

5. 
uri

HO

te
en
e 
s

pa
so
on

y i

ag

un
mat

is 
et
g
p

le
us
eth
wh
es
pro

S
ou
w
rg
ar
an

he 
ai
ng
ha

H.
ate

A
in

OD

ery
n. 

t
sta
ac
o, 
nl
in

ge

nc
te
a

t 3
en
pr
s.
sin
ho
hi
ti
of

SO
ug

wil
in
rg
n 
A

ila
g 
ar
  
ed

Ah
ng

DS

y 
 

th
at
cit

t
lin

np

em

ti
ed
ag
3 
ne
ro
. 
ng
od
ic
im
fi
OH
gh
ll 
ng
gin

o
Ah
ab
s

ra
T

d 

h 
g c

S 

a
S

he
te 
ty
th
ne

pu

me

io
d 
ge

b
er
of

 
g 
ds

ch
ma
ile
H
h 
f

g 
ng
on
h-
bl
se

act
Th
u

a
co

ag
Se
 v
o

y 
he
e 

ut 

en

on
o

ed
bu
ra
fil

T

s,
h c
at
e 

H e
on

flu
o
g 
nb
-V
le
ec
te
he

us

as 
on

ge
ev
va
of
o

e 
v
a

nt 

n, 
p

d. 
ut
ate
le
Th
m
 
ch
te 
 w
es
nb
uc
op

in
bo
V 
e g
cti
er
e 
in

a
ns

es
ve
ar
f h
r 
m

ve
an

S

b
en
 

t 
ed
s 
he

me
p

ha
th

w
sti
bo
ctu
er
n 
oa
u

gi
io
is
re

ng

a f
sta

s, 
era
ria
he
u

me
eh
d 

So

as
n-
S
ar
d 

a
e 
ea
pr
ar
he

wil
im
oa
ua
ra
E

ard
us
iv
on
sti
es
g t

fu
an

v
al
at
ea
us
eth
hic

u

oci

se
-c
im
re
fr
ar

m
as
re
ra
e 
ll 
ma
ar
at
ati
EV
d 
in

ven
n w
ic
su
th

un
nt
f

va
l 
tio
alt
se
ho
cl
up

ie

ed
cir
m
e 
ro
re
m
su
se

act
b
b
at
rd
te
io
V

f
ng
n 
w

cs 
ul
he

nc
t c
for

ari
n
on
th
ab
od
e 

pd

ety

d 
rc

mil
n

om
e 
mid
ure
en
te

ba
be
tio

d s
 d

on
 a
fi
g 
o

wil
o
ts

e m

ti
cu
r 

ia
new
ns
h (
bl
ds
o

da

y, 

o
cu
la

no
m 
g
dd
ed
nt
er
att
e i
on
se
du
n 
an
ilt
th

on
ll 
of
s 
m

io
ur
D

ati
w
s 
(S
le
s 
op
ate

2

on
uit
ar 
t 
c

ge
dl
d 
te
iz
ter
in
n.
en
ur
m

nd
te
he
nb

p
f t
w

me

on
rre
Da

io
w 

in
SO
e 

p
pe
e 

20

n t
t 
r
s

co
n
le

d 
ze
ry

nv
.  
ns
rin

ma
d 
r 

e o
bo
pr
th

wi
ea

n o
en
ata

on
m

n 
OH
e

pr
era
th

01

th
v

res
sh
on
er

e 
o

e 
y 
ve
T

so
ng
ay
P
t

op
oa
re

he 
ll
su

of
nt
a 

ns 
me

t
H
n

re
at
he

1 

he
vo
su

ho
ns
ra
p

op
i

th
S

es
Th
or
g 
y 
PH
to
p

ard
es
e A
l b
ur

f t
t c
S

s i
et
th

H)
ne
ese
ti
e 

e m
olt
ul
ow
sta
at
pr
pe
in
he

SO
sti
he
s 
v
b

HE
o 
en
d 

se
A
b
re

te
ch
Se

in
th

he
). 
rg
en
on
S

m
ta
lts
wn
an
ted
ro
n

n 
e 
OH
ig
e 
a

ve
be
EV
g

n-
e
nt

Ah
e 

ed

erm
ha
et 

n 
ho
 A
 T

gy
nt
n

SO

me
ag
s 
n 
nt 
d 

ofi
n-c

t
 

H
ga
A

an
eh
e a
V

ge
-c
es
t 
-V
c

d b

m
ar
1

th
od
A
Th
y 
te
.  

OH

ea
ge

a
h

t c
f

ile
ci
th
v

H. 
ate
Ah
nd
hic
av

V. 
en
cir
ti
s

V
co
ba

min
rg
1. 

he
ds
Ah

he
t

ed
N

H 

asu
, 

are
he
cu
fr
es
irc
he
va
  

ed
h-
d a
cl
va
 A

ne
rc
im
sev

V p
om
at

na
e 
  

e 
 a

h-V
e 
o 

d 
N
e

ur
g
e 
er
ur
ro
s 
cu
e 
ari

d 
-V
al
le
ai
A
ra

cu
ma
ve
pr
mp
tte

al
a

b
ar
V
m
e

in
ew

es

re
gra

s
e.

rre
om

a
ui

n
ia

to
V 
g

e o
la

Al
at
uit
at
er
ro
pa
er

l a
an

ba
re

V 
me
es
n 
w

sti

ed
ad
ee
. 
en

m 
ar
t 
ne

ati

o 
pr
or
op
ab
so
te 
t v
io
ra

ofi
ar
ry

an
nd

att
e 
pr
et
sti
th

w A
im

d t
du
en

T
nt 

c
re 

ex
io

d
ro
rit
pe
ble
o, 

A
vo
on
al 
ile
re

y c

nd
d d

ter
d
ro
th
im
hi
A

ma

te
ua
n 
Th
d

co

v
xt
on

de
of
th
er
e 
i

A
ol
n a

m
e 

ed
ca

d o
di

ry
dev
of
ho
ma
is

Ah
at

erm
all
fo
h
di
on
A
o
t 
ns 

v
fil
hm
ra
d

it 
Ah
lta
al
m
to

d t
ap

op
sc

y 
ve
fil
d
at

s p
h-V
io

m
ly

for
e 
isc
ns
Ah
lt
s
i

el
le
m
ati
du
is

h-V
ag
lg

met
o 
to

pa

pe
ch

A
el
le
s 
te
p
V
on

min
y 
r 
u

ch
sta
h-
tag
se
in

lo
es 
s.
io
uri
s 
V
ge
go
th
e

o 
ac

en
ha

Ah
lo
e t

e
e 
ap

V d
n. 

na
ch
D

up
ha
an
-V
ge
ec
n 

op
a

.  
on
in
p

V 
e, 
ori
ho
est
th
it

n-
ar

h-
op
to

est
th
pe
da
  

al
ha

Da
pp
ar
nt
V 
e 

cti
th

p p
are
A

n, 
ng
po

d
 h
ith
od
tim
he
ty

-c
rg

-V
pe
o 
ti
he
er
at

l v
an
at
pe
rg
t 

p

io
he

pr
e 

Al
c

g 
oss
dis
ho
hm

ds
m
e 

y. 

cir
ge 

V 
ed

e
m
e 
r 
ta 

v
ng
ta
er
ge

c
pr
v

on
e 

pra
r

lth
co
v
si
sc
ow

hm
s 
ma

b
  

rc
e c

p
d 
est
ma

b
c

a c

vo
ge

a S
r 
e. 
cu
ro
va
n, 

A

ac
re
h

on
ve
ib
ch
w

ms
w
at
ba

cu
cy

pr
w
ti
at
ba
ca
ca

lt
es
Se
m
 T

urr
of
alu

Ah

ct
ad
ou

nst
eh
ble
ha
ev
s. 
wh
te 
att

uit
yc

ro
wh
im
te 
att
an
an

ta
s 
et

mo
T
re
fil
ue
a

h-

tic
di
ug
ta

hic
e 
ar
ve
  

hi
t

te

t 
cle

ofi
hi
ma

t
te

n b
n 

3

ag
a

t 2
os
h

en
le
es
ar
-V

ca
ily
gh
an
cl
to

rg
er

ch
th
ery

es

fil
ch
at
th
ery
b
b

3 

e 
as 
2 
st 
e 

nt 
es 
s. 
re 
V 

al 
y 
h 

nt 
e 
o 
e 
r, 

h 
e 
y 

 

s 

e 
h 
e 
e 
y 
e 
e 

 

Annual Conference of the Prognostics and Health Management Society, 2011

363
[paper 37]



Annual Conference of the Prognostics and Health Management Society, 2011 

 4  

3.1 Non-linear Model 

As seen in Figure 5, the Ampere-hour throughput is a 
nonlinear function of the battery terminal and open-circuit 
voltage between the voltage rails of 2.5 to 4.15 V.  The Ah-
V function can be modeled using a logistics growth curve, 
i.e. Richard’s curve (Richards, 1959), as given in Eq. (3). 

 (3) 

where A = Lower Limit Value, C = Upper Limit Value, S = 
Symmetry, β = Growth Rate, xo = Inflection Point. 
This equation can be used to model the Ah-V function.  The 
lower limit value, A, is set to zero, assuming that the Ah 
value is 0 when the battery is completely discharged, i.e. 
when the measured terminal voltage is 2.5V.  The upper 
limit, C, represents the battery’s maximum energy storage 
potential, i.e. its capacity.  Online battery data can be used 
to fit the model to determine parameter values.  New Ah-V 
data can be used to update the model parameters.    

 
Figure 6. Nonlinear model fit using Ah-V data 

 
Figure 7. Ah-V data and fitted nonlinear model at different 

ageing iterations for Data Set 1 
The Ah-V profile generate using constant current discharge 
data has a shape very similar to the logistics curve.  
Therefore, the Ah-V profile using the terminal voltage 
during constant current discharge is used to fit the logistics 
curve using least squares method, shown in .  As seen in this 

figure, the model fits the data relatively well.  In addition, 
the maximum Ampere-hour throughput from the nonlinear 
model matches the battery capacity well.   
For each ageing iteration, the constant current discharge 
data is used to generate the Ah-V profile.  The Ah-V data is 
then used to fit the model parameters.   shows the Ah-V data 
and fitted nonlinear model at different ageing iterations.  As 
expected, the fitted nonlinear model is matches the relative 
shape.  In addition, the maximum Ampere-hour throughput 
is approximately equal to measured battery capacity.  
Using the nonlinear model, the estimated battery capacity is 
defined as the Ampere-hour throughput between the voltage 
rails of 2.5 and 4.15 V.  The estimated battery capacity for 
each data set over the ageing iteration is shown in .   

 
Figure 8. Estimated battery capacity over time 

Using the estimated capacity, the estimated battery SOH is 
calculated using Eq. (4).   

 (4) 

where the subscripts 1 and i indicate the test iteration 
number.  The estimated SOH, est, is compared to the 
battery SOH in  for each data set.  In the figure, the label 
“Battery Data” refers to the SOH calculated using the 
measured battery capacity.  The label “Nonlinear Model” 
refers to the SOH estimated using the estimated capacity 
from the nonlinear model.  The estimated battery capacity 
using the fitted nonlinear model provides relatively accurate 
estimates for the battery SOH.   
This method observes the battery behavior over the 
nonlinear operating region between the voltage rails of 2.5 
and 4 V and uses the Ah-V battery data to fit the model 
parameters.  Once the parameters are determined, the 
estimated capacity can be calculated.  However, this method 
requires the battery to function between the voltage rails of 
2.5 and 4.15 V to capture the nonlinear behavior.    Ah-V 
Slope vs Battery Age 
As shown above, the battery voltage rails define the 
working range of battery.  In the capacity tests, the voltage 
rails were defined using manufacture specifications to 
measure the battery capacity.  The Ah-V profile using the  
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Figure 9. Compare battery SOH to estimated SOH for (a) 

Data Set 1, (b) Data Set 2, and (c) Data Set 3 
voltage rails of 2.5V and 4.15V has a nonlinear profile as 
seen in Figure 5.  However, in electric vehicles, battery 
voltage rails are restricted to maintain linear operating 
behavior, i.e.3.4V and 4V.  The Ah-V profiles between the 
restricted voltage rails of 3.4 to 4 V over the age of the 
battery are shown in .  The figure presents three sets of Ah-
V profiles at three ageing iterations.  The upper three are the 
Ah-V generated using the terminal voltage during constant 
current discharge data.  The middle three Ah-V profiles use 
the open-circuit voltage.  The lower three are the Ah-V 
profiles generated using the terminal voltage during constant 
current charge data.   

 
Figure 10. Ah as a function of terminal and open-circuit 

voltage for constant current charge and discharge over linear 
battery operation region for Data Set 1 

The Ah-V profiles for the terminal and open-circuit voltages 
are relatively linear and vary with the age of the battery.  
Specifically, it can be seen that the slope of the Ah-V 
profiles vary with the battery age.  The Ah-V data for the 
discharge, charge, and open-circuit Ah-V profiles were 
fitted to a linear model to estimate the Ah-V slope.    shows 
an example of the linear fit of the Ah-V data.  The slope, i.e. 
dAH/dV, of the Ah-V profiles were calculated for each 
ageing iteration and is shown in  .  The results show that the 
slope of the linear fit, for the discharge, charge, and open-
circuit voltage Ah-V profiles, is approximately linear over 

the age of the battery.  The linear relationship between the 
slope of the linear fit to the battery age could be used to 
estimate the battery SOH from Eq. (4). 

 
Figure 11. Example of linear fit to Ah-V Data 

 
Figure 12. Slope of (a) discharge, (b) open-circuit, and (c) 
charge Ah-V profile using linear fit over ageing iteration 

The slope of the linear fit was related to the battery’s 
measured capacity, shown in Figure 13.  The results show 
that the battery capacity is a linear function of the Ah-V 
slope.  A linear model can be generated to relate the 
capacity to the slope of the Ah-V function.  In this way, 
online battery data can be used to generate the Ah-V profile 
and a linear fit can be used to calculate its slope.  The slope 
can then be used to calculate the estimated battery capacity 
and then estimate the battery SOH.   
This method does have some drawbacks.  The capacity-
slope relationship does vary with temperature and with 
current rate.  However, variations are minimized if the open-
circuit voltage Ah-V profile is used.    This method for 
capacity estimation is also sensitive to small errors in the 
slope.  Noise and uncertainty in the Ah-V profile will affect 
the linear fit and will produce inaccurate slope estimation, 
which will then affect the SOH estimation.   
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Figure 13. Battery capacity as a function of Ah-V slope over 

linear battery operating region for Data Set 1 

3.2 Estimated Useable Energy Using Quadratic Fit 

In the previous section, a linear fit was used to model the 
Ah-V profile which can then be used to estimate the battery 
SOH.  The major limitation of the previous method is the 
sensitivity to error, which is largely due to the inaccuracy of 
the linear fit.  The Ah-V data between the voltage rails of 
3.4 to 4 V is approximately linear, however, small 
nonlinearities in the Ah-V function over this region 
introduce some inaccuracies.   
In this method, a quadratic fit is used to model the Ah-V 
profile.  A quadratic model provides a more accurate 
relationship and will be more tolerant to small errors.  Also, 
the quadratic model can be easily updated to reflect new 
Ah-V data.  This quadratic model can be used to estimate 
the battery useable energy for SOH estimation.  The useable 
energy is the Ampere-hour throughput between the 
restricted voltage rails.   
The following steps was used to estimate the battery SOH 
for each ageing iteration. 
Step 1: The battery capacity is measured from the capacity 
tests.  The battery capacity of the first ageing iteration is 
defined as the reference capacity value.   
Step 2: The Ah-V profile using the open-circuit voltage is 
generated between the restricted voltage rails of 3.4 to 4 V.   
Step 3: A quadratic fit is generated using the Ah-V data.  
The quadratic fit is constrained to 0 Ah, i.e. zero useable 
energy, at the lower voltage rail of 3.4 V.  Figure 14 shows 
an example of the Ah-V profile using the open-circuit 
voltage and the quadratic fit.   
Step 4: The estimated useable energy from the quadratic 
model is used to estimate the battery SOH using Eq. (5). 

 (5) 

where the subscripts 1 and i indicate the test iteration 
number.  A quadratic fit is used to model the Ah-V profile 
using the battery open-circuit voltage. The Ah-V profile can 

also be generated using the terminal voltages.  However, the 
Ah-V using the terminal voltages will vary with operating 
conditions such as temperature and current rate.  For clarity, 
only the Ah-V using the open-circuit voltage is shown.  The 
quadratic model is constrained to 0 Ah, i.e. zero useable 
energy, at the lower voltage rail of 3.4 V.  The Ah-V data, 
using the open-circuit voltage, and the quadratic fit are 
shown in Figure 14.  The quadratic fit is more accurate than 
a linear fit.   

 
Figure 14. Example of quadratic fit of the Ah-V using the 

open-circuit voltage over linear operating region 
The estimated useable energy is calculated using the 
quadratic model and is shown in  over the battery ageing 
iteration.   

 
Figure 15. Estimated useable energy calculated from 

quadratic model of Ah-V 
The battery SOH is calculated based on the useable energy 
determined from the data and quadratic fit of the Ah-V 
function between the restricted voltage rails of 3.4 to 4 V.  
The estimated SOH using the useable energy is compared 
the SOH calculated from battery capacity values are shown 
in Figure 16 for each battery data set.  The SOH using the 
quadratic fit matches the SOH calculated using the 
numerical results well.  Also, the figure includes the 
calculated SOH using the measured battery capacity.  The 
figure shows that the SOH calculated based on the quadratic 
model also match well.   
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Figure 16. Battery SOH using battery capacity estimated 
useable energy for (a) Data Set 1, (b) Data Set 2, and (c) 

Data Set 3 
The results from this method show that the battery SOH can 
be accurately estimated using a quadratic model of the Ah-
V.  The quadratic model is used to estimate the useable 
energy over the restricted voltage rails of 3.4 to 4 V which is 
then used estimate the battery SOH.  The estimated SOH 
matches the battery SOH well.  This method can be applied 
to battery vehicle operation.     

4. CONCLUSIONS 

Several new methods for capacity estimation were 
developed and investigated.  Each method has a potential to 
provide capacity estimation for SOH evaluation.  The first 
method models the linear and nonlinear regions of the Ah-V 
curve using Richard’s equation.  This method requires a 
high degree of training effort.  The slope of the Ah-V curve 
was correlated to the battery capacity.  This is a relatively 
simplistic method that provides a linear relationship 
between the slope and the battery capacity.  This method is 
sensitive to small errors and requires complete charge and 
discharge cycles to maintain accuracy.  The last method 
uses a quadratic fit to model the Ah-V function.  Using the 
open-circuit voltage, a reliable estimation of the battery 
useable energy can be used to estimate the battery SOH.  
This results of this method match well to the SOH 
calculated using battery capacity values.   
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ABSTRACT

The paper presents a novel approach for prognostics of faults
in mechanical drives under non-stationary operating condi-
tions. The feature time series is modeled as an output of
a dynamical state-space model, where operating conditions
are treated as known model inputs. An algorithm for on-line
model estimation is adopted to find the optimal model at the
current state of failure. This model is then used to determine
the presence of the fault and predict the future behavior and
remaining useful life of the system. The approach is validated
using the experimental data on a single stage gearbox.

1. INTRODUCTION

An important emerging feature of new generation of con-
dition monitoring systems enables prediction of future evo-
lution of the fault and thus enables the plant personnel to
accommodate maintenance actions well in advance. Even
more, it can predict the remaining useful life of the compo-
nent under changing operating condition, thus providing in-
formation to operators on how the different operating regimes
will lengthen or shorten the components useful life. This
is a relatively new research area and has yet to receive its
prominence compared to other condition monitoring prob-
lems (Heng, Zhang, Tan, & Mathew, 2009).

The focus in this paper will be on mechanical drives. They are
the most ubiquitous item of equipment in manufacturing and
process industries as well as transportation. During the oper-
ational life-cycle, these items are subjected to wear, fatigue,
cracks and other destructive processes. These processes can
not be directly observed or measured without interrupting the
operation of the machine. The extent of the damage has to be

This is an open-access article distributed under the terms of the Cre-
ative Commons Attribution 3.0 United States License, whichpermits
unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

inferred from the available signals, which are usually vibra-
tions, acoustic emissions, oil contaminants, etc.

In this work, we follow an established approach for model-
based prognostics, which is to model the fault progression
using a dynamical model. This approach has been applied
to specific cases where the exact model of the fault was de-
rived. The model, combined with an appropriate state estima-
tion algorithm (e.g. Particle Filter) can be used to estimate
the current state and predict its future evolution (M. Orchard,
Kacprzynski, Goebel, Saha, & Vachtsevanos, 2008; M. E. Or-
chard & Vachtsevanos, 2009; Zhang et al., 2009; DeCastro,
Liang, Kenneth, Goebel, & Vachtsevanos, 2009). However,
most of the authors assume constant operating conditions of
the machine. Recently, (Edwards, Orchard, Tiang, Goebel, &
Vachtsevanos, 2010) analyzed the impact of variable operat-
ing conditions on the remaining useful life in terms of uncer-
tainty.

The aim of this work is to propose a new approach toward
model-based prognostics in which the operating conditions
are considered as a measured input into the model. Because
the exact relations between the model inputs, fault dimension
and measured signals are hard to derive, we propose an al-
gorithm for on-line estimation of these relations. The model
obtained in this manner can therefore be used to determine the
current state and trend of the fault, predict its future evolution
in different operating regimes and estimate its remaining use-
ful life (RUL).

The paper is organized as follows. Section 2 presents the
conceptual idea behind the proposed approach for a general
setup. Section 3 introduces the algorithm for model estima-
tion that can be used to apply the proposed approach. Section
4 presents the experimental setup that was used to collect the
data for algorithm validation. Section 5 shows the results in
terms of estimating the current state and trend of the fault and
predict its future evolution. Finally, Section 6 summarizes the
most important results and outlines the directions for further

1
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research.

2. THE IDEA OF THE PROPOSED APPROACH

Let us assume that there exists at least one feature that pro-
vides the information about the current extent of the fault in
a mechanical system and its value is available trough noisy
measurements. Furthermore, different operating conditions
affect the extent and the rate of change of the underlying fault
as well as the current feature value. Finally, when the faultoc-
curs, its progression can be described by a stochastic dynam-
ical process (Gašperin, Juričić, Boškoski, & Vižintin, 2011).

Following the above assumptions, the evolution of fault di-
mension in time can be described by the following model
(M. E. Orchard & Vachtsevanos, 2009):

xt+1 = f(xt,ut, θθθ) + wt (1a)

yt = g(xt,ut, θθθ) + vt (1b)

wherext is the system state,yt is the observed feature value,
ut is the vector of model inputs,θθθ is the vector of model pa-
rameters, finallywt andvt are random variables describing
system and measurement noise, respectively. The first equa-
tion in the model represents the fault evolution dynamics and
the second one describes the feature extraction. Assuming
that the values of the model parametersθθθ are known, this
model can be used to predict the future evolution of the fault
for any given sequence of the operating conditions (fixed or
variable)ut.

Nonlinear models (1) are a very powerful description of the
process dynamics and can describe a broad range of dynamic
behavior. Usually the estimation methods include only a
specific family of models, e.g. as shown by (DeCastro et
al., 2009) or rely on approximation methods (M. Orchard et
al., 2008). If linearized, the expression (1) takes the form
(Gašperin et al., 2011)

xt+1 = Axt + But + wt (2a)

yt = Cxt + Dut + vt (2b)

In the model (2),wt andvt are random variables that follow
a normal distribution:[

wt

vt

]
∼ N

([
0
0

]
,

[
Q S
ST R

])
(3)

If the functions governing the dynamical behavior of the fault
in (1) are known, the linear approximation can be computed
analytically. However, this has only been done for a limited
number of special cases and for a general setup, the model
parameters have to be assumed unknown. To alleviate this
problem we propose a data-driven approach for modeling and
prognostics, where the parameter of the linear model (2) are
estimated on-line based on the past data of the feature value.

The benefit of using a linear model is that the parameter esti-
mation algorithm can be implemented with minimal computa-
tional load and the analysis of the model (in terms of stability)

is less demanding than in the nonlinear case. The downside
is that linear model can only adequately describe the system
in a limited subspace of fault dimension and operating condi-
tions. However, this is partially alleviated by on-line parame-
ter estimation that provides an updated model as soon as the
conditions change.

2.1 Prognostics under variable operating conditions

It is well known (Heng et al., 2009) that the changes in operat-
ing conditions (e.g., load, temperature) can greatly affect the
fault in mechanical systems. A schematic representation of
different scenarios is given in Figure 1, where it can be seen
that under more favorable load, the life of the machine can be
significantly extended.

TIME
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Figure 1. Fault progression under different load scenarios

The exact relations between them and the fault dimension can
be obtained by advanced and complex modeling approaches,
which are usually not applicable to real-world condition mon-
itoring problems. The main advantage of implementing the
approach presented here is that it offers a systematic solution
to finding the relation between the machine operating condi-
tions, feature value and fault dimension. The added function-
ality of our solution can be summarized as follows:

• Detection of fault progression: The approach can sepa-
rate the fault evolution dynamics from the dynamics en-
forced by the variable operating conditions. This means
that we can detect the rate at which the fault is progress-
ing.

• Estimation of the remaining useful life: If the future
load profile of the machine is known, it can be used as an
input to the model and predict the future evolution of the
fault.
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3. MODEL ESTIMATION

In this chapter we will address the problem of estimating un-
known model parameters of the linear state-space models (2).
Estimating the state-space models is challenging because the
internal system states are not directly observed and therefore
all the information about them has to be inferred form the
measured data. The state sequence can be estimated from
the data, but the procedure requires the knowledge of the
model parameters. As this is usually not the case, an approach
that allows both the estimation of system states and unknown
model parameters is required.

3.1 Maximum likelihood estimator

Supposex is a random variable with probability density func-
tion p(x|θθθ), whereθθθ is a vector of unknown parameters. Let
XT = {x1,x2, . . . ,xT } be the set of observed values. The
probability density function ofXT is

p(XT |θθθ) = p(x1,x2, . . . ,xT |θθθ) (4)

The pdfp(XT |θθθ) is deterministic function ofθθθ and is referred
to as thelikelihood function. A reasonable estimator forθθθ
could then be to select the values in such a way that the ob-
served realizationXT becomes as likely as possible. Maxi-
mum Likelihood (ML) estimator for unknown parameters is
defined by

θ̂θθML(XT ) = argmax
θθθ

p(XT |θθθ) (5)

where the maximization is performed with respect toθθθ and
for a fixedXT .

Rather than (5) it is often convenient to operate with the log-
likelihood function.

L(θθθ) = log p(XT |θθθ) (6)

Since logarithmic function is monotonically increasing, max-
imizing the likelihood function is the same as maximizing its
logarithm,

θ̂θθML(XT ) = arg max
θθθ

L(θθθ) (7)

3.2 Likelihood function for dynamical models

Consider a dynamic state-space model, whereYT =
{y1,y2, . . . ,yT } are the measured system outputs,XT =
{x1,x2, . . . ,xT } is the unobserved sequence of system states
andθθθ is vector of model parameters. A straightforward way
to define the maximum likelihood parameter estimator for this
case is

θ̂θθML(YT ) = argmax
θθθ

p(YT |θθθ) (8)

where the data likelihood function can be expressed using
chain rule

p(YT |θθθ) = p (y1|θθθ)
T∏

t=2

p (yt|Yt−1, θθθ) (9)

However, it is convenient to consider the log-likelihood func-
tion

L(θθθ) = log p(YT |θθθ) =

T∑

t=2

log p (yt|Yt−1, θθθ) + log p (y1|θθθ)

(10)

And the maximum likelihood estimator is thus

θ̂θθML(YT ) = argmax
θθθ

p(YT |θθθ) = argmax
θθθ

L(θθθ) (11)

A closer look at the expressionp(yt|Yt−1, θθθ) in (10) reveals
that it depends on system states. Indeed

p(yt|Yt−1, θθθ) =

∫
p(yt|xt, θθθ)p(xt|Yt−1, θθθ)dxt (12)

The formulation of the above integral is problematic and in
general case no closed form solutions exist.

3.3 The Expectation-Maximization algorithm

The expectation-maximization algorithm can solve the ML
estimation problem in the case of incomplete or missing data.
Therefore, if the statesXT are considered as missing data,
this algorithm can be successfully deployed to solve the sys-
tem identification problem. Consider an extension to (8).

θ̂θθML(XT ,YT ) = arg max
θθθ

log p(XT ,YT |θθθ) (13)

The EM algorithm then solves the problem of simultaneously
estimating system states and model parameters by alternating
between two steps. First, it approximates the likelihood func-
tion with its expected value over the missing data (E-step),
and secondly maximizes the likelihood function w.r.t.θθθ (M-
step). A short overview of the algorithm will be presented,
while a more detailed explanation can be found in (Haykin,
2001; Gibson & Ninness, 2005).

1. Start with initial parameter estimateθθθ0.

2. Expectation (E) step:
Compute the expected value of the complete data log-
likelihood function.

Q(θθθ,θθθk) = Ep(XT |YT ,θθθk){log p(XT ,YT |θθθ)} (14)

3. Maximization (M) step:
Compute the optimal parameter vector value by maxi-
mizing the functionQ(θθθ,θθθk).

θθθk+1 = arg max
θθθ

Q(θθθ,θθθk) (15)

4. If convergence criteria are not satisfied, setk = k + 1
and return to step2.

According to the EM algorithm, the first task is to compute the
expected value of the complete data log-likelihood function

Q(θθθ,θθθk) = Ep(XT |YT ,θθθk){log p(XT ,YT |θθθ)} (16)

3
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where the joint likelihood of the measured output and system
states can be written as

p(YT ,XT |θθθ) = p(y1, . . . ,yT |x1, . . . ,xT , θθθ)p(x1, . . . ,xT |θθθ)

= p(x1|θθθ)
T−1∏

t=1

p(xt+1|xt, θθθ)

T∏

t=1

p(yt|xt, θθθ)

(17)

Taking into account Gaussian distributions and ignoring the
constants, the complete data likelihood function can be writ-
ten as

−2 log p(XT ,YT |θθθ) = log |P1| + (x1 − µµµ1)
TP−1

1 (x1 − µµµ1)

+

T∑

t=1

(xt+1 − Axt − But)
TQ−1(xt+1 − Axt − But)

+

T∑

t=1

(yt − Cxt − Dut)
TR−1(yt − Cxt − Dut)

+ T log |Q| + T log |R| (18)

The expected value of the above expression can be maximized
by the following choices (Gibson & Ninness, 2005):

[
A B
C D

]
= ΨΨΨΣΣΣ−1 (19)

[
Q S
ST R

]
= ΦΦΦ − ΨΨΨΣΣΣ−1ΨΨΨT (20)

where

ΦΦΦ =
1

T

N∑

t=1

Ep(XT |YT ,θθθk)

{[
xt+1

yt

] [
xT

t+1,y
T
t

]}
(21)

ΨΨΨ =
1

T

N∑

t=1

Ep(XT |YT ,θθθk)

{[
xt+1

yt

] [
xT

t ,uT
t

]}
(22)

ΣΣΣ =
1

T

N∑

t=1

Ep(XT |YT ,θθθk)

{[
xt

ut

] [
xT

t ,uT
t

]}
(23)

and the required expected values of the system states can be
computed using a standard Kalman smoother (Haykin, 2001).

The estimated values of model parameters at a time instance
T , along with the estimated state sequence and the model
structure defined by (2) constitute the model of the fault dy-
namics at this particular time instance and is labeledMT .

3.4 Algorithm Summary

The presented algorithm, adopted for machine health estima-
tion and prognostics can be summarized as follows:

1. Select time windowN and setT = N + 1.

2. Run the EM algorithm for model estimation
using past data yT−N , yT−N−1, . . . , yT and
uT−N , uT−N−1, . . . , uT .

3. Use the estimated modelMT and statexT to analyze the
fault and predict future behavior of the system.

4. When the new feature value is collected, setT = T + 1
and return to step 2.

4. CASE STUDY

For the purpose of the development and verification of the
model-based prognostics tools, the experimental test bed has
been used (Figure 2). It consists of a motor-generator pair
with a single stage gearbox. The motor is a standard DC mo-
tor powered through DC drive. A generator is being used as
a break and the generated power is being fed back in the sys-
tem, thus achieving the breaking force.

Figure 2. The test bed

The most informative and easily accessible signals that offer
information on gear health are vibration signals (Combet &
Gelman, 2009). In our setup, the vibration signals are ac-
quired from a sensor placed on the output shaft bearing.

4.1 Experimental run

The set of gears was subjected to a time-varying load pro-
file. The speed was kept constant throughout the experiment.
Vibration signals were acquired every 5 minutes and each ac-
quisition took 5 seconds.

The complete experiment lasted approximately 180 hours. At
the end extensive pitting damage was clearly visible on both
gear and pinion, as shown in Figure 3.

Figure 3. Gear condition after 180 hours of operation

4
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4.2 Gear fault dynamics

The main source of vibrations in meshing gears originates
from the changes in the bending stiffness of the gear teeth
as well as variations in the torsional stiffness of the shafts
and supporting bearings (Howard, Jia, & Wang, 2001). As
gear teeth rotate through the meshing cycle the overall bend-
ing stiffness changes according to the number of teeth present
in the meshing contact. Under constant operating conditions,
these variations are expressed as a spectral component posi-
tioned at the gear mesh frequency.

A localized fault alters the original tooth stiffness profile. This
alteration occurs every time the damaged tooth enters a mesh-
ing contact. This localized fault affects the produced vibra-
tions by the appearance of an additional modulation compo-
nent around the original gear mesh frequency (Randall, 1982).
As the fault progresses and spreads on all teeth the changes in
the gear mesh frequency component become more apparent.

As our goal is to perform the earliest possible estimation of
the remaining useful life of the observed gears, we have based
our algorithm on the information contained in the signal’s en-
ergy portion extracted from the sidebands around the princi-
ple gear mesh component. This value was computed for each
vibration acquisition session and the corresponding time se-
ries represents the feature values.

In terms of modeling the gear fault dynamics the feature value
is the model output while the known inputs into the model are
torque and temperature. The model inputs and outputs are
shown in Figure 4.
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Figure 4. Top: torque and temperature (inputs), Bottom: vi-
bration feature (output)

5. RESULTS

The developed algorithm for model estimation was imple-
mented with the sample size ofN = 200, which corresponds
to approximately 16 hours. The unknown model parameters
are:

θθθ = [A,B,C,D,Q,R] (24)

whereQ andR are covariance matrices of Gaussian random
variableswt andvt, respectively. The model structure is de-
fined by selecting the number of hidden states, measured in-
puts and outputs. In our case, the state dimension ism = 2,
the number of inputs isn = 2 (torque and temperature) and
the model hasd = 1 measured output (vibration feature). The
unknown model parameters are thus matrices with the follow-
ing dimensions:

A ∈ Rm×m,B ∈ Rm×n,C ∈ Rd×m,

D ∈ Rd×n,Q ∈ Rm×m,R ∈ Rd×d (25)

Prior to running the algorithm, these parameters have to be
initialized to some values. In this problem formulation, the
selection of the initial values is not crucial as the likelihood
function for linear system is unimodal and there is no threat
of divergence. The values of all the matrix entries were thus
set to a neutral value of0.1.

5.1 Detecting the trend of the fault

After a modelMT is obtained at a certain time pointT , it
can be analyzed to determine the current trend of the fault,
even under variable operating conditions in the period of data
acquisition. This is made possible because the state-space
model can distinguish between the feature dynamics that is
due to the variable operating conditions (model input matrix
B) and the dynamics due to the fault progression (system state
matrix A). Therefore, by analyzing the eigenvalues of the
system matrixA, one can determine weather the fault pro-
gression has a stable dynamics (i.e. it will remain of a con-
stant size) or unstable dynamics (i.e. the fault dimension will
increase in time).

A more illustrative way to present this is by visualizing thefu-
ture evolution of the feature value at constant operating con-
ditions. In Figure 5, this is done for two different timesTpred,
one with stable and one with unstable dynamics.
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Figure 5. Detection of the fault progression at non-stationary
operating conditions

It can be seen that in the first case (Figure 5 (top)), the pre-
dicted feature value is constant, which means that the fault
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will not progress. TheTpred here was44h and no fault was
indeed present at that time. In the second case (Figure 5 (bot-
tom)), the model was estimated atTpred = 78h, where the
fault started to increase and the model thus predicted the grad-
ual increase of the feature value even at a constant load.

5.2 Model-based prognostics under non-stationary
conditions

The modelMT includes all the information about the cur-
rent fault state as well as the relation between the operating
conditions and the fault. Therefore it can be used to predict
the evolution of the fault under variable operating conditions.
For example, if the future time profile of the load is known,
the model can predict the feature time series for that specific
load profile. The example of such a prediction is shown in
Figure 6
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Figure 6. Long term prediction under variable load atTpred =
44h

It can be seen that the model predicted a stable fault dynam-
ics and the changes in the feature value only occur due to
changes in the load. In the actual experiment, the initial fault
occurred around the timeTf = 55h, which is impossible to
predict with the model that is based only on the data up to
timeTpred < Tf .

Effect like this may occur because the underlying model is
linear and serves only as a local approximation. However, it
is crucial to note that if such a fault occurs, it is reflected in
the feature values data and the algorithm will quickly incor-
porate the new data into the model and produce the updated
parameter values.

After the model is adapted to the new data, the prediction is
updated and a result of a later prediction is shown in Figure 7.

It can be seen, that the actual feature value almost always lies
within the95% confidence interval of the prediction.

6. CONCLUSIONS

The paper presents a new approach for model-based prognos-
tics of mechanical drives under non-stationary operating con-
ditions. The novelty of the proposed algorithm lies in the use
of dynamical model to describe the relations between operat-
ing conditions, fault dimension and vibration feature value.
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Figure 7. Long term prediction under variable load atTpred =
75h

The model assumes linear relations between these quantities
which can be interpreted as a local approximation of the oth-
erwise complex nonlinear relations. The benefit of this ap-
proximation is that the model parameters can easily be esti-
mated on-line. This means that the model is constantly up-
dated as new data arrive.

The approach was validated on a laboratory test bed using a
single-stage gearbox and vibration sensors. The problem was
to detect and predict the faults in gear and the model anal-
ysis and prognostics on the experimental data validated our
hypotheses.

Future work will include validation of the approach for esti-
mation of the remaining useful life of the gear and examine
how the RUL depends on the load profile. However, to prop-
erly conduct this study, further experiments are required.
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ABSTRACT

Wave propagation is investigated in sandwich composite pan-
els using analytical approach for layered materials, Mindlin
plate theory and finite element modeling in the context of de-
veloping an on-board structural health monitoring system. It
is shown that theoretical results are in agreement with the re-
sults of numerical simulations and with experimental results.

1. INTRODUCTION

Composite sandwich panels (CSP), consisting of fiber-
reinforced facesheets separated by low-density cores, offer
lightweight and flexible production capabilities and high per-
formance: high strength, damage tolerance and thermal re-
sistance (Zenkert, 1995),(Zenkert, 1997). During the past few
decades, the CSPs have been steadily replacing the traditional
materials in many industries including e.g. automotive, ma-
rine, and aerospace. Their stiffness-to-weight ratios and dam-
age tolerance are especially attractive in aerospace industry
leading to higher payloads (Bednarcyk, Arnold, Collier, &
Yarrington, 2007). However, the multi-layered construction
and laminate layup of the facesheets allow for debonding, de-
lamination, and other internal flaws that are hardly visible and
may severely damage the structural strength of the CSPs. In
this context, it becomes important to develop reliable on-line
structural health monitoring (SHM) systems of the composite
panels. The aerospace industry has one of the highest payoffs
for SHM since damage can lead to catastrophic failures.

There are several techniques currently under investigation
(See, for example,(Raghavan & Cesnik, 2007)) for diag-
nostics including e.g. embedded fiber optic sensors for
strain measurement, active ultrasonics, passive acoustic emis-
sion monitoring, and electromechanical impedance measure-

V. N. Smelyanskiy et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

ments. The Lamb wave based diagnostics of CSPs is one of
the most promising SHM techniques due to the similarity be-
tween the Lamb wavelength and the CSP thickness, the abil-
ity to travel far distances, high sensitivity, active sensing and
low cost of piezoelectric wafer actuators/sensors (Raghavan
& Cesnik, 2007). The development of the reliable SHM tech-
nique based on guided wave propagation in CSPs is compli-
cated due to heterogeneity of the sandwich structures. This
study is needed for better understanding and more reliable
model predictions in the context of development of the in-
flight SHM for the next generation of the heavy-lift vehicle.

2. MODELING WAVE PROPAGATION

A three-dimensional formulation relying on a global ma-
trix technique provides a general framework for analysis
of wave propagation in an anisotropic multi-layered medium
(Zakharov, 2008). We consider symmetrical sandwich struc-
tures and the equation of motion in each layer reads

∂βσ
j
mp + ρjω

2um = 0, m, p, j = 1, 2, 3. (1)

where forj-th layerρj is the density. For an isotropic mate-
rial the stressesσj

mp and strainsεjmp satisfy Hook’s law and
Kelvin–Voigt model of linear viscoelasticity and constitutive
relations have the form

σj
mp = (λ′j + λ′′j ∂t)δmpε

j
kk + 2(µ′

j + µ′′
j ∂t)ε

j
mp.

For small displacementsu(n)j components of the deformation

matrixε(n)mp are given by the following relation

εjmp =
1

2

(
∂pu

j
m + ∂mu

j
p

)
,

For the complex-valued representation of Lame constants,
wave speeds

λj = λ′j − iωλ′′j , µj = µ′
j − iωµ′′

j . (2)
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cjp =

√
(λj + 2µj)

ρj
=

√
Ej(1− νj)

ρj(1 + 2νj)(1− 2νj)
= α|j , (3)

cjs =
√
µj/ρj =

√
Ej/2ρj(1 + νj) = β|j , (4)

kjp = ω/cjp, k
j
s = ω/cjs. (5)

where material parametersα, β, µ, λE, ρ, ν correspond to
each layerj = 1, 2, 3.

The three-dimensional formulation assumes the continuity of
displacementsuj and components of stress tensorσij on the
inner boundaries of the layers and allows for a quite general
form of the boundary conditions. For the circular plate PZT
sensors exiting dynamic stresses at a circular source could be
considered symmetrical about its axis (0Z) and on the inter-
faces x3 = zj , j = 1, 2, 3.

Let’s consider an infinite sandwich panel for theoretical mod-
eling and square panel for FE simulation. The cylindrical co-
ordinates(r, θ, z) are used for consideration where zeros of
z-axis coincide with the midplane of the panel. In the sim-
plest case due to axisymmetry the solution problem is two
dimensional in coordinates(r, z) (Zakharov, 2008)

ujr =
[
−ujB′

n(sr) + wj n

kr
Bn(sr)

]{
cosnθ
− sinnθ

}
, (6)

ujθ =
[
uj

n

kr
Bn(sr)− wjB′

n(sr)
]{

cosnθ
− sinnθ

}
, (7)

ujz = vjBn(sr)

{
cosnθ
− sinnθ

}
. (8)

where the first or second term could be chosen in the French
brackets, so they represent the terms in the trigonometrical
Fourier series wrtθ. The termsBn=Bn(sr) are any of the
appropriate Bessel function or Hankel function of the first or
second kind andB′ = dBn(sr)/d(sr),

[
uj

vj

]
= A+j

L

[
cosCαz

Cj
α

k sinCαz

]
+A−j

L

[
sinCαz

−Cj
α

k cosCαz

]

+A+j
S

[
−Cj

β

k cosCβz
sinCβz

]
+A−j

S

[
Cj

β

k sinCβz
cosCβz

]
, (9)

wj = B+j
S cosCαz +B−j

S sinCβz. (10)

whereA±j
L,S , B

±j
S are constants and displacement compo-

nents are composed of symmetrical and anti-symmetrical
terms according toz = 0, which are corresponding to sym-
metrical and anti-symmetrical modes, respectively. For the
homogeneous material properties the general approach out-
lined above can be simplified allowing for further analytical
treatment of the problem of finding dispersion relations of the
sandwich panel (Zakharov, 2008),(Lowe, 1995). Accord-
ingly, the Lamb wave dispersion relations are determined by

the determinant of square matrix of the 16x16 order

det




[D0b] [−D1t]
[D1b] [−D2t]

[D2b] [−D3t]
[D3b] [−D0t]


 = 0,

(11)
where theD matrices for the top (indext) and bottom (index
b) of a layer can be expressed, respectively, as

Djt =




s sgα Cβ −Cβgβ
Cα −Cαgα −s −sgβ
iρB iρBgα −pβCβ pβCβgβ
pαCα −pαCαgα iρB iρBgβ



j

,

(12)

Djb =




sgα s Cβgβ −Cβ

Cαgα −Cα −sgβ −s
iρBgα iρB −pβCβgβ pβCβ

pαCαgα −pαCα iρBgβ iρB



j

,

(13)
wherej = 0 corresponds to air,s is the wave number in the
direction of wave propagation,

pα = 2iρsα2, pβ = 2iρsβ2,

Cα = (ω2/α2 − s2)1/2, Cβ = (ω2/β2 − s2)1/2,
gα = eiCαz, gβ = eiCβz, B = ω2 − 2β2s2.

All matrices in (11) are4 × 4 exceptD0b andD0t which are
4× 2.

Let us investigate dispersion curves for typical sandwich
structure with soft core about 1in in thickness and carbon fibre
reinforced plastic facesheet consisting of 14 ply. The veloc-
ities are determined by the geometry of the structure as well
as longitudinal and shear velocities characterizing materials.
In the simulations we used CFRP face sheets with Young
modulus 60GPa, Poisson ratio 0.3 and density 1500kg/m3and
homogenized core with Young modulus E=80MPa, the same
Poisson ratio and density was 100kg/m3. As a result, longi-
tudinal velocity was 7338m/s and 1038m/s and shear velocity
3922 and 555m/s, correspondingly. These velocities are plot-
ted by green dashed lines. The spectrum of the waves (9),(10)
is presented in Figure 1 and 2 for the case when the core of
the sandwich(j = c) is much softer than for the facesheet.
The vibration of the soft core is restricted by rigid surfaces of
the face sheet and we have many local modes in the structure.
The dispersion curves change very drastically if the sandwich
core is visc oelastic. Many curves corresponding to honey-
comb core just disappear (Figure 2) and for the case when the
real and imaginary parts of the elastic module become com-
parable the propagation is determined by facesheet modes.

Analyzing dispersion plots for low velocities we can see
that at at low velocities dispersion curves are modulated by
facesheet flexural velocity. At higher frequency these curves
tend to shift to shear velocity of the core. For high velocities
dispersion curves exhibit a set of vertical paths where phase
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a

b

Figure 1: Dispersion curves of Lamb wave of phase veloci-
ties with respect to frequency for symmetric sandwich, (a) –
low speed limit and (b) – high speed limit, blue lines - shear
waves, lilac lines - Lamb waves).

velocity changes by a large value at the same frequency. The
group velocity at these frequencies (vertical lines) is close to
zero and this means waves are practically standing. This state-
ments is confirmed by FE simulations.

If the core is viscoelastic we have coupling of different modes
and the dispersion curves start to intersect, some of the modes
vanish and some of them change their trend with increasing
frequency (Fig. 2). With introducing viscoelasticity, as seen
from the plots, high velocity Lamb wave modes tend to S0
modes of the facesheet and shear modes to shear velocity in
the facesheet. At a low frequency the limit coupling is not
so pronounced but the tendency is that we have two charac-
teristic velocities here: shear velocity of the core and flexural
velocity of the facesheet (green dashed line in the Fig. 1).
These two modes mainly determine the form of the disper-
sion curves at the low velocity limit.

It should be noted that attenuation increases very sharply in
the frequency range where coupling takes place. This can be
seen from simulations presented in Figure 3 when red dashed
lines vanish due to the interaction between modes associated
with viscoelasticity. The small interval in 1-10kHz is plotted
to see how coupling between S0 and A1 arises with small
viscoelasticity (E′′ = 0.01E′). In this case standing modes
transform into propagating modes with high attenuation in the
frequency region of coupling. As can be seen from Fig. 3

a

b

Figure 2: Dispersion curves of Lamb wave of phase veloci-
ties with respect to frequency for symmetric sandwich with
viscoelastic coreλ′c = 0.1λc, µ′

c = 0.1µc; (a) – low speed
limit, and (b) – high speed limit. Blue lines - shear waves,
lilac lines - Lamb waves.

attenuation increases practically in the order at the frequency
region of 7.8 kHz where coupling takes place (dark dashed
line).

A more simplified approach to investigation of wave propa-
gation for SHM in CSP lies in using averaged over thickness
parameters of the structures since we obtain 2D model in con-
trast to 3D theory considered above. In many cases, such ap-
proach is sufficiently good since it makes it possible to find
a simpler analytical solution for propagating waves than the
solution described by formulas (9),(10). The next section is
devoted to the review of the Mindlin plate theory and the ap-
plication of this approach to wave propagation modeling.

3. M INDLIN PLATE THEORY FOR SANDWICH

STRUCTURES

In the Mindlin plate theory the displacements of the plate in
the transverse, radial, and tangential direction components are
expressed as follows (Mindlin & Deresiewicz, 1954)

w = w(r, θ, t), u = zψr(r, θ, t), v = zψθ(r, θ, t),

wherez is the coordinate defining points across the thickness
of the plate (z = 0 is the neutral plane), w is the out-of-
plane displacement of the wave,ψr andψθ are the rotations
of vertical lines perpendicular to the mid-plane.

3
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Figure 3: Dispersion curves of Lamb wave of phase veloci-
ties with respect to frequency for symmetric sandwich panel
(red solid line corresponds to viscoelastic coreE′ = 0.01E′′,
dashed curve - elastic coreE′′ = 0, black dashed line is at-
tenuation of the coupled mode, [Np/m] ).

The governing equations for the symmetric honeycomb pan-
els in terms of moments and shear forces can be presented
based on shell approximation by the following approach
(Rose & Wang, 2004)

1

r

∂Qθ

∂θ
+

∂

∂r
Qr +

1

r
Qr −Qθ = ρ

∂2

∂t2
w , (14)

∂Mrr

∂r
+
1

r
Mrr−

1

r
Mθθ+

1

r

∂

∂θ
Mrθ−Qr = I

∂2

∂t2
ψr , (15)

1

r

∂Mrθ

∂r
+

2

r
Mrθ +

1

r

∂

∂θ
Mθθ −Qθ = I

∂2

∂t2
ψθ , (16)

whereρ =
∑3

k=1

∫ bk
ak
ρkdz, is the mass density per unit area

of the plate, indexk corresponds to the material layer,ρk is
the density,I =

∑3
k=1

∫ bk
ak
ρkz

2dz is the mass moment of
inertia. Each layer in the sandwich panel is bounded by the
coordinatesak andbk in the thickness direction as shown in
the Figure 4 (a). The stress resultants in terms of moments
Mrr, Mθθ, andMrθ, along with shear forcesQr andQθ can
be related to the transverse displacements and rotations as fol-
lows:

Mrr =
D

r

[
r
∂ψr

∂r
+ ν(ψr +

∂ψθ

∂θ
)

]
, (17)

Mrθ =
D(1− ν)

2r

[
∂ψr

∂θ
− ψθ + r

∂ψθ

∂r

]
, (18)

Mθθ =
D

r

[
νr
∂ψr

∂r
+ ψr +

∂ψθ

∂θ

]
, (19)

Qr = 2κ2G

(
ψr +

∂

∂r
w

)
, (20)

Qθ = 2κ2G

(
ψθ +

1

r

∂

∂θ
w

)
, (21)

a

b

Figure 4: (a) - General view of the panel, (b) - Dispersion
curves of the velocities with respect to frequency of symmet-
ric sandwich panel in Mindlin approximation.

whereD =
Ef t

3
f

6 +
Ect

3
c

12 +
Ef tf (tf+tc)

2

4 - is the flexural stiff-
ness,ν is the Poisson ratio, which for the sake of simplicity is
taken as equal for each layer, Ef , Ec are the Young’s modulus
of the facesheet and the core, correspondingly,tf , tc - thick-
nesses of the facesheet and the core layers,G is the shear
stiffness of the plate,κ is the shear correction factor ˜1.

The general solution of the acoustic waves propagation with
cycling frequencyω is (w,ψ) = Re [(W,Ψ) exp(−iωt)]
(Rose & Wang, 2004), where and throughout this paper Re(.)
denotes the real part of the quantity appearing in parentheses,
ψ=(ψr ,ψθ). The variablesW,Ψ are presented by expressions

W =W1 +W2,

Ψ = ξ1∇W1 + ξ2∇W2 − ez ×∇V,
whereez is a unit vector in z direction (the displacement is
uz=wez, normal stress and strain in the thickness direction of
the plate are not included in Mindlin plate theory),W1,W2, V
satisfy three Helmholtz equations

∆W1 + k21W1 = 0, (22)

∆W2 + k22W2 = 0, (23)

∆V + k23V = 0 (24)

and∆, ∇ - Laplace and Nabla operators, correspondingly.
For isotropic sandwhich layers

4
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k21,2 =
1

2
(k2p + k2s)±

√
k4f +

1

4
(k2p − k2s)2, (25)

k23 =
k21k

2
2

k2p
(26)

ks = ω/cs, kp = ω/cp, kf = (ρω2/D)1/4,

cs = (G/ρ)1/2, cp = (D/I)1/2, ξj = (ks/kj)
2 − 1.

The dispersion curves for a typical sandwich panel corre-
sponding to three branches are shown in the Figure 4 (b). The
flexural wave corresponds to the realω,k in wholeω domain.
The second (and third) dilatation branch of (k,ω) dependence
become real starting from the cutoff frequency.

For a similar 3D consideration we will consider a circular-
patch actuator on the Mindlin plate generated by a surface
traction plate waves in the form (Mindlin & Deresiewicz,
1954). In this case, the radially directed bending moments
mr , uniformly distributed along the ring of radiusr0 , can be
described as follows:

mr =
1

2
hp(t)δ(r − r0), mrθ = 0,

wherep(t) is the amplitude of the force.

The source term for circular force leads to the solution for
out-of-plane displacement

w(r, ω) = s1H0(k1r) + s2H0(k2r), (27)

where radius vectorr is counted from the center of the actua-
tor and coefficientss1, s2 are presented by

s1 =
iπhp(ω)

4D

k1r0J1(k1r0)

k21 − k22
,

s2 = − iπhp(ω)
4D

k2r0J2(k2r0)

k21 − k22
,

whereJn and Hn are the Bessel and the Hankel functions
of the first kind, respectively. We will consider that the fre-
quencyf of the source is sufficiently highω=2πf>ωc, where
ωc is the cutoff frequencyωc=(G/I)1/2. As a result, the prop-
agation spectrum is determined by two real wavenumbers k1

and k2. Expressions for rotationsψ=(ψr ,ψθ) and, conse-
quently,u(r, ω), v(r, ω) can be found in the article (Mindlin
& Deresiewicz, 1954).

4. DYNAMICS . TRANSIENT SOLUTION

To study the transient wave propagation we consider that the
plate is excited by a pulse of the load stimulated by a PZT
sensor (Raghavan & Cesnik, 2007). The expression for the
wave pulses in the plane (x,y) may be derived from the steady-
state solution in the frequency domain by applying the Fourier
transform technique.

Let us consider that any pulse of the wave can be expanded
into the Fourier transform which represents pulse as a series
of plane waves. If the Fourier spectrumG(ω) of the signal
g(t) is

g(t) =
1

2π

∫ ∞

−∞
G(ω)e−iωtdω, (28)

then the final solution for mechanical fields in the time do-
main will be



uj(r, t, θ)
vj(r, t, θ)
wj(r, t, θ)


 = Re

1

2π

∫ ∞

−∞
G(ω)



uj(ω)
vj(ω)
wj(ω)


 e−iωtdω

(29)
For Mindlin plate theory we omit indicesj. Let us present
the results obtained by (29) and compare them with the re-
sults of the direct computer simulation of the real honeycomb
plate. We consider the Hanning type actuation signals which
are usually used for fault detection in SHM (Raghavan & Ces-
nik, 2007). The Hanning signal can be presented in the form

g(t) = [Θ(t)−Θ(t− 2πN/ω0)] [1− cos(ω0t/N)] sin(ω0t)
(30)

whereN is a parameter of impulse,f 0 =ω0/2π is a carrier
frequency,Θ(t) is the Heaviside step function. The selection
of the driving frequencyf was made in the frequency range
from 20 to 100 kHz and this selection is critical for Lamb
waves generation and fault detection.

We compare the analytical results with the corresponding re-
sults obtained by the Finite Element simulation. The FE mod-
eling for 2D Mindlin plate is presented in Fig. 6. and it fits
well with the theoretical approach. The main difference be-
tween these signals is that the theoretical results are valid for
the infinite plate, and the FE 2D Mindlin plate model pro-
vides the result which takes into account reflections from the
boundaries. The comparison of the 3D modeling of sandwich
composite panels with the theoretical result is considered in
the last section.

4.1 Propagation of the signal

As an example, for simulation we used Hunning pulses with
3.5 windowed input waveform with different carrying fre-
quencyf. The Fourier transform of such signal is presented
in Fig. 5 a) forf = 100kHz (dashed red line). Disper-
sion curves are presented in Fig. 5 (b) calculated according to
the characteristic equation (11). It can be seen that the main
domain of narrowband 3.5 windowed input waveform taking
part in wave propagation is sufficiently broad (the domain be-
tween two red lines in dispersion curves Fig. 5 (b), which
is taken, for example, on the level of 10 db Fig. 5 (a). The
modesA0 andS0 of the facesheets are the leading ones in
the formation of wave propagation through the structure. The
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wave velocitiesv = ω/k, wereω = 2πf , k is a wavenum-
ber, of the soft core are much lower than the facesheet veloc-
ities and that is why most dispersion curves have much lower
slope than facesheet modes, except for the small vicinity of
the facesheet modesA0 andS0. As a result, the generation
of the Hanning windowed signal with leading frequencyf
(f = 100kHz on the plot) leads to generation of antisym-
metric and symmetric zeros modes of the facesheets coupled
with a large number of local modes of the soft core.
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Figure 5: Dispersion relation for symmetric sandwich panel,
(a) – Spectrum of the input signal forf = 100kHz , (b) –
Honeycomb layered structure modes, (c) – Lamb velocities
modes. (Blue lines - facesheet modes, red line - homogenized
panel modes, dashed line - modes of Mindlin plate theory ap-
proach).

The phase velocities of the sandwich panel are presented in
the Fig. 5 c (black lines) and correspond to the same depen-
denciesω = ω(k) of the Fig. 5 (a). It can be easily seen
that for the considered impute signal many modes propagate
in the structures. If we consider the facesheet itself then only
the S0 mode and the A0 mode can propagate in the consid-
ered frequency range below or at the order of100kHz (blue

lines in the Fig. 5 (c). In this region, the S0 mode is almost
non-dispersive, and the A0 mode is slightly dispersive. Con-
sidering the structure of the dispersion curves (Fig. 5 b) and
velocity curves (Fig. 5 c) we can confirm that the majority of
wavenumbers of the modes in dispersion curves are located
in the small vicinity ofA0 andS0 modes and in this case
facesheet modes are much more sensitive to debond delami-
nation defects than the core modes synchronizing vibration of
the two facesheets.

For comparison, we will consider here the dispersion rela-
tions of Mindlin plate theory for symmetric sandwich struc-
tures (Dashed red line in Fig. 5 (c). The theory of the sand-
wich panels is considered in (Zenkert, 1995). We used analyt-
ical formulas from these sources just to identify coefficients
in Mindlin plate theory used for investigation of wave propa-
gation . The Mindlin plate theory approach shows that disper-
sion curves in the vicinity of f=100kHz are sufficiently close
to the antisymmetric mode of the facesheet (Fig. 4).

Dispersion curves in coordinates(v, f) for homogenized
plate are presented by green curves and they show quite dif-
ferent dispersion curves (Fig. 5c). In this case we can expect
that a simplified approach can not completely describe wave
propagation, and wave patterns in honeycomb structure are
much more diverse. This is especially true fora high fre-
quency excitation signal like 100kHz.

5. FINITE ELEMENT M ODEL

The SCP has two main components, namely two stiff
facesheets and a soft core between them. In addition to these
subcomponents, we will consider an adhesive layer binding
facesheets with the core. The thickness of the adhesive layer
is generally sufficiently small but this component is important
for simulation of the debond origination and growth. We also
consider PZT actuator and sensors mounted on the panel. As
a result of simulation, electrical signals of the sensors were
compared with the signals obtained experimentally. Such ap-
proach best fits the typical sketch we have in SHM when
the measured signals are used for interpretation of changes
in monitored panels.

The FE model of the honeycomb sandwich structures with a
piezoelectric actuator/sensor distribution is shown in Fig. 6.
The model consists of the honeycomb core and two laminated
facesheets with an actuator and sensors attached to the top
sheet.

5.1 Facesheet

The facesheet in Abaqus can be modeled using shell, contin-
uum shell, or solid element types (Fig. 7). We have found
that continuum shell element type for the facesheet provides
performance that is close to optimal. The facesheets were
made by graphite/epoxy with lay-up sequence of [0/ 90]. In
all cases, the composite layup is modeled explicitly as shown

6
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Figure 6: Finite element model of the sandwich honeycomb
structure with a piezoelectric actuator (shown by an arrow)
and a set of sensors (marked by the numbers).

Table 1: Parameters of the facesheet.
Ply elastic modulusE11 16 Msi
Ply elastic modulusE22 1.2 Msi
Ply Poisson’s ratioν12 0.3
Ply shear modulusG12 0.6 Msi
Ply thickness 6 mils
Laminate thickness 84 mils

in the figure 7. The parameters of the ply are shown in the
table

Figure 7: The composite layup of the facesheets consisting of
14 layers with orientation 0 and 90 degrees. The parameters
of the lamina are shown in the Table1.

5.2 PZT sensors and actuators

Geometrical properties of PZT elements (Fig. 8) of the model
are summarized in the Table2. The response of the PZT ele-
ments was determined by the piezoelectric stress matrixe and

Table 2: Parameters of the actuator and sensors.
Actuator diameter 0.709”
Actuator inner diameter 0.394”
Actuator thickness 20 mils
Sensor A diameter 0.354”
Sensor A thickness 20 mils
Sensor B diameter 0.250”
Sensor B thickness 10.5 mils

elasticity matrixc

[e] =




0 0 −5.4
0 0 −5.4
0 0 15.8
0 0 0.0
0 12.3 0.0

12.3 0 0.0



[Cm−2] (31)

[c] =




12.1 7.54 7.52 0 0 0
7.54 12.1 7.52 0 0 0
7.52 7.52 11.1 0 0 0
0 0 0 2.26 0 0
0 0 0 0 2.11 0
0 0 0 0 0 2.11



× 1010[Pa]

(32)

The dielectric matrix of the PZT material has the following
diagonal elementsε11 = ε22 = 8.11 × 10−9 [C/V/m] and
ε33 = 7.35× 10−9 [C/V/m]. The density of the PZT material
is ρPZT = 7750 [kg/m3].

Figure 8: Snapshot of the actuator and sensor A during the
simulations.

5.3 Honeycomb core

A special attention was paid to modeling of the detailed hon-
eycomb structure (Fig. 9 a,b,c) including the difference in
thickness for different walls of the structure and the presence
of bending tips. The structure was built from a single strip
shown in the Fig. 9(c). The bending tips were attached to
the structure using the boolean operation on the mesh. The
parameters characterizing mechanical properties of the hon-
eycomb structure are listed in Tab. 3

7
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XY

Z

a

b c

Figure 9: (a) Detailed view of the honeycomb structure. (b)
A single cell of the structure with bending tips. (c) A single
strip of the core used to build the structure.

Table 3: Parameters of the honeycomb core.
Cell size 0.25”
Shear modulus, ribbon direction (L) 70 ksi
Shear modulus, transverse direction (W)40 ksi
Density 5.2 lbs/ft3

Shear strength (L) 380 psi
Shear strength (W) 220 psi
Thickness 1”

The material properties of the Aluminum used to build the
structure are the following: Young’s modulusEAlm =
7.3084 × 1010 [Pa], Poisson’s ratioνAlm = 0.33, Mass den-
sity ρAlm = 2700 [kg/m3].

5.4 Adhesive layers

An important property of the honeycomb sandwich structure
is the presence of adhesive layers both between the actua-
tor/sensors and the facesheet and between the facesheet and
the honeycomb core (Fig. 10). Accordingly, the layer with the
following properties (Young’s modulusEAdh = 4.82 × 109

[Pa], Poisson ratioνAdh = 0.40, and mass densityρAdh =
1255 [kg/m3]) was explicitly included into the finite element
model.

Adhesive layer 

Cohesive layer 

Figure 10: The location of the adhesive layer between PZT
elements and facesheet and cohesive layer between facesheet
and honeycomb.

a

b

c

Figure 11: Finite element modeling of the sandwich honey-
comb structure with a piezoelectric actuator. (a) – out-of-
plane displacement fort = 0.02ms, (b) – t = 0.06ms, (c) –
t = 0.16ms, (PZT sensors corresponding experimental layup
are denoted black circles).

6. FE MODELING WAVE PROPAGATION

6.1 Numerical results

An experiment in Lamb wave propagation in a honeycomb
sandwich panel was done by Metis Design Inc. in collabo-
ration with ARC NASA. The sandwich panel fabricated for
this test consisted of two 84-mil thick cross-ply carbon fiber
composite laminates (bonded to a 1”- thick aluminum hon-
eycomb core). The size of the panel was 1ftx1ft. In the
experiment, PZT sensors located on the facesheet of the hon-
eycomb panel were used to determine the deformation at a
different location (Fig. 6). The primary goal of this study is
to model wave propagation field in3D sandwich honeycomb
panel to fit these results to SHM experimental data. Lamb
wave tests were done over a frequency range from 20 to 100
kHz and 3.5-cycle Hanning windowed toneburst was used as

8
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a

b

Figure 12: The results of the simulations of the wave propa-
gation in honeycomb structure are shown in comparison with
the experimental results measured for 80 kHz on (a) sensor #
1 embedded into actuator and (b) a similar sensor # 2 on the
other side of the structure.

an actuation signal for SHM.

First, we simulated a generation of acoustic modes by annular
PZT patch and studied wave propagation. Second, different
voltage generating signals were used to obtain transient fields
which generate an electrical signal in a set of PZT sensors
mounted on the facesheet plane in a particular experiment.
Finally, we compared an electrical signal in pitch catch and
pulse-echo technique and showed a very good agreement of
both the theoretical and experimental data. Typical view of
the FE simulations results is presented in Fig. 11. It can be
easily seen from Fig. 11 that magnified displacement actu-
ated by transducer located at the top of right-hand side corner
propagates through the structure and generates electric signal
in PZT sensors mounted to the top facesheet.

Results for voltage measurement for different sensors
mounted on the plate are presented in Figures 12 and 13 for
f = 80kHz, which shows the voltage on the corresponding
sensors as a function of time at two locations, x = - 0.135m
(y=6in) and x = 0.135m (y=6in), respectively, (the panel is
centered at (0,0) and all sensors are positioned with respect to
the center).

Theoretical and experimental results fit very well at the ini-
tial stage of wave propagation. The wave modes reflected
from the boundaries of the plate lead to change in the phase
of strain vibration and are not identical in the instance when
we have reflections from the boundaries.

a

b

Figure 13: The results of the simulations of the wave propa-
gation in honeycomb structure are shown in comparison with
the experimental results measured for 80 kHz on (a) sensor #
7 and (b) sensor # 8.

The results of simulations of the wave propagation in a hon-
eycomb sandwich structure are shown in comparison with the
experimental results forf = 100kHz for a much longer time
period, and they are presented in Fig. 14. You can see that
when the time is longer we have stronger discrepancy be-
tween the theoretical and the experimental results even for
the pristine panel without any damage. This is probably due
to imperfections in the panel manufacturing and nonperfect
boundary conditions in experiment in contrast to perfect ge-
ometry we use in numerical simulation.

7. CONCLUSION

We have investigated the wave propagation in sandwich hon-
eycomb panels. A narrowband excitation waveform is em-
ployed to study wave propagation and damage detection in
CSP. The new detailed model of SCP is developed. Computer
simulation of the wave propagation is performed and results
of the strains are compared with those obtained by experimen-
tal testing. For this the PZT sensors mounted on a composite
facesheet plate are used. It has been demonstrated that ini-
tial stages of the propagating pulse practically always fit each
other. For much longer time intervals many reflections from
the boundaries change the phases of the strain oscillations,
and it is not always possible to fit theoretical and experimen-
tal signals well. The conducted analysis has shown that in
thick (1in core) sandwich panels withAl honeycomb struc-
ture acoustic signal generated by the PZT actuator can be eas-
ily detected. Simulations have demonstrated practically the
same response of the sensors we have in the experiment. The
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Figure 14: The results of the simulations of the wave propa-
gation in honeycomb structure are shown in comparison with
the experimental results measured for 100 kHz on (a) sensor
# 3 and (b) sensor # 4. The blue line corresponds to FE mod-
eling, Black one to experimental results and dashed red line
to the modes calculated by Mindlin plate theory approach.

obtained results allow us to use FE methods for simulation
of the acoustic waves propagating in the panel. The obtained
results open up the prospect of the development of the SHM
methods for advanced composite panels. This study makes it
possible to deeper understand the physics based processes for
the development of SHM methods. It should be pointed out
that the FE model developed in this study has only been tested
on one sample CSP and additional study will be necessary.

This paper addresses the different approaches to simulation
of the guided wave propagation in sandwich structures with
the emphasis given to the properties which can be used for
SHM. The analytical investigation of dispersion curves, the
plate wave using the Mindlin plate theory and the numerical
simulations shows the main features we come across when
developing real SHM methods. An analytical study is carried
out to find the solution for transient wave propagation. The
obtained analytical solutions are compared to the FE analysis
as well as the experimental data.
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ABSTRACT 

Real-time prediction of state-of-charge (SOC), state-of-
health (SOH) and state-of-life (SOL) plays an essential 
role in many battery energy storage applications, such 
as electric vehicle (EV), hybrid electric vehicle (HEV) 
and smart power grid. However, among these three 
quantities, only the SOC has been thoroughly studies 
while there is still lack of rigorous research efforts on 
the other two quantities, SOH and SOL. Specially, real-
time estimation of the SOH-relevant cell capacity by 
tracking readily available measurements (e.g., voltage, 
current and temperature) is still an open problem. 
Commonly used joint/dual extended Kalman filter 
(EKF) suffers from the lack of accuracy in the capacity 
estimation since (i) the cell voltage is the only 
measurable data for the SOC and capacity estimation 
and updates and (ii) the capacity is very weakly linked 
to the cell voltage. Furthermore, although the capacity 
is a slowly time-varying quantity that indicates cell 
state-of-health (SOH), the capacity estimation is 
generally performed on the same time-scale as the 
quickly time-varying SOC, resulting in high 
computational complexity. To resolve these difficulties, 
this paper proposes a multiscale framework with EKF 
for SOC and capacity estimation. The proposed 
framework comprises two ideas: (i) a multiscale 
framework to estimate SOC and capacity that exhibit 
time-scale separation and (ii) a state projection scheme 
for accurate and stable capacity estimation. Simulation 
and experimental results verify the effectiveness of our 
framework. † 

                                                           
* Corresponding author. 
† This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 

1. INTRODUCTION 

As a battery cell ages, the cell capacity and resistance 
directly limit the pack performance through capacity 
and power fade, respectively (Plett, 2004a). These two 
degradation parameters are often used to quantify the 
cell state of health (SOH). Thus, it is important to 
accurately estimate these parameters to monitoring the 
present battery SOH and to predict the remaining useful 
life (RUL). Recent literature reports various approaches 
to estimate the SOH with a focus on the capacity 
estimation. Joint/dual extended Kalman filter (EKF) 
(Plett, 2004a) and unscented Kalman filter (Plett, 
2006a) with an enhanced self-correcting model were 
proposed to simultaneously estimate the SOC, capacity 
and resistance. To improve the performance of 
joint/dual estimation, adaptive measurement noise 
models of the Kalman filter were recently developed to 
separate the sequence of SOC and capacity estimation 
(Lee et al., 2008). A physics-based single particle 
model was used to simulate the life cycling data of Li-
ion cells and to study the physics of capacity fade 
(Zhang and White, 2008a; Zhang and White, 2008b). A 
Bayesian framework combining the relevance vector 
machine (RVM) and particle filter was proposed for 
prognostics (i.e., RUL prediction) of Li-ion battery 
cells (Saha et al., 2009). More recently, the particle 
filter with an empirical circuit model was used to 
predict the remaining useful lives for individual 
discharge cycles as well as for cycle life (Saha and 
Goebel, 2009).  
 Among these techniques, the joint/dual estimation 
technique is capable of real-time SOC and capacity 
estimation. Although it provides highly accurate SOC 
estimation, it suffers from the lack of accuracy in the 
capacity estimation since (i) the cell voltage is the only 
directly measurable data for the measurement updates 
in the SOC and capacity estimation (indirectly 
measurable data such as electrochemical impedance 
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require additional devices) and (ii) the capacity is very 
weakly linked to the cell voltage. Due to the strong 
correlation between the SOC and capacity, inaccurate 
capacity estimation may further lead to inaccurate SOC 
estimation and vice versa. Furthermore, although the 
capacity is a slowly time-varying quantity that indicates 
cell state-of-health (SOH), the capacity estimation is 
generally performed on the same time-scale as the 
quickly time-varying SOC, resulting in high 
computational complexity. To resolve these difficulties, 
this paper proposes a multiscale framework with EKF 
for SOC and capacity estimation. The proposed 
framework comprises two ideas: (i) a multiscale 
framework to estimate SOC and capacity that exhibit 
time-scale separation and (ii) a state projection scheme 
for accurate and stable capacity estimation. It is noted 
that the multiscale framework is generic since it can be 
used to achieve highly-confident health prognostics for 
any engineered system with multiple time-scales. 
 This paper is organized as follows. Section 2 
describes the discrete-time state-space model of an 
engineered system with multiple time-scales. Section 3 
reviews the numerical formulation and implementation 
of the dual EKF method. Section 4 resents the proposed 
multiscale framework with EKF and introduces the 
state projection scheme. The proposed ideas are applied 
to a Li-ion battery system to estimate SOC and capacity 
in Section 5. Section 6 contains simulation and 
experimental results of this application. The paper is 
concluded in Section 7. 

2. SYSTEM DESCRIPTION   

To make the discussion more concrete, we will use 
discrete-time state-space models with multiple time-
scales.  Without loss of generality, we assume the 
system has two time-scales: the macro and micro time-
scales. System quantities on the macro time-scale tend 
to vary slowly over time while system quantities on the 
micro time-scale exhibit fast variation over time. The 
former are referred to as the model parameters of the 
system while the latter are called the states of the 
system. We then begin by defining the nonlinear state-
space model considered in this work as  
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 (1) 

where xk,l is the vector of system states at the time tk,l = 

tk,0 + l·T, for 1 ≤ l ≤ L, with T being a fixed time step 

between two adjacent measurement points, and k and l 

being the indices of macro and micro time-scales, 
respectively; θk is the vector of system model 

parameters at the time tk,0; uk,l is the vector of observed 

exogenous inputs; yk,l is the vector of system 

observations (or measurements); wk,l and rk are the 

vectors of process noise for states and model 

parameters, respectively; vk,l is the vectors of 

measurement noise; F(•,•,•) and G(•,•,•) are the state 
transition and measurement functions, respectively. 

Note that L represents the level of time-scale separation 

and that xk,0 = xk–1,L. With the system defined, we aim at 

estimating both the system states x and model 

parameters θ from the noisy observations y. 

 Let’s take the battery system as an example. In the 
battery system, the system state x refers to the SOC, 

which changes very rapidly and may transverse the 

entire range 100%-0% within minutes. The system 

model parameter θ represents the cell capacity which 

tends to vary very slowly and typically decreases 1.0% 

or less in a month with regular use. The state transition 
equation F(•,•,•) models the variation of SOC over time 

while the cell dynamic model G(•,•,•) relates the 

measured cell terminal voltage y with the unmeasured 

state (SOC) and model parameter (capacity) and the 

measured exogenous input u being the cell current. 

Given the system’s state-space model in Eq. (1) and 
knowledge of the measured input/output signals (cell 

current/cell terminal voltage), we are interested in 

estimating the unmeasured state (SOC) and model 

parameter (capacity) in real-time and in a dynamic 

driving environment.  

3. REVIEW OF DUAL EXTENDED KALMAN 

FILTER METHOD 

The dual extended Kalman filter (EKF) method is a 

commonly used technique to simultaneously estimate 

the states and model parameters (Haykin, 2001). The 

essence of the dual EKF method is to combine the state 
and weight EKFs with the state EKF estimating the 

system states and the weight EKF estimating the 

system model parameters. In the algorithm, two EKFs 

are run concurrently and, at every time step when 

observations are available, the state EKF estimates the 

states using the current model parameter estimates from 
the weight EKF while the weight EKF estimates the 

model parameters using the current state estimates from 

the state EKF. This section gives a brief review of the 

dual EKF method. Section 3.1 presents the numerical 

formulation of the dual EKF method and the numerical 
implementation of the recursive derivative computation 

is described in Section 3.2. 

3.1 Numerical Formulation: Dual Estimation  

The algorithm of the dual EKF for the system described 

in Eq. (1) is summarized in Table 1. Since the dual 

EKF does not take into account the time-scale 
separation, θk is estimated on the micro time-scale. To 

reflect this, we use the notations θk,l and rk,l to replace 

θk and rk, respectively. Also note that, to be consistent 

with the system description in Eq. (1), we use two time 
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indices k and l to present the dual EKF algorithm and 

this presentation is equivalent to a simpler version in 

(Wan and Nelson, 2001) with only one time index l.  
 The algorithm is initialized by setting the model 

parameters θ and states x to the best guesses based on 

the prior information. The covariance matrices Σθ and 

Σx of estimation errors are also initialized based on the 

prior information. At each measurement time step, the 

time- and measurement-updates of the state and weight 
EKFs are performed. In the time-update, the state and 

parameter estimates from the previous measurement 

time step are propagated forward in time according to 

the transition equations in Eq. (1). The current state and 

parameter estimates are set equal to these propagated 

estimates and the error uncertainties are increased due 
to the addition of process noise w and r. In the 

measurement update, the measurement at the current 

time step is compared with the predicted model outputs 

based on the current state and parameter estimates and 

the differences are used to adapt the current estimates.  

3.2 Numerical Implementation: Recursive 

Derivative Computation 

The dual EKF method, which adapts the states and 

parameters using two concurrently running EKFs, has a 

recursive architecture associated with the computation 

of Ck,l
θ in the weight filter. The computation of Ck,l

θ 
involves a total derivative of the measurement function 

with respect to the parameters θ as  
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This computation requires a recursive routine similar to 

a real-time recursive learning (Williams and Zipser, 
1989). Decomposing the total derivative into partial 

derivatives and propagating the states back in time 

results in the recursive equations 
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The last term in Eq. (5) can be set to zero with the 
assumption that Kk,l

x is not dependent on θ. Indeed, 
since Kk,l

x is often very weakly dependent on θ, the 
extra computational effort to consider this dependence 
is not worth the improvement in performance. 
Therefore, we drop the last term in Eq. (5) in this study. 
Then the three total derivatives can be computed in a 
recursive manner with initial values set as zeros. It 
noted that the partial derivatives of the transition and 
measurement functions with respect to the states x and 
parameters θ can be easily computed with the explicitly 
given function forms.  
 

4. A MULTISCALE FRAMEWORK WITH 

EXTENDED KALMAN FILTER  

As discussed in Section 3, the dual EKF method 
estimates both the states and parameters on the same 
time-scale. However, for systems that exhibit the time-
scale separation, it is natural and desirable to adapt the 
slowly time-varying parameters on the macro time-
scale while keeping the estimation of the fast time-
varying states on the micro time-scale. This section is 
dedicated to the discussion of this multiscale 
framework. Section 4.1 presents the numerical 
formulation of the multiscale framework and the 
numerical implementation of the recursive derivative 
computation is described in Section 4.2.  

4.1 Numerical Formulation: Multiscale Estimation 

As opposed to the dual estimation, we intend to derive 
a multiscale estimation which allows for a time-scale 
separation in the state and parameter estimations. More 
specifically, we aim at estimating the slowly time-
varying model parameters on the macro time-scale and, 
at the same time, intend to keep the estimation of fast 
time-varying states on the micro time-scale to utilize all 
the measurements. For these purposes, we derive the 
so-called micro and macro EKFs running on the micro 
and macro time-scales, respectively. Note that, the 
micro time-scale here refers to the time-scale on which 
system states exhibit fast variation while the macro 
time-scale refers to the one on which system model 
parameters tend to vary slowly. For example, in the 
battery system, the SOC, as a system state, changes 
every second, which suggests the micro time-scale is 
approximately one second. In contrast, the cell 
capacity, as a system model parameter, typically 
decreases 1.0% or less in a month with regular use, 
resulting in the macro time-scale being approximately 
one day or so. In the micro EKF, similar to the state 
EKF in the dual estimation, the states are estimated 
based on measurements y. In the macro EKF, the 
measurements used to adapt the model parameters are 
the estimated states from the micro EKF.  
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Table 1 Algorithm of dual extended Kalman filter (Wan and Nelson, 2001) 

Initialization 
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For k∈{1,…, ∞}, l∈{1,…, L}, compute 

 Time-update equations for the weight filter 
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 Time-update equations for the state filter 
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 Measurement-update equations for the state filter 
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 Measurement-update equations for the weight filter 
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A state projection scheme is introduced to project the 
state through the macro time step, expressed as 

 
( )1, 0 1,0 1,0: 1 1, ,k L L k k L k− → − − − −=x F x u θ  (14) 

where the state projection function F0→L(•,•,•) can be 
expressed as a nested form of the state transition 
function F(•,•,•). It is noted that the computational 
effort involved in computing F0→L(•,•,•) is negligible 
compared to the time- and measurement-updates 
conducted in L micro time steps.  
 The algorithm of the multiscale framework for the 
system described in Eq. (1) is summarized in Table 2. 
Note that, in contrast to the dual EKF algorithms in 
Table 1, we only use the macro time-scale index k to 
present the macro EKF since it estimates the 
parameters on the macro time-scale. The algorithm is 
initialized by setting the model parameters θ and states 

x to the best guesses based on the prior information. 
The covariance matrices Σθ and Σx of estimation errors 
are also initialized based on the prior information. At 
each time step on the macro time-scale, the time- and 
measurement-updates of the macro EKF is performed 
while, at each time step on the micro time-scale, the 
time- and measurement-updates of the micro EKF is 
performed. In the measurement-update of the macro 
EKF, the state estimate at the previous macro time step 
from the micro EKF is projected through the macro 
time step according to the state projection equation in 
Eq. (14). Then the state estimates at the current macro 
time step from the micro EKF are compared with the 
projected estimates and the differences are used to 
adapt the current parameter estimates. 
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Table 2 Algorithm of a multiscale framework with extended Kalman filter 

Initialization 
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For k∈{1,…, ∞}, compute  

 Time-update equations for the macro EKF 
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 For l∈{1,…, L}, compute 

 Time-update equations for the micro EKF 
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 Measurement-update equations for the micro EKF 
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4.2 Numerical Implementation: Recursive 

Derivative Computation 

In the multiscale framework, the computation of Ck
θ in 

the macro EKF involves a total derivative of the state 
projection function with respect to the parameters θ as  
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Similar to the total derivative in Eq. (2), this 
computation also requires a recursive routine. 

Decomposing the total derivative into partial 
derivatives, we then obtain the following equation 
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The total derivative in the last term can be obtained by 
using the recursive equations Eqs. (3)-(5).  
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5. APPLICATION TO LI-ION BATTERY 

SYSTEM  

In this section, we use the proposed framework to 
estimate the SOC and capacity in a Li-ion battery 
system. When applied to the battery system, the 
multiscale framework can be treated as a hybrid of 
coulomb counting and adaptive filtering techniques and 
comprises two new ideas: (i) a multiscale framework to 
estimate SOC and capacity that exhibit time-scale 
separation and (ii) a state projection scheme for 
accurate and stable capacity estimation. Section 5.1 
presents the discrete-time cell dynamic model used in 
this study. Section 5.2 presents the multiscale 
estimation of SOC and capacity. 

5.1 Discrete-Time Cell Dynamic Model  

In order to execute the time-update in the micro and 
macro EKFs, we need a state transition model that 
propagate the SOC forward in time. In order to execute 
the measurement-update in the micro-EKF, we need a 
“discrete-time cell dynamic model” that relates the 
SOC to the cell voltage. Here we employ the enhanced 
self-correcting (ESC) model which considers the 
effects of open circuit voltage (OCV), internal 
resistance, voltage time constants and hysteresis (Plett, 
2004a). The effects of voltage time constants and 
hysteresis in the ESC model can be expressed as (Plett, 
2004a) 

 

( )
( )

( ) ( )

, 1 ,

, 1 , 1 ,

,

, 1

diag 0

0

1 0

0 1 ,

k l k l

k l k l k l

k l

k l

f f

h i h

i

i M x x

ϕ

ϕ

+

+ +

+

    
=     
     

   
+    −   

α

�

 (26) 

 
( ) ,

, 1 exp
i k l

k l

k

i T
i

C

η γ
ϕ +

 ⋅ ⋅ ⋅
= −  

 
 (27) 

where x is the SOC, f the filter state, h the hysteresis 
voltage, α the vector of filter pole locations, γ the 
hysteresis rate constant, i the current, M(· , ·) maximum 
hysteresis, ηi the Coulombic efficiency, T the length of 
measurement interval, C the nominal capacity. We then 
obtain the state transition and measurement equations 
as  
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 (28) 

where OCV is the open circuit voltage, yk the predicted 
cell terminal voltage, R the cell resistance, S a vector of 
constants that blend the time constant states together in 
the output. 

5.2 Multiscale Estimation of SOC and Capacity  

We then begin to introduce the multiscale framework 
with EKF for the Li-ion battery system by drawing a 
flowchart in Figure 1, where T is a fixed time step 
between two adjacent measurement points, xk,l is the 
SOC estimate at the time tk,l = tk,0 + l·T., for 1 ≤ l ≤ L (k 
and l are the indices of macro and micro time-scales, 
respectively), y and i are the cell voltage and current 
measurements, and C is the cell capacity estimate. 
 

Time update EKFX

xk,l
– = xk,l-1 + ηi·T·ik,l-1/Ck-1

Time update EKFC

Ck
– = Ck-1

+

Ck
–

xk,l
–

Ck

xk,l-1

Ck-1
+

ik,l-1

Measurement 

update EKFC

Measurement 

update EKFX

xk,l

yk,l ik,l

State projection 

EKFC

xk,L
~

Macroscale: 

l = L?

xk,l

No

Yes xk,L

(SOC)

Micro EKF

Macro EKF

(Capacity)

 

Figure 1: Flowchart of a multiscale framework with EKF for battery SOC and capacity estimation. 

 
 The framework consists of two EKFs running in 
parallel: the top one (micro EKF) adapting the SOC in 
the micro time-scale and the bottom one (macro EKF) 
adapting the capacity in the macro time-scale. The 
micro EKF sends the SOC estimate to the macro EKF 
and receives the capacity estimate from the macro EKF. 
In what follows, we intend to elaborate on the key 

technical component of the multiscale framework, the 
macro EKF, which consists of the following recursively 
executed procedures (see Figure 2): 

Step 1: At the macro time step k, the capacity 
transition step, also known as the time update step, 
computes the expected capacity and its variance based 
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on the updated estimates at the time step k ‒ 1, 
expressed as 

 
1 11 , .

k k kk k C C r
C C

− −

− + − +

−= Σ = Σ + Σ  (29) 

For a stable system, the capacity variance term tends to 
decrease over time with the measurement update to be 
detailed in the subsequent step. However, the process 
noise term always increases the uncertainty of the 
capacity estimate due to the addition of unpredictable 
process noise. To clearly illustrate the idea, we intend 
to classify the capacity estimates into three cases (see 
Figure 1): a larger estimate Ck‒1

(L), an accurate estimate 
Ck‒1

(N), and a smaller estimate Ck‒1
(S). 

Step 2: Based on the capacity estimate Ck
‒, the state 

projection scheme projects the SOC through the macro 
time step, expressed as a state projection equation 
derived from Eqs. (14) and (28) 
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⋅
= + ⋅∑  (30) 

As can be seen in Figure 2:, the projected SOCs exhibit 
large deviations from their true value (from micro 
EKF), which suggests a magnified effect of the 
capacity on the SOC.  

Step 3: Following the state projection step, the 
difference between the projected SOC and the 
estimated SOC by the micro EKF is used to update the 
capacity estimate, known as the measurement update. It 
is noted that the measurement update requires accurate 
SOC estimates which can be obtained from the micro 
EKF. The updated capacity estimate equals the 
predicted capacity estimate in Step 1 plus a correction 
factor, expressed as 

 ( )
, ,

ˆ ,

1 .
k k

C

k k k k L k L

C C

C k k C

C C K

K C
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 = + − 
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where the Kalman gain Kk
C  and the total derivative Ck

C 

can be estimated using Eqs. (18) and (23), respectively.  
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Ck−1
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Ck−1
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Ck
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Ck
‒(N)

Ck
‒(S)

 
Figure 2: Procedures of capacity estimation in macro 

EKF. 

5.3 Remarks on Mutiscale Framework  

We note that the proposed framework decouples the 

SOC and capacity estimation in terms of both the 
measurement and time-scale, with an aim to avoid the 

concurrent SOC and capacity estimation relying on the 

only measurement (cell terminal voltage) in the dual 

EKF (Plett, 2004a). In fact, the very motivation of this 

work lies in the fact that the coupled estimation in the 

dual EKF falls short in the way of achieving stable 
capacity estimation, precisely because it is difficult to 

distinguish the effects of two states (SOC and capacity) 

on the only measurement (cell terminal voltage), 

especially in the case of the micro time-scale where the 

capacity only has a very small influence on the SOC. 

Regarding the measurement decoupling, the multiscale 
framework uses the cell terminal voltage exclusively as 

the measurement for adapting the SOC (micro EKF) 

which in turn serves as the measurement to adapt the 

capacity (macro EKF). Regarding the time-scale 

decoupling, the state projection using the coulomb 

counting in Eq. (30) significantly magnifies the effect 
of the capacity on the SOC, i.e., that the capacity 

affects the SOC projected on the macro time-scale 

(L·T) more significantly than that projected on the 

micro time-scale (T). The larger influence of the 

capacity on the SOC leads to the possibility of more 
stable capacity estimation, and that is precisely the 

main technical characteristic that distinguishes our 

approach from the dual EKF. 

6. SIMULATION AND EXPERIMENTAL 

RESULTS  

The verification of the proposed multiscale framework 
was accomplished by conducting an extensive urban 

dynamometer drive schedule (UDDS) test. In Section 

6.1, the synthetic data using a valid dynamic model of a 

high power LiPB cell are used to verify the 

effectiveness of the multiscale framework. Section 6.2 

reports the results of UDDS cycle life test on Li-ion 
prismatic cells.  

6.1 SOC and Capacity Estimation with Synthetic 

Data of High Power Cell 

Synthetic Data Generation 

In order to evaluate the performance of our proposed 
approach, we generated the synthetic data (T = 1s) 

using an ESC model of a prototype LiPB cell with a 

nominal capacity of 7.5Ah (Plett, 2006b). The root-

mean-square (RMS) modeling error compared to cell 

tests was reported to be less than 10mV (Plett, 2004b). 

A sequence of 15 urban dynamometer driving schedule 
(UDDS) cycles (see Figure 3a), separated by 30A 

constant current discharge and 5min rest, result in the 

spread of SOC over the 100%-4% range (see Figure 
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3b). To account for the measurement error, the current 

and voltage data were contaminated by zero mean 

Gaussian noise with standard deviations 200mA and 
10mV, respectively. 

Capacity Estimation Results 

To test the performance of the dual EKF and the 

multiscale framework with EKF, we intentionally offset 

the initial capacity value (7.0Ah) from the true value 

(7.5Ah). The results of capacity estimations by these 
two methods are summarized in Figure 3c and 3d, 

respectively, from which three important observations 

can be made. First of all, both methods produced 

converged capacity estimates with identical similar 

convergence rate. Indeed, the convergence rate can be 

adjusted by varying the process and measurement noise 
covariances which, respectively, represent the process 

uncertainty resulting from the model inaccuracy and the 

measurement uncertainty resulting from external 

disturbance that corrupts the measurement data. 

Secondly, the dual EKF yielded inaccurate and noisy 

capacity estimation (see Figure 3c) while the multiscale 
framework (L = 100) with EKF produced more 

accurate and stable capacity estimation (see Figure 3d). 

This can be attributed to the fact that the state 

projection in Eq. (30) magnifies the effect of the 

capacity on the SOC as well as removes to some extent 

the measurement noise. To minimize the effect of 

randomness in measurement noise, we repeated this 

simulation process ten times and obtained average 
RMS capacity estimation errors after convergence (at t 

= 200mins) to be 0.048Ah (relative error 0.640%) and 

0.033Ah (relative error 0.440%) for the dual EKF and 

the multiscale framework with EKF, respectively. 

Thirdly, it is observed that, although the multiscale 

framework with EKF produced stable capacity 
estimation, the estimate still exhibits small fluctuation 

over time. It is fair to say, however, that the small noise 

does not really affect the practical use of this estimate. 

Computational Efficiency 

In the previous subsection, we have demonstrated that 

the proposed multiscale framework yielded higher 
accuracy than the dual EKF. In this subsection, we 

compare the two methods in terms of computational 

efficiency. To minimize the effect of randomness in 

measurement noise, we employed the ten synthetic data 

sets with each being executed ten times. Our 

computations were carried out on a processor Intel 
Core i5 760 CPU 2.8GHz and 4 GByte RAM. The 

codes for both methods were self-devised hand-

optimized MATLAB codes running in Matlab 

environment (MATLAB Version 7.11.0.584, The 

MathWorks, Inc., Natick, MA USA). 

30A constant 
discharge

5min rest

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3: Synthetic data and results of capacity estimation. Figure (a) plots the rate profile 

for one UDDS cycle and (b) plots the SOC profile; (c) and (d) plot the results of capacity 

estimation by dual EKF and multiscale framework with EKF, respectively. 
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To make our comparison of general use to other 

engineering systems, we ruled out the computational 

time required to execute the ESC model in this study. 
In fact, the measurement functions of two engineered 

systems may exhibit a large difference in the level of 

complexity, resulting in different amounts of 

computational time. Thus, we intend to minimize the 

effect of system-to-system variation and focus on the 

general functions in an EKF by assuming a negligibly 
small amount of time for the execution of the system-

specific measurement function (ESC model).  

 Table 3 summarizes the mean computational times. 

It is observed that the multiscale framework with EKF 

requires a smaller amount of computational time of 

1.456s for the sequence of 15 UDDS cycles, a 34.145% 
reduction over the dual EKF whose computational time 

is 2.210s. Note that the percent of improvement is less 

than 50%. This can be attributed to the following two 

reasons: (i) from the standpoint of computations on the 

micro time-scale, it is noted that, in addition to the 

time- and measurement-update computations for SOC 
estimation, both methods also require the recursive 

derivative computation which, to some extent, reduces 

their efficiency gap; and (ii) from the standpoint of 

computations on the macro time-scale, although the 

macro-EKF is executed only upon the completion of L 
= 100 executions of the micro-EFK, it still requires a 

certain amount of time to compute the time- and 

measurement-updates for capacity estimation. In spite 

of these points, it is fair to say, however, that the 

proposed method achieves considerable improvement 

over the dual EKF in terms of computational efficiency. 
This improvement is critical to alleviating the 

computational burden imposed on the hardware and 

thus enhancing the feasibility of applications.  

Table 3 Comparison results of computation efficiency 
with ten synthetic data sets  

Method 
Computational 

time (s) 

Improvement 

(%) 

Dual EKF 2.210 --- 

Mutiscale EKF 1.456  34.145 

 

6.2 SOC and Capacity Estimation with UDDS 

Cycle Life Test of a Prismatic Cell  

Description of Test Procedure 

In addition to the numerical study using synthetic data, 
we also conducted the UDDS cycle test to verify the 

effectiveness of the multiscale framework. The cycle 

test data were extracted from an accelerated life test 

(ALT) that is currently being performed on sixteen 

1500-mAh Li-ion prismatic cells. We set up a UDDS 

test system (see Figure 4) which comprises of an 
MACCOR Series 4000 cycle tester with a data 

acquisition device, an Espec SH-241 temperature 

chamber and a test jig as a connector holder for 

prismatic cells. Sixteen prismatic cells were placed in 

the temperature chamber and held by the test jig 
throughout the test.  

 

 

Prismatic Cells

Test JigTemperature Chamber

Data Acquisition Device

MACCOR Cell Tester

 
Figure 4: Experiment setup – UDDS cycle life test system. 

All cycling experiments were performed at a 
constant room temperature, i.e., 25˚C. A two-level 
design of experiment (DOE) was used to study the 
effects of charging and discharging conditions on the 
health degradation. With two levels for charging 
conditions (1.0C and 1.5C) and discharging conditions 
(1.0C and 2.0C), we have four experimental settings as 
shown in Table 4. Based on the cell degradation data 

obtained from tests, we will develop real-time SOH and 
SOL prediction algorithms. Figure 5 shows the detailed 
test procedure. After every 10 charging and discharging 
cycles with specified rates in Table 4, cells are tested 
with 10 urban dynamometer drive schedule (UDDS) 
cycles for algorithm verification, followed by a small 
rate (0.05C) constant discharge for capacity check. 
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Capacity and impedance check

10 cycles charging and 

discharging

50 hrs 40 hrs

80hrs

4.2V

3.0V

One cycle (40 hrs)

Constant discharge: ~20hr 

(capacity check, 0.05C)

UDDS: ~20hrs 

(test algorithm; impedance check)

 
Figure 5: Detailed test procedure. 

 

Table 4 Experiment settings 

Charging 
Rate 

Discharging 
Rate 

Number of 
Cells 

1.0C 1.0C 4 

1.5C 1.0C 4 

1.0C 2.0C 4 

1.5C 2.0C 4 

 
 
The capacity degradation of the 1500-mAh prismatic 

Li-ion cells under the first cycling condition in Table 3 
is plotted in Figure 6. Under this condition, the cell 
capacity exhibits a linear relationship with the number 
of cycles and decreases by about 0.1Ah (6.5%) after 
200 charging and discharging cycles. In what follows, 
we do not intend to investigate how to utilize this 
degradation behavior for SOL prediction but to employ 
the UDDS cycle test data before the cycling (1.0C 
charging, 1.0C discharging) from the first two cells to 
verify effectiveness of the proposed multiscale 
framework. The cycle test (see Figure 7a) is composed 
of 10 UDDS cycles, separated by 1C constant charge 
for 18 min and 18 min rest. This test profile resulted in 
the spread of SOC over the 4%-100% range. The SOC 
profile for 10 UDDS cycles is plotted in Figure 7b, 
where the SOC increases by about 9% during each 
charge period between cycles.  
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Figure 6: Capacity degradation under 1.0C 
charging rate and 1.0C discharging rate. 

Training of ESC Cell Model 
The current and voltage measurements of Cell 1 were 
used to train the ESC model (Plett, 2004a) while Cell 2 
was treated as the testing cell. We followed the 
procedures described in (Plett, 2005) to obtain the open 
circuit voltage (OCV) curve. Through numerical 
optimization, optimum ESC model parameters were 
obtained which minimize the root mean squared (RMS) 
error of cell terminal voltage. The numerical 
optimization was performed using with a sequential 
quadratic programming (SQP) method. We employed a 
nominal capacity of 1.5Ah, a measurement interval of T 
≈ 1s, and four filter states nf = 4. The voltage modeling 
results for one UDDS cycle are shown in Figure 8, 
where a good agreement can be observed. 
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Figure 7: SOC profile and one cycle rate profile for 
UDDS cycle test. Figure (a) plots the rate profile for 
one UDDS cycle and (b) plots the SOC profile for 

10 UDDS cycles. 
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Figure 8: Modeled and measured cell terminal 
voltage for one UDDS cycle. 

SOC and Capacity Estimation Results 
The SOC estimation results for the training cell are 
shown in Figure 9, where we observe accurate SOC 
estimation produced by the multiscale framework (L = 
1200). Table 5 summarizes the SOC estimation errors 
under two different settings of the initial SOC. Here, 
the RMS and maximum errors take into account the 
initial offset in the case of an incorrect initial SOC and 
are formulated as  

 

( )
2

, ,

,

, ,
,

1
ˆ ,

ˆmax .

RMS k l k l

k j

Max k l k l
k j

x x
nm

x x

ε

ε

= −

= −

∑
 (32) 

where nm is the number of measurements and reads 
69,173 (about 1290mins) in this study; and xk,l is the 
true SOC at the time tk,l estimated with the coulomb 
counting technique. It is observed that the RMS SOC 
estimation errors produced by the multiscale 
framework are less than 4.00%, regardless of initial 
values of the SOC. As expected, the SOC estimation 
with incorrect initial SOC (20%) shows larger errors 
than those with correct initial SOCs (4.84% and 4.77% 
for Cells 1 and 2, respectively). However, the RMS 
SOC estimation errors with incorrect initial SOC (20%) 
are still less than 4.00% since the multiscale framework 
produced converged SOC estimate for both cases. 
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Figure 9: Estimated and true SOC estimate 
for 10 UDDS cycles. 

Table 5 SOC estimation results under different settings 
of initial SOC and capacity 

Initial SOC SOC errors  Cell 1 Cell 2 

Correct (4.84% 
and  4.77% for 
Cells 1 and 2) 

RMS (%) 1.21 1.22 

Max (%) 4.58 4.95 

Incorrect (20%) 
RMS (%) 3.79 3.65 

Max (%) 15.16 15.23 

 
Regarding the capacity estimation, both results with 

initial values smaller than the true value (see 
Figure10a) and larger than the real value (see 
Figure10b) for all the two cells exhibit convergence to 
the true capacity within an error range of around 5%. 
The noise in the capacity estimate is due to the SOC 
estimation error. We note that the time-scale separation 
in the SOC and capacity estimation enables converged 
capacity estimation in spite of SOC estimation error. 
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(a) 

 

(b) 

Figure 10: Capacity estimation results for UDDS cycle test. Figures (a) and (b) plot 
capacity estimation results by the multiscale framework with the initial values smaller than 

and larger than the true value, respectively. 

7. CONCLUSION 

This paper presents a multiscale framework with EKF 
to efficiently and accurately estimate state and 
parameter for engineered systems that exhibit time-
scale separation. We applied the proposed framework 
applied to the Li-ion battery system for SOC (state) and 
capacity (parameter) estimation. The main contribution 
of this paper lies in the decoupling of the SOC and 
capacity estimation from two perspectives, namely the 
measurement and time-scale, through the construction 
of a multiscale computational scheme. The resulting 
benefits are the significant reduction of the 
computational time as well as the increase of the 
accuracy in the capacity estimation. The former benefit 
makes the proposed methodology more attractive than 
the dual EKF for onboard estimation devices where the 
computational efficiency is the key aspect for practical 
use. Results from UDDS simulation and testing verify 
the effectiveness of the proposed framework for SOC 
and capacity estimation. As mentioned in Section 6.2, 
we are currently conducting ALTs (cell aging tests) on 
16 Li-ion prismatic batteries. Based on the upcoming 
testing results, we aim to extend the proposed 
multiscale framework for efficient and accurate SOL 
prediction based on readily available measurements in a 
dynamic environment (e.g., UDDS cycling). 
 
 

ACKNOWLEDGMENT 

The authors gratefully acknowledge PCTEST 
Engineering Laboratory Inc. for providing testing 
facilities and Prof. Gregory L. Plett for providing the 
UDDS profile for this research. 
 
 

NOMENCLATURE 

C cell capacity  

F state transition function 

G state measurement function 

i current 

L number of micro steps in a macro time step 

r vector of process noise for model parameters 

T time between micro time step  

x cell state of charge 

y cell terminal voltage 

u vector of observed exogenous inputs 

v vector of measurement noise 

w vectors of process noise for states  

η columbic efficiency 

EKF extended Kalman filter  

HEV hybrid electric vehicle  

SOC state of charge 

SOH state of health 

SOL state of life 
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ABSTRACT 

A general approach to determine the optimal set of 
maintenance alternatives for fatigue safety is 
introduced in this paper. The optimal maintenance 
alternatives are the solutions to maximize the 
fatigue reliability of aircrafts fleet subject to 
maintenance budget. A novel equivalent stress 
transformation model and the first-order-reliability 
method (FORM) are adopted to determine the 
failure probability or reliability associated with 
future fatigue loading. The equivalent stress 
transformation model is capable to transform 
future random loading to an equivalent constant 
loading, and does not require cycle-by-cycle 
simulation. First-order-reliability-method can 
resolve the computational complexity. Optimal 
maintenance solution can be efficiently found 
considering the future fatigue loading. Numerical 
examples are performed to demonstrate the 
application of the proposed approach.  

1 INTRODUCTION 

Most structures and components, e.g. aircrafts and 
rotorcrafts, are experiencing cyclic loading throughout 
their service life. These cyclic loading results in many 
failure modes, and fatigue failure is one of most 
common failure modes. There is an increasing interest 
to enhance the durability, reliability and safety of the 
structures with limit budget.  Scheduling of inspection 
and repair activities can effectively mitigate the fatigue 
detrimental effects (Y. Garbatov & C. Guedes Soares, 
2001) (D. Straub & M. H. Faber, 2005).  

To obtain a reasonable future maintenance plan, first 
of all, very good diagnostic techniques are required. 
There exist several non-destructive inspection (NDI) 
techniques, e.g. shearography (Y. Y. Hung, 1996), 
thermography (M. Koruk & M. Kilic, 2009), 
ultrasonics (R. Kazys & L. Svilainis, 1997), X-ray 
CT(G. Nicoletto, G. Anzelotti & R. Konecn) and so on. 
Furthermore, structures experience different loading 
spectrums during entire fatigue life. The applied fatigue 

cyclic loading (S. Pommier, 2003) is stochastic in 
nature. It is well-known that different loading 
sequences may induce different load-interaction effects 
(S. Mikheevskiy & G. Glinka), such as the overload 
retardation effect and underload acceleration effect. 
Due to the complicated and nonlinear nature of random 
loading interaction, a cycle-by-cycle simulation is 
generally required for each different loading history. 
Hence this approach is computationally expensive for 
fatigue safety optimization, which usually requires a 
large number of Monte Carlo simulations. 

Prediction will provide valuable information for 
decision making in prognostics and health management 
(PHM). The most difficult part is how to accurately and 
effectively estimate the future health status of aircraft 
fleet. This estimation should be built on an efficient 
fatigue damage prognosis procedure. A novel 
equivalent stress transformation (Y. Xiang & Y. Liu, 
2010) and reliability method have been adopted to 
reduce the complexity of fatigue damage prognosis. 
This equivalent stress transformation is using the 
statistical description of the random loading, such as 
the probabilistic distribution of applied stress range and 
stress ratio. The future variable amplitude loading 
problem is reduced to an equivalent constant amplitude 
problem, which greatly facilitates the integration for 
crack length prediction. The FORM have been 
developed and used for the reliability-based design 
optimization problem (A. Der Kiureghian, Y. Zhang & 
C.-C. Li, 1994).  

This paper is organized as follows. First, basic 
problem for optimal maintenance alternatives will be 
formulated, and some key parts will be pointed out. 
Following this, the equivalent stress transformation is 
briefly discussed. After that, the first-order-reliability 
method will be introduced. Numerical example is used 
to demonstrate the application of the proposed method. 
Parametric study has been performed to investigate the 
effects of some important parameters. Finally, some 
conclusions and future work are given based on the 
current investigation.  

2 Problem formulation  

It is well-known that structures experience fatigue 
cyclic loading during their service life. Crack may 

Yibing Xiang et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.
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propagate until parts of some components fail. The 
structures may break suddenly in a few cycles, or 
survive for a long period of time. Hence, difference 
exists in fatigue duration due to the uncertainties. An 
appropriate fatigue maintenance plan is required to 
optimize the condition status.  

First of all, very good diagnostic techniques are 
required to detect the current damage stage. Several 
advanced diagnostic techniques are available. The 
current diagnostic results are regarded as the baselines 
for future fatigue damage prognosis. This paper mainly 
focuses on the prognosis techniques, and diagnostic 
techniques are beyond the scope of this paper.   

The future loading is a critical problem in fatigue 
maintenance alternatives optimization. The fatigue 
loading is usually stochastic in nature, and the loading 
sequence effects are big challenges in fatigue prognosis. 
Traditional fatigue prognosis models focus on different 
explanation of crack growth mechanism, and require 
cycle-by-cycle simulation. These models require a large 
number of Monte-Carlo simulation, and is 
computational expensive for fatigue maintenance 
optimization. An equivalent stress transformation (Y. 
Xiang & Y. Liu, 2010) has been proposed based on the 
statistical description of the random loading. The 
variable amplitude loading problem is reduced to an 
equivalent constant amplitude problem. Detailed 
derivation and explanation will be discussed in Section 
3.  

Apparently, fatigue prognosis will provide valuable 
information for decision making in PHM. Maintenance 
optimization under uncertainty can be formulated as a 
reliability problem. Therefore, some of the developed 
algorithms can be applied (e.g., FORM, subset 
simulation, etc.) In the current study, First-order-
reliability-method will be applied to find the fatigue 
reliability of structures. Comprehensive derivation will 
be discussed in Section 4.  

Fatigue maintenance problem can be formulated in 
different ways, e.g., minimizing the total cost subjected 
to reliability constraints and performance constraints. 
This kind of problem is quite common in real 
engineering application, since the best condition stage 
of structures are desired with least cost. There is 
another way to formulate the problem, such like 
maximizing the performance reliability subject to 
budget constraints (e.g., annual budget for maintenance 
is fixed). Basically the budget is limited and the 
desirable condition stage of structures is required. This 
paper is mainly focusing on fatigue performance 
maximization.   

The first step in the fatigue performance optimization 
is to define several categories depending on the crack 
length. For example, the fatigue performance can be 
divided into six stages, excellent condition, very good 

condition, good condition, fair condition, poor 
condition and very poor condition (or failure condition).  

Secondly, diagnostic methods are used to determine 
the fatigue damage in the current stage. The 
performance transition matrix can be formulated using 
some existing fatigue prognosis models (Equivalent 
stress level mode) and diagnostic results.  

Thirdly, a maintenance decision matrix should be 
defined to specify the maintenance method for each 
performance category. Then the cost function can be 
calculated associated with each category using different 
maintenance alternatives.  

At last, the maximization of the performance under 
the budget constraints can be formulated. This 
maintenance optimization under uncertainty can be 
formulated as a reliability problem. Some of the 
developed algorithms can be applied (e.g., FORM, 
subset simulation, etc.)  

In the maintenance optimization problem, some 
varibels need to be clarified:  
G =number of facility groups Group of aircrafts  
T = number of missions in the planning horizon 
Qg =total quantity of facilities in group g 
S = number of performance condition states; 
Mg =number of possible maintenance alternatives for 
facilities in group g 
Cgm = cost vector (sx1) of group g and maintenance 
alternative m 
Dgt= [d1

gt d2
gt  d3

gt  d4
gt  …… dS

gt], condition vector of 
group g at beginning of mission t , each term represents 
the percentage. di

gt is the element on the diagonal of an 
S x S matrix. 
Dtotal= the summation of the condition elements for G 
groups from the  condition 1 to condition S, after T 
missions 
Xgmt= [x1

gmt x2
gmt  x3

gmt  x4
gmt  …… xS

gmt], xS
gmt is the 

maintenance decision matrix, percentage of facilities in 
group g and condition state s that had maintenance m in 
year t.      
Pgm = transition probability matrix (SxS) of group g 
when the maintenance m is implemented (from model 
prediction or existing database) 

 
 
 
 
 
 

 
 

The condition of facilities from group g at year t can 
be predicted using previous information.  
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From above derivation, the maximization problem can 
be easily built as:  

∑∑∑
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For a certain mission, the budget Budgeti is limited after 
each year i, and may be different from one year to 
another. The total budget Budgetiotal during year t is also 
limited. And the budget constraints can be built as Eq. 
(4) and Eq. (5):  
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       (5) 

For some cases, the reliability constraints are required. 
For example, the percentage of facilities in condition s 
should be less than a value Rs. The reliability 
constraints can be formulated as Eq. (6) : 

 ss
gt Rd ≤                                   (6) 

Following the above procedures, the fatigue 
maintenance problem can be easily formulated. 
However, there are some problems existing: first, the 
transition probability matrix reliability of each future 
mission is complex problem, due to measurement 
uncertainties (NDI testing) modeling uncertainties. The 
future loading dominates the transition probability 
matrix. The Equivalent stress transformation is 
proposed for the future loading. First order reliability 
method (FORM) can be used to calculate the 
probability transformation matrix  
 

3 Equivalent stress level  

Fatigue cyclic loading is a random process in nature. 
Proper inclusion of loading interaction effects is a big 
challenge, and is very important for future mission 
reliability. Traditional models focus on different 
explanation of fatigue crack growth mechanism, and 
require cycle-by-cycle simulation. Therefore, a large 
number of simulations is required and is time-
consuming.  

Equivalent stress transformation model has been 
proposed transformation (Y. Xiang & Y. Liu, 2010). 
This objective is to transform a random loading to an 
equivalent constant loading, which does not require a 
cycle-by-cycle simulation and can facilitate the 
integration. The basic idea of the equivalent stress level 
can be shown as below:  

For an arbitrary random future loading, the statistics 
of stress range and stress ratio can be obtained. After  a 

 series of calculation, the random loading can be 
ansformed to an equivalent constant loading, which can 
be directly used for fatigue damage prognosis. Because 
this transformation is not the focus of this study, only 
the brief idea is illustrated. The details of the derivation 
and validation of the equivalent stress transformation 
can be found in the referred paper (Y. Xiang & Y. Liu, 
2010).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 1 basic principle of equivalent stress level 
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There are several different fatigue crack growth 
models, such as Forman’s model (N. E. Dowling, 
2007), Nasgro model, and EIFS-based fatigue crack 
growth model (Y. Liu & S. Mahadevan, 2009b). 
Different models focus on different aspects and will 
give different predictions. A generic function of crack 
growth rate curve can be expressed as 

 ( )aRfdNda ,,/ σΔ=                     (7) 
Eq. (7) can be reformulated as  

( ) da
aRf

dN
,,

1
σΔ

=                (8) 

The total fatigue life N under arbitrary random 
loading history is the summation of Ni and can be 
written as 
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where a0 is the initial crack size and an is crack length 
at fatigue cycle N.  

In this ideal crack growth process, the stress level is 
constant and is the proposed equivalent stress level 
(ESL). The equivalent stress level can be expressed as 

( )∫
+

Δ
= 1
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a
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N
σ

            (10) 

The equivalent stress level can be obtained by 
equaling Eq. (9) and Eq. (10) as 
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Eq. (12) is the proposed equivalent stress level 
calculation and it can be applied to different types of 
crack growth models. For any arbitrary functions of f(). 
The analytical solution is not apparent and discussions 
of some special cases are given below. 
In the current study, the simple Paris’ equation is used 

as the f(). For a general case where both of stress range 
and stress ratio are random variables, a joint 
distribution of them is required for the derivation. The 
general equivalent stress can be expressed as                                                     

 
 
 
 

(12) 
where ),( iii Rp σΔ  is the joint distribution of stress 
range and stress ratio. g() is a function of stress ratio. 
Eq. (12) is the generalized equivalent stress level 
expression without considering the loading interaction 
effect. 

The above discussion did not consider the load 
interaction. It is well known that the “memory” effect 
exists for fatigue crack growth and coupling effect has 
to be considered. In this section, the previous 
developed equivalent stress model is extended to 
include the load interaction effect, such as the overload 

retardation and underload acceleration. The 
modification is based on a recently developed small 
time scale formulation of fatigue crack growth and a 
load interaction correction function. The details of the 
small time scale model has been developed by Lu and 
Liu (Z. Lu & Y. Liu). This method is based on the 
incremental crack growth at any time instant within a 
cycle, and is different from the classical reversal-based 
fatigue analysis. 

The equivalent stress level consider load interaction 
effect is defined as 

eqeq σησ Δ=Δ *                        (13) 

where *
eqσΔ  is the equivalent stress level considering 

the load interaction effect and eqσΔ  is calculated 
using Eq. (12) without considering the load interaction 
term. η  is the coefficient for the load interaction effect 
and the details of derivation can be found in . (Y. Xiang 
& Y. Liu, 2010).  

4 FORM methodology 

The first-order reliability method is a widely used 
numerical technique to calculate the reliability or 
failure probability of various engineering problems (J. 
Cheng & Q. S. Li, 2009; S. Thorndahl & P. Willems, 
2008; D. V. Val, M. G. Stewart & R. E. Melchers, 
1998). Unlike the FORM method (A. Haldar & S. 
Mahadevan, 2000; Y. Liu, Mahadevan, S, 2009), the 
inverse FORM method tries to solve the unknown 
parameters under a specified reliability or failure 
probability level, which is more suitable for 
probabilistic life prediction (i.e., remaining life 
estimation corresponding to a target reliability level).  

Limit state function is required for the analytical 
reliability method. A generic limit state function is 
expressed as Eq. (14a) as a function of two sets of 
variables x and y. x is the random variable vector and 
represents material properties, loadings, and 
environmental factors, etc. y is the index variable 
vector, e.g., time and spatial coordinates. The limit state 
function is defined in the standard normal space in Eq. 
(14a). The limit state function definition is similar to 
the classical FORM method (A. Haldar & S. 
Mahadevan, 2000). The solution for the unknown 
parameters needs to satisfy the reliability constraints, 
which are described in Eq. 14b) and Eq. (14c). β is the 
reliability index, which is defined as the distance from 
origin to the most probable point (MPP) in the standard 
normal space. The failure probability Pf  can be 
calculated using the cumulative distribution function 
(CDF) Φ of the standard Gaussian distribution. 
Numerical search is required to find the optimum 
solution, which satisfies the limit state function (Eq. 
(14d)). Details of the general FORM method and 
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concept can be found in (A. Der Kiureghian et al., 
1994). 
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The overall objective of the FORM method is to find 
a non-negative function satisfying all constraint 
conditions specified in Eq. (14). Thus, the numerical 
search algorithm can be used to find the solutions of 
the unknown parameters. Numerical search algorithm 
is developed to iteratively solve the Eq. (14). The 
search algorithm is expressed as Eq. (15) after k 
iterations.  

)( 2
2

1
1

1

1
kk

k

k
k

k

k

k

k fafa
y
X

f
y
X

y
X

++
⎩
⎨
⎧

=+
⎩
⎨
⎧

=
⎩
⎨
⎧

+

+                 (15) 

where kf 1  and kf 2  are the search directions 
corresponding to different merit functions.  

The convergence criterion for the numerical search 
algorithm is 
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where ε  is a small value and indicates that the relative 
difference between two numerical solutions is small 
enough to ensure the convergence.  

5 Transition probability matrix  

Transition probability matrix is used to determine the 
future condition stage, based on the current observed 
fatigue damage. Calculation of the transition 
probability matrix Pgm is the key point in the fatigue 
safety optimization.  

The general procedures to calculate Pgm is shown in 
flowchar.1. The first step is to define the condition 
stages, such as excellent, very good, good, etc. 
Following this, quantify the uncertainties in the current 
fatigue problem. Then obtain the information about 
future loading history, for example, the joint 
distribution of stress range and stress ratio. After 
equivalent stress transformation, the obtained 
equivalent constant loading can be directly used.  The 
mission duration (cycles or hours) can be obtained. 
This information is the input data to the FORM method. 
The probability transition matrix can be directly 
calculated using FORM method.  
 

 
 
 
 
 
 

  
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Flowchart. 1 General procedure to calculate Pgm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 2 Fatigue crack growth  prognosis 
 

Table 1. Statistics of random variables 

Material  stress ratio  parameter  Mean  Std.  

Al 7075-T6  R = -1  
Mc  1.64E-10 3.86E-11 
Mm  2.3398 0.3122 
ai 0.05mm 0.006mm 

Huge uncertainties exist in the fatigue damage 
prognosis model, e.g., the model properties C, m and 
the initial crack size ai. To determine the future 
condition status, these three parameters are random 
variables and are assumed to follow log-normal 
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distribution. With an initial fatigue damage (ai) around 
0.05mm, after some mission (e.g. 25000 cycles), the 
probability can be calculated from excellent stage to the 
other stages. The statistics of these three random 
variables are shown in Table 1. Suppose there exists a 
constant loading history with Smax=150 MPa, 
Smin=15MPa. With different combinations of the three 
random variables, unlimited fatigue crack growth 
curves can be drawn, as shown in Fig. 2.  

It can be easily observed that, after a certain mission 
(25000 cycles) the cracks reach different conditions: 
very few remain the same level, and most of them 
increase between 0.5~2 mm. The transition probability 
matrix from initial condition stage (around 0.05 mm) to 
other condition stages can be easily obtained. The 
above discussion is a simple case. In this case, there are 
only three random variables and a constant amplitude 
loading history. A numerical example has been 
discussed for more general cases in Section 6.  

6 Numerical example and parametric study 

A numerical example is demonstrated in this section.  
In this example, there are 10, 9 and 9 aircrafts in three 
different groups A, B and C respectively. The total 
number of future mission is 10.  

Firstly, the condition stages are defined into 6 stages: 
excellent (crack<0.05), very good (0.5<crack<0.6), 
good (0.6<crack<0.8), fair(0.8<crack<1.2), poor 
(1.2<crack<1.5) and very poor (crack>1.5). Three 
maintenance alternatives are available: do nothing, 
repair method I, repair method II. The cost of 
maintenance alternatives are shown as:  

300030001600160000__
180016008006004000__

000000_
654321

IImethodrepair
Imethodrepair

nothingdo
tateconditions

 

At the initial stage, the initial condition stage Dgt 
should be defined. In this numerical example, the initial 
condition stage is randomly generated and just for 
demonstration. In really engineering cases, the 
condition stage needs to be defined with help of 
advanced diagnostic techniques.  
[0.1638    0.1896    0.1900    0.1627    0.1090    0.1849; 
0.2618    0.1326    0.2039    0.0498    0.2056    0.1462; 
0.0293    0.3242    0.3518    0.0086    0.2609    0.0251;] 

Secondly, the uncertainties are quantified. The 
material used in the structure is Al-7075 and the 
random variables are calibrated from experimental 
fatigue crack growth data shown in Fig. 3. A summary 
of the properties for the collected experimental data are 
listed in Table 2& 3.  

Thirdly, the mission duration needs to be clarified. 
Normally, the mission duration of a flight is about 

10,000 fatigue cycles, which is used in the current 
study.  

 
 
 
 
 
 
 
 
 
 
Figure. 3 Fatigue crack growth for Al-7075 under 

different stress ratios 
 

Table 2 Stochastic coefficient of a and fatigue 
limit 

Material stress ratio parameter mean std. 

Al  
7075-T6 

0.03 
MC 7.72E-10 1.82E-10 

Kc 50 5 

0.05 
MC 7.96E-10 1.88E-10 

Kc 50 5 

 
Table 3 Geometry and material properties of plate 

specimens 
Specimen material 7075-T6 

Ultimate strength   uσ    (MPa) 575 
Yield strength    yσ   (MPa) 520 

Modulus of elasticity E (MPa) 69600 
Plate width (mm) 305 

Plate thickness (mm) 4.1 
The fourth step is gathering information about the 

future loading. Two blocks loading spectrum are used 
as the future loading in this numerical example. A 
schematic illustration of the f loading is shown in Fig. 
4. p and n in Fig. 4 controls the number of cycles at the 
high amplitude (400MPa) and the low amplitude (250 
MPa), respectively. p=10 and n=50 in the current study.  

 
 
 
 
 
 
 
 
 
 

Figure. 4 Schematic illustration of the two blocks 
loading 
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It is assumed that, after some repair, the current 
condition stages (crack size) can be partially or fully 
changed to an ideal station. In another word, the fatigue 
crack size may follow a bi-normal distribution, for 
example:  

)03.0,25.0(log)006.0,05.0(log~ NBNAai ×+×  (18) 
A, B are two parameters. For different repair method I 
and repair method II, A and B take different value as 
shown in table 4.  

Table 4 Model parameters in a bi-normal distribution 
 Repair I Repair II 

A 0.7 0.3 

B 0.9 0.1 
The distribution of crack size after repair can be 

easily calculated using above information.  
After the equivalent stress transformation, the above 

information can be inputted into FORM method. For 
example, the elements on the first row of P1

gm can be 
calculated by setting up the indexing vectors as 
condition limits in each condition stage in FORM 
method. The transition probability is shown below for 
three different maintenance alternatives:  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

The budget constraints in each mission are shown as 
below:  
Budget=[10000 8000 9000 12000 10000 8000 9000 
8000 8000 9000 ]; 
The total budget = $65000.  

The reliability constraint is built as: the percentage of 
aircrafts in very poor condition is no more than 5%.  
The fatigue maintenance problem is to optimize the 
maintenance design (Xgmt) to maximize the condition 
state, and satisfy the budget limits in each year, the 

total budget for whole mission process, as well as the 
reliability constraints.   
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
Figure. 5 optimal results after each mission 

 
The optimal results are shown in Fig. 5 for three 

different groups. At the very beginning, only about 
16% aircrafts are in excellent condition. To maximize 
the total condition, more money should spend to repair 
as many aircrafts as possible, subjected to the first year 
budget. It can be easily observed that more than 60%  
aircrafts are in excellent condition after the first  
mission. And those in excellent condition remain at 
very high level throughout the 10 missions. Those 
aircrafts in very poor condition takes less than 5%. In 
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another word, the money spent on very poor condition 
does not change much. The real cost and maintenance 
budget limit for each mission is shown in Fig. 6. The 
cost at each mission is less than the budget limit and 
satisfies the budget constraint.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 6 Cost Vs Budget for each mission 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 7 Optimal solutions for maintenance 
alternatives 

 
The optimal solution for maintenance alternatives are 

displayed in Fig. 7. For the excellent condition, no 
maintenance is required, which is reasonable. All the 
aircrafts in very good condition should take repair 
method II. For good and fair conditions, the aircrafts 
takes different combinations of maintenance 
alternatives. The best choice for those in poor condition 
is do nothing, but for those in very poor condition, 
repair method I is absolutely necessary.  

Parametric study has been done to investigate effects 
caused by the variance of parameter C. In this case, the 
variance of parameter C takes four different values, 
0.05, 0.1, 0.3, 0.5. From Fig. 8, it can be concluded that, 
as the variance increases, the total maximum condition 
value decrease. The best choice to maintain the 
maximum condition is to reduce the uncertainties 
materials properties.  
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Figure. 8 Effects of the variance of parameter C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure. 9 Cost Vs Budget for different variance of 
parameter C 
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Figure. 10 Optimal solutions for maintenance 
alternatives 

 
Fig. 9 shows the cost vs budget for each different 

variance of parameter C. No big difference can be 
observed. Fig. 10 displays the optimal maintenance 
alternatives for two cases, variance equaling to 0.05 
and 0.5. Slightly difference can be observed for these 
two cases.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 11 Effect of equivalent stress level 
 

The other parametric study investigates the effect of 
equivalent stress level.  The maximum condition value 
decreases steadily with increase of equivalent stress 
level. This phenomenon is almost the same as 
expectation.  

7 Conclusion   

In this paper, a maintenance optimization framework 
using prognosis results is formulated. The proposed 
approach is based on a novel prognostic model. This 

prognostic model is the combination of equivalent 
stress transformation and the FORM method. It is able 
to deal with the uncertainties in future loading. 
Optimization problem has been formulated based on 
the performance maximization under budget constraints 
and reliability constraint. An example with three group 
of facilities are considered. Parametric study has been 
done to investigate the effects of parameter C as well as 
the equivalent stress level. The results meet the 
expectation. Reliability constraints and other 
uncertainty effects are being investigated in the future 
study. More complicated case study is required.  
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  ABSTRACT 

 
       Reliable prognostic of thermal barrier coating systems 

(TBCs) as applied to hot section engine components is a 

challenging task. Physics based approach is made here 

involving both experimental physical damage signature 

analysis and thermal cycle simulations.  Thermally grown 

oxides (TGO) and the developing cracks in TBCs increase 

with thermal exposures. An exponential relationship is 

observed between the two parameters. Significant variations 

in size and characteristics of the damage signatures are 

observed depending on the four typical cycle profiles 

considered. In this paper, fourth order Runge-Kutta 

method is used for the numerical analysis of the 

differential equation for TGO growth analysis. Damage 

tolerance approach considering fracture mechanics based 

stress intensity factor is used to determine the crack 

tolerance level and remaining useful life.  Our earlier 

fracture mechanical model for composite TBCs is modified 

assuming the crack to nucleate and grow within the TBC 

and not inside TGO. An overview of the PHM solution is 

presented.  

 
1. INTRODUCTION 

 

       Combined effects of high temperature and operational 

stress causes accelerated damage of monolithic hot-section  

 * This is an open-access article distributed under the terms 

of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original author 

and source are credited. 

 

 

parts in aeroengine and drastically shortens the useful life as 

compared to the life of cold section components (Chin, 

2005). Common metallurgical failure mechanisms of the 

monolithic alloys include low and high cycle fatigue, 

creep/rupture, oxidation, foreign object damage and 

corrosion (Wood, 2000; Christodoulou & Larsen, 2005). 

Thermal barrier coating (TBC) systems are now widely used 

for aero-propulsion and power generation. TBCs applied to 

hot section monolithic parts provide thermal insulation to 

gas turbine and other high temperature engine components. 

By lowering the temperature of the metallic substrates 

improves the life and performance of the components 

subjected to creep, fatigue, environmental attack and 

thermal fatigue (Shillington & Clarke, 1999; Evans et.al., 

2001). A TBC system is a two layered coating consisting of 

8% yttria stabilized zirconia (YSZ), and a bond coat (BC) 

enriched in aluminium over a Ni base superalloy substrate. 

During the operation, a layer of oxidation product known as 

thermally grown oxide (TGO- α Al2O3) form and grow with 

time in between YSZ (top coat) and bond coat (BC) layer 

under the influence of mechanical and thermal stress cycles. 

A TBC system is truly a composite structure with TBC as 

the insulating top layer, TGO provides the oxidation 

protection, BC provides adherence of TBC on superalloy 

while the alloy supports the structural load. Though the 

current state of development of TBCs meets most of the 

industrial needs, yet further enhancement of stability, 

durability and performance of TBCs providing thermal 

insulation to high temperature for aero-propulsion hot-

section components is the pressing industrial needs.  

       A great deal efforts have been made over last decade to 

understand the damage and  failure mechanisms of TBC that 
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form the basis of the development of physics model, which 

in turn is the backbone of PHM (Shillington &  Clarke,1999;  

Evans et.al., 2001; Kumar et. al., 2007; Karlsson,  Xu, & 

Evans, 2002; Chen et. al., 2005; Clarke, Levi,  & Evans, 

2006). The predominant failure mechanisms for TBCs 

include microcrack nucleation at the TBC/BC interface layer 

and coalescence and propagation of cracks to cause buckling 

/ delamination over a large part and finally to spalling.  Both 

tensile and compressive stresses of large magnitude (up to 6 

GPa) develop due to growth and thermal expansion misfit of 

TGO. Crack formation is facilitated by the presence of small 

geometric imperfections at the interface regions. Such 

micro/sub size defects are expected to be present / formed in 

coat layers due to foreign object damage, processing of 

coatings and thermo-mechanical operations under 

aggressive environments. However, none of the proposed 

models could explain the wide scatter in the coat life and 

failure mechanism of TBC system.  Some of the major 

factors contributing to the failure and scatter in TGO life 

include morphology, types, oxidation rate, surface 

treatments, alloy and phase, bond coat roughness, TGO 

thickness etc. (Christodoulou & Larsen, 2005; Shillington  

& Clarke, 1999; Kumar et. al., 2007; He, Hutchinson & 

Evans, 2003). A critical thickness of TGO results in critical 

stress to cause crack initiation inside TGO and at the 

interface layer.  

 

       Traditional engine health management relies on the 

tracking of operating hours and cycles, material properties 

including fatigue behavior and worst case usage data. The 

safe life consideration ensures component safety by limiting 

the probable damage that can accumulate in the material 

long before failure indications arise. On the other hand, 

prognostic health management (PHM) approach maximizes 

the useful life of components with enhanced safety and 

reliability than the conventional time based engine 

maintenance approach. Prognostic is the ability to assess the 

current condition of an engine part and predict into the 

future for a fixed time horizon or predict the time to failure. 

Continuous monitoring and analysis of engine health data 

and usage parameters are integrated with physics based 

models for diagnostic and prognostics capabilities. Other 

advantages of the PHM solutions are increased mission 

availability, minimizing maintenance and life cycle cost. A 

good number of commercial diagnostic PHM (DPHM) 

systems are now available for industrial usage and being 

deployed for structural health monitoring and life 

assessment (Intellistart
+
, Altair avionics/Pratt & Whitney, 

SignalPro
TM 

,Impact technologies, NormNetPHM, Frontier 

Technology). While the technology is nearing maturization, 

still the products lack in certain aspects. Major limitations 

include accuracy in diagnostic outcome, reliability by 

reducing false signal, specific applicability, offer no 

probabilistic confidence level and uncertainty.    

        The PHM technology developed so far are for 

monolithic systems and not applicable for TBCs which 

degrade differently during engine cycle operation. The 

primary objectives of the present work are to address the  

development of  models and methodology appropriate for 

the PHM solutions for TBCs. As opposed to safe life 

approach, a damage tolerant (DT) approach that accounts for 

crack growth is assumed to be more appropriate for the TBC 

applications. The DT method recognizes the fact that 

materials and manufacturing defects whatever minute in size 

it may be are present in components.  The material must 

have high fracture resistance to be damage tolerant, even 

with growing cracks during operation.  A fracture 

mechanistic (FM) approach employing stress intensity factor 

as the crack driving parameter forms the basis for DT 

approach.  

 

2. TBC DAMAGE MODEL 

 

       Earlier studies have focused on the progressive 

structural damage in TBCs leading to failure by cracking 

and spallation (Shillington & Clarke, 1999; Evans et. al, 

2001; Chen et. al, 2005; Clarke, Levi & Evans, 2006; 

LeMieux, 2003; Kumar et. al., 2010; Kumar, 2009). 

Analytical, experimental and simulation studies have 

identified the formation and growth of TGO leads to damage 

in TBCs. TGO is essentially a thermodynamic and diffusion 

controlled phenomenon and is a function of both time and 

temperature. Both of these factors were varied in our 

simulated experiments in order to allow appreciable TGO 

growth and failure. Figure 1 displays the microstructures 

illustrating the formation and growth of the TGO layer in 

YSZ TBC subjected to thermal cycling. Details of simulated 

experiment, thermal cycling and damage quantification are 

reported elsewhere (Kumar et. al., 2010; Kumar et. al., 

2009). 

 

2.1 Damage Signatures  

 

       Two physical damage signatures, namely TGO 

thickness and crack size are identified for the complete 

characterization of the TBC failures. Between the two, 

however, TGO growth is considered as the primary damage 

and is strongly influenced by the exposed temperature 

cycles. Cracks develop at specific locations and geometry 

of TGO profile due to stress and strain environments and 

are considered as the   secondary damage source. The 

cracking and interface separation mechanisms are 

influenced by shape and curvatures at the TGO boundaries 

as may be seen in Figure 1(b). Cracks are mostly observed 

at and around sharp locations and ridges as at these 

locations, stresses must be higher and deformability may be 

less compatible between the adjacent phases with growing 

TGO (Kumar et. al., 2010; Kumar et. al., 2009).The  
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Figure 1: Microstructural demonstration of structural 

damages and progressive degradation in TBC; a) after 400 

thermal cycles and b) after failure (around 1500 cycles). 

 

 

zigzag profile of the BC-YSZ interface is held responsible 

for stress concentration to cause cracking at the interface 

and in YSZ. Experimental details for observations and 

quantification of damage signatures are documented 

elsewhere (Kumar et. al., 2010; Kumar et. al., 2009). 

 

2.2 TGO-Crack Growth Relation 

 

       A functional relationship between the two forms of 

physical damages, namely crack damage and TGO growth is 

shown in Figure 2. Clearly and consistently, an exponential 

dependency between statistical mean of crack size in 

different samples and the mean TGO thickness data is 

evident. The two plots for samples M07 (treated in normal 

atmospheric condition) and M08 (treated in vacuum) lie 

fairly close to each other demonstrating no significant 

effects of oxygen pressure on the physical damage size in 

TBC system as mentioned in earlier section.  A linear 

relation between equivalent TGO thickness and maximum 

crack length was reported earlier for same TBC system 

(Chen et. al., 2006).  An alternative and more meaningful 

dependency between the two parameters may also emerge 

by considering the first three points for both the classes 

having a linear function. The fourth data obtained at failures 

appears to follow exponentially function. This trend 

suggests two stage TGO growths kinetic from early 

oxidation until the failure time. During early stage of TBC 

life (up to 430 cycles), the cracking mechanisms in TBC is 

predominantly crack nucleation and opening controlled, 

while the mechanisms changes to predominant propagation 

controlled mode towards the later stage (exceeding 430 

cycles) and until TBC failure. Two stage kinetics of oxide 

growth- cracking relation can be related to the changes in 

oxide phase changes. Alumina formation changes to mixed 

oxide formation consisting of Cr, Ni, Co, Al due to 

depletion in aluminium. Growth rate for mixed oxide is 

higher than alumina (Carlsson, 2007). It is confirmed that 

thermal cycling up to 500 cycles TGO is made of pure 

alumina while the internal oxide in BC consists of both 

alumina and spinels. However, some uncertainties are 

reported to be always involved in the oxide scale 

measurements because of higher instability of spinels as 

compared to alumina. 
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Figure 2: Exponential relationships are evident between two 

forms of physical damage signatures associated with thermal 

cycling of TBC; M07 samples were heattreated in normal air 

and M08 samples were heattreated in low pressure oxygen. 
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3. DAMAGE TOLERANCE MODEL 

       A damage tolerance model considering fracture 

mechanical approach was developed earlier for 

conventional three layer TBC system (Kumar et. al, 2007).  

The model establishes relation among various fracture 

critical factors, namely crack driving force, applied stress, 

crack size, and layer dimensions. The model considers 

isostrain behavior of the layers in TBC system based on the 

balance of elastic energy between the externally applied 

force and the localized stress fields around the cracks. The 

normalized stress intensity factor (SIF), KI/K0 is found to be 

an effective parameter in evaluating the fracture resistance 

of the interfaces in TBCs. The SIF ratio is represented as  
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where m is the crack depth to width ratio and n is the ratio 

of two adjacent layer widths. For the interface between 

TBC layer and TGO layer, n should be considered as the 

ratio of W1 to W and for the other interface i.e. between 

TGO layer and BC, n should be ratio between W2 to W 

(layer width W,s are defined in Figure 3). E1 and E2 are the 

elastic moduli. Eq. (1) has been used to compute the 

normalized SIF for various situations that can be exploited 

for redesigning BC-TBC interface by FGM optimization. 

The damage signature data and the damage tolerance 

models are further exploited for prognostic health 

management solution for the thermal barrier coating 

applications. Various thermal cycles are designed and 

simulated to find PHM solutions as discussed in the 

following sections. DT model ensures that the stress 

intensity factor at the crack tip for a growing crack must be 

sufficiently smaller than the fracture toughness values for 

the material and loading conditions i.e. KIapplied << KIC.  The 

ratio between the two KI values gives a measure of safety 

factor against the linear elastic controlled fracture. 

However, on-line crack size measurement during thermal 

cycling of gas turbine blades and vanes are not simple and 

accurate. An indirect method based on physical damage 

developed in TBC for estimation of crack growth is 

considered. 

 

3.1 Modification of DT Model 

       In the original model, the developing crack was assumed 

to be occurring within the TGO layer under thermal cycling. 

However, it is clear that the crack can grow significantly 

larger than the corresponding TGO thickness, especially at 

the later stages. This situation is illustrated in Figure 1. In 

order to keep the value of the Stress Intensity a real one, 

the crack size (a) cannot exceed the TGO thickness or the 

total width of the adjacent layers. If it does exceed, the 

value of the SIF simply becomes a complex number, and 

cannot be used to represent a physical quantity in space. It is 

now assumed that cracks are present in the TBC layer, 

hence the Stress Intensity Factor is derived only for the 

TBC/TGO interface. The composite layer arrangement in 

TBCs is schematically represented in Figure 3. Details of 

assumptions, derivations and model are given in an earlier 

paper (Kumar et. al., 2007).  

 

 

Figure 3: Cross-sectional view of the three layer layout in 

TBC system used for the model analysis. A thorough crack 

of size 2a is shown in the TBC layer and subjected to 

transverse stress, σ. Typical layer thicknesses are 300 

microns for TBC (2W1), 150 microns for BC (2W2) and up 

to 15 microns for TGO layers (2W3). 

      Westergaard’s stress function and applied stress are 

assumed to be same as in the original model (Anderson, 

1995).  E1 and E2 are the elastic modulus of the adjacent 

and respective layers as in Figure 3.  
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Where E1 (=40GPa) and E2 (=380GPa) are the elastic 

modulus respectively for TBC and TGO. 
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Hence, the SIF is as follows: 
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W1 represents the thickness of the TBC layer, which we 

assume remains constant throughout the evolution of the 

system with respect to time. Hence by dividing the 

numerator and denominator of Eq.(5) by W1, the following 

expression is obtained. 
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Where n =a/W1 and m =W2/W1 

Defining a new parameter, K0,   

2
3

10 ..12.1 WK appliedσ=                                            (8) 

Hence, the normalized SIF can be represented as: 
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Hence, using Eq.(9), the result will always be a real number 

for the SIF determination since (1+m) will always be 

greater than n for all real values of m and n, and n will 

always be less than one (assuming that the crack size is 

always less than the thickness to the TBC layer for realistic 

TBC life).  

4. SIMULATION  

        This section describes the simulation work with 

temperature profile and estimation of RUL (remaining 

useful life). The objective of the simulation work is to make 

predictions of TGO as well as crack growth in the TBC 

system under various thermal cycles that the TBCs are likely 

to be exposed. The TGO growth as mentioned earlier is 

strongly related to temperature (T). The TGO growth 

predicted with time will yield the crack size and this will be 

used to compute normalized SIF as shown in Eq. (9). The 

temperature data is required to be monitored continuously as 

the hot-section structural parts with TBC are operational.  

4.1 TGO Estimation 

       The differential equation that describes the growth of 

the TGO layer is represented as (Mao et. al., 2006): 
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Where h is the TGO thickness; T(t) is the temperature 

profile as a function of time, t; a0, b0 and γ0 are the fitting 

constants. Eq. (10) can only be solved if the temperature 

function is defined properly. Even if the function is known, 

there is not a guarantee that an integration method exists for 

the equation. Clearly, for time-varying temperature 

functions, we see that numerical analysis is to be applied. 

To obtain the best practical compromise between accuracy 

and the computational effort of the numerical analysis, 

the fourth order Runge-Kutta method is used.  

 

 
 

Figure 4: Schematic illustrations of four thermal cycles 

considered for simulation studies and experimental work. 

The functional relationship for each is also given. a) 

Isothermal case; ( ) CtT 01080= ; b) Sinusoidal case; c) 

Trapezoidal cycle and d) Triangular cycle   

 

       To solve the generalized problem numerically, we have 
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( ) ( ) ;0;, 0hhthf
dt

dh
==                                             (11)                                                                                                       

h(0) represent the initial value of the thickness h at time t=0 

The time of interest is split into smaller intervals of duration 

which is written as: ∆t. Thus, the time t now becomes: 

Nntnt ..............3,2,1:;. ∀∆= ;                                (12)                                                                                                      

       Hence, the Runge-Kutta Method is known as the 

following iterative method:  
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0(∆k)
5
 represents the error in the numerical method which is 

of fifth order with respect to the time step taken. 

Four different thermal cycles are considered for 

simulation studies for prognostics and these are 

schematically displayed in Figure 4. During the flight 

operation the hot section parts with TBC are likely to be 

exposed to different thermal cycles.  The maximum and 

minimum temperatures in all cases are maintained 

between 1080°C and 20°C respectively. The 

temperature cycle that was used in our simulated 

experimental research was trapezoidal temperature profile 

as shown in Figure 4c and functionally can be represented 

by the following periodic equations.  

 

     1060(t)/0.2+20; for 0 ≤ t≥ 0.2τ 

T(t) =         1080;              for 0.2τ  ≤ t < 0.8τ   and 

    -1060(t-0.8) / 0.2  +20 ;  for 0.8 τ ≤ t < τ    

 

T(t) = Temperature at time t(°C) 

τ = Duration of one cycle (=1 hr.) 
Distinctly, the extent of thermal exposure of TBCs will vary 

with thermal cycles (Figure 4) and influence TGO growth 

and cracking.  A comparison between the empirical relations 

and the actual experimental TGO growth is made in Figure 

5.  

       There is no significant difference in the derived 

values and the experimentally observed data. Also, time 

period of the thermal cycling is negligible compared to the 

evolution of the TGO thickness for this case to a certain 

degree. The periodic equation is sufficient enough for the 

purpose of approximating the rise of the TGO thickness 

with respect to time under thermal stress. The empirical 

formula can now be used to determine the TGO growth with 

respect to time, and eventually the values can be used for 

crack growth estimation as discussed in section 4.2. 

4.2 Crack Growth and SIF 

 

       Till date, determining the crack size within the 

system has been quite a challenge. In order to predict a 

crack in a system, one initially needs to acquire the amount 

of thermal stress and the mechanical stress that will be 

induced to the TBC system. The process of measuring the 

amount of stress in the system or predicting it through the 

use of an algorithm has not yet been feasible, hence 

making it difficult for us to determine the crack size with 

relation to stress. This issue can be resolved by assuming a 

relation with respect to another variable. Since the TGO 

growth is the only other variable available from this 

experiment, a comparison between the TGO and crack size 

at their corresponding thermal cycle duration was 

conducted. The results are shown in the following section. 

Discussion on experimental details and quantitative 

estimation of damage signatures like crack size and TGO 

growth is beyond the scope of discussion here. Damage data 

was obtained by thermal cycling of TBC samples, 

metallography, scanning microscopy, rigorous 

measurements and analysis (Kumar et. al., 2010; Kumar et. 

al, 2009). Both Figures 2 and 5 demonstrate the relationship 

is of exponential type and not linear. 

       The relation between the thickness of the TGO and the 

Crack size for different number of thermal cycles appears to be 

exponential. The following equation for the growth of the 

crack size, at is obtained from experimental data as shown in 

Figure 2. 

 

Figure 5: Comparison of simulated TGO growth in TBC 

with experimental data for identical thermal cycles. 
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( ) ( )tt TGOa ∗−= 20.0exp3.27.1                     (18) 

The function TGOt is the value of the TGO thickness that will 

be determined from the eqs (1) to (5) which are mentioned in 

the previous section. As the crack size becomes available, 

Eq. 9 will yield the stress intensity factor as a function of 

time, t while the other layer dimensions and material data 

remaining constant.   

5. PHM SOLUTION  

       An overview of the PHM solution for TBCs is shown 

in Figure 6 describing the algorithm implemented into the 

MATLAB
TM

 program. The program is designed to 

determine the TGO thickness, crack Size, normalized SIF 

in real-time, trend analysis for RUL and plot new results 

after each calculation. A crack tolerance limit for TBCs is 

set in the program to allow maximum SIF that the system 

is supposed to withstand. In case the values overpass the 

margin, the plotting will carry on, but a warning sign will 

be indicated to the user. 

computations. 

 

Figure 6: Overview of the proposed physics based PHM 

for the thermal barrier coating system as applied to hot-

section components in aeroengine 

       As the temperature of the TBC system is measured, the 

timer activates the program.  The TGO thickness and the 

crack size are determined. Now, using the TGO thickness 

and crack size, along with some predefined parameters such 

as the elastic modulus, speed, pressure and the dimensions 

of the TBC and BC layers, the program is able to compute 

the normalized SIF. All these values are then stored as an 

array and plotted for the user. All these operations are 

completed within the interval of time set for the timer, so 

that it does not interfere with monitored data and 

5.1 RUL 

       Proposed PHM solution aims to obtain remaining useful 

life (RUL) based on the current health status of TBCs. As 

mentioned in earlier section that the SIF provides the current 

crack tolerance ability at a given time and configuration. 

Figure 7 illustrates the RUL estimation using SIF data and 

least square polynomial regression analysis. With 

operational cycle the TGO and cracks grow and so SIF 

level, prior to the attainment of threshold SIF level. 

Nonlinear polynomial regression through data points leads 

to the estimated RUL. However, the RUL will continue to 

vary as more new SIF data points are obtained and 

regression coefficients are like to change significantly.  

Some more discussion is relevant here with regard to TBCs 

crack tolerance behavior. 

 

 

 

 

 

 

 

 

 

Figure 7 Illustration of RUL estimation at any point of 

time during operational life; points A and B signify the 

estimated RUL through data regression without and with 

some degree of conservatism. 

       The higher cracking and separation tendencies at TGO-

TBC interface are primarily because of lower fracture 

resistance as compared to the BC-TGO interface. The 

fracture energy of the TBC-TGO interface is around only 2-

4 Mpa.m
1/2

 after 100 hrs. of oxidation. The fracture energy 

for BC-TGO layers has not been reported so far, but it is 

  Time 
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Dimensions 

of  TBC 

components 

at t=0 

Crack size, a = f (t) 

Applied SIF, K= f(t) 

RUL by trend 

analysis 
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Prognosis and Warning 
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likely to be much higher because BC layer toughness is 

more than 60 Mpa.m
1/2

. During the early stage of growth, 

the separation and cracking mostly remain at and around the 

TGO-TBC interfaces. Under isostrain condition, an applied 

stress of magnitude around 100 Mpa results in KI values of 2 

to 4 Mpa.√m which is just enough for initiating a crack from 

a defect size of 2 microns. The stress level required  for 

crack driving force (KI / GI) to be around and larger than the 

fracture resistance of the TBC component materials (TBC, 

TGO) are found to be in the range of 50 to 500 Mpa for 

crack size exceeding the critical length (> 1 micron) in 

TGO. The approximate stress levels as required for both 

crack initiation and propagation stages and computed from 

two models are consistent. The experimental work confirms 

the presence of cracks in the TBC system in the size range 

of 2-3 microns even at the onset of thermal cycling (Kumar 

et. al., 2010; Kumar et. al., 2009). An increasing tendency 

for stress intensity factor from 2 to 3.2 Mpa.m
1/2

 was 

reported earlier with TGO growth from 4 to 8 microns 

(Tzimas et. al., 2000). It may be mentioned here that the 

research emphasized on the damage evolution and analysis 

for the TBC, rather than the method of prognostic analysis. 

However, standard regression analysis has been tried with 

damage signature data.  

 

6. RESULTS 

       The simulation results for TGO growth and SIF 

estimation are given in Figures 8 and 9 for the thermal 

cycles considered. A smooth rise in the estimation are 

observed as shown in Figures 8b and 9b, while the actual 

pattern of TGO and SIF change can be seen at enlarger 

scale (up to 4 cycles) in Figures 8a and 9a respectively.   

Wide variations among the four are also evident in TGO, 

SIF and so will be in RUL as the TBC are exposed. The 

highest and continuous TGO growth and SIF increase are 

seen for isothermal temperature cycle and so the RUL 

may be expected to be shortest as compared to others. 

This is because of long uninterrupted thermal exposure at 

highest temperature of 1080°C. However, stepwise 

discontinuous changes in TGO and SIF are evident 

reflecting the nature of thermal cycles in other cases 

(Figures 4). The lowest TGO and SIF for any number of 

thermal cycles are obtained for triangular case as the 

TBCs are exposed to highest temperature momentarily. 

The Sinusoidal profile maintains high temperature longer 

than a triangular profile, thus having a faster TGO growth 

(Figure 8).   

       The other noteworthy issue affecting the RUL is that 

initial steep slopes of the plots tend to flatten with thermal 

exposure as the aluminium depletion in BC continues 

reducing the driving force for diffusion. The formation of 

other bulk mixed oxides, e.g NiO, (Cr, Al)2O3, Fe2O3, 

(Ni,CrAl)2O4 etc. (Chen, Wu, Marple & Patnaik, 2005; 

Chen, Wu, Marple & Patnaik, 2006; Sidhu &  Prakash,  

2005) also reduce the kinetics of oxidation process.  Though 

maximum temperature has the major effect on RUL, but 

nature of oxidation and damage state depending upon the 

thermal cycle also determines the life time. Reducing the 

temperature from 1177°C to 1130°C is reported to increase 

sample lifetime by a factor of 2.4, though the damage state 

is observed to be same irrespective of temperature profile as 

long as the peak temperature remains constant (Nusier, 

Newas & Chaudhury, 2000).  

  

Figure 8: TGO growth rate characteristics in TBCs exposed 

to different thermal cycles; a) at magnified scale showing 

actual pattern of growth and b) at reduced scale indicating 

smooth rise for TGO thickness. 

      The other noteworthy issue affecting the RUL is that 

initial steep slopes of the plots tend to flatten with thermal 

exposure as the aluminium depletion in BC continues 

reducing the driving force for diffusion. The formation of 

other bulk mixed oxides, e.g NiO, (Cr, Al)2O3, Fe2O3, 

(NiCrAl)2O4 etc. (Chen, Wu, Marple & Patnaik, 2005; Chen,  

Wu,  Marple & Patnaik, 2006; Sidhu  & Prakash,  2005) 

also reduce the kinetics of oxidation process.  Though 

maximum temperature has the major effect on RUL, but 

nature of oxidation and damage state depending upon the 

thermal cycle also determines the life time. Reducing the 

temperature from 1177°C to 1130°C is reported to increase 

sample lifetime by a factor of 2.4, though the damage state 

is observed to be same irrespective of temperature profile as 
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long as the peak temperature remains constant (Nusier,  

Newas & Chaudhury, 2000). However, further 

experimental studies on the nature of oxidation and damage 

and cracking mechanisms under different thermal cycles are 

required to substantiate the results. 

 

Figure 9: SIF change with number of cycles as TBCs are 

exposed to different thermal cycles; a) at magnified scale 

showing actual pattern and b) at reduced scale indicating 

smooth increase of SIF.  

 

7. CONCLUSIONS 
  

       Experimental and simulation studies on the prognostic 

assessment of thermal barrier coating system were carried 

out using physics based approaches. Two damage 

signatures, namely growth of aluminium oxide at the 

interface between bond coat and top insulating coat and the 

cracks are responsible for the failure of TBCs. An 

exponential relationship between the two signatures is 

established. Temperature being the driving force for 

diffusion and TGO, four thermal cycle profiles are simulated 

and fourth-order Runge-Kutta method is used for numerical 

solution.  For TBC system stability and crack tolerance, a 

modified fracture mechanical model is used assuming that 

the cracks form and grow in the top TBC layer. The 

normalized stress intensity factor determines the current 

health and remaining useful life using the regression 

analysis. The TGO and crack tolerance level based on the 

simulation results vary widely and largely depends on the 

extent of thermal exposure to TBC.  
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ABSTRACT 

Applicability of a physics based prognostics approach for 
solder joints using microstructural damage models is 
investigated. A modified deformation mechanism map for 
the solder alloys is introduced where grain boundary sliding 
(GBS) plays a dominant role during creep deformation. The 
high homologous temperature of solder as well as the 
combined thermal-vibration cycling experienced during 
typical operating missions necessitates the use of a 
combined creep-fatigue failure approach. In this work, a 
PCB consisting of a heat generating chip with Ball-Grid 
Array (BGA) solder joints is considered for avionics 
application. A prognostics based Life Cycle Management 
approach was used to perform the mission analysis, FEA, 
thermal-mechanical stress analysis and damage 
accumulation analysis. The remaining useful life (RUL) is 
predicted for different rupture strains. The uniqueness of 
this approach lies in the use of microstructure based damage 
models and consideration of both material and mission 
variability to predict the RUL under actual usage. The life 
critical nodes were observed near the junction of the solder 
joints with the substrate due to high disparities in their 
coefficients of thermal expansion. In addition, the 
probabilistic analysis was also performed by randomly 
varying the grain size and fitting a two-parameter Weibull 
distribution to the failure data. The model calibration and 
the results show some practical trends that need to be 
verified through future experimentation. The simulation 
results demonstrate the viability of using a physics based 
approach for the prognosis of solder joint failures in 
avionics. 

1. INTRODUCTION 

Life prediction analysis of solder joints is a popular, but 
challenging topic due to high occurrence of failures in the 
field. The mechanical fault progression leads to electrical 
failure of solder joints causing about 70% of overall failures 
in avionics. The failures of the fundamental avionic 
components like transistors and their interconnections are 
mostly caused by operating thermal, mechanical and 
electrical overstresses (Saha, Celaya, Wysocki & Goebel, 
2005). Previous studies have considered empirical (Kalgren, 
Baybutt, Ginart, Minnella, Roemer & Dabney, 2007) or 
only simplified physics based thermal fatigue (Nasser, 
Tryon, and Dey, 2005) models for the prognostics of 
electronic components. However approaches involving top-
down multi-component analysis techniques (Kalgren, et al., 
2007) combined with empirical models require the 
availability of significant amount of data along with 
considerable deviation from the norm to predict the 
presence of a fault. This makes the early detection or 
prediction of damage or faults very difficult. Moreover, the 
relative scaling of electronic components and detectable 
crack sizes limits the use of traditional empirical damage 
models from a life prediction or prognostics perspectives. In 
contrast, only considering thermal fatigue induced 
transgranular fractures of solder joints (Nasser et al., 2005) 
may not provide an accurate fault prediction because creep 
damage may also contribute to the overall damage 
accumulation process. 

The Pb-Sn solder joints in electronic packages function 
as electrical interconnections, as well as mechanical bonds. 
The solder joints often consist of materials possessing 
different thermal expansion coefficients and this imposes 
cyclic strains under thermal loading fluctuations. Thermal 
fluctuations can occur due to external temperature variation 
or internal heat dissipation. These temperature fluctuations 
can be large in electronic components in avionics. Even 
small temperature fluctuations can lead to significant cyclic 

Banerjee et al. This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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strain accumulation, depending upon the size of the joint 
and the difference in the thermal expansion of the joined 
materials. One of the most important requirements of the 
new solder materials is the reliability of the solder joints 
against thermal cycling, flexural bending, and impact 
loading. An in-depth understanding of the micro-
mechanistic processes leading to the solder joint failures 
under conditions of thermal-mechanical fatigue and creep 
has been achieved through great deal of research (Dasgupta, 
Sharma & Upadhyayula, 2001; Joo, Yu & Shin, 2003; 
Kovacevic, Drofenik & Kolar, 2010; Shi, Wang, Yang & 
Pang, 2003). 

 Due to the high homologous operating temperatures, 
deformation of solder joints is always governed by a 
combination of creep and TMF processes. Solder joints are 
exposed to time dependent high temperature deformation 
mechanisms associated with creep and residual stress 
relaxation and the joints are also susceptible to low cycle 
fatigue (LCF) damage accumulation. Creep is the most 
common and important micromechanical deformation 
mechanism operative in the solder joints that eventually 
leads to failure. Microstructural features also influence the 
material properties and plastic deformation kinetics greatly. 
For Sn-Pb solders, the phase boundaries are known to be the 
preferred crack initiation sites. The cracks then propagate 
preferably along tin–lead or tin–tin grain boundaries (Joo et 
al., 2003). Continuous TMF loading will also induce creep 
deformation effects. Since room temperature for eutectic 
Sn-Pb alloys is around 0.65 Tm (Tm is the melting 
temperature in K), phase changes due to diffusion can also 
be expected to play a role at higher temperatures leading to 
accelerated damage accumulation. 

 Fatigue damage due to vibration loading leads  to cyclic 
plasticity while that due to temperature cycling causes 
cyclic creep. Plastic deformation of the solder refer to 
instantaneous time scale and primarily occurs due to slip; 
while creep  due to time dependent and diffusion-assisted 
mechanisms over long time, namely grain boundary sliding, 
dislocation glide/climb and mass transport through the grain 
boundary/matrix. Furthermore, there are interactions 
between vibration and temperature damage accumulation 
rates due to factors like material properties changes; 
microstructural coarsening and interaction between 
vibration stress and the TMF stress.  

 The lead-free SAC (Sn-Ag-Copper) is the alternative 
alloy as Pb is harmful to the environment and human 
beings. The alloys melt around 250 °C, depending on their 
composition. Different variations of the SAC alloy, with Ag 
content from 3.0% to 4.0% are all acceptable compositions. 
Creep rupture in SAC occurs by the nucleation of cavities 
and their subsequent growth by continued creep damage 
accumulation. The 1.5Cu SAC shows the poorest creep 
ductility because of the brittle cracking of the intermetallic 

Cu6Sn5, which provided easy nucleation and crack 
propagation sites for creep cavities (Joo et al., 2003). 

 These observations suggest that a number of 
deformation and failure mechanisms contribute to solder 
alloy system deformation and fracture depending mainly on 
applied stress and temperature. Some of these mechanisms 
include plasticity, dislocation creep and grain boundary 
deformation accommodated by different processes. To 
assess the current health and RUL of solder joints, it is 
important to employ the appropriate constitutive models for 
deformation and fracture. Combining the constitutive 
models for various regimes is useful for determining the 
creep strain rates and the remaining useful life (RUL) for 
solder joints (Kovacevic et al., 2010; Shi et al., 2003).  

 Gu and Pecht, (2010) provide several examples of 
implementing prognostics and health assessment for 
electronics products in the industry and defense 
applications. The paper also discusses how the traditional 
handbook-based reliability prediction methods for electronic 
products like MIL-HDBK-217 are being replaced by PHM. 
Approaches like physics-of failure, data-driven and their 
combination has been discussed in detail. 
 Hence a reliable physics based prognostics system 
including both mission as well as microstructural 
variabilities possess a good potential for facilitating the 
accurate prediction of the RUL of the PCB. This would 
enable a user to gauge the health of an existing PCB and 
optimally plan maintenance schedules as well as help in 
designing PCBs to withstand the loads for the intended 
application.  

2. PHYSICS-BASED PROGNOSTICS FOR AVIONICS 

In this paper, a prognostics-based Life Cycle Management 
framework is proposed to predict the RUL of avionic 
components. The combined effect of creep and thermal 
fatigue loads is considered on the damage evolution leading 
to intergranular as well as transgranular deformation of 
solder joints. The major causes of failure of solder joints are 
TMF cycling arising from the operational changes as well as 
creep due to the presence of a high operating temperature in 
terms of the homologous temperature of the eutectic solder. 
The soldering process also imparts intrinsic residual stresses 
that arise due to the difference in the thermal properties of 
the solder/intermetallic/substrate. The stress relaxation 
caused by the grain/phase boundary sliding leads to creep 
deformation of the solder joint also leads to crack nucleation 
during service. At the same time, the variation in the 
operating loads leads to TMF damage accumulation. The 
intergranular and transgranular deformation based combined 
creep-fatigue approach to damage accumulation would thus 
provide a more accurate simulation of the actual failure of 
the solder joints and it would also lead to more accurate 
predictions.  
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2.1 Deformation Mechanisms 

A deformation mechanism map for the Pb-Sn eutectic 
solder is shown in Figure 1. The deformation mechanism 
map is a stress-temperature diagram presenting the 

dependency of normalized stress τ/G (G is the shear 
modulus) on homologous temperature T/Tm. Elastic region 
exists only at the very slow strain rate (<10-10), while plastic 
region occurs over yield strength level. The dislocation 
controlled creep regime consists of three subzones, namely 
high stress creep regime, low temperature (LT) dislocation 
glide creep regime, and high temperature (HT) dislocation 
climb creep regime. Below this regions of creep, the two 
diffusion controlled regimes exists, namely grain boundary 
(GB) regime and matrix diffusion regime.  

 

Figure 1: Line diagram for deformation mechanism map of 
Sn-Pb eutectic solder alloy highlighting the essential 
features 

 In parallel with Ashby’s deformation mechanism map, 
Mohammed and Langdon (1974) considered an alternative 
to this map where grain boundary sliding (GBS) instead of 
diffusion creep predominates. Other attempts to 
accommodate GBS field in Ashby type maps have also been 
presented by Koul, Immarigeon and Wallace (1994). In 
2002, Wardsworth, Ruano and Sherby (2002) conducted a 
detailed analysis of all the data on the diffusional creep of 
engineering alloys and concluded that GBS dominated the 
deformation which had commonly been confused with 
diffusional creep. Based on the mechanistic modeling work 
of Wu and Koul (1993 and 1995), Wu, Yandt and Zhang 
(2009), presented an alternate map for engineering alloys.  

 

Figure 2: Modified deformation mechanism map with grain 
boundary sliding 

These changes have been incorporated in the form of 
modifications to the deformation mechanism map presented 
in Figure 1, while considering the creep behavior of eutectic 
solder in this study, Figure 2. 

PROBLEM FORMULATION 

In this work, the problem of prognosis of electronic circuit 
boards in avionics has been considered and the RUL of 
solder joints is predicted. A detailed 30 hour long mission 
suitable for a typical transportation aircraft has been 
designed and used to determine the operating conditions 
during the mission. The problem is treated as combined 
creep and TMF damage accumulation process and analysis 
based on the microstructural properties of eutectic solder in 
a Ball-Grid Array (BGA) subject to the mission experienced 
by the transport aircraft is carried out. The circuit board is 
assumed to be located in the forward avionics bay of a 
transport aircraft consisting of a chip (BT substrate) with 8 
solder joints mounted on an FR4 board as shown in Figure 
3. The dimensions of the different components are also 
shown in the figure. The substrate has been assumed to have 
internal heat generation capacity with convection cooling 
allowing the heat distribution over the entire circuit. The 
operating conditions like ambient temperature, acceleration 
change along with the specific mission also need to be 
considered in physics based prognostics approach. Hence it 
is proposed that the mission as well as the microstructural 
variability have to be simultaneously considered for 
accurate prognosis. 
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Figure 3: Typical geometry of a PCB for Avionics 

4. PROGNOSTICS BASED LCM METHODLOGY 

A bottom-up prognostics based Life Cycle Management 
(LCM) approach (Koul, Tiku, Bhanot & Junkin, 2007) has 
been adopted. This involves the systematic consideration of 
the requisite inputs like material and geometry of the 
components and the usage. The temperature, stress and 
strain is calculated to determine the microstructural damage 
accumulation based nodal life enabling the determination of 
the RUL as well as the fracture critical location/node. The 
framework of the prognostic approach is shown in Figure 4 
with each module described in details as below: 
• Input Data 

Component geometry: The three dimensional model of 
the component is created to generate the mesh for 
subsequent FEA.  

In-service operating data: This is required to utilize the 
actual usage of the component rather than designed 
usage for more accurate prognosis. Typical operating 
data collected are RPM, Altitude since it governs the 
ambient conditions, from where other dependent 
parameters are calculated to determine the relevant 
parameters of the mission profile. 

Material Data: Microstructural data like grain size, 
boundary precipitate size, activation energy, etc are 
requisite for the damage analysis. Simultaneously 
temperature dependent and independent physical data 
like elastic modulus, poison ratio, conductivity, etc are 
also required for materials used for every component. 

• Pre-Processing 
Mission profile analysis: Once the mission has been 
obtained from the in-service operating data, a fuzzy 
logic based mission profile analyzer is used to determine 
the creep and fatigue loads on the components, their 
duration or frequency and their sequence. 

Thermal and Structural Loading: Based on the in-
service operating condition and the mission profile 
analysis, thermal and mechanical loads are determined 

along with the requisite boundary conditions to closely 
replicate the effect of service exposure. 
















































Figure 4: Framework of prognosis based LCM for solder 
joints in avionics 

Finite Element Analysis: Well structured and mapped 
mesh is generated from the component geometry to 
conduct the thermal and structural analysis under the 
pre-determined loading and boundary conditions to 
calculate the nodal temperature, stress and strain. 

• Microstructure based Damage Analysis 
Microstructure based damage models under inter-
granular, transgranular and combined creep (Wu and 
Koul, 1995) and thermo-mechanical fatigue (Neu and 
Sehitoglu, 1989) has been implemented. These models 
take into account the microstructure, physical properties 
and their variation with temperature, operating condition 
and calibration of empirical coefficients with 
experimental data. 

• Life Prediction Analysis 
Based on the nodal temperature, stress and strain 
obtained from FEA, microstructural damage models are 
applied at each node to determine the accumulated 
damage as a result of the  creep and fatigue loads. 
Robinson and Miner’s damage summation rule is 
applied to determine the total damage accumulated 
during each mission and RUL is calculated for each 
node. This also allows the determination of the primary, 
secondary and tertiary facture critical locations. 

5. SIMULATION SETUP 

5.1 Geometry and Meshing  

Geometry of the PCB consisting of 8 BGA solder joints, 
one BT substrate and one FR4 board was created as shown 
in Figure 3. Structured mapped mesh was generated and 
symmetry was used as shown in Figure 5 to reduce the 
computational cost. The two solder joints are numbered 1 
and 2 for ease of referencing in the subsequent text. A total 
of 17663 quadrilateral 3D mesh elements were used for a 
quarter symmetric model. 

5.2 Material Data Collection  

Three different types of data were collected, as below: 
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• Microstructural data: Grain size, boundary precipitate 
size, interlamenar distance, activation energy, diffusion 
coefficient, etc. 

• Physical properties: Temperature dependent and 
independent physical properties like Young’s Modulus, 
Poison’s Ratio, Density, CTE, etc. 

• Calibration data: Creep (strain vs. time) and fatigue test 
(strain vs. number of cycles) data for solder material 
(Sn63Pb37). 

 

Figure 5: Sectional view of mesh for quarter symmetric 
circuit board 

5.3 TMF and Creep Modeling  

The microstructural based damage models for intergranular 
creep and TMF were calibrated for the eutectic solder alloy. 
For the creep model, experimentally measured creep life 
(strain vs. time) test data (Wong, Lau & Fenger, 2004) was 
utilized to calibrate the measured strain rate due to 
intergranular deformation caused by grain boundary sliding. 
For the fatigue model, experimentally obtained fatigue life 
data (strain vs. number of cycles) was used to calibrate the 
empirical material constants (Shi, Wang, Yang, & Pang, 
2003). The microstructural data for eutectic solder was also  
obtained from existing literature and applied to both 
models. The calibrated TMF and creep models with 
experimental data are shown in Figure 6. 

 

 

(a) TMF 

 

(b) Creep 

Figure 6: Calibration of intergranular damage models 

5.4 Mission Profile  Analysis  

Mission profile closely representing that of a transport 
aircraft is required. For this purpose a detailed mission 
profile for typical transport aircraft was generated for a total 
flight duration of 30 hours with the cruise altitude being 
around 9,000 meter. Details of the mission were included by 
incorporating the change in the rpm and altitude at different 
stages of the mission, as shown in Figure 7. The other 
dependent parameters like ambient temperature, ambient 
pressure, acceleration were calculated. An initial 
temperature of 25°C was assumed at the ground level. 
Ambient temperature along the mission was calculated from 
the altitude in the mission which affects all the avionic 
components. The ambient temperature was added to the 
temperature profile generated by the chip’s internal heat 
generation and convective cooling to determine the resultant 
temperature at every time step of the mission. Moreover the 
vibratory acceleration amplitude exerted on all the 
components was also calculated as a function of rpm (Tang 
& Basaran, 2003; Smith, 2004) along the mission. Based on 
the temperature and acceleration profile, a fuzzy logic based 
mission profile analyzer was implemented to determine the 
creep and fatigue loads on the solder joint. The calibrated 
damage models were invoked at every time step based on 
the type of loading. 

 
Figure 7: Designed mission profile 
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5.5 Boundary Conditions  

The simplified substrate was assumed to have an internal 
heat generation of 0.5W/mm3 during its operation period 
which was assumed to be constant throughout the mission. 
A closed case convection for the front avionics bay region 
was assumed to have a coefficient of 20W/m2°C. The PCB 
was fixed at the four corners to represent attachment with 
the aircraft structural frame with screws. The RPM 
dependent acceleration was applied on all the components 
which would allow the four corners with least displacement 
where as the centre of the circuit board would have the 
maximum deflection. 

5.6 Finite Element Analysis  

The FEA analysis was performed with ANSYS Workbench 
with a coupled steady-state thermal and structural analysis. 
At first the temperature loads were applied on to the 
components and the thermal results were carried forward for 
subsequent structural analysis.  

6. LIFING ANALYSIS 

6.1 Remaining Useful Life 

The temperature, stress and strain calculated from FEA 
based on the mission profile and other operating conditions 
were applied to the microstructural creep and TMF models. 
The result of the FEA namely temperature, stress and strain 
at each node of solder were calculated at each time-step 
with different fatigue damage models to determine damage 
accumulated at each node. Robinson and Miner’s rule was 
used to sum the damage (D) for creep and fatigue loads at 
each load (i=1 to n) as below: 
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where ti is the creep duration and Ni is the number of fatigue 
cycles for the i-th load, tf and Nf are the failure creep 
duration and fatigue cycle. The remaining useful life (RUL) 
was calculated from the D and the total mission duration 
time (tM) as below, 
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6.2 Probabilistic Analysis 

Once the deterministic life critical nodes were identified 
based on the nodal temperature, stress and strain over the 
solder joints, a probabilistic analysis was conducted. In this 
analysis, the microstructural variability in terms of the grain 
size variation was considered. The grain size was selected 
as a major parameter since it plays an important role in the 
damage accumulation processes arising from combined 
creep and fatigue mechanisms. For the purpose of studying 
the variation in the RUL for different grain sizes, a normal 

distribution of the grain size was considered. The mean size 
was the deterministic grain size and the standard deviation 
was assumed based on variations observed due to different 
reflow process parameters. Upon randomizing the grain 
size, probabilistic lifing calculation was carried out under 
steady-state operating conditions with Monte Carlo 
Simulation. A two parameter Weibull distribution of the 
probabilistic remaining useful life was also estimated for the 
most critical node. 

7. RESULTS AND DISCUSSION 

7.1 Finite Element Analysis 

At first the temperature profile was calculated based on the 
ambient temperature, heat generated by the chip and 
convective cooling at each time step of the mission. A 
typical temperature profile is shown in Figure 8 (a). The 
temperature was highest over the chip which generates 
constant heat during the operation. The temperature was 
lowest at the board furthest away from the heat source, 
approximately resembling the ambient temperature 
condition. The thermal loads generated when combined 
with the mechanical load of vibratory acceleration resulted 
in maximum deflection at the centre of the board and chip 
being furthest away from the fixed support as shown in 
Figure 8 (b). The equivalent stresses and strains were found 
to be highest near the bottom surface of the solder Joint 1 
which is due to the combination of higher temperature 
variation between the solder and the board as well as lower 
deformation due to closeness to the fixed support. The 
typical FEA results in terms of stress and strain distributions 
are shown in Figure 8 (c) and (d). 

7.2 RUL Calculation 

The spatial distribution of RUL for different rupture strains 
is shown in Figure 9. The figure shows that the region close 
to the bottom interfacing surface of Joint 1 has the lowest 
life owing to the higher stress and strain concentration and it 
is most likely to fail at this location. This can be explained 
on the basis of the presence of higher temperature gradient 
and lower deformation since its closeness to the fixed 
support leads to higher stresses.  
 

 
 

Figure 8: Typical FEA result over the PCB segment 
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Again more accurate RUL calculation should involve the 
consideration of the intermetallic layer between the solder 
and the substrate whose material characterization was 
beyond the scope of this work. The primary life critical 
node is at node number 4805 with a RUL of 7,041 hrs. 
Considering that the intermetallic layer would be highly 
brittle which makes the selection of a low rupture strain 
(rupture) of 0.05% to calculate RUL as the most appropriate 
engineering solution to this problem. This suggests that the 
intermetallic layer has to be embrittled to a point where 
creep failure is dramatically influenced by its volume 
fraction.  
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Figure 9: Spatial distribution of stress, strain and RUL over 
two solders joints  
 

A range of rupture strains were used to recalculate RUL at 
the life critical node of 4805 along with the damage 
contribution of TMF and creep and tabulated in Table 1. 
The table shows that the contribution of the TMF is the 
largest towards damage accumulation in the solder joints 
during the normal operation of the aircraft. In-flight cyclic 
fluctuations will be expected to dominate the contribution to 
the damage accumulation process. 

7.3 Probabilistic Analysis 

After determining that the primary fracture critical node is 
at 4805 node number with 0.05% rupture strain with the 
RUL  

Table 1: RUL and contribution at fracture critical node of 
4805 

rupture 

(%) 
RUL 
(Hrs) 

% Contribution to 
Damage 

TMF Creep 
0.001 4,611 61.83 38.17 
0.005 6,652 89.03 10.97 
0.010 7,041 94.21 5.79 
0.050 7,386 98.80 1.20 
0.100 7,431 99.41 0.59 
0.500 7,468 99.90 0.10 
1.000 7,473 99.97 0.03 

being 7,386 hrs, a Monte Carlo simulation was conducted 
with 5,000 normally distributed random samples of 
microstructural grain size with mean grain size of 2m and 
standard deviation of 0.40m. The Weibull distribution plot 
of remaining useful life calculated for the randomly 
distributed grain size at the primary fracture critical node is 

shown in Figure 10. Since the >1 it suggests that the usage 
based failure of the solder with the Mean Time to Failure 
(MTTF) to be approximately around 8,000 hours service 
life of the solder joints. Contribution to damage from creep 
becomes prominent only at very low and may be unrealistic 
rupture strains. However, for a detailed consideration, creep 
damage accumulation during ground idle and time between 
flights should also be included. 
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Figure 10: Two parameter Weibull distribution of RUL at 

life critical node of 4805 

8. CONCLUSIONS AND FUTURE WORK 

A prognostics based Life Cycle Management approach has 
been proposed to implement a physics-based prognostic 
system for eutectic solder joint in avionics. Realistic 
mission profiles and eutectic solder properties have been 
incorporated to calculate RUL of the solder joints in a 
typical PCB under combined thermal and vibratory loading 
conditions. Microstructure based damage models for creep 
and fatigue have been calibrated with the properties data for 
the eutectic solder. Finite Element Analysis and RUL 
results indicate that the contact surface between the solder 
and the board accumulated the highest damage thus making 
it the most likely  failure prone zone. It is also observed that 
the contribution of TMF  damage accumulation is dominant 
during the aircraft operation. The deterministic and 
probabilistic lifing analysis reiterates the applicability of the 
prognosis based LCM of solder joints. Further work 
towards developing more comprehensive prognosis of 
avionics would include the following: 
• Improving the TMF and Creep models by using 

frequency and cavitation terms 
• Extension of the prognosis of other avionics components 
• Experimental validation with standardized accelerated 

life testing in laboratory environment 
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ABSTRACT

Bearing faults represent the most frequent mechanical faults
in rotational machines. They are characterized by repetitive
impacts between the rolling elements and the damaged sur-
face. The time intervals between two impacts are directly re-
lated with the type and location of the surface fault. These
time intervals can be elegantly analyzed within the frame-
work of renewal point processes. With such an approach the
fault detection and identification can be performed irrespec-
tive of the variability of rotational speed. Furthermore, we
show that by analyzing the entropy of the underlying count-
ing process by means of wavelet transform, one can per-
form fault detection and identification without any informa-
tion about the operating conditions. The effectiveness of the
approach is shown on a data-set acquired from a two–stage
gearbox with various bearing faults operating under different
rotational speeds and loads.

1. INTRODUCTION

According to several surveys (MRWG, 1985a, 1985b, 1985c;
Albrecht, Appiarius, & Shrama, 1986) one of the most com-
mon mechanical failure are bearing faults. Consequently, a
variety of techniques for detection of bearing faults have been
developed in the past decades. They rely mainly on analysis
of vibrational signals acquired from machines operating un-
der constant and known operating conditions. However, such
conditions are rarely met in practice. Therefore, in this paper
we address the issue of bearing fault detection under vari-
able and presumably unknown operating conditions within
the framework of renewal point processes.
In the currently available approaches, fault detection under
variable speed is resolved by acquiring precise information

Boškoski et.al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

about the current speed and load. Most common approach in
such a case is time–synchronous averaging (TSA), a method
which compensates for the speed fluctuations (Zhan, Makis,
& Jardine, 2006; Stander & Heyns, 2005). In the same man-
ner Parker et al. (2000) applied higher order spectra analy-
sis for the detection of various bearing faults under different
load conditions. Bartelmus and Zimroz (2009) successfully
performed fault detection in multi–stage gearboxes by taking
into account the information about both variations in speed
and load. Although the proposed approaches give satisfac-
tory results they heavily depend on accurate measurements of
the current speed and load of the monitored gearbox.
Can bearing faults be reliably detected in spite of unknown
variable load and speed conditions? Poulimenos and Fassois
(2006) provided a thorough analysis on modeling and analysis
of nonstationary vibration signals in time domain. Padovese
(2004) gave a hybrid time–frequency approach for analyzing
transient signals. Baydar and Ball (2000) performed detec-
tion of gear deterioration under different loads using instanta-
neous power spectrum by employing Wigner–Ville distribu-
tion (WVD). They have successfully realized fault detection
of gear faults irrespective of the operating conditions.
Another way of overcoming the difficulties induced by vari-
able operating conditions is to analyze the statistical charac-
teristics of the produced vibrational signals. In case of bear-
ing faults, the most informative source can be found in the
distribution of the time intervals between two adjacent im-
pacts occurring between the rolling elements and the damaged
bearing surface. By doing so we can employ the framework
of point processes in modeling the distribution of these times.
The framework of point processes was successfully applied in
the areas like modeling the neural spikes, earthquake predic-
tion, describing environmental processes etc. However in the
field of fault detection, to the best of the authors knowledge,
Antoni and Randall (2003) are the only authors that tried to
analyze the distribution of these interevent times by treating

1
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them as an ordinary renewal process. However, their analysis
was focused only on cases when bearings are operating under
presumably constant and known operating conditions.
In our approach we go one step further by removing the
limitation of constant and known operating conditions. Fur-
thermore, we will show that the produced bearing vibrations
may be modeled as renewal process with Inverse Gaussian
interevent distribution. We will show that with such an ap-
proach one can construct an unified model for bearing fault
vibrations, capable of modeling both single and multiple bear-
ing faults. The statistical properties of the model additionally
allow proper modeling under both constant and variable op-
erating conditions. Finally, we will propose one way of per-
forming fault detection based on the statistical characteristics
of the renewal process analyzed through wavelet transform.

2. BASICS OF POINT PROCESSES

The point processes represent a segment of the theory of ran-
dom processes that are most commonly used for characteriz-
ing random collections of point occurrences (Cox & Isham,
1980). In the simplest form, these points usually represent
the time moments of their occurrences. This class of point
processes is also known as temporal point processes.
Generally it is considered that the observed random points
occur at time moments · · · , t1, t2, t3, · · · . A point process is
simple if all the observed points are distinct i.e. ti 6= tj for
i 6= j. Additionally the point process is called orderly if the
number of points N at any moment t and interval length ∆t
is:

lim
∆t→0

Pr{N [t, t+ ∆t] > 1} = 0. (1)

Besides the occurrence times t and the number of points N
another way of defining a point process is by the interevent
times, i.e. the time between two adjacent points. Thus, the
nth interevent time is defined as Tn = tn − tn−1.
One general goal is to derive the statistical properties of the
mechanism that generates the observed random occurrences.
The properties of a point process may be specified in several
equivalent ways. The most common approach is to specify
the non-negative number N ∈ Z+ that specifies the number
of observed occurrences between time 0 and time T . An-
other way to specify the statistical characteristics is through
the distribution of the interevent times {T1, · · · , Tn} where
Ti = ti − ti−1. Finally, the approach for describing the sta-
tistical characteristics that will be used throughout this paper
is based on the frequency with which the events occur around
the time moment t with respect to the history of the process
up to that particular moment Ht. This statistical property is
usually called conditional intensity function λ(t,Ht). Each
of these specifications is equivalent and the most appropriate
one may be used (Daley & Vere-Jones, 2003a).
For the corresponding conditional density function f(t|Ht)
one can also define its corresponding cumulative function

F (t|Ht). Consequently the conditional intensity function can
be defined as:

λ∗(t) =
f(t|Ht)

1− F (t|Ht)
. (2)

The denominator of (2) is also known as survivor function
s(t) (Vreeswijk, 2010):

s(t) = Pr{event not before t|Ht}. (3)

The form of the conditional intensity function completely de-
scribes the underlying point process. In general, as shown in
Eq. (2), this function depends on both the current time t as
well as the complete point process history up to that moment
Ht. However, by allowing specific limitations one can de-
fine several specific types of point processes. If we let λ∗(t)
to become independent of Ht, it will define a non-stationary
Poisson process. A stationary version is defined by fixing the
value of λ∗(t) = const. to a specific constant that defines the
rate of the underlying Poisson process. With such limitations
one can readily show that the interevent times of the Poisson
process are independent and distributed with exponential dis-
tribution.
A further generalization of this concept is the class of renewal
point processes (Lowen & Teich, 2005). Similarly like in the
Poisson process, the interevent times of such processes are in-
dependent and identically distributed (i.i.d.) but with arbitrary
distribution f(t) supported on semi-infinite interval [0,+∞),
i.e. f(t) = 0 for t < 0. Consequently, the occurrence of
a new event becomes dependent only on the time since the
previous one.
One can proceed even further by removing the condition of
independence of the interevent intervals. If the interevent in-
tervals {Xn} form a Markov chain where the length of the
Xn+1 depends only on the length of the previous interval
Xn one obtains a so-called Wold process (Daley & Vere-
Jones, 2003a). By modeling different transition kernels of
the Markov chains one can model various types of point pro-
cesses (Daley & Vere-Jones, 2003b). The form of the transi-
tion directly determines the form of the conditional intensity
function (Asmussen, 2003). Therefore, one can define the
most suitable transition form of the governing Markov chain
that will fit the observed random process. At the same time
there is an equivalent opportunity of fitting a specific form
of governing chain with respect to an observed history of an
arbitrary point process. Such an identification procedure can
be implemented by employing well established methods from
the area of hidden Markov models.

3. MODELING BEARING FAULTS USING THE POINT
PROCESS FRAMEWORK

Generally, the vibrations produced by bearings with localized
surface faults have been analyzed in cases of constant and
known rotational speed. In such a case the generated vibra-
tional patterns x(t) can be modeled as (Antoni & Randall,
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2002; Randall & Antoni, 2011):

x(t) =

+∞∑

i=−∞
Ais(t+ ∆Ti) + n(t), (4)

whereAi represent the amplitude of the ith impact, s(t) is the
excited impulse response, n(t) is additive background zero-
mean noise and ∆Ti = Ti+1−Ti represents the time between
two consecutive impacts. The time period ∆Ti contains all
the needed diagnostic information.
The intervals ∆Ti can be treated as interevent times of a point
process. By imposing a specific distribution of these intervals
we can specify a model of the generating point process. Con-
sequently by analyzing the statistical characteristics of such a
point process we can infer about the underlying bearing fault.

3.1 Point process model for localized bearing faults

Tandon and Choudhury (1999) specified the characteristic im-
pact frequencies for different bearing surface fault as func-
tions of bearing dimensions and rotational frequency of the
rotating ring. Therefore, the interevent times Ti in the model
(4) are directly related to the bearing’s rotational speed. Thus,
in order to model the interevent time distribution we have
to specify a suitable condition intensity function. A way to
model the rotational speed is by modeling the change in the
rotational angle θ(t) of the rotating ring:

θ(t) = νt+ σW (t), (5)

where W (t) is standard Brownian motion with normally dis-
tributed increments with zero mean and some constant vari-
ance (Matthews, Ellsworth, & Reasenberg, 2002), ν is di-
rectly related to rotational speed and σ accommodate the
speed fluctuations. Thus a single evolution occurs when the
angle θ(t) reaches the threshold 2π. A simple realization of
such a process is shown in Figure 1. Schrödinger has shown
that the distribution of the time needed for a Wiener process
(5) to reach a fixed threshold a follows the Inverse Gaussian
distribution (Folks & Chhikara, 1978):

f(t) =
a

σ
√

2πt3
exp

{
− (νt− a)2

2σ2t

}
, (6)

usually denoted as t ∼ IG(a/ν, a2/σ2). Since the parame-
ters ν and σ are constant in time, the resulting point process
is stationary with firing rate ν.

3.2 Statistical characteristics of Inverse Gaussian
renewal process

Since the Inverse Gaussian renewal process will be the basis
of our model we will derive the necessary statistical proper-
ties. Besides the conditional intensity function and the in-
terevent times distribution, a point process can be analyzed
through its counting process N i.e. the probability distribu-
tion pN (t) of observing N consecutive events within a time

R
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[×
2
π
]

Time

T1 T2 T3 T4 T5 T6

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

Figure 1. Realization of renewal process with Inverse Gaus-
sian interevent distribution

interval [t0, t), where usually t0 = 0. In order to derive the
distribution pN (t) one has to calculate the joint probability
distribution p(t0, t1, · · · , tN ).
Firstly, the probability of a single event occurring up to time
t1 is p1(t1) = p(t1), where p(t) is the probability distribution
of a single event. The probability of observing N events up
to time tN is:

pN (tN ) =

∫ tN

0

pN−1(tN−1)p(tN − tN−1)dtN−1, (7)

where p(tN − tN−1) is the interevent probability distribution.
The Eq. (7) is a convolution of two p.d.f. defined on the non-
negative real line, since both tn > 0 and tn > tn−1, and it
can be easily calculated using the Laplace transforms of both
pN−1(t) and the distribution of interevent times f(t):

pL,N (s) = pL,N−1(s)fL(s) = fNL (s), (8)

where pL,N−1(s) = L{pN−1(t)}, fL(s) = L{f(t)} and
L{·} stands for the Laplace transform.
In case of Inverse Gaussian interevent times the Laplace trans-
form fL(s) of (6) is:

fL(s) = exp

{
νa

σ2

[
1−

√
1 + 2

σ2

ν2
s

]}
(9)

Calculating then the L−1{fNL (s)} we obtain (Tweedie,
1957):

fN (t) =
Na

σ
√

2πt3
exp

{
− (νt−Na)2

2σ2t

}
. (10)

The obtained result has quite intuitive explanation. Namely,
in (6) the threshold for the Wiener process was set at a. There-
fore the time t needed to observeN consecutive crossings has
the same distribution as if one elevated the threshold up to
Na.

4. BEARING FAULT DETECTION USING INVERSE
GAUSSIAN INTEREVENT DISTRIBUTION

Having in hand the statistical properties of the governing re-
newal process we can now analyze how the model performs

3
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under different specific operating conditions. The goal of
these analysis is to show that the model is valid for both con-
stant and variable operating speed as well as in cases of single
and multiple bearing faults.

4.1 Constant rotating speed

In cases when the rotating speed is strictly constant, the value
of σ in (5) and (6) will become zero, hence the distribution be-
comes Dirac impulse i.e. f(t; ν, σ = 0) = δ(νt− a). Conse-
quently, the corresponding point process will be transformed
into a truly periodic sequence of impacts.

(Pseudo) Cyclostationarity Small variations in the rotating
speed can be accommodated by allowing small values of σ in
(6). The autocorrelation function of the stationary renewal
process (4) with ∆T ∼ IG(ν, σ) can be derived through
its interevent probability distribution. Using (6) as interevent
probability distribution it can be readily shown that the auto-
correlation function converges to the constant value

lim
τ→∞

Rxx(τ) =
2σ2

aν
<∞. (11)

As already analyzed by Antoni and Randall (2002), such
a process can be treated as pseudo cyclostationary in cases
when σ is sufficiently small, i.e. when the speed fluctuations
are just a few percent.

4.2 Variable rotating speed

The modeling of completely arbitrary speed variations can be
done by allowing both νshaft = ν(t) and σshaft = σ(t) in
(6) to become time dependent. The resulting process is called
doubly stochastic process which in essence is nonstationary
process.
Despite the nonstationary characteristics, for cases where ν(t)
varies slowly, one can employ the so–called modified variabil-
ity measure CV 2. This measure is fairly insensitive to varia-
tions in the firing rate of the point process and is defined as
(Ponce-Alvarez, Kilavik, & Riehle, 2010):

CV 2 =
2|τi+i − τi|
τi+1 − τi

, (12)

where τi represents the interevent time between the events
i− 1 and i.

4.3 Single bearing fault

A crucial information when analyzing the bearing faults is the
underlying shaft speed. The instantaneous shaft speed can be
obtained by differentiation of the random process (5) govern-
ing the current angle θ(t)

dθ(t)

dt
= ωshaft = νshaft + σshaftη(t), (13)

where η(t) is the governing Gaussian process. The rota-
tional speed of each bearing component is directly related

to the speed of the rotating shaft (13) (Tandon & Choud-
hury, 1999). Consequently, each bearing fault is governed
by a random process of form (13) multiplied by a constant
Ck. This constant is determined by the geometrical charac-
teristics of the bearing which determine the ratio between the
angular speed of the rotating ring and a specific bearing ele-
ment, i.e. k ∈ {Inner ring, Outer Ring, Bearing Cage, Ball
spin}. Consequently, each bearing fault can be represented
by a renewal process governed by Inverse Gaussian distribu-
tion with ν = Ckνshaft and σ = Ckσshaft. Consequently,
the distribution of the interevent times for the kth component
becomes:

tk ∼ IG
(

a

Ckνshaft
,

a2

C2
kσ

2
shaft

)
(14)

4.4 Multiple faults on different bearing components

As already stated single bearing faults differ in the statisti-
cal properties of the governing IG distributions. In cases of
multiple bearing faults we can observe the overall produced
vibrations as a sum of several random processes each gov-
erned by its own IG probability distribution with respect to
the underlying fault.
In general case the sum of IG r.v. does not necessarily leads
to a result governed by IG distribution. However, the distri-
butions (14) governing the possible bearing faults fulfill the
necessary condition that the ratio

V ar[tk]

E[tk]
=

aσ2
shaft

Ckν3
shaft

Ckνshaft
a

=
σ2
shaft

ν2
shaft

(15)

remains constant, i.e. independent of Ck. Thus the sum of
such renewal processes results into new renewal process with
IG interevent distribution:

S =
∑

k

tk

∼ IG


 a

νshaft

∑

k

Ck,
a2

σ2
shaft

(∑

k

Ck

)2



(16)

The Eq. (16) comes in hand for the cases of multiple faults.
As shown by Eq. (14), distinctive distribution of interevent
times governs each type of bearing fault. In such a case the
observed vibrations can be regarded as a sum of several repet-
itive excitations of possibly different impulse responses, un-
like the case of single fault as described by (4). Since such a
sum fulfills the conditions (15) the resulting point process can
be treated in the same manner as the cases with single fault.

5. DETECTION OF IMPACT TIMES USING WAVELET
TRANSFORM

In order to apply the presented framework for bearing fault
detection we should be capable of determining the times ∆Ti
from (4) as precise as possible. By analyzing the bearing fault

4
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model (4), one can observe that this signal is dominated by
sudden excitations of impulse responses positioned at the im-
pact times. The time location of these impacts can be de-
termined sufficiently accurately by analyzing the signal with
wavelet transform using a mother wavelet number of vanish-
ing moments vm higher then the order of the impulse response
s(t) in (4) (Unser & Tafti, 2010).
In such a case the selected wavelet will act as a vmth order
differential operator. Consequently, the time moments where
the vibration signal x(t) has discontinuities will be marked
with wavelet coefficients with higher values. This time mo-
ments will coincide with the time moments when the impacts
occur.
Therefore by applying Mallat (2008) thresholding process of
the calculated wavelet coefficients, one can obtain accurate
information about the impact times, i.e. information about the
underlying bearing fault. This process is shown in Figure 2.

System

Wf(u.s)

Input impulses Impulse responses

Wavelet transform

Wavelet coefficients

Figure 2. Wavelet as differential operator

Thorough analysis on the influence of the selection of mother
wavelet on the accuracy of the decomposition for such signals
has been performed by Unser and Tafti (Unser & Tafti, 2010)
and Van De Ville, Blu, and Unser (Van De Ville et al., 2005).
They have concluded that the crucial parameter is the num-
ber of vanishing moments of the mother wavelet rather then
the selection of the “optimal” mother wavelet that will closely
match the underlying process. By selecting wavelet with suf-
ficiently high number of vanishing moments we can analyze
the impulse responses s(t) from (4) regardless of their vari-
able form due to the changes of the transmission path.

5.1 Fault detection procedure

Detecting the impact moments using wavelet transform al-
lows significant simplification in the fault detection process.
The calculated wavelet coefficients preserve the statistical
characteristics of the probability distribution that is generat-
ing the random impulses. Consequently, within a fixed ob-
served window of length T one can use the distribution of the
number of impacts N as information that is closely related
with the underlying fault.

Due to the orthogonality of the wavelet transform the energy
of the observed signal is preserved within the amplitude of
the wavelet coefficients. In case when no impacts occur one
will observe the wavelet transform just from the noise compo-
nent n(t) from (4). Therefore, under assumption of Gaussian
noise, the energy will be evenly spread throughout the wavelet
coefficients. Thus, the entropy of this distribution will be
highest. In cases when the impacts are present the bulk of the
energy of the signal will be concentrated in a small number
of wavelet coefficients coinciding with the impact times, thus
the entropy of the wavelet coefficient will decrease. The level
of change is directly connected to the number of impulses oc-
curring within the observed time window T . Therefore, by
characterizing the distribution p(N,T ) of number of impacts
N within a time window with length T , one can correlate the
changes in the entropy of the wavelet coefficients with a par-
ticular bearing fault.
The distribution p(N,T ) can be determined by the survivor
probability sN (t) (3). The survivor probability sN (t) gives a
probability of observing the N impact time after a time mo-
ment t:

sN (t) =

∫ +∞

t

fn(t′)dt′. (17)

Therefore the probability of observing N impulses within a
time window of length T becomes

p(N,T ) = sN+1(T )− sN (T ). (18)

By calculating the Laplace transform of (17) and inserting it
in (18) the distribution becomes

p(N, s) =
1− fL(s)

s
fnL(s), (19)

where fL(s) is the Laplace transform of the IG distribution
as defined by Eq. (9). In order to simplify the analysis we will
concentrate only on the expected number and the variance of
the distribution p(N,T ). These values can be approximated
by taking into account only a limited number of Taylor ex-
pansion terms. Hence for the expected value E[N,T ] and the
variance V ar[N,T ] when f(t) ∼ IG(a/ν, a2/σ2) we obtain

E[N,T ] = νT +
σ2ν − 1

2

V ar[N,T ] = σ2ν2T

(20)

As intuitively expected, these two expressions prove that the
number of events within a time window depend on the firing
rate ν and the variation σ.
However in case of bearing vibrations, as already shown by
(16), each bearing fault differ by the factor Ck multiplying
the shaft rotational speed and its fluctuation. As a result of
this dependence each bearing fault is governed by different
interevent distribution f(t), thus the number of expected im-
pulses within a fixed time window of size T will differ among
different fault combinations. Consequently, the wavelet en-
ergy distribution will be different and the faults will be distin-
guishable.
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Besides the changes caused by different faults, the distribu-
tion p(N,T ) will change with changes in the rotational speed.
As a result of this change the wavelet energy entropy will
vary. However, according to (16) the variations in the rota-
tional speed will influence every bearing fault in the same
manner, i.e. by adding and additional constant to each co-
efficient Ck in (16). Consequently, notwithstanding the vari-
ations in the speed the entropy values the entropy values for
particular bearing fault will be always distinguishable, since
the underlying IG distributions will remain different among
various bearing faults.

6. EXPERIMENTAL RESULTS

The experimental data was acquired on a laboratory two–
stage gearbox (PHM, 2009) (cf. Figure 3). The test runs in-
clude 7 different fault combinations and one fault–free ref-
erence run. From this set we have used the fault runs that
contained bearing faults. Each set–up was tested under 5 dif-
ferent rotational speeds of the input shaft: 30, 35, 40, 45 and
50 Hz. Furthermore, two test runs were performed per each
combination of different fault and speed.
The detailed list of the introduced faults is listed in Table 1.
It should be noted that bearing faults were introduced only
on the bearings 1–3, and all the remaining bearings were
kept fault–free during the whole experimental runs. Addition-
ally, the shaft imbalance was introduced on the Input shaft,
whereas the sheared keyway fault was located on the Output
shaft.

Idler Shaft

Output Shaft

1
G
e
a
r

2
G
e
a
r

3
G
e
a
r

4
G
e
a
r

Bearing 1

Bearing 2

Bearing 3

Bearing 4

Bearing 5

Bearing 6

Input Shaft

Figure 3. Schematic description of the used two–stage gear-
box

6.1 Analysis

Each of the four experimental runs was analyzed using
Daubechies8 mother wavelet (Daubechies, 1992). The en-
ergy entropies calculated from the corresponding wavelet co-
efficients are shown in Figure 4. From these results we should
note the three key features.

First, the wavelet energy entropy of the fault free run is con-
stant regardless the rotational speed. In absence of fault the
observed signal reduces only to background noise n(t) from
Eq. (4). Since no information about the machine state is con-
tained in this signal the entropy is constant.
Secondly, the fault 7 shows highest entropy from the other
two bearing faults, followed by fault 8 and fault 6 having the
lowest entropy. By examining the fault details from Table 1,
one can notice that fault 7 contains only a single damaged el-
ement, fault 8 two damaged elements and fault 6 with three
damaged elements. As already stated in Section 4.4, the oc-
currence of multiple faults can be treated as sum of several
r.v. governed by IG distribution. Thus, according to (16)
the resulting random process will have higher firing rate. A
higher firing rate in essence contributes to increased number
of expected impact occurrences N within a time window T ,
according to (20). Finally, this effect influences the shape of
the wavelet energy distribution in such a manner that the over-
all entropy decreases.
According to (14), the increase of the rotational speed causes
an increase in the firing rate of the IG process, hence de-
creasing the wavelet energy entropy. This effect has identical
influence on all bearing faults. Consequently, as the speed
increases the difference among wavelet energy entropies for
different bearing faults increases too. Hence, the faults be-
come more distinguishable as the rotational speed increases,
as shown in Figure 4.
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Figure 4. Wavelet coefficients energy entropy for selected
bearing faults

6.2 Comments on results and possible improvements

The results support the hypothesis that bearing faults can be
detected by employing a statistical model of Inverse Gaussian
renewal process and wavelet energy entropy. One of the main
assets of the approach is that it is requires no information
about the operating conditions. This becomes more evident
by comparing the fault detection capabilities of this approach
with approaches that incorporate information about the oper-
ating conditions. A fine example is the study that we have
performed on the same experimental data by applying spec-
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Run Number Gear Bearing1
Shaft fault1 2 3 4 1 2 3

#1 Fault Free (FF)
#6 FF FF FF Broken Inner Ball Outer Imbalance
#7 FF FF FF FF Inner FF FF Keyway Sheared
#8 FF FF FF FF FF Ball Outer Imbalance

1 Faults were introduced only on Bearings 1–3 (cf. Figure 3). The other three bearings
were kept fault–free during all experimental runs.
(Boškoski, Juričić, & Stankovski, 2010)

Table 1. Fault details for each experimental run

tral kurtosis (SK) and envelope analysis (Boškoski & Urevc,
2011). Although the bearing fault isolation capabilities of SK
are superior, the fault detection results are comparable, i.e.
the set of experimental runs containing bearing faults were
accurately detected by both approaches.
Additionally this study provides a possible explanation of the
results that we have obtained by the analysis of the same ex-
perimental set using a set of entropy functions calculated from
the wavelet packet coefficients (Boškoski et al., 2010). Those
results showed that based solely on the entropy of wavelet
packet coefficients one can perform accurate fault detection
of gears and bearings regardless of the operating conditions.
The relations (16) and (20) provide an explanation how dif-
ferent bearing faults alter the probability distribution of the
wavelet coefficients hence modifying its entropy.
An immediate future improvement to this study would be the
application of goodness–of–fit tests that will test the hypoth-
esis that the observed point process is governed by IG distri-
bution. The result of such tests can serve as a starting point
for deciding whether bearing faults are causing the changes in
the observed probability distribution of wavelet coefficients.
Furthermore, with such tests we will be able to quantify the
effectiveness of the approach by considering the probability
of inaccurate detection.

7. CONCLUSION

The bearing fault model based on a renewal process governed
by Inverse Gaussian (IG) interevent has shown to be capable
of modeling the fault vibrational patterns under various oper-
ating conditions. This approach provides an unified view on
the statistical properties of the produced vibrational signals
regardless of the operating conditions. Such a unified concept
offers several advantages.
Firstly the rate ν and the variance σ of the IG renewal pro-
cess contain all the necessary information about the present
bearing fault. Furthermore, such an approach allows fairly
simple modeling of multiple bearing faults, since the resulting
process can be treated as a sum of inverse Gaussian random
variables. As bearing faults are related to the shaft rotational
speed, the necessary condition is fulfilled so the resulting sum

is again governed by Inverse Gaussian distribution.
Secondly, having defined the distribution of the renewal point
process we were able to derive the probability of observing
N impacts within a time window T . Thus, we have shown
that by employing this distribution it is guaranteed that var-
ious bearing faults can be distinguished without any knowl-
edge about the geometrical characteristics of the monitored
bearings.
Using the distribution of the counting processN we have pre-
sented one possible way of using wavelet transform in obtain-
ing an estimate of the number of impacts within a time T by
analyzing the wavelet coefficient energy entropy. The results
show that various bearing faults can be successfully detected
without any knowledge about their geometrical characteris-
tics. Additionally, the behavior of the calculated feature sup-
ports the hypothesis that the produced bearing vibrations can
be treated as renewal point process with IG interevent distri-
bution.
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ABSTRACT 

The manufacturer-provided power curve for a wind turbine 

indicates the expected power output for a given wind speed 

and air density. This work presents a performance analytic 

that uses the measured power and the power curve to 

compute a residual power. Because the power curve is not 

site-specific, the residual is masked by it and other external 

factors as well as by degradation in performance of worn or 

failing components. We delineate operational regimes and 

develop statistical condition indicators to adaptively trend 

turbine performance and isolate failing components. The 

approach is extended to include legacy wind turbines for 

which we may not have a manufacturer‘s power curve. In 

such cases, an empirical approach is used to establish a 

baseline for the power curve. The approach is demonstrated 

using supervisory control and data acquisition (SCADA) 

system data from two wind turbines owned by different 

operators.  

1. INTRODUCTION 

High operations and maintenance costs for wind turbines 

reduce their overall cost effectiveness. One of the biggest 

drivers of maintenance cost is unscheduled maintenance due 

to unexpected failures. Using automated failure detection 

algorithms for continuous performance monitoring of wind 

turbine health can improve turbine reliability and reduce 

maintenance costs by detecting failures before they reach a 

catastrophic stage or cause damage that increases repair 

costs.  

The power curve is a universal measure of wind turbine 

performance and an indicator of overall wind turbine health. 

Many failures and performance deterioration mechanisms 

can manifest in the measured power curve. By exploiting 

this measure with commonly collected supervisory control 

and data acquisition (SCADA) system information, we can 

provide early indications of failures or severe performance 

deterioration. This paper presents an approach to wind 

turbine diagnostics and prognostics that uses nominal power 

curves and operational data.  

While early indication of failure is needed, it is equally 

important to minimize false warnings; therefore, it is 

important to determine data variability measures and bounds 

for normal and anomalous conditions. We use several 

statistical measures to establish separation between normal 

or baseline operation and deteriorated conditions. 

2. WIND TURBINE PERFORMANCE MONITORING 

Performance is described in the context of the underlying 

process physics of the equipment—in this case, the wind 

turbine. Wind turbines convert wind kinetic energy into 

useful electrical energy. As the turbine components 

deteriorate, the efficiency with which wind energy is 

converted to electrical energy decreases and the 

performance of the turbine decreases. Performance 

degradation can indicate problems such as blade 

aerodynamic degradation due to leading and trailing edge 

losses, dirt or ice buildup on blades, drivetrain misalign-

ment, friction caused by bearing or gear faults, generator 

winding faults, or even pitch control system degradation. 

SCADA or operating data of equipment is often used in 

other industries for accurate and timely detection, 

diagnostics, and prognostics of failures and performance 

problems (Bell & Foslien, 2005, Gorinevsky, Dittmar & 

Mylaraswamy, 2002, Kim & Mylaraswamy, 2006). For 

example, in turbine engine diagnostics, failures such as 

turbine degradation, compressor bleed band failure, fuel 

supply system faults, combustion liner burn-through, and in-

range sensor faults can be automatically detected with 

appropriate diagnostic algorithms. SCADA data provides a 

rich source of continuous time observations, which can be 

exploited for overall turbine performance monitoring. With 
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appropriate algorithms, performance monitoring can be 

matured into individual component fault isolation schemes. 

The functional elements of performance monitoring are 

shown in Figure 1. A performance parameter is computed 

based on sensor measurements; this parameter can be raw 

sensor values, sensor values corrected for environmental 

conditions, residuals with respect to a wind turbine model, 

component efficiency or aerodynamic parameters. Anomaly 

detection uses one or more such parameters to test whether 

the wind turbine is behaving within normal bounds. If the 

root cause of the anomaly is further classified as a particular 

component failure, this provides diagnosis. Additional 

elements involve predictive trending and prognostics, 

wherein parameters or fault indicators are trended and time 

to failure is projected. 

Use of SCADA data for performance monitoring or fault 

diagnostics in wind turbines is not as mature as in other 

industries, such as process and aerospace, where condition-

based maintenance (CBM) is more widespread. In some 

cases, SCADA data, mainly temperature (bearing or 

generator-winding), have been used along with vibration 

data for fault detection (Wiggelinkhuizen, et al. 2008, 

Lekou, et al. 2009). Operating data is also used just to 

detrend or normalize the vibration or temperature data 

(Wiggelinkhuizen, et al. 2008). Zaher, McArthur, and 

Infield (2009) presented a method to use SCADA data for 

anomaly detection based on neural network models of 

normal operating modes. The use of power curve based 

performance monitoring is described in (Zaher & McArthur, 

2007). The power curve agent uses a power curve learned 

from operating data for a healthy turbine. Two pairs of 

alarm limits are generated: inner and outer. The inner alarm 

curve is based on the standard deviation for each wind speed 

bin added to the average in each bin. The outer alarm is 

chosen by the study of several turbines operating normally. 

Caselitz, Giebhardt, Kruger, and Mevenkamp (1996) 

showed the effectiveness of utilizing spectra of the electrical 

power output and the vibration measurements to detect the 

imbalanced rotor, the aerodynamic asymmetry, and the 

generator bearing faults. 

Kusiak presented a method to predict the anomaly, the fault 

severity, and the fault isolation using data mining tech 

 

Figure 1. SCADA data-based monitoring 

niques and prediction models based on wind speed and 

power output obtained from SCADA data (Kusiak, 2011). 

Anomaly detection can be performed with a series of 

techniques that range from simple threshold checking to 

complex statistical analysis. Here, we focus on anomaly and 

fault detection methods for analyzing sensor data from 

individual wind turbines. Sensor data used in algorithm 

development and the approaches are described in the next 

sections. 

3. POWER CURVE ANALYTIC 

The power curve is a wind turbine performance 

specification provided by the manufacturer that indicates 

performance during operation at different wind speeds. For 

specific wind turbine operation, power curves are derived 

from non-dimensional Cp-  (power coefficient versus tip 

speed ratio) performance curves of the wind turbine design. 

The nominal power curves are established by the wind 

turbine manufacturers following published guidelines. One 

widely-adopted international standard is published in IEC 

61400-12-1: Power performance measurements of 

electricity producing wind turbines (IEC, 2005). The power 

curve is generally used to estimate the average energy 

production at a particular location for a given Rayleigh wind 

profile and to monitor the power production performance of 

installed wind turbines. 

Typical power curves for different air densities for a wind 

turbine are shown in Figure 2. The operational speed range 

is between the cut-in speed and the cut-out speed. The cut-in 

speed is the wind speed at which the turbine begins to 

generate power. The cut-out speed is chosen to protect the 

turbine and structure from high loads. 

The actual power curve may deviate from the nominal one 

due to site-specific factors (Tindal, 2008), complex wind 

regimes (Rareshide, 2009), or changes in component 

conditions. A complex  terrain, as opposed to a benign one 

(as defined in the standards),  and  different  meteorological 
 

 

Figure 2. A typical power curve 
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conditions, such as varying wind direction, wind shear, and 

turbulence intensity can cause shifts in the power curve 

from the nominal. 

To clearly account for factors affecting the power curve, the 

magnitude of the deviation from the baseline must first be 

assessed, and this deviation must then be further processed 

to generate various indicators that are relevant to different 

factors and critical wind turbine components. 

3.1. Power Curve Generation 

We use power curves provided by the manufacturer when 

available as the base power curve model. In the absence of a 

manufacturer-provided power curve (e.g., when the wind 

turbine is a refurbished machine or has undergone several 

component or control changes), SCADA data can be used to 

generate one. A number of data fitting approaches have 

been reported in the literature—from a simple polynomial 

fitting to a stochastic power curve generation (Milan, 2008) 

to a more symmetrical sigmoid function or a Gaussian CDF 

fitting (Yan, 2009). Since wind turbine designs and 

controllers are optimized for extracting maximum energy 

through a nonlinear phenomenon and the power coefficient 

Cp is not constant or symmetrical, we prefer to allow local 

optima instead of seeking overall symmetry. For this reason, 

we use polynomial fitting to generate the power curves 

when a manufacturer provided power curve is not available. 

3.2. Power Residual Generation 

The difference between the measured actual power and the 

power expected based on the power curve is called the 

power residual. Since generated power depends on the air 

mass as well, a family of power curves may be specified for 

different air densities. Hence, before we can calculate the 

power residual, we need to obtain the air density, which can 

be calculated using either of the following equations. 

 

 ρ = p / RT (1) 

or 

 ρ = (p0 / RT) exp(gz/RT) (2) 

 

where ρ is the air density at location in kg/m
3
, p0 is the 

standard sea level atmospheric pressure, p is the air pressure 

in Newtons/m
2
, T is the ambient air temperature in Kelvin, z 

is the location altitude in meters, and R is the specific gas 

constant (287 J kg
-1

 Kelvin
-1

). 

When air density, wind speed, and, in turn, the expected 

power are available, the power residual can be readily 

calculated: 

Power_residual = Power_actual – Power_expected (3) 

3.3. Operational Metrics 

Although the wind turbine is designed to operate between 

the cut-in and cut-out wind speeds, its power response to 

various factors discussed above is not identical across the 

wind speed range. Figure 3 visualizes the variation in the 

power residual with respect to wind speed, denoted by the 

blue dots. This plot illustrates the residual or power 

deviation of the baseline data from the power curve. Even in 

the case of baseline data (data used for power curve 

generation), there is variation in the distribution of residuals 

across wind speeds. The analysis presented in the following 

sections are based on characterizing these residual statistical 

metrics for the baseline and other cases—the difference in 

which can be visualized in plots, but need quantitative 

measures for automated analytics.  

Notice that the variation starts small at low wind speeds, 

then expands in both positive and negative directions as the 

wind speed increases and tapers off once the rated power is 

reached, forming a bird-like shape which we call the 

Hummingbird model. To delineate the nominal and 

anomalous residuals with respect to the Hummingbird 

model, wind speed bins are defined and the standard 

deviation of the power residual for each bin is calculated. 

Three-sigma from the mean residual for each wind speed 

bin is used to set the upper and lower bounds on the 

residuals. The residual points that are outside these bounds 

for a particular wind speed bin are  marked and used for 

anomaly detection as explained in the next section. Recall 

that the power curve shown in Figure 2 had first a concave 

segment followed by a convex segment. These two 

segments respond to increasing turbulence intensity in 

opposite manner—the power increases in the concave 

region while it decreases in the convex region as the 

turbulence intensity increases. Such factors determine the 

variability characteristics of the residuals at different wind 

speeds and provide a way to characterize the operational 

envelope. 

 

Figure 3. Power residual scatter plot of the baseline data 
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To model the operational envelope and be able to identify 

any data point that lies outside of it, Osadciw, Yan, Ye, 

Benson, and White used the Kaiser window fitting approach 

(Osadciw, et al. 2010). We prefer an industrial process 

control approach to define the operational parameters. This 

approach is naturally adaptive and easily accounts for 

performance changes due to normal component wear and 

other factors.  

By adjusting the baseline period and the window size, 

changes in different time scales can be detected. For 

example, if the baseline is established using data collected 

from a newly installed wind turbine, any long-term changes 

in the turbine performance such as the deterioration of the 

aerodynamic performance of the rotor blades can be 

detected. However, using data only from a recent period to 

establish the baseline would mask any long-term 

performance degradation while exposing symptoms of an 

impending component failure. 

In line with the standard practice of wind speed binning, we 

determine the power residuals for each bin and compute the 

corresponding bin statistics such as the mean and variance. 

For analysis, we also set a nominal operational boundary for 

each bin at some multiple of the standard deviation for that 

bin in the baseline data (3-sigma in this case). In Figure 3, 

the operational boundary is indicated by the staircase 

magenta lines surrounding the nominal variation (and 

defining the Hummingbird). Note that this operational 

boundary is not a ‗threshold‘ in the anomaly detection 

sense. The n-sigma boundary provides insight into the 

variability of the residuals inside each bin and gives us an 

opportunity to characterize the shape of the residual 

distribution curve. This curve forms the basis for developing 

condition indicators that could separate nominal operation 

from faulty or deteriorated operation. Notice that although 

the Hummingbird in Figure 3 has a curvy shape, the nearly  

 

 

Figure 4. Power residuals in winter, 2008 

straight horizontal line in the middle indicates that the mean 

power residual for the baseline remains close to zero. Also 

note that at this early stage of development of an algorithm, 

we do not characterize the power curve model as accurate or 

not accurate with respect to the baseline data. We 

characterize only the baseline residual metrics and compare 

these metrics with subsequent time periods, including those 

with failure on the horizon. 

3.4. Operational Regime Based Condition Indicators 

Having defined the operational boundary, we can now 

generate various statistics and other parametric variables 

that we call condition indicators (CI). The CIs can be as 

simple as the mean of the power residual for a wind speed 

bin. We can also calculate higher statistics such as skewness 

to measure distribution symmetry and kurtosis to see how 

peaked or flat a distribution we obtain for each wind speed 

bin. These indicators can be computed using an appropriate 

set of data for the baseline to detect short- and long- term 

changes. 

4. TEST CASES 

We have tested the power curve analytic approach with the 

SCADA data from two different wind turbines belonging to 

two different operators. 

4.1. Data Set I 

We obtained Data Set I from a mid-power wind turbine that 

supplies power to a university campus and sells excess 

power to the grid. It recently came out of 5-year warranty 

with the turbine manufacturer. The SCADA data is available 

in 10 minute and hourly intervals for 2006-2010. 

Figures 4 and 5 show the power residuals plotted using the 

winter and summer 2008 data.  

 

 

Figure 5. Power residuals in summer, 2008 
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Figure 6 shows a mean power residual condition indicator 

(CI_MPR) computed for each season in 2008 and 2009. 

Notice that CI_MPR is indistinguishable at low and high 

speeds, but it clearly shows a shift from 2008 to the next 

year at mid speeds. The shift indicates a noticeable 

improvement in the turbine performance in 2009. 

Unfortunately, the maintenance logs are not available from 

this wind turbine for us to verify the results or track the 

cause of the improvement to a particular maintenance 

action. 

4.2. Data Set II 

We collected Data Set II from a small, reconditioned wind 

turbine that provides power to the operator‘s office building, 

and the excess power is sold to the grid. The data is 

available at 1-min sampling rate. 

This operator encountered an issue with the gearbox during 

routine, semi-annual maintenance in October, 2009. The 

low-speed gear was moving axially on the input shaft of the 

gearbox. To proactively repair this condition, the gearbox 

had to be removed from the turbine and taken to the 

rebuilding facility. The gearbox was disassembled and the 

low-speed shaft sizing was corrected to prevent the axial 

movement. The gearbox was then reassembled and 

reinstalled in the turbine. 

This maintenance event provides a good test case for the 

power curve analytic approach. As a first step of our 

analysis, the data was split up by quarter for each year. The 

first quarter data from 2009 was used to establish the 

baseline. The power residuals were generated for the 

remaining quarters. Notice that the CI_MPR in Figure 7, 

plotted as a broken yellow line, drops further away from the 

baseline as the wind speed increases. Although this provides 

an indication of anomaly, it is not yet clear whether the drop  

 

 

Figure 6. Improvement in WT performance at mid-range 

wind speeds. 

in CI_MPR is the result of seasonal variations. Since we do 

not have many years‘ worth of data, this is hard to ascertain. 

Building on this first indication of an anomaly, we compute 

two other condition indicators: Skewness (CI_SKEW) and 

kurtosis (CI_KURT). Figure 8 clearly shows that the power 

residual symmetry as measured by the CI_SKEW for the 

Q3_09 is much more skewed than the other quarters. Figure 

9 provides more CI_KURT evidence for the anomaly. It is 

clear that seasonal variations are not a consideration for 

either of these indicators, and any small variations between 

datasets are completely dominated by the indicator curve for 

the quarter with the failure. 

The preceding analysis is based on lumped data for certain 

quarters. Diagnostics and prognostics depend on the under-

lying measurements; very exclusive sensor measurements 

for particular failure modes provide more accurate and 

earlier warnings of that failure. Since power generated is a 

very broad measure, how early can any such deviations 

from normal be detected? We performed the same analysis 

for moving 30-day windows with 1-day progression 

intervals. Figures 10 and 11 show the variation of skewness 

and kurtosis of residual distribution in each wind speed bin. 

The moving window plots started deviating from the normal 

around Sept 30 to Oct 3. 

Notice that in Figures 8-11, the biggest difference between 

the suspect data sets and the baselines occur at around 24 

mph. By focusing on this wind speed bin, we can take a 

closer look at the data to see any early indication of the 

impending failure. 

Figures 12 and 13 show the CI_SKEW and CI_KURT for 

the wind speed bin at 24 mph, computed daily, with the 30-

day moving windows from the days preceding the failure. 

The last day that the data was collected before dismantling 

the turbine was October 22, 2009. In the figures, several 

days from the earlier periods are also included for 

comparison. 

 

Figure 7. Power residuals in fall, 09 
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Figure 8. Skewness per quarter for each wind speed 

 

 

Figure 9. Kurtosis per quarter for each wind speed 

 

Figure 10. Skewness of power residual distribution in a 30-

day moving window 

 

Figure 11. Kurtosis of power residual distribution in a 30-

day moving window 

 

Figure 12. Skewness in days preceding the gearbox failure 

 

Figure 13. Kurtosis in days preceding the gearbox failure 
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Notice that on October 3, 2009 there is a significant rise in 

both CI_SKEW and CI_KURT, and the CIs remain at these 

new elevated levels until the failure. This shows that the 

first indication of the impending failure occurred about 20 

days before the failure and that both indicators seem to be 

robust as demonstrated by the consistency in the elevated 

levels until the failure. 

Note that these condition indicators can only quantify the 

wind turbine‘s difference in operation compared to the  

baseline or other periods of data. Our work analyzed the 

data with statistical measures to see whether the CIs capture 

approaching failures. At this stage, we cannot associate the 

anomaly to a particular failure—especially using a broad 

measure such as power. However, since the gearbox failure 

was noted and repaired and since no other major repairs or 

adjustments were performed during that timeframe, it is 

likely that the gearbox failure was manifested in the CIs. 

With additional data and experience, it may be possible to 

associate changes in CIs in particular bins to particular 

failure modes or operational changes. 

In this gearbox failure case, the scheduled maintenance 

coincided with the developing failure. The operator was able 

to correct the problem in time and, in their own words, ―it 

allowed us to salvage all gearing and shafts. Had the 

problem progressed, it would have damaged the components 

beyond repair and greatly increased the cost of the repair.‖ 

5. CONCLUSION 

We showed that the wind turbine power curve analytic is 

useful for assessing wind turbine performance and 

generating robust indicators for component diagnostics and 

prognostics. The analytic takes advantage of a universal 

measure of wind turbine performance with commonly 

collected SCADA information and provides easy config-

uration based on process control approaches for condition-

based monitoring. Condition-based rather than hours-based 

maintenance enables high reliability and low maintenance 

costs by eliminating unnecessary scheduled maintenance. 

As demonstrated in the gearbox failure case in Data Set II, 

early detection of an impending failure can save an operator 

costly repairs and long downtimes.  

The wind turbine performance analytic power curve analysis 

method clearly separates out pre-failure data from other 

normal operating data. Instead of simply assigning uniform 

thresholds for power curve deviation, our approach uses 

operational regime based condition indicators. Operational 

regime-based CIs prevent false alarms (recognizing unique 

regime variabilities) and increases the possibility of fault 

isolation (different faults may manifest at different regimes). 

It emphasizes detecting slow performance degradation 

caused by component wear as well as degradation due to an 

impending failure. Condition indicators that not only take 

into account the variability of the power residual, but also 

the distribution shape and symmetry, provide additional 

means of detecting and isolating failure cause. 
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ABSTRACT 

An approach for predicting remaining useful life of power 
MOSFETs (metal oxide field effect transistor) devices has 
been developed. Power MOSFETs are semiconductor 
switching devices that are instrumental in electronics 
equipment such as those used in operation and control of 
modern aircraft and spacecraft. The MOSFETs examined 
here were aged under thermal overstress in a controlled 
experiment and continuous performance degradation data 
were collected from the accelerated aging experiment. Die-
attach degradation was determined to be the primary failure 
mode. The collected run-to-failure data were analyzed and it 
was revealed that ON-state resistance increased as die-attach 
degraded under high thermal stresses. Results from finite 
element simulation analysis support the observations from 
the experimental data. Data-driven and model based 
prognostics algorithms were investigated where ON-state 
resistance was used as the primary precursor of failure 
feature. A Gaussian process regression algorithm was 
explored as an example for a data-driven technique and an 
extended Kalman filter and a particle filter were used as 
examples for model-based techniques. Both methods were 
able to provide valid results. Prognostic performance 
metrics were employed to evaluate and compare the 
algorithms. 

1. INTRODUCTION 

Power semiconductor devices such as MOSFETs (Metal 
Oxide Field Effect Transistors) and IGBTs (Insulated Gate 
Bipolar Transistors) are essential components of electronic 

and electrical subsystems in on-board autonomous functions 
for vehicle controls, communications, navigation, and radar 
systems. Until very recently it was common wisdom that 
electronic devices fail instantly without any prior indication 
of failure. Therefore, current maintenance schedules are 
usually based on reliability data available from the 
manufacturer. This approach works well in aggregate on a 
large number of components, but, owing to the statistics, 
failures on individual components are not necessarily 
averted. For mission critical systems it is extremely 
important to avoid such failures. This calls for condition 
based prognostic health management methods. The science 
of prognostics is based on the analysis of failure modes, 
detection of early signs of wear and aging, and fault 
conditions. Predictions are made in-situ on individual in-
service components. The signs of early wear are then 
correlated with a damage propagation model and suitable 
prediction algorithms to arrive at a remaining useful life 
(RUL) estimate. 

To carry out prognostics on electronic components it is 
essential to understand the failure modes, their effects, and 
the physics of fault propagation. This requires analysis of 
run-to-failure data. Since more often than not current 
systems are not adequately instrumented to provide 
necessary information from electronic components to build 
health management algorithms, dedicated experiments are 
needed to fill that gap. In particular, accelerated aging 
allows collecting run-to-failure data in a manageable 
timeframe. The prognostic technique for a power MOSFET 
presented in this paper is based on accelerated aging of 
MOSFET IRF520Npbf (which comes in a TO-220 
package). The aging methodology utilizes thermal and 
power cycling and was validated with tests using 100V 
power MOSFET devices. The major failure mechanism for 

Celaya et al. This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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the stress conditions is die-attachment degradation, typical 
for discrete devices with lead-free solder die attachment. It 
has been determined in these experiments that die-attach 
degradation results in an increase in ON-state resistance due 
to its dependence on junction temperature. Increasing 
resistance, thus, can be used as a precursor of failure for the 
die-attach failure mechanism under thermal stress. Data 
collected from these experiments were augmented by a 
finite element analysis simulation based on a two-transistor 
model. The features based on normalized ON-resistance 
were computed from in-situ measurements of the electro-
thermal response. A Gaussian process regression (GPR) 
framework to predict time to failure was used as a data-
driven prognostics technique. The extended Kalman filter 
(EKF) and the particle filter (PF) were used as model-based 
prognostics techniques based on the Bayesian tracking 
framework. 

2. RELATED WORK 

In (Saha, Celaya, Wysocki, & Goebel, 2009a) a model-
based prognostics approach for discrete IGBTs was 
presented. RUL prediction was accomplished by using a 
particle filter algorithm where the collector-emitter current 
leakage has been used as the primary precursor of failure. A 
prognostics approach for power MOSFETs was presented in 
(Saha, Celaya, Vashchenko, Mahiuddin, & Goebel, 2011). 
There, the threshold voltage was used as a precursor of 
failure; a particle filter was used in conjunction with an 
empirical degradation model. The latter was based on 
accelerated life test data. 

Identification of parameters that indicate precursors to 
failure for discrete power MOSFETs and IGBTs has 
received considerable attention in the recent years. Several 
studies have focused on precursor of failure parameters for 
discrete IGBTs under thermal degradation due to power 
cycling overstress. In (Patil, Celaya, Das, Goebel, & Pecht, 
2009), collector-emitter voltage was identified as a health 
indicator; in (Sonnenfeld, Goebel, & Celaya, 2008), the 
maximum peak of the collector-emitter ringing at the turn of 
the transient was identified as the degradation variable; in  
(Brown, Abbas, Ginart, Ali, Kalgren, & Vachtsevanos, 
2010) the switching turn-off time was recognized as failure 
precursor; and switching ringing was used in (Ginart, 
Roemer, Kalgren, & Goebel, 2008) to characterize 
degradation. For discrete power MOSFETs, on-resistance 
was identified as a precursor of failure for the die-solder 
degradation failure mechanism (Celaya, Saxena, Wysocki, 
Saha, & Goebel, 2010a; Celaya, Patil, Saha, Wysocki, & 
Goebel, 2009). A shift in threshold voltage was named as 
failure precursor due to gate structure degradation fault 
mode (Celaya, Wysocki, Vashchenko, Saha, & Goebel, 
2010b; Saha, et al., 2011). 

There have been some efforts in the development of 
degradation models that are a function of the usage/aging 

time based on accelerated life test. For example, empirical 
degradation models for model-based prognostics were 
presented in (Saha, et al., 2009a) and (Saha, et al., 2011) for 
discrete IGBTs and power MOSFET respectively. Gate 
structure degradation modeling discrete power MOSFETs 
under ion impurities was presented in (Ginart, Ali, Celaya, 
Kalgren, Poll, & Roemer, 2010). 

3. BACKGROUND 

3.1. Accelerated Aging Experiments 

Accelerated aging approaches provide a number of 
opportunities for the development of physics-based 
prognostics models for electronic components and systems. 
In particular, they allow for the assessment of reliability in a 
considerably shorter amount of time than running long-term 
reliability tests. The development of prognostics algorithms 
face some of the same constrains as reliability engineering 
in that both need information about failure events of critical 
electronics systems. However, these data are rarely ever 
available. In addition, prognostics requires information 
about the degradation process leading to an irreversible 
failure; therefore, it is necessary to record in-situ 
measurements of key output variables and observable 
parameters in the accelerated aging process in order to 
develop and learn failure progression models. 

Thermal cycling overstress leads to thermo-mechanical 
stresses in electronics due to mismatch of the coefficient of 
thermal expansion between different elements in the 
component’s packaged structure. The accelerated aging 
applied to the devices presented in this work consisted of 
thermal overstress. Latch-up, thermal run-away, or failure to 
turn ON due to loss of gate control were considered as the 
failure condition. Thermal cycles were induced by power 
cycling the devices without the use of an external heat sink. 
The device case temperature was measured and directly 
used as control variable for the thermal cycling application. 
For power cycling, the applied gate voltage was a square 
wave signal with an amplitude of ~15V, a frequency of 
1KHz and a duty cycle of 40%. The drain-source was biased 
at 4Vdc and a resistive load of 0.2! was used on the 
collector side output of the device. The aging system used 
for these experiments is described in detail in (Sonnenfeld, 
et al., 2008). The accelerated aging methodology used for 
these experiments was presented in detail in (Celaya, et al., 
2010a). 

Figure 1 shows an X-ray image and a scanning acoustic 
image of the device after degradation. It can be observed 
that the die-attach solder has migrated resulting in voids. 
This supports the observation that the thermal resistance 
from junction to case has increased during the stress time 
resulting in increase of the junction temperature and ON-
resistance (RDS(ON)). Figure 2 presents a plot of the measured 
RDS(ON) as a function of case temperature for several 
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consecutive aging tests on the same device. For each test 
run, the temperature of the device was increased from room 
temperature to a high temperature setting thus providing the 
opportunity to characterize RDS(ON) as a function of time at 
different degradation stages. It can be observed how this 
curve shifts as a function of aging time, which is indicative 
of increased junction temperature due to poor heat 
dissipation and hence degraded die-attach. 

a)  

b)  

Figure 1. Failure analysis of a device after thermal 
overstress aging: a) X-ray microscopy of the degraded 

device and b) scanning acoustic microscopy of the degraded 
device. 

 
Figure 2. RDSON degradation process due to die-attach 

damage. 

Seven aging runs were performed in order to provide 
evidence of the underlying hypothesis that damage 
accumulates as a function of aging time and that damage 
rate is higher for aging under higher stress conditions like 
higher operating temperature. Please refer to (Celaya, et al., 
2010a) for further details on the experiments. 

3.2. Device Physics Modeling 

In earlier work, a finite element model (FEM) was 
developed for a power MOSFET similar to the IRF520Npbf 
in order to simulate the physical phenomenon under thermal 
stresses. This work was originally presented in (Celaya, 
Saxena, Vashchenko, Saha, & Goebel, 2011b). I-V 
characteristics at different gate bias voltage (Vgs) were 
obtained while keeping the generic simulation parameters 
reasonably close to the tested MOSFETs. From the mixed-
mode simulation of a single transistor model it was 
observed that the safe operation area (SOA) becomes 
limited at higher temperatures by critical voltages and 
currents that can be identified by the instability points in the 
simulation results. Please refer to (Celaya, et al., 2011b) for 
further details on the simulation setup and results. 

The two-transistor model in figure 3 was developed to 
represent a device with partial die-attach degradation. The 
objective was to represent a degraded device of total area 
Wt, with two independent power MOSFET transistors with 
area W1 and W2 respectively and Wt= W1+W2. The first 
transistor in the model represents the area of the device 
without die-attach damage and nominal thermal resistance 
from junction to case. The second transistor represents the 
area of the device with degraded die-attach and increased 
thermal resistance from junction to case. The second 
transistors runs by principle at higher temperature 
representative of hot spot formation on the device.  

 
Figure 3. Two-transistor model circuit for mixed-mode 
simulation. Finite element models were used for each 

transistor. 

The first transistor has original default parameters including 
the thermal resistance RT1 and area factor 90% while the 
second transistor depicts degradation due to electro-thermal 
stress represented by 10% of area with deviation of the 
thermal resistance coefficient scaled by the parameter K. As 
can be seen from the simulation results in figure 4, even a 
small deviation in the thermal resistance of the second 
transistor (RT2=KxRT1) results in significant reduction of the 

!"#$% 

!"#$& 
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critical voltage in auto bias conditions. Please refer to 
(Celaya, Saxena, Vashchenko, Saha, & Goebel 2011) for 
further details on the simulation setup and results. 

a)  

b)  

Figure 4. Results of numerical analysis for different thermal 
resistance parameters K of the W2=10% second transistor 

model region at 450K heat sink and RT2=KxRT1; a) nominal 
transistor with area W1, b) degraded transistor with area W2. 

This model appears to be a good candidate for use in a 
physics-based degradation model. The model parameters K, 
W1 and W2 could be varied as the device degrades as a 
function of usage time, loading and environmental 
conditions. Parameter W1 defines the area of the healthy 
transistors. The lower this area is, the larger is the 
degradation in the two-transistor model. Parameter K serves 
as a scaling factor for the thermal resistance of the degraded 
transistors. The larger this factor is, the larger is the 
degradation in the model. Similar to the empirical model 
used in this work and presented in later sections, the 
parameters of the two-transistor model should be estimated 
based on the actual fault progression dynamics. 

3.3. Drain to source ON state resistance as a health state 
assessment parameter 

In-situ measurements of the drain current (ID) and the drain 
to source voltage (VDS) are recorded as the device is in the 
aging regime and the power cycling is at 1 kHz square 
waveform. The ON-state resistance in this application was 
computed as the ratio of VDS and ID during the ON-state of 
the square waveform. As indicated in section 3.1, this 
parameter allows the observation of the die-attached 
degradation process and it is used in this study as a feature 
that reflects the state of health of the device. It is broadly 
understood that RDS(ON) increases as the junction 
temperature of the devices increases. In our accelerated 
aging setting, it is not possible to measure junction 
temperature directly, as a result, the increase in junction 
temperature is observed by monitoring the increase in 
RDS(ON) (Figure 2). Furthermore, junction temperature is also 
a function of the case temperature, which is also measured 
and recorded in-situ. Therefore, the measured RDS(ON) was 
normalized to eliminate the case temperature effects and 
reflect only changes due to degradation. 

Due to manufacturing variability, the pristine condition 
RDS(ON) varies from device to device. In order to take this 
into account, the normalized RDS(ON) time series is shifted by 
applying a bias factor representing the pristine condition 
value. The resulting trajectory ("RDS(ON)) from pristine 
condition to failure represents the degradation process due 
to die-attach failure and represents the increase in RDS(ON) 
through the aging process. 

 
Figure 5. Normalized ON-state resistance ("RDS(ON)) and 

filtered trajectory for device #36.  

As described earlier, these measurements are taken during 
the power cycle regime on the ON-state portion of the 
square switching signal. These measurements do not have a 
fixed sampling rate due to the nature of the implementation 
of the data acquisition system. On average, there is a 
transient response measurement every 400 nS. This consists 
of a snapshot of the transient response which includes one 
full square waveform cycle. The algorithms under 
consideration benefit from a uniform sampling in terms of 
ease of implementation and reduced complexity. Since the 
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complexity of GPR is O(n3), computational effort increases 
with number of data points and hence it is important to keep 
the number of training points low. A similar issue is also 
present on the EKF and PF. Therefore a resampling of the 
curve was carried out to have uniform sampling and a 
reduced sampling frequency on the failure precursor 
trajectory. In order to cope with these restrictions, the 
signals were filtered by computing the mean of every one 
minute long window (see Figure 5). 

4. PROGNOSTICS ALGORITHMS 

A prognostics algorithm in this application predicts the 
remaining useful life of a particular power MOSFET device 
at different points in time through the accelerated life of the 
device. Three algorithms are considered in this article, a 
data-driven algorithm based on the Gaussian process 
regression framework, and two model-based algorithms, the 
extended Kalman filter and the particle filter, which are 
based on the Bayesian estimation framework. 

As indicated earlier, "RDS(ON) is used in this study as a 
health indicator feature and as a precursor of failure. The 
prognostics problem is posed in the following way: 

• A single feature is used to assess the health state of the 
device ("RDS(ON)). 

• It is assumed that the die-attached failure mechanism is 
the only active degradation during the accelerated aging 
experiment. 

• Furthermore, "RDS(ON) accounts for the degradation 
progression from nominal condition through failure. 

• Periodic measurements with fixed sampling rate are 
available for "RDS(ON). 

• A crisp failure threshold of 0.05 increase in "RDS(ON) is 
used. 

• The prognostics algorithm will make a prediction of the 
remaining useful life at time tp, using all the 
measurements up to this point either to estimate the 
health state at time tp in a regression framework or in a 
Bayesian state tracking framework. 

• It is also assumed that the future load conditions do not 
vary significantly from past load conditions. 

Six accelerated aging tests for power MOSFETs under 
thermal overstress were available. Figure 6 presents the 
"RDS(ON) trajectories for the six cases. Cases #08, #09, #11, 
#12 and #14 are used for algorithm development purposes. 
They are used either as training data for regression models, 
as empirical data for degradation models or as data to 
quantify prior distributions’ parameters of model and 
measurement noise and initial conditions. Case #36 is used 
to test the algorithms. The algorithms are developed and 
tested on the accelerated aging test timescale. In a real world 
operation, the timescale of the degradation process and 
therefore the RUL predictions will be considerably larger. It 

is hypothesized that even though the timescale will be 
larger, it remains constant through the degradation process 
and the developed algorithms and models would still apply 
under the slower degradation process. On the other hand, the 
algorithms under consideration have been used on several 
other prognostics applications. Here, by using accelerated 
aging data with actual device measurements and real sensors 
(no simulated behavior), we attempted to assess how such 
algorithms behave under these more realistic conditions. 

 

Figure 6: "RDS(ON) trajectories for all MOSFETs, #36 is used 
to test algorithms and the rest are used for degradation 

model development and algorithm training (if required). 

4.1. Degradation modeling 

An empirical degradation model is suggested based on the 
degradation process observed on "RDS(ON) for the five 
training devices. It can be seen that this process grows 
exponentially as a function of time and that the exponential 
behavior starts at different points in time for different 
devices. An empirical degradation model can be used to 
model the degradation process when a physics-based 
degradation model is not available. This methodology has 
been used for prognostics of electrolytic capacitors using a 
Kalman filter (Celaya, Kulkarni, Biswas, & Goebel, 2011a). 
There, the exponential degradation model was posed as a 
linear first order dynamic system in the form of a state-
space model representing the dynamics of the degradation 
process. The proposed degradation model for the power 
MOSFET application is defined as 

!!!"!!"! ! !!!!!" ! !!,            (1) 

where ! is time and ! and ! are model parameters that could 
be static or estimated on-line as part of the Bayesian 
tracking framework. This model structure is capable of 
representing the exponential behavior of the degradation 
process for the different devices (see Figure 6). It is clearly 
observed that the parameters of the model will be different 
for different devices. Therefore, the parameters # and $ need 
to be estimated online in order to ensure accuracy. This 
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empirical degradation model is posed as a dynamic system 
as follows. Let ! ! !!!"!!"!, then  

!"
!" ! !" ! !".                     (2) 

In this model, # and $ are also state variables that change 
through time. Therefore, the model is a non-linear dynamic 
system and Bayesian tracking algorithms like the extended 
Kalman and particle filter are needed for on-line state 
estimation. 

4.2. Gaussian process regression 

Gaussian Process Regression (GPR) is a data-driven 
technique that can be used to estimate future fault 
degradation based on training data collected from 
measurement data. First, a prior distribution is assumed for 
the underlying process function that may be derived from 
domain knowledge (Goebel, Saha, & Saxena, 2008). Then 
this prior is tuned to fit available measurements which is 
used with the probabilistic function for regression over the 
training points (Rasmussen & Williams, 2006). The output 
is a mean function to describe the behavior and a covariance 
function to describe the uncertainty. These functions can 
then be used to predict a mean value and corresponding 
variance for a given future point of interest. The behavior of 
a dynamic process is captured in the covariance function 
chosen for the Gaussian process. The covariance structure 
also incorporates prior beliefs of the underlying system 
noise. A covariance function consists of various hyper-
parameters that define its properties. Proper tuning of these 
hyper-parameters is key in the performance. While a user 
typically needs to specify the type of covariance function, 
the corresponding hyper-parameters can be learned from 
training data using a gradient based optimization (or other 
optimization) such as maximizing the marginal likelihood of 
the observed data with respect to hyper-parameters 
(Rasmussen & Williams, 2006). 

4.3. Extended Kalman filter 

Extended Kalman filter allows for the implementation of the 
Kalman filter algorithm for on-line estimation on non-linear 
dynamic systems (Meinhold & Singpurwalla, 1983; Welch 
& Bishop, 2006). This algorithm has been used in other 
applications for health state estimation and prognostics 
(Saha, Goebel, & Christophersen, 2009b). The extended 
Kalman filter general form is as follows. 

!! ! ! !!!!! !!!! ! !!!!                  (3) 

!! ! ! !! ! !! ! 
where f and h are non-linear equations, wk-1 is the model 
noise and vk is the measurement noise. Noise is considered 
to be normally distributed with zero mean and known 
variance. For the prognostics implementation using the 
degradation model in equation (1) the state variable is 

defined as ! ! !!!!! , therefore f is a vector valued 
function. Equation (2) gives the state transition equation for 
variable R; # and $ are consider constant but they need to be 
estimated, therefore !"!" !

!"
!" ! !  as part of the state 

transition function f. Measurements of R are available 
periodically but not for # and $. Therefore yk will be a scalar 
representing the measured R at step k and h will be a scalar 
function defined as ! !! ! !. 

4.4. Particle filter 

Particle filters (PFs) are based on Bayesian learning 
networks and are often used to track progression of system 
state in order to make estimations of remaining useful life 
(RUL. Bayesian techniques also provide a general rigorous 
framework for such dynamic state estimation problems. The 
core idea is to construct a probability density function (pdf) 
of the state based on all available information. In the 
Particle Filter (PF) approach (Arulampalam, Maskell, 
Gordon, & Clapp, 2002; Gordon, Salmond, & Smith, 1993) 
the pdf is approximated by a set of particles (points) 
representing sampled values from the unknown state space, 
and a set of associated weights denoting discrete probability 
masses. The particles are generated and recursively updated 
from a nonlinear process model that describes the evolution 
in time of the system under analysis, a measurement model, 
a set of available measurements and an a priori estimate of 
the state pdf. In other words, PF is a technique for 
implementing a recursive Bayesian filter using Monte Carlo 
(MC) simulations, and as such is known as a sequential MC 
(SMC) method. 

Particle filter methods assume that the state equations can be 
modeled as a first order Markov process with the outputs 
being conditionally independent which can be written as: 

!! ! !!!!!!! ! !!! 
!! ! ! !! ! !! 

 
where, k is the time index, x denotes the state, y is the 
output or measurements, and both % and & are samples from 
noise distributions. For this application, the PF framework 
was used to first track the degradation of RDS(ON) and then 
predict the remaining useful life of the power MOSFET 
based on whether the damage threshold has been reached by 
RDS(ON). The degradation model is presented in (1) and ! and 
!  are coefficients that are estimated initially by simple 
curve fitting for a few initial iterations.  The PF uses the 
parameterized exponential growth model for! !!!"!!"! , 
described above, for the propagation of the particles in time 
where the state vector is !!!"!!"!!! The measurement vector 
comprises of the !RDS(ON) parameters inferred from 
measured data. The values of !  and !  are learnt from 
regression on few initial inputs and are used as initial 
estimates for the filter. 

Annual Conference of the Prognostics and Health Management Society, 2011

448
[paper 45]



Annual Conference of the Prognostics and Health Management Society, 2011 

7 

5. REMAINING USEFIL LIFE PREDICTION RESULTS 

This section presents the results of the three algorithms 
implemented. Device #36 was used to test the RUL 
predictions provided by the different algorithms. RUL 
predictions for device #36 are made at tp:  140, 150, 160, 
170, 180, 190, 195, 200, 205 and 210 minutes into aging. 
Subtracting the time when the prediction was made from the 
time when the predicted increase in resistance crosses the 
failure threshold gives the estimated remaining component 
life. As more data become available, the predictions are 
expected to become more accurate and more precise. 

Figure 7 presents the state estimation results for "RDS(ON) 
and the forecasting of "RDS(ON) after measurements are no 
longer available. In this figure, measurements are available 
up to time tp. They are used by all three algorithms to adjust 
the state estimation. The prediction step starts after tp and 
time of failure tEOL=228 hrs. A detail plot focusing around 
tEOL is presented in Figure 8. 

Analysis of the subplots from top to bottom shows how the 
prediction progresses as more data become available and the 
device gets closer to end of life. It also illustrates how 
prognostics is a series of periodic RUL predictions 
throughout the life of the device. The results as presented in 
Figure 7 and Figure 8 do not allow for a direct comparison 
among the three algorithms under consideration. Rather, it is 
to visually assess the estimation and prediction process. A 
quantitative assessment of the performance is required for 
direct comparison.  

Figure 9 presents the #-' performance metric for the three 
algorithms. This metric quantifies and visualizes the RUL 
prediction performance through time (Saxena, Celaya, 
Balaban, Goebel, Saha, Saha, & Schwabacher, 2008). The 
y-axis represents the estimated RUL at the time indicated in 
the x-axis. Ground truth RUL (RUL*) information is used in 
this metric in order to assess the quality of the estimated 
RUL trajectories and it is identified by the 45o line in the 
plot. From this metric it was observed that the GPR 
approach is able to make predictions only at a considerably 
later time compared to the model-based approaches. This 
behavior is expected since the GPR method is data-driven 
and does not have the benefit of a model of the degradation 
process. Instead, the degradation process needs to start to 
get close to the elbow point of the exponential behavior in 
order for the prediction of RUL to become reasonably 
accurate. In general, the three approaches are all able to 
handle the RUL prediction process and predictions enter the 
# bound early in the life of the device. The RUL prediction 
results along with the prediction error are tabulated in Table 
1. 

 
Figure 7: Health state ("RDS(ON)) tracking and forecasting 

for GPR, EKF and PF. Forecasting at tp: 140, 150, 160, 170, 
180, 190, 195, 200, 205 and 210 (min). 
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Figure 8: Detail of the health state ("RDS(ON)) tracking and 
forecasting for GPR, EKF and PF. Forecasting at tp: 140, 

150, 160, 170, 180, 190, 195, 200, 205 and 210 (min). 

 

 

 
Figure 9: RUL prediction performance assessment for GPR, 

EKF and PF using the #-' prognostics metric. 

 

Table 1: RUL prediction results for GPR, EKF and PF at 
different tp and tEOL=228 hrs. RUL prediction error is 

between parentheses. 

tp RUL* GPR EKF PF 

140 88 N/A 64.98 
(23.02) 

77.65 
(10.35) 

150 78 N/A 80.22  
(-2.22) 

65.85 
(12.15) 

160 68 N/A 56.64 
(11.36) 

58.33 
(9.67) 

170 58 N/A 50.15 
(7.85) 

49.47 
(8.53) 

180 48 73.2  
(-25.2) 
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(5.25) 

38.68 
(9.32) 

190 38 33.4 
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(15.4) 

18.57 
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200 28 14.6 
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205 23 13.8 
(9.2) 

18.28 
(4.72) 

16.66 
(6.34) 

210 18 11.8 
(6.2) 

13.46 
(4.54) 

14.68 
(3.32) 

 

6. CONCLUSION 

The paper reports on a case study of employing data-driven 
and model-based techniques for the prediction of remaining 
life of power MOSFETs. Several strong assumptions were 
made that need to be challenged in order to make the 
proposed process practical for field use. For instance, the 
future operational conditions and loading of the device are 
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considered constant at the same magnitudes as the loads and 
conditions used during accelerated aging. In addition, the 
algorithm development is conducted using accelerated life 
test data. In real world implementation, the degradation 
process of the device would occur in a considerably larger 
time scale. Determining the relationship between signatures 
from accelerated aging and signatures from “natural” aging 
is a topic of future work. 

The algorithms considered in this study have been used as 
prognostics algorithms in different applications and are 
regarded as suitable candidates for component level 
prognostics. This work attempts to further the validation of 
such algorithms by presenting them with real degradation 
data including measurements from real sensors, which 
include all the complications (noise, bias, etc.) that are 
regularly not captured on simulated degradation data. 

The in-situ data available for empirical degradation model 
development could be used to assess the two-transistor 
model parameters on an on-line tracking framework. The 
two-transistor model has the added advantage of being 
suitable to be included along the dynamics of the subsystem 
or system level. For instance, if the device is part of a power 
supply, the two-transistor model could be used as part of the 
whole power supply transfer function, therefore generating a 
system-level physics-based model with degradation 
parameters linked to the die-attach degradation process. 
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NOMENCLATURE 

RUL remaining useful life 
RDS(ON) ON-state drain to source resistance 
SOA safe operation area of the power MOSFET 
K scaling factor for thermal resistance on the two-

transistor model 
W1 are of nominal transistor in the two-transistor 

model 
W2 area of degraded transistor in the two-transistor 

model 
RT1 junction to case thermal resistance of the 

nominal transistor in the two-transistor model 
RT2 junction to case thermal resistance of degraded 

transistor in the two-transistor model 
ΔRDS(ON) normalized deviation in ON-resistance from 

drain to source 
tp time of RUL prediction 
tEOL time of end of life (time of failure) 
ID drain current 
VDS drain to source voltage 
RUL* ground truth for RUL 
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ABSTRACT 

The work presented in this paper is focused on monitoring 
fatigue crack growth in metallic structures using acoustic 
emission (AE) technology.  Three different methods are 
proposed to utilize the information obtained from in-situ 
monitoring for structural health management. 

Fatigue crack growth tests with real-time acoustic emissions 
monitoring are conducted on CT specimens made of 7075 
aluminum. Proper filtration of the resulting AE signals 
reveals a log-linear relationship between fracture parameters 
( da dN⁄  and ΔK ) and select AE features; a flexible 
statistical model is developed to describe the relationship 
between these parameters.  

Bayesian inference is used to estimate the model parameters 
from experimental data. The model is then used to calculate 
two important quantities that can be used for structural 
health management: (a) an AE-based instantaneous damage 
severity index, and (b) an AE-based estimate of the crack 
size distribution at a given point in time, assuming a known 
initial crack size distribution. 

Finally, recursive Bayesian estimation is used for online 
integration of the structural health assessment information 
obtained from AE monitoring with crack size estimates 
obtained from empirical crack growth model. The evidence 
used in Bayesian updating includes observed crack sizes 
and/or crack growth rate observations.  

1. INTRODUCTION 

Acoustic emissions are elastic stress waves generated by a 
rapid release of energy from localized sources within a 
material under stress (Mix 2005). Acoustic emissions often 
originate from defect-related sources such as permanent 
microscopic deformation within the material and fatigue 
crack extension. 

Despite significant improvements in AE technology in 
recent years, quantitative interpretation of the AE signals 
and establishing a correlation between them and the source 
events remains a challenge and a topic for active research. 
In recent years, AE research has focused on two main areas; 
the first area has to do with characterizing the wave 
propagation through complex geometries which has proved 
to be an extremely difficult problem. The second area of 
research is concerned with processing the AE waveforms in 
an intelligent way (depending on the application) in order to 
extract useful information that can be traced back to the 
source event (Holford et al. 2009). The approach presented 
in this paper is in line with the second area. 

In the first part of this paper, the problem of monitoring 
fatigue crack growth using AE technique is investigated. A 
statistical model is developed that correlates important crack 
growth parameters, i.e., crack growth rate, 𝑑𝑎 𝑑𝑁⁄ , and 
stress intensity factor range, Δ𝐾𝐾 , with select AE features. 
Next, this model will be used to calculate two important 
quantities that can be used for structural health 
management: (a) an AE-based instantaneous damage 
severity index, and (b) an AE-based estimate of the crack 
size distribution at a given point in time, assuming a known 
initial crack size distribution. Finally, the outcome of the 
statistical model described above will be used as direct 
“evidence” in a recursive Bayesian estimation framework to 

 

1This research was conducted while the author was a graduate research 
assistant at the Center for Risk and Reliability at University of 
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provided the original author and source are credited. 
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update the model parameters as well as the estimated crack 
size distribution.  

2. CRACK GROWTH MONITORING USING ACOUSTIC 
EMISSION 

Fatigue crack growth is a well-known source of acoustic 
emission inside materials. Several researchers have studied 
the connection between fatigue crack growth behavior and 
the resulting acoustic emissions (Hamel et al. 1981; Bassim 
et al. 1994). Certain features of acoustic emission signals are 
found to be stochastically correlated with key fatigue 
parameters, such as stress intensity factor range, Δ𝐾𝐾 , and 
crack growth rate, 𝑑𝑎 𝑑𝑁⁄ . Two of the most commonly used 
AE parameters in fatigue are the AE count 𝐼𝐼  and its 
derivative, count rate 𝑑𝐼𝐼 𝑑𝑁⁄ . For a given AE signal, 𝐼𝐼 is 
defined as the number of times that the signal amplitude 
exceeds a predefined threshold value. Accordingly, 𝑑𝐼𝐼 𝑑𝑁⁄  
is defined as the derivative of 𝐼𝐼  with respect to time 
(measured as elapsed fatigue cycles).  

The following form has been proposed by (Bassim et al. 
1994) for the relationship between 𝑑𝐼𝐼 𝑑𝑁⁄  and Δ𝐾𝐾: 

𝑑𝐼𝐼
𝑑𝑁

= 𝐴1(Δ𝐾𝐾)𝐴2  (1) 

where 𝐴1 and 𝐴2 are the model parameters. Our goal is to 
use the AE parameter as the predictor to estimate the fatigue 
parameter; therefore, Eq. (1) is solved for Δ𝐾𝐾 and linearized 
as follows (Rabiei et al. 2009): 

logΔ𝐾𝐾 = 𝛼1 log �
𝑑𝐼𝐼
𝑑𝑁

� + 𝛼2 (2) 

where 𝛼1 = 𝐴1
−1 𝐴2⁄  and 𝛼2 = 1 𝐴2⁄  are the new model 

constants to be estimated from data. 

The significance of Eq. (2) is that once the model 
parameters are determined experimentally, this equation can 
be used to estimate Δ𝐾𝐾  by monitoring the acoustic 
emissions and extracting the 𝑑𝐼𝐼 𝑑𝑁⁄  parameter from the 
observed signals—thus obviating the need for complex 
modeling and calculations used in fracture mechanics to 
calculate Δ𝐾𝐾. 

The second parameter that will be estimated via AE 
monitoring is the crack growth rate, 𝑑𝑎 𝑑𝑁⁄ . Based on the 
Paris equation (Paris & Erdogan 1963), 𝑑𝑎 𝑑𝑁⁄  is expected 
to have a log-linear relationship with Δ𝐾𝐾  while the crack 
growth is in the stable region. According to Eq. (2), Δ𝐾𝐾 
itself has a log-linear relationship with 𝑑𝐼𝐼 𝑑𝑁⁄ ,  which 
results in the following equation: 

log �
𝑑𝑎
𝑑𝑁

� = 𝛽1 log �
𝑑𝐼𝐼
𝑑𝑁

� + 𝛽2 (3) 

where 𝛽1 and 𝛽2 are the model parameters that describe the 
log-linear relationship between 𝑑𝑎 𝑑𝑁⁄  and 𝑑𝐼𝐼 𝑑𝑁⁄ . From a 
structural monitoring perspective, this relationship means 

that on average, the rate of crack growth can be estimated 
solely based on features extracted from AE signals. This is a 
significant outcome because by knowing the rate of the 
crack growth and the initial crack size, the size of the crack 
can be estimated at any given time without knowing the 
specific load history or complex Δ𝐾𝐾 calculations. This fact 
will be used to develop an AE-based crack growth model 
that can predict the crack size as a function of observed AE 
signals. 

2.1. Experimental test setup and procedure 

A series of experiments were designed to validate the 
proposed relationship in Eqs. (2) and (3) and to generate the 
experimental data required for fitting the statistical model 
that will be introduced in the next section. 

The experiments consisted of two separate parts that ran in 
parallel: the first part is a standard fatigue crack growth test 
in which a notched aluminum specimen undergoes cyclic 
loading, which causes a crack to initiate from the notch and 
grow until fracture; the second part is real-time AE 
monitoring—on the same specimen and while the crack is 
growing—to capture the AE signals resulting from the 
propagation of the crack inside the material. 

Fatigue tests were carried out on standard compact tension 
(CT) specimens (ASTM E647-08 2008) made of 7075 
aluminum alloy. The test setup is shown in Figure 1. The 
goal of the experiment was to record the AE signals 
generated by fatigue crack growth. To do so, we used a PCI-
2 AE monitoring system supplied by Physical Acoustic 
Corporations1

 

 to monitor the CT specimen during the crack 
growth test. The most crucial step in AE monitoring is to 
distinguish the AE signals originating from the source event 
of interest (e.g. crack tip) from extraneous noises. 

Figure 1: CT specimen instrumented with AE sensor and 
mounted on MTS machine 

                                                           
1 http://www.pacndt.com  

AE sensor

Fatigue crack Loading 
Grips
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Figure 2: Cumulative AE count rate versus crack size 

 
(a) 

 
(b) 

 Figure 3: The linear correlation observed between 𝑑𝐼𝐼 𝑑𝑁⁄  and 𝑑𝑎 𝑑𝑁⁄  (a) and Δ𝐾𝐾 (b) in a crack growth test

The source of the noise can be both internal (e.g., surface 
rubbing at loading pins, internal rubbing of crack surfaces) 
and external (e.g., noise from the hydraulic loading 
actuators). Various de-noising techniques were used to 
distinguish AE signals from the background noise. See 
(Rabiei 2011) for detailed information about the fatigue test 
setup, crack measurement technique and proper AE 
filtrations in crack growth monitoring. 

Once proper filtration has been applied to the signals, the 
correlation between AE and crack growth parameters can be 
seen. Figure 2 shows that the increasing trend in crack size 
has a linear relationship with the cumulative AE count rate 
(on a log scale) for cracks larger than 0.6 inches. This 
suggests that in theory, the crack size can be measured by 
monitoring the cumulative AE count rate, if the relationship 
between the two is fully characterized and modeled. 
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Figure 3 shows the correlation between the AE parameter, 
𝑑𝐼𝐼 𝑑𝑁⁄ , and the fatigue parameters 𝑑𝑎 𝑑𝑁⁄  (a) and Δ𝐾𝐾 (b) 
on a log-log scale. These are the same data shown in Figure 
2 but presented here in terms of derivatives. The linear 
correlation between fatigue and AE parameters is evident in 
this figure.  

The dataset collected using the experimental procedure 
described here will be used to build a statistical model that 
can be used for AE-based structural health management. 

2.2. Statistical model development 

It was shown that on average, a log-linear relationship can 
be assumed between fracture parameters (𝑑𝑎 𝑑𝑁⁄ or Δ𝐾𝐾 ) 
and AE parameter ( 𝑑𝐼𝐼 𝑑𝑁⁄ ). A statistical model is 
developed to describe the relationship between these 
parameters.  

Let 𝑋 denote 𝑑𝐼𝐼 𝑑𝑁⁄  as the independent variable in the 
regression analysis, and 𝑌  denote either 𝑑𝑎 𝑑𝑁⁄ or Δ𝐾𝐾  as 
the dependent variable that we are interested in estimating. 
Regression analysis estimates the conditional expectation of 
the dependent variable given the independent variable — 
that is, the average value of the dependent variable when the 
independent variable is fixed. Another way of looking at 
this problem is to partition the dependent variable 𝑌 into a 
deterministic component given by function 𝜙(∙)  of the 
independent variable 𝑋 , plus a zero-mean random 
component, 𝜖 , that follows a particular probability 
distribution. That is, 
𝑌 = 𝜙(𝑋;Θ) + 𝜖 (4) 

The addition of the random term makes the above 
relationship a statistical model, meaning that the functional 
relationship between the response variable 𝑌  and the 
predictor variable 𝑋 holds only in an average sense, not for 
every data point. Based on the experimental results in 
previous section, it seems reasonable to assume a linear 
form for the regression function 𝜙(∙)  where Θ = (𝛼1,𝛼2) 
when 𝑌  represents Δ𝐾𝐾  and Θ = (𝛽1,𝛽2)  when 𝑌  represents 
𝑑𝑎 𝑑𝑁⁄ . 

To complete the model, the error term 𝜖  must be fully 
specified as well. Here we adopt the classic regression 
assumption that the errors are independent and identically-
distributed (i.i.d.) random variables and follow a normal 
probability distribution: 

𝜖 ~ 𝑁(0,σ) (5) 

The mean of the error distribution is zero, and its standard 
deviation is the unknown parameter 𝜎 . Another classic 
assumption in regression analysis is that the error has a 
constant variance for all observations regardless of the value 
of independent variable 𝑋. In this application, however, it is 
reasonable to assume that a small crack is harder to 
measure, and as the crack becomes larger, the measurement 

of its length becomes more accurate. Accordingly, the 
𝑑𝑎 𝑑𝑁⁄  and Δ𝐾𝐾 values associated with data points coming 
from smaller cracks could be less accurate than those from 
larger cracks. 

One way to account for this effect is to release the constant 
variance assumption and allow 𝜎 to change as a function of 
the independent variable 𝑋 . This will result in a flexible 
model that can capture any change in the error distribution 
based on the available data. Here, we choose a flexible two-
parameter exponential relationship to capture the potential 
trend in 𝜎, 

𝜎 = 𝛾1exp (𝛾2𝑋) (6) 

This function can capture both increasing and decreasing 
trends of 𝜎  for positive and negative values of 𝛾2 , 
respectively. It also reduces to the standard constant 
variance case if 𝛾2 is equal to zero. It is important to note 
that it is not necessary to have any prior knowledge about 
the trend of 𝜎 ; 𝛾1 and 𝛾2  are in fact treated as additional 
unknown parameters and will be estimated using the 
observed data. 

2.3. Bayesian parameter estimation 

Numerous procedures have been developed for parameter 
estimation and inference in regression analysis. Here we 
adopt a Bayesian approach to parameter estimation often 
referred to as Bayesian regression.  

In Bayesian inference, the initial belief about the 
distribution of the parameters (a priori distribution) is 
systematically updated according to Bayes' theorem (Eq. 
(7)), based on some kind of evidence or available 
observations (Figure 4). 

𝑝(Θ|𝐷) =
𝑝(𝐷|Θ)𝑝(Θ)

𝑝(𝐷)
 (7) 

where Θ is the vector of model parameters to be estimated 
and 𝐷  denotes the set observations to be used in the 
updating process. 𝑝(Θ) is the a priori distribution of model 
parameters while 𝑝(Θ|𝐷) is the a posteriori probability of 
the model parameters once updated by the observations. 
The model that was developed in the previous section can 
be summarized in the following form: 
 

𝑌 = 𝛼1𝑋 + 𝛼2 + 𝜖 

where 

𝜖 ~𝑁(0,σ), 

𝜎 = 𝛾1exp (𝛾2𝑋) 

(8) 

The likelihood can be defined based on the distribution of 
the error term, 𝜖. To do so, the error 𝜖𝑖 = 𝑦𝑖 − (𝛼1𝑥𝑖 + 𝛼2) 
for every data point (𝑥𝑖 ,𝑦𝑖) is calculated.  
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Figure 4: Bayesian Inference Framework  

Next, the likelihood of each data point can be defined 
according to 𝜖𝑖  ~ 𝑁(0, 𝛾1exp (𝛾2𝑥𝑖)). This can be written 
explicitly as, 
𝑝(𝐷|𝛼1,𝛼2, 𝛾1, 𝛾2)

= �
1

√2𝜋𝜎
exp�−1

2
�
𝑦𝑖 − (𝛼1𝑥𝑖 + 𝛼2)
𝛾1 exp(𝛾2𝑥𝑖)

�
2

�
𝑛

𝑖=1

 (9) 

The likelihood in Eq. (9) is based on the assumption that the 
data points are independent and therefore the likelihood for 
dataset 𝐷  is simply the multiplication of the likelihood 
function for every data point. 

This study began with no past experience, and therefore 
non-informative (uniform) prior distributions for all 
parameters 𝛼1,𝛼2, 𝛾1 and 𝛾2 were chosen. 

The denominator in Bayes' theorem acts as a normalization 
factor and can be written as, 

𝑝(𝐷) = �𝑝(𝐷|Θ)𝑝(Θ)𝑑Θ (10) 

In practice, numerical approaches such as Monte Carlo-
based methods are used to calculate the multidimensional 
integral in Eq. (10). Here we used WinBUGS (Cowles 
2004) to obtain the posterior distributions; WinBUGS is a 
software package for Bayesian analysis of complex 
statistical models using Markov chain Monte Carlo 
(MCMC) methods. Interested readers can refer to 
(Ntzoufras 2009) for a good reference on Bayesian 
modeling using WinBUGS. For further reading on MCMC 
methods in general, see (Gelman et al. 2003; Gamerman & 
Lopes 2006).  

Once the posterior distribution 𝑝(Θ|𝐷)  is calculated, the 
inference process is complete. The next step is to use the 
developed model for prediction using unobserved data. In 
other words, the model (with posterior parameters) will be 
used to calculate the distribution of dependent variable 𝑌 for 
a given input 𝑋. 

The posterior predictive distribution is the distribution of 
unobserved observations (prediction) conditional on the 
observed data. Let 𝐷 be the observed data, Θ be the vector 
of parameters, and 𝐷𝑝𝑟𝑒𝑑  be the unobserved data; the 
posterior predictive distribution is defined as follows, 

𝑝�𝐷𝑝𝑟𝑒𝑑|𝐷� = �𝑝�𝐷𝑝𝑟𝑒𝑑�Θ�𝑝(Θ|𝐷)𝑑Θ (11) 

Here again, we are dealing with a multi-dimensional integral 
that should be calculated numerically. The same MCMC 
procedure described above can be used to generate samples 
from the posterior predictive distribution based on draws 
from the posterior distribution of Θ. 

2.3.1. Parameter estimation results 

Figure 5 shows the contour plot of the posterior joint 
distribution of parameters 𝛼1 and 𝛼2. The figure shows that 
these two parameters are highly correlated (Correlation 
coefficient 𝜌 = −0.88 ). Similar results are presented in 
Figure 6 for the parameters 𝛾1 and 𝛾2. These variables are 
also highly correlated (𝜌 = −0.89), which highlights the 
importance of considering their joint distribution (rather 
than marginal distributions) when using the model for 
prediction. 

 
Figure 5: Contour plot of the posterior joint distribution of 

parameters 𝛼1 and 𝛼2. 

 
Figure 6: Contour plot of the posterior joint distribution of 

parameters 𝛾1 and 𝛾2.  

Model

Data

Likelihood
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It was previously described that the flexible model in Eq. (6) 
was used to define the standard deviation of the dependent 
variable 𝑌 . For any given input 𝑋 , one can calculate the 
corresponding distribution of 𝜎  by knowing the joint 
distribution of 𝛾1 and 𝛾2which was one of the outcomes of 
the parameter estimation process. This result is shown in 
Figure 7. Note that for this particular dataset, the median 
value of 𝜎 is relatively constant (it has a slight decreasing 
trend) over the range of values of log𝑑𝐼𝐼 𝑑𝑁⁄ . This is 
consistent with the fact that the estimated value of 𝛾2  is 
close to zero (see Figure 6), which means that the 
relationship in Eq. (6) reduces to a constant variance case 
where 𝜎Δ𝐾 ≈ 𝛾1. Notice the change in the calculated bounds 
of 𝜎 over the range of log𝑑𝐼𝐼 𝑑𝑁⁄ . The tighter bounds in the 
middle of the range are due to a higher density of data 
points in this region, which results in a more confident 
estimate in this range. 

 
Figure 7: Distribution of 𝜎Δ𝐾 as a function of the 

independent variable log𝑑𝐼𝐼 𝑑𝑁⁄  

 
Figure 8: Posterior predictive distribution of logΔ𝐾𝐾 as a 

function of log𝑑𝐼𝐼 𝑑𝑁⁄  

Once all the model parameters are estimated, Eq. (11) can 
be used to calculate the posterior predictive distribution for 
the dependent variable logΔ𝐾𝐾  as a function of the 
independent variable log𝑑𝐼𝐼 𝑑𝑁⁄ , given past observations, 
𝐷. The result is presented in Figure 8 where the posterior 
distribution is shown by its median and the 5% and 95% 
prediction bounds. 

The procedure described above can be repeated to fit the 
model in Eq. (8) to the log𝑑𝑎 𝑑𝑁⁄  versus log𝑑𝐼𝐼 𝑑𝑁⁄  
dataset as well. The models developed in this section 
provide a quantitative means for relating the crack growth 
parameters to the AE parameters. In the remainder of this 
paper, this concept will be used to develop a complete SHM 
solution based on AE monitoring. 

3. STRUCTURAL HEALTH MANAGEMENT USING AE 

Three novel approaches are proposed for structural health 
management using AE monitoring. In all of these 
approaches, the statistical model developed in the previous 
section will be utilized to calculate system health parameters 
solely based on AE monitoring data. 

3.1. AE-based damage severity assessment 

In this section, we will calculate the probability of structural 
failure (as defined here) due to crack growth using AE 
monitoring data. 

As a crack grows in a structure, the value of the stress 
intensity factor Δ𝐾𝐾 associated with it increases as well. For 
a standard CT specimen, this relationship is defined as 
follows (ASTM E647-08 2008):  

Δ𝐾𝐾 = 𝑓(𝑎) 

=
Δ𝑃
𝐵√𝑊

2𝛼
(1 − 𝛼)3 2⁄ (0.886 + 4.64𝛼    

− 13.32𝛼2 + 14.72𝛼3 − 5.6𝛼4) 
(12) 

where Δ𝑃 is the range of the applied force cycles, 𝑊 and 𝐵 
are the width and thickness of the CT specimen, 
respectively, and 𝛼 is the dimensionless crack size defined 
as 𝑎 𝑊⁄ . Equation (12) shows that Δ𝐾𝐾, in general, depends 
on the geometry of the structure, amplitude of the applied 
load cycles and the instantaneous size of the crack. For a 
given structure, assuming that the geometry is fixed, a large 
Δ𝐾𝐾  represents either a large crack size and/or high load 
amplitude applied to the structure. Δ𝐾𝐾  can therefore be 
considered a criticality parameter that describes the potential 
of the crack for further growth at any given point in time. 

On the other hand, the resistance of a material to stable 
crack propagation under cyclic loading is characterized by 
its fracture toughness, 𝐾𝐾𝐼𝑐  (Anderson 1994). At any point 
during the crack growth, if the stress intensity exceeds the 
fracture toughness of the material, the crack growth 
transitions from stable to non-stable/rapid growth regime 
where failure is imminent (Figure 9). 
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Figure 9: Crack growth sigmoid curve showing both stable 
and unstable crack growth regions.  

In other words, the crack growth is stable as long as 𝐾𝐾𝑚𝑎𝑥  is 
less than the fracture toughness of the material, 𝐾𝐾𝐼𝑐 . This 
fact is used to define an AE-based measure of risk, 𝑅𝐴𝐸, as 
follows, 

𝑅𝐴𝐸 = 𝑝(𝐾𝐾𝑚𝑎𝑥 > 𝐾𝐾𝐼𝑐) (13) 

where 𝐾𝐾𝑚𝑎𝑥 is defined according to Eq. (12) for Δ𝑃 = 𝑃𝑚𝑎𝑥. 

Our objective is to assess the health of the structure based 
only on AE monitoring. To do so, the statistical model 
developed previously is used in the following way: 

Step 1: Estimate the model parameters ( Θ ) using 
experimental data for a given structure, 

Step 2: Monitor the structure using the AE technique and 
extract the 𝑑𝐼𝐼 𝑑𝑁⁄  parameter from the observed signals, 

Step 3:  At any given time, use Eq. (11) to calculate the 
posterior predictive distribution of Δ𝐾𝐾  as a function of 
instantaneous AE parameter, 𝑑𝐼𝐼 𝑑𝑁⁄ . 

Step 4: Use Eq. (13) to calculate 𝑅𝐴𝐸  (noting that 𝐾𝐾𝑚𝑎𝑥 =
Δ𝐾𝐾 (1 − R)⁄  for constant amplitude loading with loading 
ratio 𝑅). 

Figure 10 shows the outcome of the above procedure for 
steps 1-3. The structure is monitored using the AE 
technique, and the 𝑑𝐼𝐼 𝑑𝑁⁄  feature is extracted from the 
signals at different values of elapsed cycles, 𝑁. At any given 
cycle 𝑁, the posterior predictive distribution as a function of 
the instantaneous AE feature, 𝑑𝐼𝐼 𝑑𝑁⁄ , can be calculated. As 
the number of cycles increases, the crack continues to grow, 
and therefore, the distribution of 𝐾𝐾𝑚𝑎𝑥  gradually shifts 
towards larger values.  

Following step 4 in the procedure described above,  𝑅𝐴𝐸 can 
be calculated for any given cycle 𝑁 according to Eq. (13). 
The result is shown in Figure 11. As shown in this figure, 
𝑅𝐴𝐸  increases (non-monotonically) throughout the 
experiment. 

 
Figure 10: Probability distribution of 𝐾𝐾𝑚𝑎𝑥 as a function of 

applied fatigue cycles, 𝑁 

 
Figure 11: AE-based risk factor, 𝑅𝐴𝐸, calculated as a 

function of applied fatigue cycles, 𝑁 

The fluctuations in this figure are in fact a direct result of 
the fluctuations in the input AE feature, 𝑑𝐼𝐼 𝑑𝑁⁄ , which also 
matches the trend in Figure 10. The AE-based risk factor 
defined here is an instantaneous exceedance probability 
calculated based on the average value of 𝑑𝐼𝐼 𝑑𝑁⁄  for any 
given interval. The AE feature has an overall increasing 
trend that may fluctuate due to instantaneous dynamics of 
the crack growth. So the best way to interpret the result in 
Figure 11 is to treat it as a red/green warning mechanism to 
alert the decision-maker in real-time about the increased risk 
factor at a given cycle based on the current AE readings. 

3.2. AE-based crack growth model 

For a given initial crack size, if the rate of crack growth can 
be estimated, then the crack size itself can be easily 
calculated by a summation over crack size increments 
starting from the known initial size. This is the logic behind 

 𝐾𝐾𝐼𝐼𝐼𝐼  

IIIIII

Unstable/rapid 
Crack Growth 

Region

Stable/linear Crack 
Growth Region
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most crack growth models. In these models, however, the 
rate of crack growth is usually calculated based on its 
empirical relationship with the Δ𝐾𝐾 parameter, which itself 
has a complex derivation even for simple geometries.  

In the approach presented here, the rate of crack growth is 
estimated directly from AE monitoring using the statistical 
model that was developed earlier. The process of estimating 
crack size using this AE-based crack growth model is 
summarized in Figure 12. 

 
Figure 12: Flowchart of the AE-based crack growth model 

(Rabiei et al. 2010) 

 
Figure 13: Posterior predictive distribution of log𝑑𝑎 𝑑𝑁⁄  as 

a function of log𝑑𝐼𝐼 𝑑𝑁⁄  

The process starts by finding the parameters of the model in 
Eq. (8), where 𝑌 = log𝑑𝑎 𝑑𝑁⁄   and 𝑋 = log𝑑𝐼𝐼 𝑑𝑁⁄ , based 
on relevant experimental data. The resulting posterior 
predictive distribution will be used to estimate the 
distribution of 𝑑𝑎 𝑑𝑁⁄  for any given input 𝑑𝐼𝐼 𝑑𝑁⁄ . 

Consider a crack growth experiment where crack growth-
related AE signals are recorded throughout the test. For any 
given interval of elapsed cycles,  Δ𝑁𝑖 , the corresponding 
average AE feature (Δ𝐼𝐼 ΔN⁄ )i can be calculated. Figure 14 
shows the feature extracted from such data during crack 

growth in a CT specimen.  The probability distribution of 
the crack extension Δ𝑎𝑖  corresponding to the interval Δ𝑁𝑖 
can be calculated using Eq. (11). This is shown in Figure 15 
using the input AE data shown in Figure 14 and the 
calibrated model shown in Figure 13. 

 
Figure 14: The AE count rate feature extracted from signals 

obtained during crack growth in a CT specimen 

 
Figure 15: Crack growth rate as a function of applied fatigue 

cycles predicted via AE monitoring 

If the crack size is known at the beginning of the interval, a 
probability distribution for the crack size at the end of the 
interval can be easily obtained. By repeating this process for 
consecutive intervals, multiple crack growth trajectories can 
be generated, as shown in Figure 16. 

The main feature of the AE-based crack growth model 
presented here is that the rate of crack growth is determined 
experimentally, and therefore, there is no need to have any 
information about the amplitude of the applied loading 
cycles to the structure. This approach, however, relies 
heavily on a calibrated statistical model that should describe 
the relationship between an NDI feature of interest 
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( log𝑑𝐼𝐼 𝑑𝑁⁄  in this case) and the crack growth rate. 
Developing a robust model that can capture this relationship 
with minimum uncertainty is a difficult task that is still a 
topic of continued research. 

 
Figure 16: Crack growth trajectories obtained via AE-based 

crack growth model 

3.3. Bayesian knowledge fusion 

So far two approaches have been proposed to use AE for 
quantitative structural health management. A third approach 
will be discussed here which seeks to use AE findings as an 
independent source of information to update the outcome of 
empirical crack growth models. 

Several models of varying complexity, e.g. (Forman et al. 
1997) and (Walker 1970),   have been proposed to describe 
the crack growth phenomenon. The outcomes of these 
models suffer from uncertainty from various sources 
including material properties, model parameters and the 
model structure. Despite all efforts to capture various 
sources of uncertainty, the final outcome of the empirical 
models could still be far from true crack size.  

Consider the crack growth test described earlier in this 
paper. Figure 17 shows the true crack growth trajectory 
along with empirical model prediction for the CT specimen 
being considered here. The model in this case consistently 
underestimates the true crack size. This shows that the 
actual crack growth rate in the experiment was higher than 
what was predicted by the model. Several factors (including 
uncertainty in model structure, uncertainty in model 
parameters or presence of rogue flaw) could contribute to 
the poor performance of the empirical model.  It is therefore 
highly desirable to update the model estimates using an 
independent source of information.  

Using the statistical model presented earlier, the AE signals 
can be translated into crack growth rate information and be 
used to update the empirical model prediction. (Rabiei 
2011) proposed an efficient Bayesian framework to 

recursively update the empirical model prediction as well as 
the model parameters using crack growth rate and crack size 
observations.  

 
Figure 17: Probabilistic crack growth simulation result 

using empirical model 

 
Figure 18: Recursive Bayesian estimation of crack size 

using crack size and AE-based crack growth rate 
observations 

In Figure 18 the updated crack size estimate for the 
specimen described above is presented. This result is 
obtained by: a) recursively updating the crack growth rate 
based on the AE data, and b) updating crack size at fixed 
intervals using crack size observations (e.g. periodic 
inspections). In this figure, the line marked as model only is 
the outcome of the empirical crack growth model. The AE 
only line, on the other hand, shows the crack growth 
trajectory as predicted solely by the AE-based crack growth 
model. The estimated trajectory is the fusion result obtained 
via recursive Bayesian estimation. In this particular case, 
since the empirical model consistently underestimates while 
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the AE-based approach consistently overestimates the crack 
size, the fusion results in an enhanced crack size prediction. 
It is important to note that this observation is based on 
results from limited experimentation and cannot be 
generalized. The fusion outcome is dependent on the 
performance of the individual techniques fused together. 
Obviously, if both the model and the AE observations 
overestimate the crack size in one application, the fused 
result will also be an overestimation of the true crack 
trajectory. 

4. CONCLUSION 

Three new approaches were proposed for quantitative 
structural health management using in-situ AE monitoring: 
in the first approach, an AE-based risk measure, 𝑅𝐴𝐸, was 
defined as the probability that the crack growth will 
transition from the stable to non-stable/rapid growth regime. 
The transition probability was calculated as the probability 
that 𝐾𝐾𝑚𝑎𝑥  exceeds the fracture toughness of the material, 
𝐾𝐾𝐼𝑐 . In the proposed approach, 𝐾𝐾𝑚𝑎𝑥  is calculated as a 
function of real-time AE monitoring data using the 
calibrated statistical model developed in this paper. 

In the second approach, AE monitoring data was used to 
calculate the instantaneous distribution of crack growth rate, 
𝑑𝑎 𝑑𝑁⁄ . For a given initial crack size and with crack growth 
rates obtained from AE monitoring, the crack size 
distribution was estimated as a function of elapsed fatigue 
cycles. 

Recursive Bayesian estimation technique was used to fuse 
the outcome of the empirical crack growth model with crack 
size observations as well as the online crack growth rate 
observations obtained from AE monitoring. 
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ABSTRACT 

Under high-G (10
4
 g or above) impact load conditions, the 

reliability of micro electro mechanical systems (MEMS) 

board-level package and interconnection are critical 

concerned that influence the mission success of total 

projectile. This paper conducts a research on this problem to 

analyze package reliability using finite element modelling 

(FEM) and simulation method. Theoretical analysis and 

mathematical model for failure mechanism of MEMS 

package under high-G impact are conducted and established. 

A FEM dynamic analysis is conducted on a typical MEMS 

board-level leadless chip carrier (LCC) package. Results 

show that the solder joints are one of the key weakness 

points that influence the reliability of MEMS package. The 

maximum effective stress in the structure occurs at the outer 

corner in the outermost solder point, and the alloy cover and 

printed circuit board (PCB) have a greater deformation.
*
 

1. INTRODUCTION 

In gun-shooting and projectile process, the projectile and its 

inner components (such as MEMS gyroscope, accelerator, 

and other electrical components) are suffering large inner 

pressure and high acceleration load. This type of load 

features as an extremely peak acceleration (10
4
g level or 

above) and duration of extremely short time (such as 10ms) 

(Lou et.al., 2005), (Vinod et.al., 2008), (Jiang et.al., 2004). 

Under this load conditions requirement, it’s difficult to 

design and manufacture a reliable fine component used in 

projectile. The failure of component is frequently found in 

this type of usage environment that will influence the total 

projectile reliability.  

MEMS and electronics component board level package and 

interconnections (solder joints) are key weakness points that 

influence reliability. While LCC (Leadless Chip Carrier) is 

the general package type that adopted in MEMS and other 

electronics with its remarkable advantage of small scale and 

                                                 
*
 This is an open-access article distributed under the terms of the Creative 

Commons Attribution 3.0 United States License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided 
the original author and source are credited. 

lower cost (Wei et.al., 2004), (Thomas et.al., 2008). LCC 

package technique belongs to SMT (Surface Mount 

Technology), and its reliability problem has got more and 

more attention. Surface mounted technology (SMT) is 

widely used in MEMS package, as the solder joints of SMT 

are significantly small (typically a few millimeters), which 

turns the solder joints between the printed circuit board 

(PCB) and MEMS chip into the most weak component 

during the impact(Tee et.al., 2004).  

In present literature and report, the research activities have 

been focusing on the reliability of board level 

interconnections in drop impact (with 10
2
~10

3
g level 

acceleration) for portable electronics (JEDEC Standard, 

2003), (Younis et.al., 2007), covering experimental work 

together with analytical and numerical modeling studies 

(Sirkar and Senturia, 2002), (Suhir and Burke, 2000), (Yu 

et.al., 2003), (Tee et.al., 2004). But the fundamental 

understanding of the reliability of board level 

interconnections to high-g impact (with 10
5
 g level 

acceleration) remains limited and is a subject which is still 

need further studied. Also in these drop impact studies, the 

analysis is especially focus on all kinds of BGA (Ball Grid 

Array) packages used in portable electronics (Yu et.al., 

2003), (Tao et.al., 2006). While the study on the LCC 

package reliability generally used in MEMS is not found yet.  

This paper provides a research on the reliability of solder 

joints / interconnections in high-g impact and deal with the 

dynamics of board level impact and package reliability 

assessment using finite element modeling and simulation 

method. Theoretical analysis of failure mechanism of 

MEMS package is conducted to provide a physical 

explanation and a FEM dynamic analysis is conducted on a 

typical LCC MEMS package. Efforts will provide reference 

for development and practical utilization of MEMS 

components. 

2. THEORETICAL ANALYSIS OF FAILURE MECHANISM 

Numerical simulation and experimental validation study 

have confirmed differential flexing between the PCB and 

the component packages as the primary driver for the failure 

of board level interconnections during high-g impact (Wong, 

Annual Conference of the Prognostics and Health Management Society, 2011

463
[paper 47]



Annual Conference of the Prognostics and Health Management Society, 2011 

 2  

2006). The interconnections (solder joints) of MEMS device 

and electronics component are key weakness that influences 

the reliability of MEMS, for the differential deflection 

between the PCB and MEMS device together with 

mechanical resonance (Tee et.al., 2003). 

Generally, the devices such as MEMS components can be 

taken as rigid body compared to PCB, bending moment will 

be introduced in PCB during high impact, which will make 

the PCB produce flexure deformation. The flexure 

deformation will introduce repeated pressure and 

compressive stress to the interconnections (solder joints) 

between MEMS device and PCB, which will result in 

connection failure of solder joints. The smaller the 

deformation is, the smaller the stress and strain are, and the 

time to recover to static equilibrium (the oscillation of 

impact) is shorter, which can increase the reliability of 

solder joints. 

The PCB are fixed to the base by bolt, considering the 

transfer process of stress wave, the dynamic response of 

MEMS package during high-g impact can be simplified to a 

board supported by each side and the load can be simplified 

to uniform load applied to underside of PCB, the two-

dimensional simplified universal model is shown in Fig.1.  

 

Fig.1. Simplified PCB model 

Based on the simplified model, two failure mechanisms can 

be obtained: overstress fracture under high impact and 

fatigue fracture for multi-impact. For onboard devices, the 

launch environment take place only once, thus overstress 

fracture is concerned in this study. 

The equations of motion under high-g impact are as follows 

(Suhir, 2002). 
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The flexure deformation of PCB ),,( tzxw  can be defined 

as the linear superposition of model units, and the 

superposition equation is as follows: 
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Where )(tuij  represents the displacement of micro-

deformation unit corresponds to ij order mode shape 

function. The mode function )(xX i  and )(zX j  of PCB, the 

natural frequency ij , and the displacement u of the board 

can be calculated respectively according to the following 

equation 
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For most of the differential equations of motion, there is a 

large number of nonlinear terms, the general analytical 

solution cannot be obtained, and numerical solution is 

needed by computer analysis, FEM is commonly used 

(including explicit finite elements, implicit global model 

and transient dynamic response simulation such as LS-

DYNA) and so on. 

High impact test are normally conducted to understand the 

actual response and verify the analysis results. The actual 

acceleration response curves on different sites (impact table, 

base plane, and test vehicle) are acquired for further 

numerical analysis. (See next section) 

3. FINITE ELEMENT MODEL AND DYNAMIC RESPONSE 

ANALYSIS 

3.1 The structure of MEMS 

In military applications, MEMS gyroscopes is mainly used 

for navigation guidance, attitude determination and stability, 

etc., the projectile usually stand with tremendous 
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acceleration when launching, which would cause the solder 

joints fracture. 

In this paper, a typical LCC package of MEMS gyroscopes 

in high impact is analyzed. The comb is installed inside the 

ceramic which is surface mounted on the PCB, brazing 

technology are used to cap sealing in vacuum condition. The 

package shown in Fig.2 is formed of the cover, ceramic, 

PCB and solder joints, the comb is ignored during the 

modeling for the mass and volume is much smaller than the 

package and the PCB. 

2.5mm

14.0 mm

1.47 mm

2.0 mm

10.0 mm

1.0 mm

0.25 mm

0.25 mm

cover 

cavity

ceramic

solder joint

PCB

1.27 mm

14.6 mm

 

Fig.2. MEMS package structure and geometry 

3.2 FE modelling and analysis 

FE modeling is proven to be a very efficient tool for design 

analysis and optimization of IC and MEMS packaging, 

because of advantages of economic, saving time and being 

able to provide comprehensive information.  

For the characters of high-g impact, the transient dynamic 

analysis is conduct using direct time-integration method. 

This can be further divided into implicit or explicit 

algorithm. While the contact duration may be extremely 

short and intense or when the impacting bodies if interest 

are excited into very high frequencies response, such as the 

cases of drop impact on rigid surface. For all of these 

reasons, the explicit algorithm is adopted in this analysis.  

Finite element model was established according to the 

MEMS gyroscope. The structure is mainly combined of the 

cover, ceramic, PCB and solder joints. Solid element 

(SOLID 164) was used to model all components including 

the PCB in this model. Due to symmetrical of the package, a 

quarter of the model was established in order to simplify 

modeling and save compute time, finite element model of 

LCC package is shown in Fig.3. 

 

Fig.3. Finite element model of MEMS package 

The material properties of MEMS packaging used in the 

FEM are shown in Table 1. The bilinear kinematic 

hardening model is chosen for the solder joints to be closer 

to the engineering practice, and linear material model is 

used for the rest component of the package. Generally, the 

damping of the system is often set between 0.01-0.25, where 

a fixed value of 0.03 is recommended here (Zhao et.al., 

2004). 

Table 1 Material properties used in FEM 

 

The hexahedral element is used to mesh the FEM in this 

paper for the low stiffness and high accuracy compared to 

the tetrahedron element. The mesh of the solder joints are 

refined to get a precise result of the stress in solder joints. 

The model is consisting of 10,772 nodes and 7,371 units. 

The input-G method developed by Tee (Tee et.al., 2004) is 

used in this dynamic analysis. This method is more accurate 

and much faster, and bypasses many technical difficulties in 

conventional dynamic model such as adjusting the 

parameters of contact surfaces, defining contact type, etc. In 

this way, only the package itself needs to be modeled. The 

impact acceleration pulsed which is measured and built 

from the actual test from the missile (see Fig.4.), are 

imposed on the supports of the board-level test vehicle as 

load condition. A very detailed finite element model of the 

board and package was constructed and simulated by LS-

DYNA (ANAYS).  

Fig.4. shows the impact pulse according to the actual 

measurement which features as an impact acceleration pulse 

with a duration of 0.01s, the initial value of 1.44×10
4
m/s

2
 

and peak acceleration of 12600g at 0.0026s, at 0.01 seconds, 

the acceleration reduced to 4.71×10
4
m/s

2
, after 0.01s, the 

load was removed. 

In ideal conditions, MEMS packaging only produced a 

straight up displacement (y direction) and the displacement 

(x, z) of PCB is confined in the whole process during the 

impact. As the result of a quarter models, symmetry 

Structure Materials 
Density 

(kg/m3) 

Young’s modulus 

(GPa) 
Poisson’s 

Yield strength 

(MPa) 

Tangent modulus 

(GPa) 

PCB FR4 1900 22 0.3 450 — 

Cover alloy 8460 138 0.31 380 — 

Body ceramal 3920 344 0.22 580 — 

Solder joint Sn3.5Ag 7400 52.7 0.4 22.5 3.09 
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boundary constraints should be applied to xy and yz surface 

on the inner side of the model. 

 

Fig.4. Acceleration curve 

Explicit nonlinear algorithm, a more suitable method, was 

used for dynamic response analysis. Contact surface cannot 

penetrate each other by the outer surface, so automatic 

single surface contact was set for global contact. Hourglass 

is a model in theory, not exist in the actual process, it is a 

mathematically stable but physically impossible state. 

Solutions will be useless because of hourglass, and if the 

total hourglass of the model can be greater than 10%, the 

result is generally a fault result. The hourglass was set 10% 

of the total internal energy in this paper. The results file 

output interval was 100, and time-history output Interval 

was 100, the solution termination time was 0.03s. 

3.3 Results and Discussion 

Fig.5 shows the typical simulation analysis results for the 

contours of von-mises stress of MEMS. The response of 

MEMS package under high-g impact is a dynamic process, 

the maximum effective stress occurs in the outermost corner 

and reached to 27.17MPa, more than the yield strength of 

solder joint (22.5MPa), which make the solder joint produce 

plastic deformation and maybe fracture during the impact; 

The maximum plastic strain has reached 2.7×10
-3

. Fig.6 

shows Time-History curve of solder joint at the maximum 

stress point. The solder joints experience tensile stress first, 

and then stress changes to attenuating. The effective stress 

reached its peak at 0.0027s, and after about 0.0105s, the 

stress tends to stabilize. 

 

Fig.5. The stress distrubuting of the finite element 

simulation 

 

Fig.6. Effective stress Time-Histroy of maximum stress 

point 

By comparing the deflection-time curve of the PCB and the 

stress-time curve of the solder joints, it finds that the 

maximum stress in solder joint reaches its peak at the 

moment of the deflection of the PCB reaches its maximum, 

and the effective stress has a slight fluctuation along with 

the acceleration curve during the impact. It suggests that 

peeling stress in solder joints is mainly caused by the 

deflection of the PCB board during impact. 

In addition, the deformation of the alloy cover is large 

during the impact; Fig.7 shows the cover had bending 

phenomenon to the cavity. At the same time, difference 

between the maximum and minimum displacement of the 

unit is the maximum deformation, the maximum 

deformation of the cover is 0.08mm, which is 32% of the 

cover thickness (0.25mm), and it is 4% of the cavity depth 

MEMS devices (2mm), if the deformation of alloy cover is 

too large, it will squeeze the internal structure in LCC 

package, then failure occurs. Therefore, the proposed design 

of the LCC package should reserve larger space for the 

upper part to avoid excessive deformation of the cover. In 

addition, by using potting processing, the squeeze effect 

would be more serious. 

 

Fig.7. The deformation distrubuting of the cover 

Meanwhile, the edge of PCB occurred to bend up, as shown 

in Fig.8. And at the moment of maximum stress occurred, 
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the deformation of PCB reached a maximum of 0.01mm, 

which is 1% of its own thickness (1mm), and it is 5% of 

solder joint height (0.2mm), thus, the squeeze will extrusion 

the solder joint which is the main reason to produce internal 

stress of the solder joint. 

 

Fig.8. The deformation distributing of the PCB 

4. CONCLUSIONS 

This paper conducts a research on the dynamic response of 

MEMS gyroscope board-level package reliability under 

high-G impact. Theoretical analysis and mathematical 

model for failure mechanism of MEMS package (Leadless 

Chip Carrier, LCC) under high-G impact are established and 

analyzed. Analytical solutions that provide physical insights 

to the dynamics of PCB and the interconnection stresses 

have been presented. 

Under high-g impact, solder joint is the key weakness that 

influence MEMS package, which will be fractured and 

failure easily. The response of MEMS package is a dynamic 

process. Moreover, the maximum effective stress in the 

structure occurs at the outer corner in the outermost solder 

point, and the alloy cover and PCB have a greater 

deformation. 

The room between the cover and the device inside MEMS 

should be carefully designed, and the distant must be longer 

than 10% of the cavity depth. 

Considering the failure mechanism of solder joint that the 

flexure deformation of the PCB produces stress inner solder 

joint, we recommend minimizing the length and width of 

the PCB or increasing the thickness of the PCB or 

increasing the stiffness of the PCB so as to decrease the 

stresses in the solder joint. 
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ABSTRACT 

This paper presents a novel approach to diagnosis of dc-dc 
converters with application to prognosis.  The methodology 
is based on Symbolic Dynamics and Diagnostics.  The data 
derived method builds a statistical baseline of the converter 
that is used to compare future statistical models of the 
converter as it degrades. Methods to determine the 
partitioning and number of partitions for the Symbolic 
Dynamics algorithm are discussed. In addition, a failure 
analysis is performed on a dc-dc forward converter to 
identify components with a high probability of failure.  
These components are then chosen to be monitored during 
accelerated testing of the dc-dc forward converter.  The 
methodology is experimentally validated with data recorded 
from two dc-dc converters under accelerated life testing.* 

1. INTRODUCTION 

Diagnostics methodologies attempt to determine the current 
state of health of a system and flag any type of anomalous 
behavior that could affect the operation of the system.  
Successful diagnostics can eventually lead to 
prognostication of a system where prognostication is the 
prediction of the remaining useful life of the system under 
monitor (Hess et al., 2005) 

The goal of diagnostics and health management in general 
is to maintain system operability, reduce maintenance costs, 
and maximize safety.  Diagnostics and health management 
of electronic systems can be obtained by numerous different 
                                                           
* Gregory M. Bower et al.  This is an open-access article 
distributed under the terms of the Creative Commons Attribution 
3.0 United States License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the 
original author and source are credited. 

methodologies.  Most of these can be sorted into either a 
data driven or model based category.  Model based 
methods, such as the name implies, rely on a physical model 
representation of the system and the underlying degradation 
process (Brown et al., 2006).  On the other hand, data 
driven models tend to model the degradation of a system by 
long term monitoring of the system.  This methodology 
tends to require large data sets in order to train the data 
driven models used to generate the health measures. 

In this paper, we aim to develop a methodology based on 
Symbolic Dynamics (SD) (Ray, 2004; Rohan, 2006) that 
can be used to generate diagnostic measures from a 
degrading dc-dc converter.  Symbolic Dynamics has been 
applied to many systems including inverter fed induction 
machines (Rohan et al., 2006), fatigue crack diagnosis 
(Singh et al., 2010), and in nuclear power plant operations 
(Jin et al., 2011).  

In this paper, we used a dc-dc forward converter for our test 
subject.  Data is recorded from an accelerated test of these 
converters on an hourly basis and is used in the algorithm.  
It is our intention to expand the results into a prognostic 
algorithm that can deduce the remaining life of the 
converter from the current anomaly generated by the SD 
algorithm. 

Symbolic dynamics lends itself well to the area of electronic 
diagnostics as it is a relatively simple algorithm to 
implement. In general, the algorithm analyzes the data 
captures and forms states based on the data.  These states 
are then tracked statistically through time.  These states can 
be designated in numerous ways; that is, the states could 
directly be related to the data points themselves or represent 
the duty cycle of the converter. 
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This paper is organized as follows.  Section 2 presents a 
background on the Symbolic Diagnostics and Analysis 
methodology.  Section 3 focuses on the dc-dc converter and 
the accelerated testing of the converter to generate the 
experimental data used in the algorithm. Section 4 presents 
the results of the algorithm compared to other electronic 
system diagnostic metrics.  Finally the paper concludes with 
a short conclusion and future work suggestions. 

2. SYMBOLIC DIAGNOSTICS AND ANALYSIS OF 
TIME SERIES DATA 

Diagnostics of the converter is accomplished through the 
use of symbolic diagnostics and analysis of time series data 
(Ray, 2004).  In this work, we propose a methodology to 
accomplish diagnostics of a dc-dc converter in real-time 
with the use of this tool.  The method depends on 
symbolizing the captured time series data, generating states 
that consists of permutations of generated symbols, and 
calculating the probability of these states.   

In general, the probability of the states change as the 
converter ages and degrades.  Tracking these changes 
allows for quantification of the degradation in the dc-dc 
converter over time.  These changes can be quantified by 
comparing the current analysis to a baseline case.  Two 
underlying assumptions must be satisfied in order to use 
symbolic dynamics.  They are: 

1) The system degradation mechanisms must be 
dynamically separate from the system dynamics; 
and 

2) The system generates monotonically positive 
anomaly measures. 

The first requirement is a two time scale separation 
argument.  If the system dynamics are much faster than the 
degradation mechanisms, then individual data captures will 
contain stationary degradation dynamics.  The second 
assumption states that the system does not exhibit self-
healing or is repaired.  This assumption is flexible in that a 
non-monotonically increasing anomaly can make diagnosis 
more difficult but not impossible.  A monotonically positive 
increasing anomaly also pushed the methodology towards a 
prognostics tool.  

The dc-dc converter satisfies assumption one as the system 
dynamics are monitored through time.  The dynamics of the 
dc-dc converter are based on the switching frequency of the 
converter, that is, 100 kHz.  A short data capture is taken at 
a faster rate than the switching frequency and is used to 
determine the current system state of health.  During this 
short interval, the degradation in the converter can be 
considered stationary.  For assumption two, the converter is 
allowed to age without repair.  The degradation in the 
converter continually increases and with the anomaly 
quantification metrics, generates an increasing anomaly 
measure. 

 

The methodology for Symbolic Dynamics begins by first 
determining the number of symbols to use in the definition 
of the symbolic sequence and also defining the partitions to 
assign symbols to time series data points which is closely 
related to defining the number of symbols.  Each data point 
is assigned to a unique symbol.  This step can be considered 
as a coarse quantization of the time series data. 

With the symbolic series now generated, the next step is in 
determination of states for the algorithm.  States are simply 
defined as groupings of D symbols.  Throughout this paper, 
the choice D, called depth in the algorithm, is chosen to be 
unity; that is, each symbol results in a state.  Once the states 
are defined, the probabilities of occurrence of the states are 
used to generate an anomaly in the behavior of the system 
that is related to degradation.  Currently, there are numerous 
metrics to quantify an anomaly based on these state 
probabilities. 

The algorithm will now be discussed in more detail 
including the partitioning of the time series data,  generation 
of the symbolic sequence, and the determination of 
parameters in the algorithm.  With the completion of 
symbolization, the discussion will continue with defining an 
anomaly based on the statistical model generated from the 
time series data. 

2.1 Choice of Number of Symbols 

In order to enable the partitioning of the time series data, the 
choice of the number of symbols in the algorithm must be 
determined.  Two methods are presented, one for each type 
of partitioning methodology.  The partitioning methods will 
be discussed in the next section.  Each method is based on 
the entropy of the resultant symbol distributions generated 
from the partitioning method. 

For uniform partitioning, the choice of number of symbols 
to use is defined by the use of Entropy Efficiency.  Entropy 
Efficiency is given as: 

 
∑

 (1) 

where  is the probability of the ith symbol.  The ′  are 
calculated at each iteration of the search for N and represent 
the probability of each individual partition.  The logarithm 
is taken to the base 2 such that result of entropy is based in 
bits.  The aim is to determine the maximum of Eq. (1) over 
uniform partition size, N.   

Equation (1) can be interpreted in two ways.  First, the 
denominator term acts as a penalty term for larger 
distributions that is a large choice of N. This enforces 
computationally a more efficient algorithm.   
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Secondly, this metric measures the entropy deviation from 
the ideal entropy given by a uniform distribution 
(represented in the denominator term).  For source 
distributions that are not known a priori, a good estimate for 
the source distribution is that from a uniform probability if 
there are no constraints or assumptions on the underlying 
generating symbol distribution (Conrad, 2011). 

An issue associated with this method that must be kept in 
mind is if during the process of looking for an optimal 
number of states is if a state is generated that has a null 
symbol occurrence probability.  This would cause the 
entropy estimate to be undefined.  In this case, the search 
concludes with the generation of the first null symbol 
probability. 

For ME partitioning, we again turn the use of entropy under 
a method developed by (Rajagopalan & Ray 2006).  This 
method estimates the number of states through the use of 
histograms.  To estimate the number of states we use the 
differential entropy of the time series data given as: 

 

∞

∞
 (2) 

where x is the possible values the data can take and p(x) is 
the probability density of x.  Once the entropy for the time 
series data is estimated, the number of symbols for ME 
partitioning is given by: 

 0 	 (3) 

that is, we obtain a distribution whose entropy is greater 
than or equal to that of the entropy estimate from the time 
series data.  The number of symbols N is chosen to be the 
minimum k that satisfies Eq. (3). 

A difficulty with differential entropy is the ability of this 
measure to take on a negative value.  If this is the case, the 
algorithm defaults to a selection of two for the number of 
symbols. 

2.2 Partitioning 

After the number of partitions has been determined, the next 
step of the algorithm requires symbolization of the time 
series data.  This step includes the determination of the 
partitioning structure of the time series data used in the 
generation of the symbol sequence.  This step requires the 
number of symbols used in the algorithm as well as the 
partitioning methodology of which includes uniform and 
Maximum Entropy (ME) partitioning to be determined.  
The choice of the number of symbols will fix the number of 
partitions in the algorithm as each partition is assigned a 
unique symbol as was discussed previously. 

The objective of the partitioning is to assign a symbol to 
each of the time series data points	 ≡ , ,⋯ , .  

Given the set of N symbols, ∑ , ,⋯ , , each 
symbol si is assigned to one partition Pi, where P is the 
partitioning of the time series data ≡ , ,⋯ , .  
Therefore, if ∈ , → , that is, we assign si to xi if xi 
falls within the bounds of Pi.  As mentioned earlier, there 
are two methods to develop the partitioning P and they are 
called uniform partitioning and ME partitioning. 

Uniform partitioning requires taking the range of the time 
series data and dividing it into the N mutually–exclusive 
equally spaced partitions.  Each time series data point that 
falls into one of these N regions is thus assigned a unique 
symbol. 

The other popular method for time series data partitioning is 
by Maximum Entropy.  This partitioning scheme, as hinted 
by its name, is completed by maximizing the entropy of the 
resultant symbol occurrence probability.  That is, the 
occurrence probability of the symbols should be uniform in 
nature. 

In order to complete this, the time series data is ordered in 
magnitude.  By grouping the ordered data into subgroups of 
length X/N, the partitioning structure for ME partitioning is 
defined.  The resultant occurrence probability for these 
partitions in the baseline case becomes equal.  This differs 
from the results of uniform partitioning as the resultant 
probabilities are generally not uniform. 

In theory, the total number of partitions can range from a 
simple binary partition to an upper limit defined by the total 
number of unique samples in X.  In the former case, each 
data point is simply relabeled with a unique symbol. 

2.3 Anomaly Generation 

With the completion of the partitioning and symbolization, 
it is left to determine how to quantify an anomaly from 
changes in the underlying statistical behavior of the system.  
The deviations in the system are captured through changes 
in the state occurrence probabilities.  In the case of unity 
depth, D is equal to one, the states that are tracked during 
life testing are simply the symbol occurrences.  In general, 
if D is not unity, the states of the system consist of 
permutations of groups of D symbols.  In the following, the 
states are thus the symbol occurrence probabilities as D is 
set to unity. 

In this work, two measures are used to quantify this change 
and define it as an anomaly A.  One is based on a Euclidean 
distance type measure and the second is based on the 
Kullback-Leibler divergence (Singh et al., 2010).  Both of 
these measures use the baseline distribution of state 
probabilities as well as the current distribution to generate 
an anomaly. 

The Euclidean measure is the 2-norm difference between 
the baseline and current system state probability 
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distributions.  Given the state probability vector p, the 
Euclidean metric is: 

 ‖ ‖ 	     (4)

where  is the baseline state probability vector and 
 is the current state probability vector.  The baseline SPV 

is based on the healthy condition of the system such as at 
the start of use.  The other measure implemented in 
generating an anomaly from the statistical models of the 
system is the Kullback-Liblier divergence:  

 	     (5)

In (5), the sum is over the total N states in the algorithm 
while k represents the kth iteration of the algorithm.  An 
anomaly measure is generated from (5) by: 

 0.5 , ,
(6)

These anomalies are then used to diagnose the current state 
of the converter as the system degrades from use.  From 
these measures, it is possible to detect degradation or a fault 
that has occurred in the system.   

3. ACCELERATED TESTING OF A DC-DC 
FORWARD CONVERTER 

In order to verify the algorithm, a 50W forward converter 
was designed, constructed, and placed in an accelerated life 
test environment.  The forward converter used 15 V for 
input and output 10 V at 5 A nominally.  The general circuit 

diagram of a forward converter is shown in Figure 1 with 
the locations of the sensors implemented in the testing.  
This converter implements the current-mode feedback 
methodology in addition to output voltage feedback. 

It is known that specific components in the dc-dc forward 
converter are more susceptible to failure than other 
components.  From (Orsagh et al., 2006; Orsagh et al., 
2005), the most probable locations of failure for the 
converter are the MOSFET power switch, the rectifying 
diodes, and the input and output capacitors. 

The accelerated test consisted of placing the converter in an 
oven to generate a High Temperature Operating Life 
(HTOL) test.  This test is geared to ascertain the usable life 
of a system by continually running the system at high 
environmental temperatures.  In this case, the converters 
were continually run at 85°C.  This temperature point 
coincides with the maximum operating temperature of 
several components in the converter.  These components 
included the Pulse-Width-Modulator (PWM) controller, 
input/output electrolytic capacitors, and several other 
integrated circuits. 

The high temperature was used to accelerate failures in the 
dc-dc converter.  For example, the electrolytic capacitors 
contained in the circuit would be directly affected by 
operating temperature.  The higher temperature would cause 
acceleration in the loss of electrolyte in the capacitor 
causing wear out (Kulkarni et al., 2009).  This in turn would 
cause an increase in the capacitors equivalent series 
resistance (ESR). 

Additionally, the power MOSFET failure mechanism of 
Time Dependent Dielectric Breakdown (TDDB) can be 
accelerated by higher temperatures (Kalgren et al., 2007).  

Figure 1: Simplified Diagram of a dc-dc Forward Converter with Sensor Locations 
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Another failure phenomenon that can be accelerated with 
higher temperatures is electromigration affecting both 
MOSFETs and rectifying diodes.  These two components 
are also susceptible to degradation caused by interdiffusion. 

  

3.1 Sensor Placement 

Although each component will degrade individually and 
sensors have been placed at these components to observe 
degradation, the objective of this research is not to 
specifically identify the failure mode of a specific 
component. Instead, the objective is to capture data across 
locations in the converter that have high probability of 
degradation and/or failure to generate a diagnostic measure 
for the system as a whole. 

Sensors were placed in the circuit that would maximize the 
probability of observing degradation in the components 
mentioned above.  In addition, the input voltage was also 
monitored throughout the testing. 

Voltage sensors were placed across the power MOSFET, 
the freewheeling diode (DFW), and at the output voltage, VO.  
In addition, the current signal produced from the current 
sensor for current-mode feedback was also used in the 
degradation monitoring.  Since this signal was already being 
monitored for current mode control, it provided an easy 
means to access the instantaneous switch current waveform. 

Thermocouples were placed on the tabs of the TO-220 
package for the MOSFET and diode DFW for monitoring as 
well.  During each time series data capture, one sample each 
was taken of the MOSFET, DFW, ambient, and oven 
temperatures for monitoring during testing. 

Data for the SD algorithm was recorded from these sources 
at a rate of 800 KS/s.  The data acquisition hardware was 
triggered every hour to record a data snapshot of 0.25s in 
duration.  No anti-aliasing filters were implemented in the 
data acquisition hardware.  The data channels were buffered 
into NI 9221 analog input modules. 

Anti-aliasing filters were not implemented as the filtering 
function could remove degradation information from the 
signals.  Since the sampling rate is approximately eight 
times the switching frequency of the converter, the anti-
aliasing filters would have filtered too much of the 
frequency spectrum of the signals.  The anti-aliasing filters 
would remove significant energy from the spectral content 
of the time series data.  Given that our objective is to not 
recreate the time series date, it is acceptable to have a 
limited sample rate on large bandwidth signals.  More 
research is currently being performed on the affects of the 
low rate sampling on the performance of the symbolic 
dynamics algorithm. 

3.2 Life Testing 

The forward dc-dc converter was placed into the 
temperature chamber and allowed to function until failure of 
the converter.  Failure was defined as failure to maintain 
desired output voltage within 10% of the set point or as the 
result of complete failure. 

For testing, the converter was loaded with a bank of 0.5 Ω 
resistors used to create a 1 Ω load for the converter.  The 
voltage output of the converter was set at 9.5 V across the 1 
Ω load.  This resulted in a continuous output power of about 
90 W.  The converter would then be continually loaded at 
this power level while under the HTOL testing.  Further 
research will investigate the effects of changing load on the 
results of the methodology. 

The converter had a 24 hour burn in procedure to confirm 
functionality of the converter and data acquisition systems.  
This period also allowed the system to reach an operational 
steady state before the stress testing began.  The 
temperature of the oven during burn in was 65°C.  After this 
period of time, the accelerated testing was started.  The 
temperature of the oven was increased to 85°C at this time.  
This temperature was selected due to the operational 
temperature constraints of the onboard electrolytic 
capacitors and integrated circuits (ICs). 

The first converter was operated for 200 hours after the burn 
in period was completed.  At this time, the converter failed 
by not being able to maintain the desired output voltage.  
Post failure analysis pointed to the input capacitors as the 
failed components.  Table 1 shows the pre and post test 
conditions of all electrolytic capacitors in the converter 
which demonstrate the degradation experienced by the 
capacitors  

 Pre-Test Post-Test 

Capacitor C (µF) DF C (µF) DF 

C1 455 0.049 415 0.487 

C2 449 0.05 241 1.24 

C3 449 0.047 128 1.96 

C4 204 0.057 200 0.057 

C5 204 0.058 199 0.058 

Table 1:  Capacitor Characterization for Converter Test 1 

In the table, C1-C3 were the input capacitors (CIN in Figure 
1), C4 was the output voltage capacitor (CO), and C5 was 
used as a filter for a negative voltage bus in the converter 
(not shown in Figure 1).  DF in the table is the Dissipation 
Factor of the capacitors and is related to the loss tangent for 
dielectrics.  The higher the DF value results in a larger 
magnitude of the ESR component of the electrolytic 
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capacitor generating higher internal power losses in the 
capacitor.  The relationship between DF and ESR is: 

 | |
	     (7)

where XC is the reactance of the capacitor under the test at 
the known test frequency. 

As is visible in the table, capacitors C2 and C3 suffered 
severe damage from the testing.  This is representative in 
both the reduction of the capacitance (nominally 470 µF) 
and the increase in the DF measure of both capacitors.  
Confirmation of the failure was completed by restoring the 
converter to normal functionality by replacement of these 
capacitors (C1 though C3).  Replacement of these 
capacitors restored the output voltage capability of the 
converter. 

Similarly, a second test was carried out under the same test 
conditions for failure repeatability with a new converter.  
This test lasted approximately 1,800 hours at the 85°C test 
at which point the test temperature was increased by 10°C 
in order to accelerate the test.  At this temperature point, the 
converter functioned for another 152 hours.   

After failure, it was determined that the failure was again 
the input capacitors of the converter.  Table 2 shows the 
capacitor characterizations before and after the testing. 

 Pre-Test Post-Test 

Capacitor C (µF) DF C (µF) DF 

C1 434 0.043 377 0.617 

C2 434 0.043 371 0.694 

C3 427 0.045 363 0.800 

C4 203 0.051 194 0.087 

C5 203 0.052 143 0.53 

Table 2:  Capacitor Characterization for Converter Test 2 

Test 1 and test 2 capacitors showed some signs of the top of 
the canisters bulging.  This is most likely related to loss of 
electrolyte through evaporation due to internally generated 
heat in the capacitor.   

The difference in test lengths is most likely due to 
component differences in the converters such as those from 
different lots.  The capacitors used in the converters were 
from the same manufacturer but not from the same 
production lot.  The tables also demonstrate the amount of 
degradation the capacitors incurred during testing 
specifically in terms of the dissipation factor.  In terms of 
the data derived method, the difference in test lengths will 
not negatively affect the performance of the algorithm as 
will be seen in the upcoming sections.     

The other components observed during testing (MOSFET 
and rectifying diodes) did not show significant changes in 
parameters after testing.  Parameters tested for the 
MOSFET included VGS,th, the gate threshold voltage, 
approximate Rds,on, gate leakage current, and BVDSS, the 
maximum drain to source voltage.  The rectifying diode 
parameters included VFW, the forward voltage, and the 
maximum cathode-anode voltage.  All of the above 
parameters recorded minimal changes from pre to post-
testing. 

4. RESULTS 

Once the data collection was completed with the failure of 
the converters, the SD algorithm was implemented on the 
captured data sets.  The goal of the algorithm is to generate 
anomalies using the collected data that can be used to 
determine the state of health of the converter. 

The SD algorithm results are compared to features that are 
commonly used to monitor the health of electronics.  The 
estimated efficiency of an electronic system has been used 
to determine the current state of health of the system as a 
loss of efficiency is a sign of system degradation (Orsagh et 
al., 2005).  Efficiency can be monitored through 
implementation of sensors on the input and output ports of 
the system to monitor current and voltage.  As the 
components in the system begin to degrade, they tend to 
have more internal power loss that directly affects the 
converter’s overall efficiency.  This degradation can be 
tracked through the computation of the system’s efficiency. 

When the testing of the converters was first started, it was 
not anticipated that an efficiency measure would need to be 
calculated so input and output currents were not measured.  
However, input and output voltage was measured and 
switch current was also monitored.  From these three 
variables plus knowledge of the load enabled efficiency to 
be estimated from the captured converter signals. 

From the captured data, the input current had to be 
estimated from the captured switch current. This required 
the duty cycle to be estimated from the data captured from 
the converter.  Once the duty cycle was estimated, the 
current was scaled by the duty cycle and the mean taken 
from current data when the switch is ON.  This was 
calculated as: 

 , ∗ 	     (8)

where , , is the switch current during the ON interval 
and D is the duty cycle. 

Another feature to be compared to the SD algorithm is 
related to the output voltage ripple of the converter.  As the 
output capacitor degrades, the ESR of the capacitor tends to 
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increase causing more output voltage ripple.  To attempt to 
capture this effect, a form factor metric given as: 

 
,

,
	     (9)

was implemented to track the output ripple  characteristics. 

Symbolic dynamics was applied to the time series data 
recorded from the accelerated testing of the converters.  
Since there was uncertainty in which signals would produce 
the best results, the algorithm was implemented on all 
signals using the automatic selection methods discussed in 
Section 2.2. 

From the results of the algorithm implementation, it was 
discovered that the signals containing the best degradation 
trending was the diode voltage (DFW in Figure 1).  An 
example of the diode voltage is shown in Figure 2.  This 
data was taken from the first converter test. 

 

 

Figure 2:  Sample Diode Data with Partitioning (Red) - 
Healthy 

As seen in the figure, the data is sampled at 800 kHz 
resulting in eight data points per cycle in the waveforms.  
The binary partitioning implemented in this analysis 
generates an interesting result.  The upper partition 
probability of occurrence is the duty cycle of the converter.  
In this case, the algorithm automatically defaults into a duty 
cycle detector and tracker.    

The diode’s voltage works well as the wave shape of the 
voltage is a pulse waveform in nature.  The pulse wave 
shape enables a direct correlation of duty cycle of the 
converter to the converter’s current operating condition.  
The duty cycle of the converter is a good feature to use for 
converter health.  As the converter degrades, in order to 
maintain the current output power, the duty cycle must be 
perturbed slightly larger.  The duty cycle needs to increase 
because as the converter degrades the efficiency of the 
converter also decreases as internal components begin to 

become more lossy.    The efficiency of test 1 over the 
complete interval is seen in Figure 3. 

 

Figure 3:  Test 1 Efficiency over Accelerated Testing 

The efficiency of the converter decreases throughout the 
accelerated converter testing.  To overcome the additional 
losses in the converter, the closed loop control perturbs the 
duty cycle to maintain output power.  The duty cycle for test 
1 is shown in Figure 4. 

 

Figure 4:  Converter Test 1 Duty Cycle over Accelerated 
Testing 

As the testing progresses, the increasing degradation in the 
system causes the duty cycle to be increasingly perturbed.  
From the plot, the converter started at approximately 34% 
and failed when the duty cycle reached just over 35%.   

Figure 5 shows the captured diode data after 200 hours of 
degradation also from the first test.   
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Figure 5:  Sample Diode Data with Partitioning (Red) – 
Degraded 

In Figure 5, note that the same partition is used in the 
example.  The partitioning must remain invariant across the 
lifetime of the system for proper operation.  Also note that 
due to the degradation, there is an additional data point in 
the upper partition.  This in turn increases the upper 
partition’s occurrence probability which can be interpreted 
as an increase in the duty cycle of the converter. 

4.1 First Converter Test 

The results in Figure 6 are from the captured diode data 
using the binary partitions shown in Figure 2 and 5.  The 
anomaly was generated from the state probability vector 
where the states are the partitions themselves (depth was set 
to 1).  The anomaly metric used in the figure was from (4).  
The baselines used in all the cases were from the initial start 
of the burn in.  It is possible to use any point in the test for 
the baseline.  In this case it was convenient to use the first 
set of captured data.  

 

Figure 6:  Anomaly Measure Generated from Diode Data – 
Euclidean Distance Metric – Test 1 

 

In Figure 6, the jump in anomaly at 24 hours was a result 
from the end of the burn in period leading into the start of 
the accelerated testing.  In general, the anomaly increases 
steadily until approximately 180 hours into the test where 
the degradation accelerates rapidly.  The last data point was 
taken just over 200 hours when the converter failed.   

The following figure combines the SD anomaly of Figure 6 
with those obtained from an efficiency calculation and from 
the output voltage form factor. 

 

Figure 7:  Comparison of Symbolic Dynamics Anomaly, 
Estimate Converter Efficiency, and Form Factor 

As seen in Figure 7, the three measures compare well with 
one another.  All three measures show some effect from the 
break in period into the accelerated testing.  In this example, 
it is clear that Symbolic Dynamics reproduces the results of 
the other metrics with minimal effort.  Additionally, the SD 
generated anomaly has less noise as compared to the other 
two measures over the complete test period.  Forward 
thinking, this result should be positive for use in a 
prognostics sense with these converters 

4.2 Second Converter Test 

The testing was repeated with a second converter to 
reproduce the results seen above.  The converter was again 
tested with a 24 hour burn in period and then left to be 
operated at 85°C until failure. 

This test also resulted in failed input capacitors; however, 
the complete test lasted approximately 1,800 hours. 
Symbolic dynamics was again implemented on the diode 
data and the results are shown in Figure 8. 
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Figure 8:  Anomaly Measure Generated from Diode Data – 
Euclidean Distance Metric – Test 2 

In Figure 8, the test lasted significantly longer than the 
previous test.  However, the results are very similar with the 
anomaly trend increasing rapidly toward failure.  The jump 
in anomaly in the beginning is due to the break in interval 
while the jump towards the end (around 1,700 hours) was 
due to a change in the test parameters.  At that point, the 
temperature of the test was increased from 85°C to 95°C in 
order to further accelerate the testing. 

Again, we aim to compare our results to metrics more 
commonly used to diagnose the health of an electronic 
system.  Using the same data, the efficiency and form factor 
metrics were calculated and the results are shown in Figure 
9. 

 

Figure 9:  Comparison of Symbolic Dynamics Anomaly, 
Estimate Converter Efficiency, and Form Factor 

As is observable, each of the measures are susceptible to the 
jump in operating temperature both from the break in period 
and from the increase in test temperature near the end of the 
test.   

As compared to the results from the first test, the form 
factor metric does not produce as clear a trend as compared 
to the SD or the efficiency result.  It would be difficult to 
determine current state of health from this trend.   

Efficiency is a consistent metric between the two tests and 
is relatively easy to calculate.  However, it does require one 
to record the input and output characteristics of the 
converter during operation whereas the SD methodology 
only requires the monitoring of one channel.  The SD metric 
in both cases also produces a consistent degradation metric 
that could be used for diagnostics. 

5. CONCLUSION 

This paper proposes a data derived approach to monitoring 
dc-dc converters for degradation during operation.  The 
methodology is based on Symbolic Dynamics that converts 
the captured time series data into a symbolic series that is 
analyzed statistically.  The statistical results are then used to 
generate an anomaly based on the current operating 
conditions of the converter as compared to a known 
baseline. 

The algorithm was tested on data recorded from two dc-dc 
forward converter tests.  The aim was to capture 
degradation trends from the converters by monitoring the 
input voltage, switch current, MOSFET drain to source 
voltage, the output freewheel diode voltage, and the output 
voltage.  It was determined that the diode voltage was the 
most sensitive to the internal degradation of the converter.   

The generated anomaly from the SD algorithm was 
compared to the overall efficiency of the converter as well 
as the form factor of the output voltage.  The form factor 
metric aims to capture the change in the output voltage 
ripple related to degradation of the output electrolytic 
capacitor.   

The results show a consistent trend generated from both the 
SD anomaly and the efficiency of the converter.  The form 
factor was inconsistent in generating trends between the two 
tests. 

Future work will focus on effects to the algorithm from 
loading changes as well as further investigation into the 
effects of the different parameters in the Symbolic 
Dynamics algorithm.  It was also determined that 
temperature deviations affect the data derived method 
which requires further investigation.  Investigation of using 
the generated trends for prognostication will also be 
researched.  The trends produced from testing currently 
have generated trends that we believe are applicable for life 
prediction. 
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ABSTRACT 

Trouble Shooting Manuals (TSMs) provide useful 
information and guidelines for machinery maintenance, in 
particular, for fault isolation given a failure mode. TSMs 
produced by OEMs are usually updated based on feedback 
or requests from end users.  Performing such update is very 
demanding as it requires collecting information from 
maintenance practices and integrating the new findings into 
the troubleshooting procedures. The process is also not fully 
reliable as some uncertainty could be introduced when 
collecting user information.  In this report, we propose to 
update or enhance TSM by using validated   FMEA (Failure 
Mode and Effects Analysis), which is a standard method to 
characterize product and process problems.  The proposed 
approach includes two steps.  First, we validate key FMEA 
parameters such as Failure Rate and Failure Mode 
Probability through an automated analysis of historical 
maintenance and operational data.  Then, we update the 
TSM using information from the validated FMEA.  
Preliminary results from the application of the proposed 
approach to update the TSM for a commercial APU suggest 
that the revised TSM provides more accurate information 
and reliable procedures for fault isolation.*

1. INTRODUCTION 

 

TSMs are useful resources for machinery maintenance, in 
particular, for fault isolation given a failure mode. Fault 
isolation in a complex system involves identifying a root 
contributing component or ranking the contributing 
components given a failure mode. This is generally 
complicated and time consuming. The TSM guides the 
technician through the process by providing a potential list of 
causes along with procedures to be executed in order to 
identify the fault(s) and fix the failure. The list contains a set 
of possible components and corresponding maintenance 
procedure. However, these components or causes are 
                                                 
* This is an open-access article distributed under the terms of the 
Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
 

typically not ranked and this introduces ambiguity during 
fault identification. In other words, without the ranking 
information, the technician has difficulty to decide which 
component should be first investigated in isolating the 
contributing component.   We believe that enhancing the 
TSM with an ordered list of components based on 
experiences from historical maintenance would help 
increase efficiency.  To achieve this objective, we propose 
to validate FMEAs based on historical operation and 
maintenance data and then use the validated information to 
revise and enhance the TSM. 

Failure Mode and Effects Analysis (FMEA) models are 
available for a wide variety of machineries. They   provide a 
foundation for qualitative reliability, maintainability, safety, 
and logistic analysis by documenting the relationships 
between failure causes and failure effects.  In particular, 
FMEA models contain useful information such as Severity 
Class (SC), Failure Rate (FR), and Failure Mode Probability 
(FMP) for determining the effects of each failure mode on 
system performance. Our intent is to exploit such 
information to update and enhance TSM. However, since 
FMEAs are produced at design time and then hardly 
validated after deployment of the corresponding system, 
there is a risk that the information provided is incomplete or 
no longer accurate. The likelihood for such inaccuracies is 
particularly high for complex systems such as aircraft 
engines that operate over a long period time. In such cases, 
using the initial FMEA information without adequate 
validation could result in the introduction of irrelevant 
recommendations. To avoid this issue, the initial FMEA 
information needs to be validated and then updated as 
required.  In Yang et al. 2009, we proposed a process to 
validate FMEAs using real-world readily available 
maintenance and operational data.  In particular, we 
investigated validation of a FMEA for an APU (Auxiliary 
Power Unit engine).  To constrain the study, we focused on 
components related to the “Inability to Start” failure effect.  
In this work, we explore the use of the validated FMEA to 
enhance the sections in the TSM that are related to the same 
problem (i.e., APU Inability to Start).  Our objective is to 
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order the contributing components listed in these TSM 
sections and modify the corresponding procedures based on 
the parameters from the validated FMEAs.     
  
The next section provides an overview of validation of 
FMEA using historical operational and maintenance data.  
Then we present the TSM revision by applying the validated 
FMEA information. In Section 4, we discuss the results. The 
final section concludes the paper. 
 
2. OVERVIEW OF VALIDATING FMEA 
APU FMEA documents used in this study were provided by 
the OEM. As usual, the FMEA was created during the 
design phase. It contains typical FMEA information: failure 
effect, failure mode (failure identification), failure cause, 
contributing components, symptoms, functions, corrective 
actions, Failure Rate (FR), Severity Class (SC), Mean Time 
between Failures (MTBF), and Failure Mode Probability 
(FMP). For validation purpose, we focus on key  
quantitative parameters such as SC, FR, and FMP. The 
validation process (Yang et al, 2009) combines database 
retrieval and data mining techniques to automatically adjust 
the initial values based on actual experiences as recorded 
within the maintenance database. 

Figure 1 illustrates the proposed approach for FMEA 
validation.  The various tasks can be grouped into three 
main phases: 

1. Obtain the failure events from maintenance 
database given a failure mode in FMEA 

2. Gather the relevant data for the failure events and 
conduct the statistical analysis for APU usage time 

3. Update the FMEA parameters using statistical 
information 

 

2.1 Obtaining Failure Events 

The goal is to retrieve information for all relevant failure 
events or component replacements from the maintenance 
database that relate to the given failure effect. In this case, 
we want to retrieve all occurrences of replacement of 
components that relate to the APU “Inability to Start” effect. 
The components of interest are the ones identified in the 
FMEA as contributors to the failure effect “Inability to 
Start”. As we mentioned in previous section, retrieving 
these components is a difficult task for a number of reasons: 
part numbers change over time and we often ended up with 
several numbering schemes, data entry errors or omission 
errors, technicians’ personal preference when entering part 
names when referring to a given component, and sometimes 
a component is mentioned in the textual description of the 
repair without being actually replaced. For example, in the 
database, we found that “ignitor”, “igniter”, “ignitor plug”, 
‘ignition exciter’ and “ignition unit” are all use to refer to 
the component “Igniter”.  All of these difficulties need to be 
taken into account when establishing part names (part 
description) and part IDs for a given component.  

The second step uses the part numbers and part names 
identified to retrieve all occurrences of replacement of the 
given part (the so-called failure events) from the 
maintenance data. This step results in a list of occurrences 
of part replacements with detailed event information (e.g., 
repair date, aircraft identification number, and reason for 
replacement). Further validation is needed to remove 
duplicates and irrelevant entries from the list of 
occurrences.  

Next, we analyze the maintenance history around each 
occurrence of replacement in order to get insights on other 
potentially related fixes (or components). In this work, we 
considered all APU maintenance repairs in the 60 day 
interval around each replacement event (i.e., up to 30 days 
before the given replacement and up to 30 days after the 
replacement). A number of software tools were developed 
to help automate the search but manual validation is still 
needed. 

Table 1 shows the preliminary results obtained.  The left 
column lists the components contributing to the failure 
effect considered (“Inability to Start”) based on the FMEA.  

The other three columns show the number of replacement 
occurrences found using the part ID only and the part name 
only, respectively. From Table 1, we observe that we have 
been able to retrieve a significant number of occurrences of 

Figure 1. The procedure of FMEA validation 

Retrieving failure events 
for the matched parts 

Original 
FMEA  

Operation    
Data 

Maintenance    
Data 

Matching parts between 
FMEA and Maintenance 

Data 

Validating failure events  

Retrieving operation data for 
validated failure events 

Statistical analysis for 
operation data 

Updating FMEA information or 
parameters   (FR, FMP, RPN.) 

Given failure mode 

Validated 
FMEA  
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replacement for some FMEA components contributing to 
the selected failure effect. However, very few or even no 
replacements have been found for other FMEA contributing 
components such as Fuel Manifold and O-Ring Seal. This is 
surprising as the operator’s maintenance database covers 
more than 10 years of operation for a fleet of over 100 
aircraft.  A couple of hypotheses may be proposed to 
explain this situation. It is possible that some of the 
contributing components mentioned in the FMEA simply 
never failed during the period of maintenance data.  Since 
the FMEA APU and APU used in the study is not the same 
model, it is also possible that some of the contributing 
components mentioned in the FMEA do not exist in the 
APU used in the study. 

For the rest of the analysis, we focused on the contributing 
components which were actually replaced and ignored the 
other components. 

 

 

FMEA 
Part  

AMTAC data 

Identified Instances of Part 
Replacements (Failures) 

by  
Part 

Number 
by Part 

Description 
Total 

Failures 
(NFc) 

Starter 49 158 207 

Igniter 16 140 156 
Fuel Control 

Assembly 46 19 65 

Fuel Flow 
Divider 9 5 14 

Low Oil 
Pressure Switch 

 

1 10 11 

Fuel Pump 19 6 25 
EGT 

Thermocouple 0 1 1 

Monopole 
Speed Sensor 1 3 4 

Oil Pump 
Assembly 0 4 4 

Isolation Valve 0 0 0 

Oil-Ring Seal 0 0 0 

Fuel Manifold 0 0 0 
 

Table 1. Instances of replacements for components for failure 
effect, ‘Inability to Start” 

 
2.2 Data Analysis for APU Usage Time 

In order to compute statistics about actual failure rate, we 
need to determine the cumulative usage of the entire fleet 
of APU over the period covered by the maintenance data. 
This is done by retrieving the most recent value of the 
APU_OPERATIING_HOUR parameter, which is 
automatically reported as part of the APU starting report, 
for each APU and then adding all values.  For the dataset 
considered, we obtained a total APU usage of 4,328,083 
operating hours (noted as UT). In the later section, we use 
this life consumption of APU engine when updating the 
FMEA parameters. 

2.3 Updating FMEA Parameters 

As mentioned before, we are interested in updating 
quantitative FMEA information, such as FR, FMP, SC, and 
MTBF. We also considered the “Risk Priority Number” 
(RPN) (Sellappan and Sivasubramanian 2008, ASENT  
2009), which is defined as the product of SC, FMP, and 
FR. The RPN is a measure used when assessing risk to 
help identify critical component associated with the failure 
effect. A large RPN indicates that the given component is 
more likely to need replacement. The left hand side of 
Table 2 presents the values for all parameters of interest for 
each components for which we have been able to retrieve 
examples of replacements from the maintenance data. 
Based on RPN, most occurrences of APU “Inability to 
Start” problems should be resolved by replacing either the 
“Igniter” or the “Monopole Speed Sensor”.  However, 
when considering the number of actual replacements (NFc 
in Table 1), we notice that the “Starter” comes first, 
followed by the “Igniter” and the “Fuel Control 
Assembly”.  Moreover, the “Monopole Speed Sensor” 
which was one of the first components to be suspected 
based on original FMEA is almost never replaced by the 
maintenance crew (only 4 replacements as reported in 
Table 1).  Such discrepancies between the original FMEA 
information and real maintenance practice clearly show the 
need for regular updates of the FMEA information. 

We propose to update the FMEA information by relying on 
data acquired as part of normal operation. First, to update 
the FR and FMP parameters based on actual maintenance 
history, we introduce the following equations 

UT
NFcFR =                              --- (1) 

RN
NFcFMP =                          --- (2) 

where:  

• NFc: The number of replacements of a given 
component (Table 1); 

• UT:  The total APU usage (in hours) for the 
entire fleet; it is 4,328,083 hours in this study; 

• RN:  The total number of APU parts replaced 
during   the investigation. It is a sum of NFc 
in Table 1. In this study, RN = 487.  
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The last four columns in Table 2 show the revised 
information. FMP and FR are computed from Eq. (1)  and 
Eq.(2) using NFc from Table 1 and UT obtained as 
described above. RPN is recomputed using the revised 
parameters.  The revised RPN results closely reflect the real 
maintenance practice. We also add ranking information 
based on RPN. The larger RPN number is associated with a 
higher ranking (a smaller value of ranking). The ranking 
parameter is useful for component ranking during fault 
identification as described in next section. We believe that 
the revised information, although quite different from the 
original number, are more representative of real world 
practice and therefore potentially more appropriate for 
decision-based support system to assist the operator in the 
maintenance of the APUs.   

3. TSM REVISION 

Troubleshooting is the process of diagnosing the source of a 
problem. It is used to fix problems with physical 
components or subsystems in a complex system. The basic 
theory of troubleshooting is that you start with the most 
general (and often most obvious) possible problems, and 
then narrow it down to more specific issues.   

In this study, the APU TSM is provided by an OEM to 
enable the systematic identification, isolation and correction 
of aircraft warnings and malfunctions reported in flight and 
on the ground.  

Like all TSMs, the provided APU TSM is a highly 
structured document designed to help identify and 

isolate the fault by performing prescribed procedures.  
There is at least one chapter for each failure effect and each 
chapter contains 4 sections:  
 

• Possible Causes, 
• Job Set-up Information,  
• Fault Confirmation, and  
• Fault Isolation Procedure (FIP).  

 
Appendix A is an example of the original TSM chapter. 
Given a failure mode, the Possible Causes section lists the 
possible components which may contribute to the given 
failure mode or effect.  This list is not ordered and has no 
priority for each component. Therefore, it is difficult for 
the end user to decide where to start the investigation. 
Most mechanics perform troubleshooting based on the 
symptoms, TSM, and their experiences. They use a 
sequential trial and error approach with guidance from the 
TSM until a solution is found.   The Job Set-up 
Information section lists the AMMs (Aircraft Maintenance 
Manuals), which may relate to the FIPs and provides the 
detail instructions for installing or removing a contributing 
component. The Fault Confirmation section advises 
technicians how to check and test the failure symptoms in 
order to confirm the failure effects. Finally, the FIP section 

lists the ordered procedures for fixing failures. 
Depending on the type of failure, the problem 
symptoms could lead into a lengthy troubleshooting 
session especially when addressing intermittent 

 

Component 
Name 

Original APU FMEA Information Updated FMEA Information 

SC FMP 
(%) FR MTBF                

(hours) RPN Old 
Rank 

FMP 
(%) FR RPN New 

Rank 

Starter 4 1.96 9.75 500,000 0.76 7 41.4 47.61 78.84 1 

Igniter 3 16.67 27.78 36,000 13.89 1 31.2 35.88 33.58 2 

Fuel Control 
Assembly 3 16 20 50,000 9.60 3 13 14.95 5.83 3 

Fuel Pump 3 0.02 2.0 500,000 0.00 9 5 5.75 0.86 4 

Fuel Flow Divider 3 0.8 20 50,000 0.48 8 2.8 3.22 0.27 5 

Low Oil Pressure 
Switch 4 4.44 22.22 45,000 3.95 4 2.2 2.53 0.22 6 

Monopole Speed 
Sensor 3 20.0 20.0 50,000 12.00 2 0.8 0.92 0.02 7 

Oil Pump 
Assembly 3 4.25 17.0 58,824 2.17 5 0.8 0.92 0.02 8 

EGT 
Thermocouple 2 5.0 20.0 50,000 2.00 6 0.2 0.23 0.001 9 

Note:   (1) Risk Priority Number   = SC · FMP · Rate; (2) Failure Rate (FR) is failures in million hours; 
            (3)  The shaded columns show the updated parameters. 

Table 2. Updated parameters for APU FMEA  (for Failure Effect: “Inability to Start”) 
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failures. To reduce costs and improve the efficiency of 
fixing a failure, it is expected that TSM can provide 
relatively accurate and accountable FIPs, such that 
technicians can quickly insolate the contributing 
components for fixing the failure.  
 
There exist two issues with TSMs. First, the Possible 
Causes are not ordered and have no priority information. 
Second, the FIP may become out of date with respect to the 
aircraft and ultimately provide an inappropriate procedure 
for troubleshooting or fault isolation. In this work, we 
attempted to set an order for the Possible Causes and modify 
the FIP to reflect the historical maintenance experiences 
when suggesting a troubleshooting procedure. In particular, 
we update the Possible causes and FIP by using the “new 
rank” information from Table 2.  We now detail this 
procedure.  
  
3.1 Procedure of TSM Updating  

The developed procedure for updating TSM based on the 
validated FMEA contains the following three steps. 

1.  Retrieve the relevant TSM standard chapters for 
the failure mode or effect of interest.  

2. Verify that the order of the possible causes in the 
TSM corresponds to the ranking obtained with the 
validated FMEA.  In case of discrepancies, update 
the Possible Causes section so that components are 
presented in the same order as shown in Table 2. 

3. As needed, also align the FIP orders in the TSM 
with the ranking provided by the validated FMEA.  

We repeat these steps for all chapters in the TSM that relate 
to the failure of interest.  

3.2 The Preliminary Results 

Following the procedure above, we updated the chapters 
related to the failure mode “Inability to Start” in APU TSM 
document. We first retrieved all chapters. There are 17 
chapters in APU TSM document. Among them, only ten 
chapters contain the contributing components which appear 

in FMEA document. We focused on these ten chapters. 
Second, we checked the consistency between the TSM and 
the validated FMEA or the original FMEA for those ten 
chapters. The Figure 2 shows the result of the ten chapters 
against the validated FMEA and the original FMEA. For 
the original FMEA the “old rank” data is used; for the 
validated FMEA, the ‘new rank” data is used. Both “rank” 
data are from Table 2.  
 
Finally, we updated the three chapters where we found 
discrepancies with the validated FMEA following the steps 
explained above. Appendix B shows the results of this 
process when applied to the original TSM chapter shown 
in Appendix A. After the revision, the order for the 
Possible Causes became:   
 

• IGNITER PLUG  
• GNITION UNIT P10  
• FUEL CONTROL UNIT  
• OIL PUMP  
• FLOW DIVIDER AND DRAIN VALVE ASSY  
• PRIMARY FUEL NOZZLE AND MANIFOLD  
• SECONDARY FUEL NOZZLE AND MANIFOLD  
• ECB (59KD)  

 
We also revised the sequences of FIPs by changing the 
procedure of replacing OIL PUMP to follow the new rank 
of the validated FMEA. We highlighted the changes in 
italics in Appendix B.  Such revisions of the TSM FIPs 
will improve the maintenance efficiency by reducing 
irrelevant component replacements and also potentially 
help with planning/scheduling troubleshooting (e.g., right 
people, right parts). For example, every time the root 
contributing component is FUEL CONTROL UNIT, the 
revised TSM will allow the technician to converge to the 
solution by investigating three components instead of four 
as initially recommended by TSM FIPs.  Since this 
component fails relatively frequently, this simple change 
may lead to significant gain in efficiency over time. 
 

4. DISCUSSION 

TSM updating depends on the validated FMEA. Most 
FMEAs are created during the design phase of a system or 
product and the information may not be accurate enough 
for practical maintenance decision support system. FMEA 
should be regularly updated and validated in order to 
accurately reflect the fleet operation reality. This updated 
FMEA would provide more reliable and accurate 
information to enhance the TSM revision.  

We only demonstrated the feasibility to update TSM 
documents using the validated FMEA by showing one 
failure mode, the ‘Inability to Start”. There are a large 
number of failure modes in TSM documents.  Trying to 
update the full TSM would represent a significant 
undertaking. The main challenge comes from the 

17 
Chapters 

10 relevant to 
FMEA 

7 irrelevant 
to FMEA 

5 against the 
original  FMEA 

3 against the 
validated FMEA 

Figure 2. The TSM chapters for “Inability to Start” 
failure model 
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validation of FMEA. In particular, as noted in the paper, the 
processing of large amounts of historical maintenance data, 
which are often characterized by incompleteness and 
ambiguities, is time consuming and difficult to automate.  
This might be addressed by integration of even more 
advanced text processing techniques.  An alternative would 
be to remove free text fields from maintenance data and 
implement better data validation tool to increase data 
quality. 

There is also a gap between TSM and FMEA documents. 
For example, we found 7 TSM chapters which could not 
link to FMEA because the contributing components to the 
“Inability to Start” effect were completely different. We 
currently have no explanation for such a gap. Reconciliation 
would require the participation of the OEM and the end 
users. As we mentioned in the previous paper (Yang et al, 
2009), there is also discrepancies between FMEA document 
and the operational and maintenance data.  All of these 
create more challenges when updating TSM and validating 
FMEA.  

Other challenges exist in updating TSM that are not related 
to the data collected from the end users.  For example, we 
have to deal with some business and legal issues. One is the 
possible effect of the result with respect to the business 
process within the OEM because updated FMEA and TSM 
may request the unforeseen changes in the design of the 
system or component that may enhance the reliability of the 
system. Also, trade secrets, intellectual property, and 
competitive advantages can make the OEM reluctant in 
disclosing its FMEA and design documentation. In turn, this 
makes it more difficult to validate FMEA and update TSM. 
Finally, the TSM is considered a legal document that 
operator must follow in the maintenance. Modifications to 
this document without OEM consent may have legal 
ramifications and this issue must be investigated before 
implementing this procedure into the maintenance 
organization.  

We believe in that the validated FMEA, in particular, the 
ranking information in Table 2 provides the useful resource 
for improving fault identification/isolation for a given 
failure effect or mode. Usually, when a failure has occurred, 
we have to identify which component is the root cause or to 
isolate the fault to a specific contributing component in 
order to schedule a maintenance action. As we introduced, 
we can use the revised TSM to isolate the root contributing 
component. However, TSM-based fault isolation procedure 
is still complicated and time consuming.  To further enhance 
the troubleshooting procedures, we are developing  a data 
mining-based fault isolation technology for PHM systems, 
which applies the updated FMEA to rank models and uses 
the operation data prior to failures as input to identify the 
root contributing component for a given failure mode. Initial 
results from this work were presented in another paper 
(Yang, et al, 2010).  

5. CONCLUSION 

In this paper, we proposed to update TSM by using the 
updated FMEA which is validated using historical 

operational and maintenance data.  We conducted the TSM 
revision for the failure mode of the “Inability to Start” by 
using the corresponding ranking information from the 
validated FMEA.  The preliminary results obtained suggest 
that the validated FMEA provides more reliable and 
accurate information for updating TSM documents. The 
revised TSM provides more accurate information and 
reliable procedure for isolating the root components given 
a failure mode or effect.  
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NOMENCLATURE 

FR    failure rate  
FMP  failure mode probability 
MTBF  mean time between failures 
NFc  number of replacements of a Component 
RN  total number of APU unit replaced 
RPN   risk priority number 
SC  severity class of a failure mode  
UT  total APU usage time 
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Appendix A: A chapter in TSM for the “inability to Start” 
 
TASK 49-00-00-810-821 **ON A/C 201-234, 251-285, 401-449,  
APU AUTO SHUT DOWN - NO FLAME, Ignition System -, or Fuel Control Unit -, or ECB 59KD - Fault 
(GTCP36-300)  

- IGNITER PLUG  
1.  Possible Causes  

- IGNITION UNIT P10  
- OIL PUMP  
- FUEL CONTROL UNIT  
- FLOW DIVIDER AND DRAIN VALVE ASSY  
- PRIMARY FUEL NOZZLE AND MANIFOLD  
- SECONDARY FUEL NOZZLE AND MANIFOLD  
- ECB (59KD)  

A.  Referenced Information  

2.  Job Set-up Information  

______________________________________________________________________ 
REFERENCE  DESIGNATION  
AMM 28-22-00-710-001  Operational Test of the APU Fuel-Pump System on Ground to Purge the Fuel 

Line  
AMM 49-00-00-710-004  Operational Test of the APU (4005KM) (GTCP 36-300)  
AMM 49-31-41-000-001  Removal of the Primary Fuel Nozzle and Manifold (8020KM) (GTCP 36-300)  
AMM 49-31-41-400-001  Installation of the Primary Fuel Nozzle and Manifold (8020KM) (GTCP 36-300)  
AMM 49-32-11-000-001  Removal of the Fuel Control Unit (FCU) (8022KM) (GTCP 36-300)  
AMM 49-32-11-400-001  Installation of the Fuel Control Unit (FCU) (8022KM) (GTCP 36-300)  
AMM 49-32-12-000-001  Removal of the Flow Divider and Drain Valve Assembly (8023KM) (GTCP 36-

300) 
AMM 49-32-12-400-001  Installation of the Flow Divider and Drain Valve Assembly (8023KM) (GTCP 

36-300)  
AMM 49-41-38-000-001  Removal of the Ignition Unit (8030KM) (GTCP 36-300)  
AMM 49-41-38-400-001  Installation of the Ignition Unit (8030KM) (GTCP 36-300)  
AMM 49-41-41-000-001  Removal of the Igniter Plug (8031KM) (GTCP 36-300)  
AMM 49-41-41-400-001  Installation of the Igniter Plug (8031KM) (GTCP 36-300)  
AMM 49-41-43-000-001  Removal of the Electrical Lead - Igniter Plug (GTCP 36-300)  
AMM 49-41-43-400-001  Installation of the Electrical Lead - Igniter Plug (GTCP 36-300)  
AMM 49-61-34-000-001  Removal of the Electronic Control Box (ECB) (59KD) (GTCP 36-300)  
AMM 49-61-34-400-001  Installation of the Electronic Control Box (ECB) (59KD) (GTCP 36-300)  
AMM 49-91-45-000-001  Removal of the Oil Pump (8080KM) (GTCP 36-300)  
AMM 49-91-45-400-001  Installation of the Oil Pump (8080KM) (GTCP 36-300)  

A.  Purging of the APU Fuel Feed-Line and Test  
3. Fault Confirmation  

(1) Purge the APU fuel-feed line AMM TASK 28-22-00-710-001.  
NOTE : If the fuel supply to the APU is not correct, do the applicable troubleshooting procedure(s) in  

the Chapter 28.  
(2) Do the operational test of the APU AMM TASK 49-00-00-710-004.  

 

A. If an APU auto shutdown occurs during the APU start sequence and the APU SHUTDOWNS report 
gives the maintenance message:  

4. Fault Isolation  
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NO FLAME - CHECK IGNITION SYSTEM OR FCU OR ECB 59KD:  
-do a check at the APU compartment drain-mast for fuel drain.  
 (1) If there is no fuel drain:  

-go to step (5).  
(2) If there is fuel drain:  

-replace the IGNITER PLUG  
-AMM TASK 49-41-41-000-001 and  AMM TASK 49-41-41-400-001.  

(3) If the fault continues:  
-replace the IGNITER PLUG ELECTRICAL-LEAD  
-AMM TASK 49-41-43-000-001and AMM TASK 49-41-43-400-001 .  

(4) If the fault continues:  
-replace the IGNITION UNIT P10  
-AMM TASK 49-41-38-000-001and AMM TASK 49-41-38-400-001.  

(5) If the fault continues:  
-remove the FUEL CONTROL UNIT P19  
-AMM TASK 49-32-11-000-001,  

NOTE : TURN THE MANUAL DRIVE SHAFT OF THE STARTER MOTOR WITH A TORQUE 
WRENCH. THE TORQUE LIMIT IS 29 lbf.ft (3.9318 m.daN) . DO NOT TURN THE SHAFT 
WITH A TORQUEMORE THAN THE LIMIT. A TORQUE MORE THAN THE LIMIT WILL 
DAMAGE THE COMPONENT.  
-to make sure that the oil pump input-shaft is not broken, turn the manual drive shaft of the 
starter motor(8KA) in a counterclockwise direction (the direction of the arrow on the housing) 
and make sure that the oil pump output-shaft (which drives the FCU) turns constantly.  

 (a) If the oil pump output-shaft does not turn constantly (the oil pump input-shaft is broken):  
-replace the OIL PUMP  
-AMM TASK 49-91-45-000-001and AMM TASK 49-91-45-400-001,  
-install a serviceable FUEL CONTROL UNIT P19  
-AMM TASK 49-32-11-400-001.  
1 

-install a new FUEL CONTROL UNIT  
If the oil pump output-shaft turns constantly (the oil pump input-shaft is not broken):  

-AMM TASK 49-32-11-400-001.  
(b) If the fault continues:  

-replace the FLOW DIVIDER AND DRAIN VALVE ASSY  
-AMM TASK 49-32-12-000-001and AMM TASK 49-32-12-400-001.  

(c) If the fault continues:  
-replace the PRIMARY FUEL NOZZLE AND MANIFOLD  
-AMM TASK 49-31-41-000-001and AMM TASK 49-31-41-400-001.  
-replace the SECONDARY FUEL NOZZLE AND MANIFOLD  
-AMM TASK 49-31-41-000-001and AMM TASK 49-31-41-400-001 .  

(d) If the fault continues:  
 

-replace the ECB (59KD)  
-AMM TASK 49-61-34-000-001and AMM TASK 49-61-34-400-001.  

B. Do the operational test of the APU AMM TASK 49-00-00-710-004.  

Revision:2004-11-01 Print Date: 2010-04-01 49-00-00  
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Appendix B: The revised chapter for the original document in Appendix A. 
 
TASK 49-00-00-810-821 **ON A/C 201-234, 251-285, 401-449,  
APU AUTO SHUT DOWN - NO FLAME, Ignition System -, or Fuel Control Unit -, or ECB 59KD - Fault 
(GTCP36-300)  

- IGNITER PLUG  
1.  Possible Causes  

- IGNITION UNIT P10  
- FUEL CONTROL UNIT  
- OIL PUMP  
- FLOW DIVIDER AND DRAIN VALVE ASSY  
- PRIMARY FUEL NOZZLE AND MANIFOLD  
- SECONDARY FUEL NOZZLE AND MANIFOLD  
- ECB (59KD)  

A.  Referenced Information  

2.  Job Set-up Information  

______________________________________________________________________ 
REFERENCE  DESIGNATION  
AMM 28-22-00-710-001  Operational Test of the APU Fuel-Pump System on Ground to Purge the Fuel 

Line  
AMM 49-00-00-710-004  Operational Test of the APU (4005KM) (GTCP 36-300)  
AMM 49-31-41-000-001  Removal of the Primary Fuel Nozzle and Manifold (8020KM) (GTCP 36-300)  
AMM 49-31-41-400-001  Installation of the Primary Fuel Nozzle and Manifold (8020KM) (GTCP 36-300)  
AMM 49-32-11-000-001  Removal of the Fuel Control Unit (FCU) (8022KM) (GTCP 36-300)  
AMM 49-32-11-400-001  Installation of the Fuel Control Unit (FCU) (8022KM) (GTCP 36-300)  
AMM 49-32-12-000-001  Removal of the Flow Divider and Drain Valve Assembly (8023KM) (GTCP 36-

300) 
AMM 49-32-12-400-001  Installation of the Flow Divider and Drain Valve Assembly (8023KM) (GTCP 

36-300)  
AMM 49-41-38-000-001  Removal of the Ignition Unit (8030KM) (GTCP 36-300)  
AMM 49-41-38-400-001  Installation of the Ignition Unit (8030KM) (GTCP 36-300)  
AMM 49-41-41-000-001  Removal of the Igniter Plug (8031KM) (GTCP 36-300)  
AMM 49-41-41-400-001  Installation of the Igniter Plug (8031KM) (GTCP 36-300)  
AMM 49-41-43-000-001  Removal of the Electrical Lead - Igniter Plug (GTCP 36-300)  
AMM 49-41-43-400-001  Installation of the Electrical Lead - Igniter Plug (GTCP 36-300)  
AMM 49-61-34-000-001  Removal of the Electronic Control Box (ECB) (59KD) (GTCP 36-300)  
AMM 49-61-34-400-001  Installation of the Electronic Control Box (ECB) (59KD) (GTCP 36-300)  
AMM 49-91-45-000-001  Removal of the Oil Pump (8080KM) (GTCP 36-300)  
AMM 49-91-45-400-001  Installation of the Oil Pump (8080KM) (GTCP 36-300)  

A.  Purging of the APU Fuel Feed-Line and Test  
3. Fault Confirmation  

(1) Purge the APU fuel-feed line AMM TASK 28-22-00-710-001.  
NOTE : If the fuel supply to the APU is not correct, do the applicable troubleshooting procedure(s) in  

the Chapter 28.  
(2) Do the operational test of the APU AMM TASK 49-00-00-710-004.  

 

A. If an APU auto shutdown occurs during the APU start sequence and the APU SHUTDOWNS report 
gives the maintenance message:  

4. Fault Isolation  

This list is ordered with the rank 
information from the validated FMEA. 
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NO FLAME - CHECK IGNITION SYSTEM OR FCU OR ECB 59KD:  
-do a check at the APU compartment drain-mast for fuel drain.  
 (1) If there is no fuel drain:  

-go to step (5).  
(2) If there is fuel drain:  

-replace the IGNITER PLUG  
-AMM TASK 49-41-41-000-001 and  AMM TASK 49-41-41-400-001.  

(3) If the fault continues:  
-replace the IGNITER PLUG ELECTRICAL-LEAD  
-AMM TASK 49-41-43-000-001and AMM TASK 49-41-43-400-001 .  

(4) If the fault continues:  
-replace the IGNITION UNIT P10  
-AMM TASK 49-41-38-000-001and AMM TASK 49-41-38-400-001.  

  (5) If the fault continues:  
-remove the FUEL CONTROL UNIT P19  
-AMM TASK 49-32-11-000-001,  

NOTE : TURN THE MANUAL DRIVE SHAFT OF THE STARTER MOTOR WITH A TORQUE 
WRENCH. THE TORQUE LIMIT IS 29 lbf.ft (3.9318 m.daN) . DO NOT TURN THE SHAFT 
WITH A TORQUE MORE THAN THE LIMIT. A TORQUE MORE THAN THE LIMIT WILL 
DAMAGE THE COMPONENT.  
-to make sure that the oil pump input-shaft is not broken, turn the manual drive shaft of the 
starter motor(8KA) in a counterclockwise direction (the direction of the arrow on the housing) 
and make sure that the oil pump output-shaft (which drives the FCU) turns constantly.  

(a) If the fault continues:  
 -install a new FUEL CONTROL UNIT  
-AMM TASK 49-32-11-400-001.  

 
(b) If the fault continues and the oil pump output-shaft does not  
    turn constantly (the oil pump     input-shaft  is broken):  

-replace the OIL PUMP  
-AMM TASK 49-91-45-000-001and AMM TASK 49-91-45-400-001,  
 
-If the oil pump output-shaft turns constantly  
(the oil pump input-shaft is not broken):  
           -replace the FLOW DIVIDER AND DRAIN VALVE ASSY  
          -AMM TASK 49-32-12-000-001and AMM TASK 49-32-12-400-001.  
 

 (c) If the fault continues:  
-replace the PRIMARY FUEL NOZZLE AND MANIFOLD  
-AMM TASK 49-31-41-000-001and AMM TASK 49-31-41-400-001.  
-replace the SECONDARY FUEL NOZZLE AND MANIFOLD  
-AMM TASK 49-31-41-000-001and AMM TASK 49-31-41-400-001 .  

(d) If the fault continues:  
-replace the ECB (59KD)  
-AMM TASK 49-61-34-000-001and AMM TASK 49-61-34-400-001.  

B. Do the operational test of the APU AMM TASK 49-00-00-710-004.  

Revision:2011-04-01 Print Date: 2011-04-06 49-00-00 
 
 

This FIP is updated with the 
rank information from the 
validated FMEA. 
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Utilizing Dynamic Fuel Pressure Sensor For Detecting Bearing Spalling 
and Gear Pump Failure Modes in Cummins Pressure Time (PT) Pumps 
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*ABSTRACT 
The objective of this paper is to highlight the results of the 
fault detection investigation conducted to ascertain the 
feasibility of exploiting the existing on-board M2/M3 
Bradley fuel pressure sensor for the purpose of detecting 
mechanical bearing spalling and gear pump failure modes of 
the pressure-time (PT) fuel pump used on the Cummins 
VTA-903T engine.  To investigate this fluid-mechanical 
cross domain detection approach, a Bradley fuel system test 
bed was built. Fault tests for four PT pump failure modes 
were conducted including bearing faults, gear pump fault, 
idle adjust mis-calibration, and air-fuel control fault.   The 
results of the first two fault tests are summarized in this 
paper. Due to limited number of pumps available for testing 
(2), these preliminary findings are not statistically 
substantiated. With this stated, the findings present a 
method for investigating the presence of a narrowband 
frequency-domain-based predictive fault detection 
capability using the existing pressure sensor installed on the 
Chassis Modernization and Embedded Diagnostics (CMED) 
variant Bradley. The test stand based seeded fault analysis 
was not capable of detecting an 0.080 inch outer raceway 
bearing spall, but there is preliminary evidence to warrant 
further study that a nominal 0.001 inch foreign object debris 
accumulation on the gear teeth of the gear pump might be 
detectable using a simple kurtosis based calculation using a 
pressure sensor with a 0-500 Hz dynamic bandwidth. 

1. INTRODUCTION 

The Program Management Office for the Heavy Brigade 
Combat Team (PM-HBCT) is leading the development of a 
Vehicle Health Management System (VHMS) that provides 
the US Army with an improved diagnostic, predictive and 
sustainment capability for HBCT platforms including the 
                                                 
J.S. Pflumm et al. This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 

M2/M3 Bradley Fighting Vehicle.  The common challenge 
faced by the Program Management Office when evaluating 
VHMS technology is the requirement to install additional 
instrumentation or to modify the chassis of an existing fleet 
of vehicles. These requirements often detrimentally impact 
the cost-benefit decision to implement VHMS technology.  
This paper discusses utilizing a dynamic fuel pressure 
sensor existing on the CMED configuration of the M2/M3 
Bradley in order to detect mechanical faults in the PT pump. 
The objective is to employ existing on-board sensors to 
extend the vehicle’s present VHMS capability. Prior to this 
investigation a vehicle degrader analysis was conducted in 
order to ascertain where health monitoring technology 
would provide the greatest benefit in terms of decreasing 
diagnosis time, increasing maintenance effectiveness, 
decreasing No Evidence of Failure (NEOF) rates and 
facilitating the migration to a 2-tier maintenance system.  

2. DEGRADER ANALYSIS 

A Reliability Centered Maintenance (RCM) degrader 
analysis for the M2/M3 Bradley was conducted by the 
HBCT VHMS program to assess the top degraders of the 
vehicle’s maintainability, reliability and operational 
availability (Banks, Reichard, Hines, Brought, 2008).  The 
formal RCM process typically consists of regular meetings 
with subject matter experts (i.e. maintainers, design 
engineers, logisticians, CBM experts, etc.) to evaluate a 
system over a significant period of time (i.e. weeks to 
months).  The length of time required for the analysis is 
dependent upon the complexity of the system and the 
knowledge level of the subject matter experts participating 
in the process.  It was logistically prohibitive to regularly 
gather the subject matter experts required to conduct a 
formal RCM analysis for the U.S. Army’s Bradley vehicle. 
Penn State ARL conducted a modified RCM analysis using 
the results of the degrader interviews, degrader OEM 
questionnaire, field service representative reports, technical 
manuals and engineering judgment.  This process provides a 
systematic approach for the evaluation of the VHMS design, 
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Figure 1. Troubleshooting cause-effect matrix excerpt from 
Cummins PT Fuel Pump Rebuilding and Calibration 
Instructions 

functional requirements, failure modes and criticality 
assessment.  From this assessment the appropriate and most 
effective maintenance approaches can be selected for the 
platform or system based on the operating context of the 
asset.  The specific advantage of utilizing the RCM process 
when designing an asset health management system is the 
ability to determine where the implementation of embedded 
diagnostic technology would provide the greatest benefit in 
terms of facilitating improved maintainability and increased 
operational availability of the asset.  

The degrader analysis reviewed Field Service Reports for 
the following 7 Bradley subsystems: Track and Suspension, 
Gun System, Electrical System, Turret Drive Control Unit, 
Transmission, Cable and Wiring, and Fuel System. A total 
of 769 failures were tallied across all subsystems. Four 
percent (4%) of all 769 failures involved the fuel system. 
Two percent (2%) of the 769 failures cited the PT pump as 
the failure mode. Approximately 50% of the 31 cited fuel 
system related failures involved the PT pump (Banks, 
Reichard, Hines Brought, 2008). Given the existence of a 
dynamic fuel pressure sensor located between the PT pump 
and fuel injectors, and the results of the degrader analysis, 
the Bradley fuel system was considered a candidate for 
investigating implementation of VHMS technology. The on-
board dynamic fuel pressure sensor is not necessarily 
capable of detecting all the possible PT pump faults listed in 
figure 1. The underlying intent of utilizing the existing 
pressure sensor to support real-time on-board diagnostic 
capability is to investigate the greatest extent to which the 
sensor can be exploited to aid the operator/maintainer in 
terms of alerting the crew of impending fuel system faults, 
or automatically diagnosing a subcomponent fault that 
would not be apparent during routine preventive 
maintenance checks and services. 

3. VEHICLE FUEL SYSTEM DESCRIPTION 

The Bradley fuel system supports a Cummins VTA-903T 
water-cooled, eight cylinder diesel engine that rates 600 HP.  
The fuel system consists of two fuel tanks (upper and 

lower), four in-tank fuel pumps, a fuel/water separator, and 
a PT fuel pump/governor with integrated air-fuel control 
(AFC) valve.   

In general, the fuel flows from the lower tank through two 
check valves and a main shut-off valve, through the 
filter/water separator to the PT pump/governor, which sends 
regulated high pressure fuel to the injectors as shown in 
figure 2 (Technical Manual, 2006). Control of engine power 
output and idle speed is accomplished by the engine 
mounted PT fuel pump/governor with integrated AFC valve. 
The fuel pressure to the injectors is regulated to between 
129 psi - 163 psi depending on the pump version used with 
the electronic fuel control valve (EFCV).  Excess fuel is 
returned to the tank through a low pressure return line. 
 
The CMED equipped vehicles have a pressure transducer 
integrated into the fuel system.  This sensor has a 0-500 Hz 
measurement capability and is located at the existing 
Bradley Standard Test Equipment – Internal Combustion 
Engine diagnostic test kit (BRADS-ICE) pressure sensor 
port.  The CMED system monitors this pressure transducer 
during diagnostic/maintenance mode (the vehicle is not 
operational in this mode) and provides an indication of 
pump failure based on an insufficient pressure level while 
the engine is run at a high RPM condition.  The limitation is 
that the AFC valve needs to be manually opened to conduct 
this procedure. This test can only be conducted when the 
platform is down for maintenance inspection.   

 

 
Figure 2. Bradley Fuel System Schematic  

(TM 9-2350-294-20-1-1/3, 2000) 

 

2 
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Figure 3. a) PT pump assembled; b) Partial disassembled; c) 
Schematic 

Figure 3 shows three images depicting the PT pump. The 
bottom image is a schematic of a similar model PT pump, 
however it shows the relevant components most clearly. The 
yellow boxes highlight the subcomponents investigated in 
this analysis. The left-most yellow box highlights the front 
bearing. The right box highlights the gear pump gears.  

4. TEST BED, SENSORS AND DATA ACQUISITION 

The test bed consists of one fuel tank (representative of the 
lower tank), four in-tank fuel pumps, a fuel filter separator, 
and a PT fuel pump/governor with integrated air-fuel 
control (AFC) valve.  The in-tank pumps, fuel filter 
separator, PT pump and commercial equivalent of the 
pressure transducer are configured in the same sequence as 
they are on the vehicle.  On the test bed, fuel enters the in-
tank fuel pump and continues through the fuel filter 
separator to the PT pump which is directly driven by a 30 
HP AC electric motor.  For simplicity in this phase of the 
project, the PT pump output, which is intended to supply 
fuel to the fuel injectors, is routed to a manual adjusted 
needle valve.  The needle valve outlet pressure was set to 
nominal 160 PSIG and the air supply to the AFC check 
valve was set to 30 PSIG in accordance with Cummins 
Calibration Instruction Manuals (Cummins Bulletin Nrs. 
3379352-10 and 3379084-02, 1980 and TM 9-2350-294-20-
1-3). Validation data is maintained and available for review. 
The PT pump leakage and fuel supplied to the needle valve 
are returned directly into the sump tank to form a 
continuous closed loop non-combusting fuel circuit as 

shown in figure 4. For fault induction and component 
isolation purposes, the valves, flow meters, pressure 
transducers and thermocouples are located at the following 
locations: 

• After the in-tank fuel pump and before the fuel 
filter separator 

• After the fuel filter separator and before the PT 
pump 

• After the PT pump and before the needle valve  

A 16 channel National Instruments PXI based data 
acquisition system with 100 kSamples/second per channel 
capability is used to support data gathering. This data 
acquisition system collects user-triggered 10 second 
snapshots of the voltage and current sensors for monitoring 
the in-tank pump power, ICP tri-axial accelerometer 
mounted on the PT pump, fluid pressure and flow at each of 
the aforementioned three locations in the fluid circuit, as 
well as a torque cell measuring both torque and speed of the 
drive shaft to the PT pump.  

The analysis emphasizes the findings of the pressure sensor 
in terms of its capability as an embedded diagnostic tool. 
The commercial version of this pressure sensor, which we 
used, provides higher bandwidth and is therefore capable of 
higher resolution data processing techniques that are 
otherwise not available with the existing on-board 0-500 Hz 
pressure sensor. Our goal is to limit our analysis to what is 
implementable given the operational bandwidth of this 0-
500 Hz on-board pressure transducer. 

 Figure 4. a) Drawing Bradley Fuel System Test Bed b) 
Photo 

5. TESTING OVERVIEW 

The test approach can be summarized briefly as follows: 
first investigate failure modes that do not result in 
permanent damage to the pump, then progress deeper into 
failure modes that permanently damage the pump or its 
subcomponents. The rationale for this approach is due to 
having only 2 pumps available on which to conduct testing. 
Initial testing of both pumps focused on baseline 
characterization of steady state and transient conditions 
across specific run speed setpoints conditions.  

With respect to the second pump, testing focused primarily 
on permanently damaging subcomponents, inserting these 
various seeded fault subcomponents into the pump in place 

3 
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4 
 

of their no-fault component counterpart, and then 
conducting testing to determine if the fault could be detected 
by means of the pressure sensor. These tests focused first on 
seeding faults in the front bearing and then secondly by 
seeding a fault in the gear pump.  

The ideal test plan would utilize a large sample size of 
actual pumps degraded over the course of real world 
operational service. We did not have access to such a 
sample set of pumps. Furthermore, the degrader analysis 
only identified the PT pump as a single monolithic 
component in terms of its responsibility as a contributor to 
overall fuel system failures. Due to data access limitations, 
the degrader analysis did not provide further details as to 
which subcomponent(s) within the PT pump were 
responsible for the pump’s overall failure. Absent this 
information, the next best alternative was to simulate faulted 
pumps by seeding faults in the pump’s subcomponents 
which anecdotally or hypothetically explained the pump’s 
reported failure during fielded operation. The seeded faults 
were chosen to represent faults that were either reported by 
maintainers or potentially problematic given operating 
conditions. With this said, given the pumps are intended for 
use with JP8 fuel, and as such, the fuel system is required to 
be capable of operation with fuel containing impurities and 
particulate such as fine sand/dirt common in desert 
environments, two failure modes were chosen for test stand 
investigation: (1) bearing spalling and (2) accumulation of a 
particulate coating on the teeth of the gears within the gear 
pump sub-assembly. The following subsections will 
document the testing and analysis of: (1) simulated bearing 
spalling fault and, (2) simulated gear tooth particulate 
accumulation. 

As indicated earlier in this report, the primary objective was 
to utilize the capability of the existing pressure sensor that is 
integrated into CMED variant Bradley platforms with the 
least complex and computationally intensive condition 
indicators.  The rationale with respect to the evaluation 
progression was to start with the basic root mean square 
condition indicator and progress to more advanced statistical 
features if RMS is not effective for these faults and this 
application.   

5.1 Bearing Fault Test Discussion 

To summarize the motivation for the spalling fault tests, the 
rationale for investigating a simulated spall in the bearing 
raceway is based on the hypothesis that fine sand particles, 
which have infiltrated the fuel system, make their way into 
the bearing raceway. The repetitive impact of the roller 
elements passing over the particle(s) as they lay in the 
raceway results in pitting/spalling which increases in size 
over time. The subsequent imperfections in the surface of 
the raceway might potentially degrade the bearings 
performance and thereby the PT pumps performance. The 
purpose of the study is to investigate whether such a fault 

can be detected by the on-board pressure sensor located 
post-PT pump on the M2 CMED Bradley vehicle. This test 
initially set out to specifically investigate whether the 
bearing fault frequency known as the Ball Pass Frequency – 
Outer Race (BPFO) could be detected in the pressure 
spectrum. For completeness, the other three fault 
frequencies are referenced as follows: Ball Pass Frequency 
– Inner Race (BPFI), Ball Spin Frequency (BSF), 
Fundamental Train Frequency (FTF). 

The analytical equations for these bearing fault frequencies 
displayed in subsequent plots are as follows according to 
(White, 1995): 

 
 
The front bearing of the PT pump is a type NSK 6203. 
According to the manufacturer, the following specifications 
are: 
Number of rolling elements (n):  8 
Ball diameter (Bd):   6.746 mm 
Pitch diameter of the bearing (Pd):  29 mm 
Contact angle (θ):    0° 

While the figures below include the fault frequencies in the 
subplot titles, we did not observe spectral peaks at these 
frequencies when analyzing the datasets.   
 

 
Figure 5. a) Electrolytically etched bearing outer raceway 

schematic format, b) Actual 0.030 inch etch 

Electrolytic etching was selected instead of electric 
discharge machining (EDM) as the method of choice to 
create faults in the bearing raceway for this study because of 
the non-uniform spall edge it produced. This ad hoc 
technique was used specifically because of its ability to 
create non-uniform edges in the bearing raceway. No 
literature reference source was used as a precedent for this 
specific etching application. Electrolytic etching is 
essentially a controlled electrolytic corrosion process 
described in standard chemistry texts. Electrolytic corrosion 
is defined as a process of accelerated corrosion resulting  
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Figure 6. Representative waterfall plot depicting selected frequency domain spectrum of pressure transducer over the 600-
2100 RPM speed setpoint conditions for a no-fault bearing test 

from an electric current between two metals coupled in an 
electrolytic environment. (DTSFE, 2011). In this case the 
electrolytic environment was a saline solution.  

The simulated spall testing, hereafter referred to as etched 
bearing or etched fault testing, was conducted with two 
bearings, each with a nominal etch width of 0.030 inch and 
0.080 inch, respectively. Figure 5 depicts the faulted bearing 
in schematic form as well as a photo of the actual etched 
0.030 inch faulted bearing. The chosen etch widths of 0.030 
and 0.080 inch were dictated primarily by the precision limits 
of the equipment used to create the etch. A spall width of 
0.080 inch is likely an over-exaggeration compared to a spall 
that may occur in a field environment. For initial 
investigation purposes our intent was to validate whether a 
bearing defect could be detected using the existing pressure 
transducer on the CMED platform. The test plan used to 
investigate whether the etched fault could be detected via the 
pressure transducers utilized 16 speed setpoint conditions 
ranging from 600-2100 RPM at wide open throttle along with 
four zero (0) RPM setpoint conditions used to characterize 
background ambient noise conditions when the pump main 
shaft was not rotating. Inspection of the background ambient 
noise data indicated potential electromagnetic interference 
due to the adjacent AC motor controller. While the 
methodology is valid, the statistical limitations due to pump 
sample size combined with the potential EMI limit the extent 
to which significance can be ascribed to the spectrum 
analysis discussed in the following sections. 

Figure 6 shows the spectra for 16 run speed setpoint 
conditions. Similar waterfall plots showing all 16 speed 
setpoints were generated for the 0.030 inch and 0.080 inch 
etched bearing tests for both pressure transducer and 
accelerometer signals. 

The next step of the analysis was to determine whether the 
pressure spectra contained visual/qualitative features 
indicating the presence of the etch in the bearing. To this  
end the initial approach taken was to overlay the spectra of 
the no-fault, 0.030 inch width and 0.080 inch width etched 
fault test at each speed setpoint and view the spectra across 
the 0-500 Hz operational bandwidth of the dynamic pressure 
transducer. Figure 7 illustrates a representative result of this 
overlay for one run speed setpoint condition at 1500 RPM. 
While there are distinguishable differences between the 
spectra, there was no specific distinguishable and repeatable 
feature observed across all run speed setpoints.  

Recognizing the limits of visual inspection with respect to 
spectrum plots of this nature, an alternate approach was 
undertaken by which a root means square (RMS) calculation 
was computed for each no-fault, 0.030 inch and 0.080 inch 
fault spectrum across the entire spectrum range, respectively. 
Figure 8 depicts the results of this approach for four selected 
run speeds along with the RMS values for each fault 
condition displayed in the legend. 
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Figure 7. Waterfall comparison overlay of pressure spectrums for no-fault, 0.030 inch width and 0.080 inch width etched 

fault at nominal run speed 1500 RPM

It is observed that at three of these specific run speeds (600, 
1000, and 1500 RPM), a simple RMS calculation produced 
condition indicator (CI) values that increased as etch width 
increased from no-fault through 0.030 inch to 0.080 inch 
width. Notice that the RMS values for the bottom plot 
(nominal run speed = 2000 RPM) did not support this 
trending correlation observed in the top three subplots. The 
bar graph in figure displays these RMS values in a graphic 
representation. 

Note that at the 2000 RPM speed setpoint, the no-fault RMS 
value is greater than the 0.030 inch etch RMS value. This 
deviation from the trend was not an isolated outlier. The 
general RMS trending relationship observed between 600-
2000 RPM across fault sizes was not repeatable for all speed 
setpoint conditions. In general, the RMS feature did not 
provide a consistent and highly sensitive condition indicator 
for bearing fault predictive detection. 

Because the RMS based approach did not yield consistent 
results in terms of correlating RMS value to etch width for all 
speeds, we surmised that the potential reason for not 
detecting this correlation was perhaps due, at least in part, to 
the fact that utilizing the entire operational bandwidth of the 
pressure sensor may have been effectively masking RMS 
changes occurring within specific frequency ranges. 

To address this point, we returned to the radial vibration data 
and observed the accelerometer’s frequency spectrum at each 
run speed setpoint condition. The objective was to identify 
spectra peaks that; (1) remained constant across all run speed 
setpoint conditions, or (2) that predictably changed with 
respect to run speed, or (3) that somehow appeared to 
correlate with the width of the etched bearing fault. We 

would then use these peaks as a reference, or marker 
frequency about which we would isolate our RMS 
calculation of the pressure spectrum for the no-fault, 0.030 
inch and 0.080 inch width etch fault tests. In general, using 
vibration spectrum peaks as a ‘frequency marker’ did not 
produce consistently repeatable RMS trend results. 

This inconsistency in the RMS calculation even when using a 
vibration frequency marker as described above led us to 
investigate whether there were any frequencies, or frequency 
bands at which the RMS value of vibration spectrum 
increased with increasing etched fault width AND 
simultaneously, at these frequencies (or frequency bands), the 
RMS value of the pressure spectrum also increased with 
increasing etched fault width. Figure 10 shows a binary plot 
illustrating the results of this study for selected run speed 
setpoint conditions. 

In long hand explanation, the algorithm plots either a 
‘TRUE’ or ‘FALSE’ depending on whether the following 
condition is satisfied:  
The plot is ‘TRUE’ or ‘High’, if:  

(1) The vibration data is consistent in terms of the RMS 
value of the 0.080 inch etch spectrum is greater than 
the 0.030 inch etch spectrum; 

(2) AND the RMS value for the 0.030 inch etch 
spectrum is in turn greater than the no fault 
spectrum;  

(3) AND simultaneously the pressure data is consistent 
in terms of  the RMS value of the 0.080 inch etch 
spectrum is greater than the 0.030 inch etch 
spectrum;  
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Figure 8. RMS calculations for no-fault, 0.030 inch width and 0.080 inch width etched fault spectrums for four selected run 
speed

(4) AND the RMS value for the 0.030 inch etch 
spectrum is in turn greater than the no fault 
spectrum.  

Though the resolution is difficult to visually resolve across 
the entire 0-500 Hz bandwidth, there are frequency regions 
which the ‘density’ of TRUE conditions are relatively greater 
than for other regions. Even when comparing across multiple 
run speed setpoint conditions, there appears to be frequency 
bands that have corresponding TRUE vs. FALSE regions. 
However there does not appear to be a frequency band that is 
consistent across all run speed setpoint conditions.  

Had a consistent frequency band been identified across all 
speeds, this frequency range would have been the focal point 
for developing a fault detection algorithm, specific to this 
bearing spalling fault.  

To investigate the feasibility of implementing the RMS fault 
detection approach using the existing broad band vehicle 
sensor data, figure 11 distills in bar graph format the 0-500 
Hz RMS results for the respective pressure spectra at 
multiple runs speeds. It should be noted that the results are 
not consistently repeatable across all run speeds. 

Based on our limited data set, there appears to be speed 
regimes in which the RMS value increases with fault 
severity, as highlighted in figure 11. In general the RMS 
calculation has a number of limitations. For example it is 

common to observe significant variation in RMS values 
among pumps, engines and transmissions all of the same 
model type. It is therefore prudent that any condition 
monitoring algorithm incorporate multiple calculation 
approaches as a means of corroborating conclusions and 
minimizing false positive results. 

There exist a number of techniques collectively referred to as 
statistical signal processing techniques or features that can 
also be applied. Four additional features were applied to the 
pressure signal data; Total Energy, Crest Factor, 

 
Figure 9. Bar graph plot of RMS calculations for no-fault, 

0.030 inch width and 0.080 inch width etched fault spectrums 
at four selected run speeds 
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Figure 10. Identifying frequency bands for which the RMS value of the pressure spectrum increased with increasing etched 
fault width AND simultaneously at these frequencies the RMS value of the vibration spectrum also increased with increasing 

etched fault width

Kurtosis, and Kurtosis Interstitial Envelope. The results of 
the four methods also did not show consistent quantitative 
trends with respect to etch width. Representative of the 
inconsistency among the feature findings is figure 12. Figure 
12 illustrates that the results of applying kurtosis did not 
provide the ability to predictively detect the various states of 
bearing condition consistently across every speed range, but 
it did provide a more sensitive predictive fault detection 
capability at one more of the speed setpoints relative to the 
RMS approach. 

5.2 Etched Bearing Test Conclusion 

The results of the of the bearing fault detection investigation 
indicated the RMS pressure spectrum from 0-500 Hz, as a 
condition indicator, has a low fault sensitivity and it is only 
effective for less than half of the speed setpoints that were 
tested. Specifically, the RMS calculation was not consistent 
across all 16 run speed setpoint conditions in the sense that 
the RMS values correlated with increasing etch width. Select 
individual speed setpoint conditions appeared to be consistent 
in terms of increasing RMS value vis-a-vis etch width but 
this was not consistent across all speeds.  The kurtosis 
pressure spectrum from 0-500 Hz provided a predictive 
condition indicator with a slightly improved fault sensitivity 
as compared to the RMS feature. Though it is effective for 
more of the speed setpoints tested it is not effective for the 
entire speed range. In comparsion, the RMS accelerometer 

spectrum from 0-500 Hz provided a predictive condition 
indicator with the highest fault sensitivity as compared to the 
other features.  

 
Figure 11. Bar graph summary of 0-500 Hz bandwidth RMS 
calculation for fuel pressure spectrum with bearing fault for 

nine run speed set point conditions 
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Figure 12. Bar graph summary of 0-500 Hz bandwidth 

Kurtosis calculation for fuel pressure spectrum with bearing 
fault for nine run speed set point conditions 

5.3 Gear Fault Test Discussion 

The aim of the gear fault testing was to investigate whether 
accumulation of particulate on the teeth of the gear pump 
sub-assembly could be detected by the downstream pressure 
transducer. As mentioned above, one individual 
maintainer/technician noted he was aware of at least one 
pump failing due to the pump shaft breaking because 
particulate accumulating on the gear teeth caused the gear 
pump to bind under load. Without reproducible evidence, this 
fault is difficult to conceptualize as a failure mode in 
practice. It is plausible that a larger piece of foreign-object-
debris entered the gear pump and thus resulted in the shaft 
breaking due to the gears binding versus the failure resulting 
from the gradual accumulation of particulate on the gear 
teeth. Nevertheless, with this in mind, the following 
discussion documents our efforts to investigate this 
accumulation of particulate on the gear teeth as a potentially 
detectable failure mode. 

Figure 13 shows the gear pump sub-assembly and the 
aluminum coating applied to one gear tooth for the simulated 
fault test. To re-iterate, the ideal test would utilize fielded 
gear pumps with particulate accumulated on the gear teeth or 
perhaps more likely in the gear’s space width (teeth valleys). 
The gear fault testing incorporated only four run speed 
setpoint conditions compared to the 16 used for the 
subsequent bearing fault testing. The four run speeds were 
600, 1300, 1700, 2100 RPM. These run speeds correspond to 
the four calibration setpoint conditions we obtained from the 
Cummins factory that calibrated our original PT pump. 

The bar graph data in figure 14 summarizes the broadband 
RMS calculation of the fuel pressure spectrum for the no gear 
fault case (no coating) and the fault case (~0.001 inch 
coating) for the four run speed setpoint conditions. 

  

  

 

 
Figure 13. a) Gear pump sub-assembly, b) Metal coating 

applied to one gear tooth for simulated fault test 

The data in figure 14 shows that this basic method does 
provide a low sensitivity condition indicator at the 1700 RPM 
and 2100 RPM pump speed setpoints but it does not provide 
an indication at 600 RPM and 1300 RPM. Based on these 
results the next step in the analysis was directed toward a 
narrowband frequency evaluation.       

The spectrum characteristic we focused on was the distinct 
peak observed at 10X run speed or the 10th order as indicated 
by the yellow shaded box in figure 15. This frequency 
corresponds to the gear pump’s Gear Mesh Frequency 
(GMF), which is equal to the shaft speed in Hertz multiplied 
by the number of teeth on the gear mounted on that same 
shaft.  

With this stated, we continued the line of inquiry to examine 
whether a similarly consistent peak and RMS value would be 
detected in the pressure signal. Based on visual inspection, 
across this broad order range from 0 to 30 orders, there 
appeared to be two ‘relatively’ consistent indications of the 
gear fault in the pressure spectrum.  The next step in the 
study focused on discrete frequency analysis as indicated by 
the two ordered frequencies marked in yellow as potential 
condition indicators in figure 15.   

 
Figure 14. Bar graph summary of the broadband 0-500Hz 
RMS calculation of fuel pressure spectrum for the no gear 

fault case (no coating) and the fault case (~0.001 inch 
coating) for the four run speed set point conditions 
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Figure 15. Fuel pressure frequency spectrum in the order domain with gear fault for the four run speed set point conditions 

5.4 Gear Fault Test Conclusion As stated above, because the 10th order frequency appears to 
be the most favorable ordered frequency marker, we 
narrowed our ordered frequency band over which we 
performed the RMS calculation to the 9th through 11th order 
range in order to determine whether a quantitative fault 
indicator may be more pronounced when only a specific band 
of the entire pressure spectrum is used for the calculation. 
However the RMS of the nominal 10th order frequency from 
the pressure sensor does not provide a positive correlation 
with the fault. It was therefore ruled out as a predictive 
condition indicator.  

The results of the gear fault detection investigation are not 
decisive but did not rule out the potential for an effective 
predictive gear fault detection capability using the existing 
pressure sensor installed on the CMED variant Bradley.    

Based on visual inspection, the data indicates that there does 
appear to be a second discrete frequency in the pressure data 
that correlates to the seeded gear fault condition.  This 
frequency is at approximately 1.8 orders as indicated in 
figure 15.   The plot in figure 16 shows the positive 
correlation in the narrowband RMS calculation and the no 
fault versus seeded fault cases at the 1.8 order of run speed 
frequency. This finding suggests this discrete ordered 
frequency might potentially be useful as a predictive 
condition indicator. Pending further analysis using a 
statistically significant number of pumps, we emphasize two 
points: (1) There is no precedent or physical explanation 
providing the rationale to focus on the 1.8th order of run 
speed;  This order was selected based on manual inspection 
of the spectrum. The objective was to identify orders at 
which the RMS results demonstrated a positive correlation 
with respect to presence of the gear tooth coating; (2) It is not 
yet confirmed whether the correlation at this run speed order 
is consistent for a larger sample set of pumps.  

The preliminary analysis conducted using the accelerometer 
data showed that the broadband (0-500 Hz) RMS vibration 
spectrum does not provide a predictive condition indicator.  

The discrete frequency analysis indicated that the 10th order, 
which is the gear mesh frequency for the gear pump, did not 
prove effective when utilized with the pressure sensor.  The 

next step in the analysis led to an assessment of other 
effective discrete frequency indicators that could be used 

with the pressure sensor.  It was determined that a discrete 
frequency at the 1.8th order could potentially be utilized as an 

 
Figure 16. Bar graph summary of nominal 1.8th order RMS 
calculation of fuel pressure spectrum with gear fault for the 

four run speed set point conditions 
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effective predictive condition indicator for the gear fault case.  
The relationship between this frequency and the gear fault 
has not been determined at this point. Among other 
considerations, the effect of the pressure pulses generated by 
the fuel injectors requires study in order to rule out the 
potential it may possess to mask the characteristic spectral 
signature of this fault. Further testing would be conducted to 
validate this condition indicator.      

6. CONCLUSION 

This paper documents the test stand setup and analysis 
methodology used to investigate the feasibility of detecting 
seeded gear and bearing faults in a PT pump using an 
existing on-board M2 Bradley fuel pressure sensor with a 
dynamic bandwidth of 0-500 Hz. The results are not 
statistically valid, nor are the results consistent at all speed 
setpoint conditions. With this stated, there is limited evidence 
suggesting that it may be feasible to detect a 0.001 inch 
particulate accumulation on the gear pump teeth using 
narrowband RMS based quantification methods. Four 
additional statistical signal processing features yielded no 
more consistent results across the range of speed setpoints 
examined. The inconsistencies associated with run speed are 
not fully understood. Further study would enable 
confirmation as to whether structural frequencies associated 
with the pump or the test stand configuration may be 
contributing factors. The data processing employed in this 
study utilized a 100 kHz sampling rate to acquire the pressure 
signal and a one pulse per revolution tachometer signal for 
time synchronous averaging. Limitations to the data 
processing are dependent on the intended on or off-board 
end-use implementation. On/off-board implementation must 
address electro-magnetic interference and signal pre-
conditioning considerations along with associated cable 
shielding, computer processing, data storage and user 
interface requirements. Given the relatively gradual lead up 
to PT pump failure given bearing and gear faults of this type, 
further study would investigate the cost effective feasibility 
of detecting such bearing and gear faults at idle speed using 
an at-platform maintenance-bay diagnostic software tool 
approach. While on-board detection at higher speeds may be 
feasible in theory, the additional cost of data acquisition, 
instrumentation and sensor/DAQ maintenance along with the 
complexity associated with noise in a field environment, may 
not justify maintenance and logistics costs. 
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ABSTRACT 
This paper presents a review of embedded condition 
monitoring research carried out at Cardiff University. A 
variety of application areas are described, along with a 
discussion of the evolution of the hardware platforms used. 
The current operating philosophies of  the Intelligent 
Process Monitoring and Management (IPMM) research 
group and the deployed hierarchical and distributed 
architectures are described. The paper sets out to discuss the 
on-going trend towards such monitoring systems needing to 
provide more than fault detection and diagnostic 
capabilities. System requirements such as tracking 
operational settings, performance and efficiency measures 
and providing limp-home facilities are seen to be consistent 
with prognostics and health management ideals. The paper 
concludes with a discussion of new and future developments 
and applications. 

1. INTRODUCTION 

The Intelligent Process Monitoring and Management 
(IPMM) research group at the Cardiff School of 
Engineering has 20+ years experience of condition 
monitoring research. The following sections describe 
industrially related application areas and track the evolution 
of technologies and approaches. The associated discussions 
describe how modern monitoring systems must provide far 
more than fault detection and diagnosis. 

Originally the IPMM research concentrated on machine tool 
applications used heavily sensor-based techniques, using PC 
platforms and interfaces, and working with large companies. 

With technologies changes, and following an ERDF funded 
project aimed at SMEs in south Wales, distributed, 
microcontroller-based systems became the main area of 
research.  
* This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author 
and source are credited. 

 

       Table 1. Condition Monitoring System Concepts 

 

 

 

 

 

 

 

 

 

There was an accompanying diversification of application 
areas. The machine tool work continued, but with PLC 
controlled systems, process and environmental / energy 
systems added to the range of monitoring applications.  

Table 1 reflects on the main concepts employed with the 
latest generations of the microcontroller-based monitoring 
systems.  

 

The low cost and ease of use of these systems led to their 
application to a range of monitoring functions for machine 
tools and process plant, for example as reported by Siddiqui 
et al (2010) and Siddiqui et al (2007) respectively. Initially 
limitations, in terms of processing capabilities restricted 
their application. However, the current generation of 
microcontroller devices, such as those now deployed has 
largely overcome such limitations. As will be discussed 
later, a generic microcontroller platform is often adopted as 
a starting point.  
 
The monitoring systems deployed by the IPMM group are 
not exclusively based upon the described microcontroller 
platform. For example, SCADA based systems have been 
used for both the monitoring of water treatment plants and 

Distributed, data acquisition / monitoring nodes linked by 
a CAN-bus network

3 tier approach – higher levels provide data 
fusion and robust decisions 

deployed systems linked to remote base via Internet

minimised data communications and storage

8-bit microcontrollers used, 96% of faults detected 
locally…… 

….. only PC is server-side and used to provide 
higher level analysis…

…….. of remaining 4 % of faults.

Hierarchical,

Remote,

Intelligent

Low-Cost

Monitoring
Systems
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cooling towers within a power plant. In other applications, 
where higher processing capabilities are typically required, 
PC based systems have been deployed. Examples include 
the monitoring of crop shear and roughing mill operations in 
a steel plant, where sensory inputs were constrained to being 
provided by acoustic microphones. In other applications the 
microcontroller-based systems have been used to pre-
process data, with the aim of reducing the data processing, 
communications and archiving tasks on predominantly PC 
based systems. . 

2. MACHINE TOOL MONITORING 

Earlier research, as summarised by Drake et al (1995), 
concentrated on the data acquisition and signal processing 
aspects of machine tool monitoring. In parallel, many of the 
constituent sub-systems were researched, in a prioritised 
manner derived from industrial reliability information, from 
a fault detection and diagnostic viewpoint. Examples 
included axis drives (Rashid & Grosvenor, 1997), tool 
changer & coolant sub-systems (Frankowiak et al, 2005) 
and the cutting tools (Amer et al, 2007). 

Hess et al (2005) described the constituent functions and 
processes for Prognostics and Health Management (PHM) 
systems. In addition the timely and correct acquisition of 
signals is a vital element of any monitoring and/or PHM 
system. The approach within the IPMM research is argued 
to be consistent with these guiding themes. For example, 
with the machine tool research, the primary aims have been 
to reduce the downtime of such high capital cost, high 
utilisation machines. The challenge is to provide sufficient 
lead time / warning  to the operator of progressive faults and 
to handle the fault detection and isolation of ‘hard’ 
(catastrophic) faults with sufficient fault library coverage. A 
higher level of fault information is then made available to 
the service / maintenance teams to assist their corrective 
actions. Further, techniques such as Overall Equipment 
Effectiveness (OEE) may be used to provide a longer term 
tracking of the health and performance of the machines. In 
the context of machine tool monitoring the provision of a 
scaled indication of the feasibility of continued use is a 
useful feature. Should the operator immediately halt the 
machining process, or is there a possibility to complete the 
existing job or batch (perhaps at reduced cutting speeds and 
feedrates), or can the machine be run until the next 
convenient maintenance opportunity?  

Rather what has evolved has been the data acquisition, 
signal processing and computing platforms utilised, along 
with consideration of the number of additional sensors to be 
fitted to the machine for monitoring purposes. The data 
acquisition system (DAS), from the early 1990’s work 
mentioned above, was based on a PC platform and utilised a 
large number of analog and digital inputs and custom 
designed interface cards to form the DAS. During remotely 
sited industrial trials up to 21 additional fitted sensor  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure1. Potential Machine Tool Monitoring Measurements 

signals, along with 14 signals from sensors that pre-existed 
on the machine and 46 digital signals were used. The digital 
signals derived from the CNC and from limit switches etc 
were used, with a database defined series of diagnostic tests, 
to provide consistency for trend comparisons and for 
determining best matches to the established fault library. 

Also, to eliminate the variability from all machining 
operations whilst providing on-line monitoring of the 
machine tools themselves the database configured tests to 
capture diagnostic information during all periods whilst the 
machine was on / moving but not actually cutting metal. The 
pre-internet enabled communications retrieval from the 
remote locations and the then limited PC storage capabilities 
also required a variety of (database configurable) signal 
processing / data reduction methods. Figure 1 provides a 
summary of many of the potential measurements that can 
and have been used in machine tool monitoring. 

For the more recent distributed and embedded monitoring 
systems, and making use of the increased processing power 
and communications protocols, single chip microcontrollers 
have been utilised. The number of additional sensors has 
been dramatically reduced. Continued use is made of any 
suitable sensors pre-fitted on the machine tool, with their 
potential for monitoring typically being assessed during an 
initial auditing phase. Carefully designed monitoring tests 
then often infer fault conditions from a collection of inputs, 
which are acquired from the lowest level of the 
microcontroller based nodes. The next higher level node co-
ordinates and provides more robust decision making from 
the available information. In a more general sense, Jacazio 
et al (2010) have reported on the role of logical and robust 
decision making elements of sensor-based PHM systems.  
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           Figure 2. Monitoring System Architecture

The proposed and relatively simple monitoring algorithms 
are then developed and tested. Research machin
or representative scaled physical models of sub
used to deliberately introduce typical faults. For the case of 
cutting forces and tool wear / breakage detection the 
effectiveness of using inferred measures, from motor 
currents for example, is tested against higher cost 
dynamometers during this development phase. 

Table 1 shown previously describes the overall monitoring 
system parameters and Figure 2 provides the remote 
monitoring architecture. A number of (PIC) microcontroller 
monitoring nodes are deployed on the machine (or process) 
to be monitored. These are typically capable of detecting
80% of all faults, mainly trivial, low level hard faults. These 
are connected to each other and to the 2
microcontroller via a CAN bus communications protocol. 
The CAN bus protocol is heavily used and was developed 
for automotive applications, and its robust performance in 
harsh and noisy environments make it ideal for machine 
monitoring applications.  

 

 

 

 

 

 

 

 

 

 Figure 3. Monitoring Modules Hardware 
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The level 2 node, as stated, co-ordinates the information 
from the other nodes and typically 80% (of the 20% not
detectable at the lowest level nodes) of remaining fault 
coverage is provided. These will require more sophisticated
diagnostic methods compared to the previously described 
low level hard faults. More typically the early detection of 
faults whose level of severity increase
to be detected and diagnosed at this node. 
provides the internet based communications (at low level 
UDP protocols) back to the PC-based server. For the 4% or 
so of faults requiring higher processing capabilities and 
algorithms the monitored data may be streamed back.

Figure 3 shows the hardware developed, in this case for a 
batch process application (Ahsan et al, 2006)
circuit boards, each with a PIC microcontroller, are 
connected to analog signals measuring flowrate, 
temperature, liquid level and pump power, an
monitoring modules. The horizontal circuit board includes 
the connectivity module and CAN bus 
(brought physically close together in this 

2.1 Petri Nets  

The group has used Petri Net techniques for a variety of 
applications, including machine tool monitoring. Initially, 
and in line with Petri’s original concepts, the Pet
were used as a graphical user interface. 
operator could view the dynamic flow of coloured tokens 
around the defined Petri Net diagram. 
Petri Nets in monitoring applications is provided by 
Frankowiak et al (2009). The approach was then adapted to 
provide the context and consistency of the defined 
monitoring tests and to reduce the amount of re
programming of the microcontroller nodes when deployed 
on new applications. Frankowiak et al (2009) concluded that 
the extensions provided, to conventional Petri Net 
representations, facilitated the interfacing and handling of 
real-life process signals. The addition of thresholded analog 
inputs and other constructions more suited to monitoring 
rather than control of sequential process was deemed to be 
vital to the evolution of low-cost monitoring systems. 
 
The coding of the particular Petri net 
demonstrated for a machine tool changer, a conveyor based 
assembly process and for a hydraulic press. The 
the look-up tables within the microcontroller programs 
allowed for a selective approach to which sequence 
transition data were recorded and transmitted. This enabled 
both OEE calculations and the population of dynamic web 
page displays at the server-side PC. In particular the 
recording of start and end transitions enabled cycle time 
calculations. The counting of branched states, for example 
representing good or bad assemblies (for the conveyor 
application) enabled a quality measure. The third cons
of OEE calculations was then provided by the time
alarms of the Petri Net transitions in faulty conditions. The 
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look-up tables were achievable within the memory 
constraints of the microcontroller hardware. Each 
microcontroller node could be interfaced to up to 24 digital 
inputs, 4 analog inputs and 2 pulse train inputs and could 
provide 1 digital output. 

2.2 Microcontrollers  

The PIC microcontrollers used are simple 8 or 16 bit single 
chip devices, whose features and capabilities have advanced 
with time. They conveniently handle inputs and outputs and 
have a variety of communications protocols. Originally the 
use of CAN bus communications required an additional 
transceiver chip alongside the PIC. These days PIC devices 
are available with built-in CAN bus facilities. The simple 
PIC devices do not have extensive capabilities for 
mathematical manipulations and/or diagnostic algorithms, 
although comparison of inputs to pre-determine threshold 
levels are readily implemented. The considerations for more 
advanced signal analysis, such as frequency analysis will be 
discussed here as an example. 
 
Amer et al (2007) reported on the use of sweeping filters for 
machine tool condition monitoring. A PIC 18 series 
microcontroller was deployed as one of the monitoring 
module nodes. It was used to control an analog 
programmable filter, in the stated application to detect 
breakage of a 4-toothed milling cutter. The limitations were 
such that, in effect, a 32 point Fast Fourier Transform (FFT) 
of spindle load signal on the milling machine was achieved. 
The filter was swept through the determined and appropriate 
range of frequencies and enabled the PIC to accumulate 
sufficient data, with the available timeframe, to determine a 
limited resolution frequency spectrum. The system was 
developed though a series of cutting trials, with a range of 
set machining conditions and for 3 and 2 tooth cutters, in 
addition to the 4 tooth cutters. The approach was successful, 
when considered within the context of the first level 
diagnostics within the hierarchical monitoring system. 
 
The detection of the breakage of milling cutters is a 
challenging task. In a survey of health management user 
objectives, Wheeler et al (2010), included considerations of 
diagnostics and diagnostic metrics. They included detection 
rates, detection accuracy and detection response time as 
desirable objectives. For milling breakage detection there is 
a premium on the detection response time, particularly for 
high value, long cycle time, minimally supervised 
machining jobs. The use of better resolution and more 
sophisticated FFT that was then enable by the next 
generation of microcontrollers, known as dsPICs, was 
reported by Siddiqui et al (2007). Figure 4 shows the 
structure of the dsPIC system.The dsPIC is a 24 bit device 
and has digital signal processing (DSP) commands along 
with the established PIC I/O handling and communications. 
It also has higher resolution analog signal acquisition and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 4. Schematic of dsPIC Monitoring System 
 
in-built FFT routines. Siddiqui et al (2007) implemented an 
overlap FFT processing scheme in order to address the 
demanding detection response time requirement. The 
reported results showed that a robust detection of sudden 
tool breakage could be achieved within 1.5 revolutions of 
the spindle (and cutter) post failure. The efficient coding of 
the software and algorithms meant that detection could be 
achieved for spindle speeds up to 3000 r.p.m. The 
monitoring system was designed to be relatively immune to 
false alarms, even under a range of machining conditions. 
These included break-in and break-out (these often trigger 
false alarms in such monitoring systems), variable depth of 
cut and a range of (operator selected) spindle speeds. For the 
latter case the sample rate of the dsPIC was changed under 
software control in order to ‘track’ the intended and 
particular frequencies of interest.  
 
Further the derived states of the frequency components, at 
the spindle rotational frequency (fr), at 3 times this 
frequency (3fr) and at the tooth passing frequency (fp) were 
fed into a decision maker. The other parameters used by the 
decision maker were a Tool Rotation Energy Variation 
(TREV) and a Relative Energy Index (REI). Table 2 
summarises the decision making logic. If a clear 
categorization was not directly possible then either further 
frames of data could be captured and processed or the raw 
data could be passed up the monitoring hierarchy for more 
advanced frequency analysis.  
 
The other aspect of the milling cutter monitoring system that 
may be of relevance to PHM approaches is the estimation of 
tool life. Often milling cutters are deployed with a (usually) 
conservative estimate of expected lifetime. The parameters 
used with the dsPIC monitoring system are also used to 
calculate the accumulated usage time of the cutting tool. 
The energy based monitoring calculations further enable the 
usage time to be considered in combination with a measure 
of how hard the tool was used and when it was actually in 
use, cutting metal. This provides refinements compared to 
simple logging of the calendar age of the tool or machine-on  
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Table 2. Decision Making Table 

Mean 
Freq 

Magnitude2 Pattern Decision 
fr 3 fr fp 

0 0 0 0 0 Healthy 
0 0 0 1 0 Blunt Tool 
 
0 

 
1 

 
X 

 
X 

 
0 

Unexpected : 
request advanced 
diagnosis 

 
0 

 
X 

 
1 

 
X 

 
0 

Unexpected : 
request advanced 
diagnosis 

1 0 0 0 0 Wait for next 
Frame 

1 0 0 0 1 Chipped Tool 
1 1 X X 1 Broken Tooth 
1 X 1 X 1 Broken Tooth 
1 X X 1 1 Broken Tooth 
 

hours. Potentially such lifetime profiles could be used 
towards the end of the useful life to determine whether a 
particular job could be finished, for example at reduced 
machining rates, with the existing tool. 

3. INDUSTRIAL MACHINE / PROCESS 
MONITORING 

3.1 Embedded Monitoring Applications 

The previously described microcontroller systems were also 
deployed, as stated in section 2.1, to monitor a conveyor 
based assembly process and a hydraulic press. Both of these 
are good examples of industrial processes whose sequence 
and logic is controlled by a Programmable Logic Controller 
(PLC). The conveyor assembly monitoring system was 
interfaced to 14 digital signals, utilizing both inputs to and 
outputs from the programmed PLC. The defining Petri Net 
structure had 63 transitions and was predominately a 
branched structure. This reflected the various outcomes at 
the sorting, assembly, overflow and accept/reject stages of 
the process. The Petri Net was configured to enable OEE 
calculations and the remote tracking via dynamic web pages 
of the assembly process performance. Figure 5 shows one 
example of such performance tracking. The pie chart 
reflects the counts of well assembled parts, incorrect 
assemblies or parts and reprocessed parts. The numbers 
preceding the counted occurrences are the respective Petri 
Net transition numbers.  

For the hydraulic press application 22 digital signals from 
the PLC were used along with 3 analog signals used to 
measure the motor currents on each axis of motion. The 
Petri Net representation had 29 transitions and the only 
branching required depended on whether a left hand or right 
hand pallet was selected for pressing actions by the press  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Dynamic Webpage Example for Assembly 
Process Application. 

 

operator. The movement of the vertical axis provided a good 
example of where context based (provided by the Petri net 
structure) thresholding of signals was required. The vertical 
motor currents, for normal fault free operations were 
different for upwards and downwards movements. The 
monitoring system was again configured to provide cycle 
times, loading times and fault diagnostics. 

Prickett et al (2010) reported on the monitoring of 
pneumatic systems, such as linear actuators and grippers. 
These are widely used in the automotive, manufacturing and 
food packaging industries. The dsPIC microcontroller 
system was used to detect the presence of parts and 
indentified their size in real time during gripping operations 
Key timing in measured pressure response profiles during a 
gripping cycle were identified. A modelled 3D surface that 
described the actuator movement and the effect of air supply 
pressure and stroke length was then utilised. The timings 
could then be used to confirm that the correctly sized 
component had been gripped and that it had not slipped or 
had been dropped during the actuation cycle.  

3.2 Monitoring Applications Using Other Platforms 

Sharif and Grosvenor (1997) used a PC based system in the 
monitoring of pneumatically actuated process control 
valves. In this application the monitoring system was used 
to complement the built-in diagnostics and test cycles of the 
valve’s digital position controller. A test rig was established 
and the fault diagnosis capabilities were assessed following 
the introduction of simulated faults. It was reported that a 
range of fault conditions and their levels could be detected 
with the addition of 1 extra pressure transducer. The faults 
were deemed to be representative of harsh and arid type 
pipeline conditions. The faults were vent hole blockages, 
diaphragm ageing & cracking and damage to the valve stem 
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seal due to accumulated deposits on the valve stem. The 
problem of internal leakage through the valve was 
separately investigated and was found to require the 
addition of acoustic emission sensors.  

Eyers et al (2005) considered the monitoring of a robotic 
welding station. The industrial application began with t
deployment of a commercial system that interfaced up to 4 
sensor signals from the machine on the factory shopfloor to 
an office based location. This device used Bluetooth class 1 
communications but was found to be inflexible in terms of 
file storage. This rendered the viewing of longer term trends 
difficult and required large file storage capacity. The 
developed PC-based monitoring system was accordingly 
focussed on intelligent data management and reporting. 
Web-based OEE statistics were generated and a 
reduction in the daily traffic of monitored information was 
achieved. Significant differences in completed welding 
operations across the 3 shifts per day were observed and the 
industrial partner was then able to instigate performance 
improvement measures. The shift-by-shift reports and the 
weekly and monthly trends were reported via a number of 
mechanisms and technologies.  

4. OTHER  MONITORING APPLICATIONS

Edwards et al (2006) considered monitoring techniques for 
determining lamp condition in lighting applications. The 
proposed approach required the measurement of a 
combination of lamp characteristics in order to accurately 
determine remaining life. Testing was carried out with 
filament lamps, low pressure discharge lamps and UV 
sterilization lamps. In the case of filament lamps it was 
found that strong correlations existed between initial 
characteristics and lamp life. A short duration (30 seconds) 
test of each lamp could then be used to predict the 
remaining useful life. A multi channel PC based test rig 
used to test multiple lamps and to gather the data used to 
establish the correlations.  

Davies et al (2009) used a SCADA based system to obtain 
PLC information for water treatment plant and cooling 
tower applications. The water treatment plant monitori
mainly consisted of detecting pump and piping blockages 
and of determining the performance of the programmed 
schedule of filter bed backwashing actions. The Citect 
SCADA software that was utilised acted as an OPC server 
and was hosted on a PC platform. The initial detection of 
potential faults was triggered if a raised speed request from 
the PLC continuous PID control loop was detected. This 
could indicate the controller ‘working harder’ 
the set flowrate of water for treatment in the filter b
could be in reaction to either single or combined blockages, 
of the upstream or downstream pipework or could indicate 
that the filter is in need of backwashing. A diagnostic 
program then ran and manipulated the speed request signal 
to create a test cycle. The flow and pressure signal 
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 Figure 6. Process Mimic Screen for Water Treatment Plant.

obtained were then used to determine the fault conditions. 
The diagnostic program could estimate blockage levels for 
both single and multiple fault scenarios and could 
distinguish pump and pipework blockages f
fouling. The triggering of filter backwashing was 
implemented when required. The system 
used to optimise the duration between scheduled backwash 
operations. The operator was provided with a process mimic 
summary screen, an example of which is shown in Figure 6. 

For the cooling tower application the monitoring system 
was also required to track the chemical dosing regime. The 
system also helped to co-ordinate and optimise the selective 
operation of 3 cooling towers in varying operational 
conditions. The system also provided accurate real time 
information on the energy usage and efficiencies and 
provided the manager with a financial costing screen. 

5. DISCUSSION OF FUTURE APPLICATIONS
PHM TECHNIQUES 

5.1 New and Future Monitoring Applications

One example relates to the emerging technologies for 
tidal turbines and renewable power generation. In many 
cases the proposed monitoring schemes are deemed to be 
analogous to those deployed on wind turbines. Owen et al 
(2010), for example, have reported on a multi
structural health monitoring system for wind turbine blades 
and components. Certainly in considering typical generic 
designs that are emerging for tidal turbines there are, at the 
sub-system level many similar components to wind turbines. 
The operating conditions and medium are vastly different. 
The IPMM group is considering the monitoring and PHM 
requirements that are likely to be embedded within tida
turbines. As a starting point a Failure Modes and Effects 
Analysis (FMEA) provides a vehicle for the systematic 
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obtained were then used to determine the fault conditions. 
The diagnostic program could estimate blockage levels for 
both single and multiple fault scenarios and could 

work blockages from filter bed 
fouling. The triggering of filter backwashing was 
implemented when required. The system however was also 
used to optimise the duration between scheduled backwash 

The operator was provided with a process mimic 
summary screen, an example of which is shown in Figure 6.  

For the cooling tower application the monitoring system 
was also required to track the chemical dosing regime. The 

ordinate and optimise the selective 
operation of 3 cooling towers in varying operational 
conditions. The system also provided accurate real time 
information on the energy usage and efficiencies and 
provided the manager with a financial costing screen.  
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structural health monitoring system for wind turbine blades 
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Figure 7. Representation of the Marine Tidal Turbine 

Condition Monitoring Architecture 

 
analysis of potential failure modes to reduce and if possible 
prevent failures. An effective FMEA can identify critical 
points within the design, manufacture, installation and 
operation of components, characterise failure modes, actions 
also direct the specification and configuration of condition 
monitoring systems that can support the successful 
operation of marine tidal turbines. Values for the severity, 
occurrence and detection ratings for constituent sub-systems 
are multiplied to produce risk priority numbers (RPN). The 
group plans to implement an embedded monitoring system 
and to initially test and develop the system on scale models 
of the turbines. These are being used in water flume testing 
for the validation of computational fluid mechanics (CFD) 
mathematical models. An outline of the system architecture 
is shown in Figure 7. A representation of the main 
constituents of a generic tidal turbine that will require 
monitoring is provided in Figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Representation of Possible Turbine 
Configurations. 

5.2 Discussion of the Need for Condition Monitoring 
Systems to Embrace PHM Techniques.  

The authors believe that the modern and future generations 
of monitoring systems need to provide more than just 
condition monitoring and fault diagnostic functions. It is 
hoped that the range of monitoring applications reported in 
this paper already contain some of the PHM philosophies 
and techniques. The dsPIC based embedded and distributed 
monitoring architectures reported are believed to provide a 
potential platform for future developments.  
 
It is hoped that the experiences reported may be of use to 
other PHM practitioners when they initially consider which 
approaches and platforms for their applications. 
 
When working with multiple distributed applications and/or 
small resource limited organizations the lower cost 
microcontroller platforms and the selective use of key 
additional sensors will almost inevitably be a constraint or 
be of fundamental importance. Further consideration should 
be applied to which of the available range of techniques is 
most appropriate. For example, the simple comparison of an 
analog signal level to a set threshold will have low 
microcontroller resource implications. It would not be over 
demanding in terms of sample rates, processing power or 
data storage and communications. In other cases, for 
example machine tool or rotating machinery applications, 
the ability to provide FFT processing would almost certainly 
be a vital requirement. A more detailed analysis of the 
microcontroller resources would be needed.  
 
The IPMM group is, as stated, applying such considerations 
to the monitoring of future generations of tidal stream 
turbines. It is envisaged that ruggedized commercially 
available modules, such as the compactRIO system from 
National Instruments will be investigated in conjunction 
with some of the reported microcontroller modules.  
 
It has been reported that PHM involves interdisciplinary 
research with a broad range of application areas.  The 
detection of impending faults remains a key objective and in 
a wider PHM system allows logistical decision making. 
This along with the concept of transforming data into 
information and onwards to decisions is consistent with the 
condition monitoring approaches reported in this paper.  
 
There is potential to expand the monitoring research to have 
more explicit links to reliability predictions and to more 
fully consider lifetime management of components and 
systems.                                                 
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ABSTRACT 

Vibration signals from complex rotating machines are 
often non-Gaussian and non-stationary, so it is difficult 
to accurately detect faults of a bearing inside using a 
single sensor. This paper introduces a new bearing fault 
diagnostics scheme in complex rotating machines using 
multi-sensor mixtured hidden Markov model 
(MSMHMM) of vibration signals. Vibration signals of 
each sensor will be considered as the mixture of non-
Gaussian sources, which can depict non-Gaussian 
observation sequences well. Then its parameter learning 
procedure is given in detail based on EM algorithm. In 
the end the new method was tested with experimental 
data collected from a helicopter gearbox and the results 
are very exciting. 

1. INTRODUCTION 

Today’s industry uses increasingly complex rotating 
machines, some with extremely demanding 
performance criteria. Machine failures are significantly 
contributed to both safety incidents and maintenance 
costs.  The root cause of faults in complex rotating 
machines is often faulty bearings. A bearing condition 
monitoring system is therefore necessary to prevent 
major breakdowns due to progression of undetected 
faults. Over the past tens years, much research has been 
focused on vibration-based fault diagnostics techniques 
(Paul and Darryll, 2005). For complex rotating 
machines, however, it is still difficult to achieve a high 
degree of accuracy in classifying faults of a bearing 
inside due to the complexity of vibration signals.  
Hidden Markov Model (HMM) has been a dominant 
method in speech recognition since 1960s and becomes 
very popular in the late 1980s and 1990s (Rabiner, 
1989). The structure of HMM is useful for modeling a 
sequence that has a hidden stochastic process. It has 
become popular in various areas like signal analysis 
and pattern recognition, such as speech processing and 

medical diagnostics. Recently, HMMs have been 
introduced into mechanical diagnostic areas and many 
HMMs were proposed and extended successfully for 
mechanical systems monitoring and diagnostics 
(Baruah and Chinnam, 2005; Leea, et al., 2004; Bunks, 
et al., 2000). In practice, it is an important issue how to 
select an appropriate HMM model. Most existing 
HMM-based fault diagnostic methods mainly assume 
that each state generates observations according to a 
Gaussian or Gaussian mixture model (Baruah and 
Chinnam, 2005; Leea, et al., 2004; Bunks, et al., 2000; 
Wang, et al., 2009). Also these methods often use a 
single sensor system to perform condition monitoring 
and diagnostics. Whereas vibration signals of complex 
rotating machines are often known to be highly non-
Gaussian and non-stationary (Bouillaut and Sidahmed, 
2001), such as a helicopter gearbox. Thus classical 
HMMs with Gaussian or Gaussian-mixtured 
observations have serious limitations for bearing fault 
diagnostics in complex rotating machines.  
Obviously, a multi-sensor fault diagnostic system can 
overcome the limitations of a single sensor system and 
has improved performance. So our motivation is to 
build a novel HMM with non-Gaussian observations 
based on multi-sensor signals and then use it for 
bearing fault diagnostics in complex rotating machines. 
Vibration signals from a sensor on complex rotating 
machines can be looked as emanating from a number of 
sources caused by these components within it. This 
naturally fits an independent component analysis (ICA) 
process (Lee, et al., 2000). By this way, this paper will 
present a multi-sensor mixtured hidden Markov model 
(MSMHMM) for bearing fault diagnostics, which is 
improved on classical HMMs with mixtured non-
Gaussian observation models. 

2. DEFINITION OF MSMHMM 

For a Gaussian observation model, the observation tO  
at time t is assumed to be generated from a Gaussian 
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process, which is a scalar value corresponding to a 
single sensor. While for a multi-sensor system with N 
sensors, the observation tO  at time t will be a vector, 

i.e. T
tNttt xxx ],,,[ 21 …=O . As mentioned before, 

signals from each sensor on a helicopter gearbox can be 
considered to be mixed by M sources caused by its 
inner components. In this paper a linear mixing process 
is considered. Denoting kW  as the mixing matrix at 

state k and T
M ],,,[ 21 sssS …=  as M sources, the 

observation vector at time t for state k can be calculated 
according to an independent component analysis 
process as follows, 

tk
k
t SWO =                               (1) 

Where kW  is the MN × mixing matrix, 

Msss ,,, 21 …  are statistically independent. For the 
sake of simplicity, we only consider MN =  in this 
paper and kW  is a square matrix. Then we have 

k
tkt OVS =                               (2) 

Where kV  is called as the unmixing matrix and 
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Figure 1: A graphical MSMHMM 

A standard MSMHMM is shown as a graphical model 
in Fig. 1. Then based on the maximum likelihood 
framework of an independent component analysis 
process, the multivariate probability of the multi-sensor 
observation vector can be calculated from the source 
densities as follows (W. D. Penny, 1998), 

( ) ( )
|| k
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t J

PP SO =                                (3) 
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Then Eq.(3) can be transformed as 
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(4) 
It can be easily seen from Eq.(4) that the probability 
density of each observation sequence is determined by 
the probability density of source components. Thus in 
practice, we should choose proper non-Gaussian source 

density models to represent non-Gaussian observation 
sequence, such as vibration signals of helicopter 
gearboxes. Assuming that non-Gaussian source density 
model at state k is depicted by the parameter set }{ kθ , 
a multi-sensor mixtured hidden Markov model can be 
built by the complete parameter set as follows, 

( )θWA,π ,,MSMHMM =λ                       (5) 
Next we need to train the MSMHMM before using it, 
which refers to the estimation of parameters: π , A , 
W  and θ . 

3. MSMHMM PARAMETERS LEARNING 
BASED ON EM ALGORITHM 

Actually a MSMHMM is improved on a standard 
HMM, so its parameters learning frame is similar to 
that of a standard HMM. Thus expectation 
maximization (EM) algorithm can also be used for 
MSMHMM parameters learning. That is to say, it 
needs to maximize, )ˆ,( MSMHMMMSMHMM λλE , the 
expectation of the joint log likelihood of an observation 
sequence ],,,[ 21 TOOOO …=  and hidden state 
sequence Q . Here  (W. D. Penny, 1998), 
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            (6) 
Obviously, Eq.(6) composes of three terms which can 
be used to train MSMHMM model parameters 
respectively: the first term for the initial state 
probabilities ( π ), the second term for the state 
transition probabilities ( A ) and the third one for the 
observation model parameters, i.e. the mixing matrix 
( W ) and source density parameters (θ ). 

3.1 Initial state probabilities learning ( π ) 

The initial state probabilities iπ  can be updated by 
maximizing the first term,  

)(log)|( 1ˆMSMHMM
qPP
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have, 
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Where the constraints are as follows: 

∑ ∑
= =

==
K

i

K

i
i i

1 1
1 1)(,1ˆ γπ . 

By maximizing Eq.(7), we can get the final update 
formula as  

)(ˆ 1 ii γπ =                              (8) 

Where )(1 iγ  can be calculated using the forward-
backward algorithm.  

3.2 State transition probabilities learning ( A ) 

The state transition probabilities A  can be updated by 
maximizing the second term, 
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By maximizing Eq.(9), we can get the final update 
formula as  
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3.3 Mixing matrix ( W ) and source density 
parameters (θ ) learning 

The observation model parameters, i.e. the mixing 
matrix ( W ) and source density parameters (θ ), can 
be updated by maximizing the third term, 

∑∑
=

T

t
tt qPP

１

)|(log)|( ˆMSMHMM
OOQ

MSMHMM
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λλ . However, 

the update process is determined by the observation 
model. In this paper in order to represent non-Gaussian 
vibration signals of a helicopter gearbox, we need to 
choose proper non-Gaussian source models in 
MSMHMM. (S. J. Roberts, 1998) has pointed out that a 
signal consisting of multiple sinusoids has a 
multimodal probability density function (PDF) and 

generalized autoregressive (GAR) source models can 
provide better unmixing than generalized exponential 
(GE) source models for multimodal PDFs sources. On 
the other hand, as we all know that a rotating machine 
works under periodic motions and its vibration source 
are often multi-frequencies sinusoids, so GAR source 
models will be used in this paper. 
A GAR source model is shown as follows,  
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Where ][⋅k

ic  are the GAR coefficients for the ith 

source at state k and denoted as k
ic , k

ite  is a non-
Gaussian additive noise and p is the model order. In 
practice, k

ite  denotes the GAR prediction error and can 
be calculated as, 

∑
=

−−=

−=
p

d

k
dti

k
i

k
it

k
it

k
it

k
it

sdcs

sse

1
)(ˆ][ˆ

ˆ
              (12) 

Then each GAR source density at state k is (S. J. 
Roberts, 1998) 
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Where )(⋅Γ is the gammar function, k
iR , k

iβ  are the 
two density parameter for ith source at state k. 
So in this paper source density parameters ( θ ) 

composes of {p, k
ic , k

iR , k
iβ }. Next we will train 

these parameters according to the third term in Eq.(6). 
Furthermore we have,  
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Where )|(log ˆ kP tO
MSMHMMλ  can be calculated by 

Eq.(4). That is,  
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By substituting Eq.(12), (13), (15) into Eq.(14), 
updating of { W , k

ic , k
iR , k

iβ } can be derived by 
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differentiating Eq.(14) on k
ijW , k

ic , k
iR , k

iβ  
respectively.  
Besides of π , A , W  and θ , there are some other 
parameters needed to be determined, including the 
number of sources, N, the number of states, K, and the 
order of GAR, p. How to select these parameters is a 
problem to be solved, which will not be discussed 
deeply in this paper.  
By now, the algorithm of MSMHMM parameters 
learning can be implemented by Matlab software.   

4. A CASE OF BEARING FAULT DIAGNOSTI-
CS IN A HELICOPTER GEARBOX 

In the experiment, a bearing in a helicopter gearbox is 
selected and two classical faults are seeded on it, i.e. 
rolling element fault and outer race fault, shown in Fig. 
2. Then vibration signals are collected from five 
sensors under normal and faulty conditions respectively. 
The sampling frequency is 10 KHz at each channel. 

 
(a)  Rolling element fault 

  
(b) Outer race fault 

Figure 2: Two kinds of faults on the bearing 

4.1 MSMHMMs training 

In the scheme of MSMHMM-based fault diagnostics, 
firstly it needs to determine the number of sources, the 
number of states and the order of GAR. Because the 
gearbox consists of five main components in this paper, 
the number of sources is selected as N=5 here. Then 
five vibration sensors for observations are mounted on 
the gearbox. The number of states is selected as K=4 
and the order of GAR is selected as p=6 artificially. 
The length of observation sequence is selected as 
T=512.  
By initializing initial probabilities, 1×Kπ , transition 

matrix, KK×A , mixing matrix, NNK ××W , source 

density parameters, pNK ××c , NKR × , NK×β , different 
MSMHMMs under three conditions are trained based 

on 10 training samples respectively. After training, we 
can get three MSMHMMs (MSMHMM1 for normal, 
MSMHMM2 for rolling element fault and 
MSMHMM3 for outer race fault) and the 
corresponding state sequences are shown in Fig. 3. 
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(b) Rolling element fault 
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(c) Outer race fault 
Figure 3: State sequences for different bearing 

conditions after training 

4.2 MSMHMMs-based bearing faults identification 

After three MSMHMMs has been built and trained, we 
can use them to isolate different conditions using 
testing samples. The number of testing samples under 
each condition is selected as 15. Then each MSMHMM 
is used to analyze normal, rolling element fault and 
outer race fault samples to test its classification ability 
respectively, and then the corresponding results are 
shown as Fig. 4~Fig. 6. In Fig. 4, MSMHMM1 is used 
and the maximum log-likelihood corresponds to normal 
condition, so MSMHMM1 identify health condition of 
the bearing accurately. Similar results can be obtained 
in Fig. 5 and Fig. 6. Thus it demonstrates that 
MSMHMMs can identify faults in the helicopter 
gearbox accurately.   
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Figure 4: Identified results based on MSMHMM1 
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Figure 5: Identified results based on MSMHMM2 
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Figure 6: Identified results based on MSMHMM3 
 
In order to testify that Gaussian observation HMM 
(GHMM) may not fit for bearing fault diagnostics in 
the helicopter gearbox, we will use the above training 
samples to build and train three GHMMs (GHMM1 for 
normal, GHMM2 for rolling element fault and GHMM3 
for outer race fault)), where the number of states is also 
selected as K=4. Then three GHMMs are used to 
analyze normal, rolling element fault and outer race 
fault testing samples, and then the corresponding 
results are shown as Fig. 7~Fig. 9 respectively. It can 
be seen that GHMMs cannot identify the anticipated 
condition and provide mistaken results. The reason may 
be that observation sequences from the helicopter 
gearbox are truly non-Gaussian and non-stationary. 
Also we can find the log-likelihood values in Fig. 7~ 
Fig. 9 fluctuate more than those in Fig. 4~Fig. 6. The 

reason may be that the observation sequences are non-
stationary. Thus it testifies that the proposed 
MSMHMM is a better tool than traditional GHMM for 
bearing fault diagnostics. 
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Figure 7: Identified results based on GHMM1 
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Figure 8: Identified results based on GHMM2 
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Figure 9: Identified results based on GHMM3 

5. CONCLUSION 

This paper has presented a MSMHMM-based bearing 
fault diagnostics method for complex rotating machines 
using multi-sensor observation signals. Each sensor 
signals was considered as the mixture of non-Gaussian 
sources, which can depict non-Gaussian observation 
sequences well. Then its parameter learning algorithm 
was proposed based on EM algorithm. In the end 
through the experimental study on a bearing in a 
helicopter gearbox, we have testified that MSMHMMs 
can identify bearing faults more accurately than 
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traditional GHMMs. Furthermore, the proposed 
MSMHMMs can be extended for fault diagnostics of 
other complex rotating machines. 
Future work will include how to determine the number 
of states and the order of GAR models in MSMHMMs 
theoretically, which may be solved by understanding 
particular mechanical systems and their working 
processes. 
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ABSTRACT

This paper presents one approach in developing a PHM-based
reconfigurable controls framework. A low-level reconfig-
urable controller is defined as a time-varying multi-objective
criterion function and appropriate constraints to determine
optimal set-point reconfiguration. A set of necessary con-
ditions are established to ensure the stability and bounded-
ness of the composite system. In addition, the error bounds
corresponding to long-term state-space prediction are exam-
ined. From these error bounds, the point estimate and corre-
sponding uncertainty boundaries for the remaining useful life
(RUL) estimate are obtained. Finally, results are obtained for
an avionics grade triplex-redundant electro-mechanical actu-
ator (EMA) with a specific fault mode; insulation breakdown
between winding turns in a brushless DC (BLDC) motor is
used as a test case for the fault-mode.

1 INTRODUCTION

The emergence of complex and autonomous systems, such
as modern aircraft, unmanned aerial vehicles (UAVs) and au-
tomated industrial processes is driving the development and
implementation of new control technologies aimed at accom-
modating incipient failures to maintain system operation dur-
ing an emergency. A prognostics health management (PHM)
based fault-tolerant control architecture can increase safety
and reliability by detecting and accommodating impending
failures thereby minimizing the occurrence of unexpected,
costly and possibly life-threatening mission failures; reduce
unnecessary maintenance actions; and extend system avail-
ability / reliability.
The primary motivation for this research topic emerged over

Douglas W. Brown and George J. Vachtsevanos. This is an open-access ar-
ticle distributed under the terms of the Creative Commons Attribution 3.0
United States License, which permits unrestricted use, distribution, and re-
production in any medium, provided the original author and source are cred-
ited.

the need for improved reliability and performance for safety
critical systems, particularly in aerospace related applica-
tions. Fatal accidents in the worldwide commercial jet fleet
during the years 1987-2005 were due primarily to (i) con-
trolled flight into terrain, (ii) loss-of-control in flight and (iii)
system/component failure or malfunction (Darby, 2006). In
a coordinated effort to improve aviation safety, industry and
government worked together to reduce the number of fatal
commercial aircraft accidents, which dropped by 65% dur-
ing the period of 1996-2007 (Wald, 2007). As a result of
this effort, accidents due to controlled flight into terrain have
been virtually eliminated through the addition of various safe-
guards, but the same cannot be said for accidents due to loss-
of-control in flight and system/component failure or malfunc-
tions. System/component failure and malfunctions are rec-
ognized as contributing factors to aircraft loss-of-control in
flight, so safeguarding against such events will reduce the
number of fatal accidents in the two top accident categories
(ii) and (iii) respectively.
The remainder of this document is organized as follows. Sec-
tion 2 presents a literature review for fault detection and diag-
nosis, long-term prognosis predictions and fault tolerant con-
trol strategies. Section 3 defines the FTC architecture. Sec-
tion 4 studies the stability and boundedness of the reconfig-
ured system and the RUL prediction. Section 5 provides gen-
eral design guidelines and demonstrates the reconfigurable
control algorithms on an EMA. Finally, Section 6 summarizes
the findings and future work.

2 LITERATURE REVIEW

According to the NASA ASP IVHM program, the following
enabling technologies are necessary before prognosis based
control can be considered: fault detection, fault diagnosis and
failure prognosis (Srivastava, Mah, & Meyer, 2008). The sec-
tion concludes with a brief overview of FTC strategies.

1
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2.1 Fault Detection and Diagnosis (FDD)

Over the past three decades, the growing demand for re-
liability, maintainability, and survivability in dynamic sys-
tems has drawn significant research in FDD. Historically,
FDD has been used in FTC to retrieve fault information
from the system for use in a control recovery strategy and
procedure, which is commonly referred to as reconfigura-
tion. Preliminary research by Jiang & Patterson (Jiang &
Zhao, 1997; Patterson, 1997) demonstrated that state esti-
mation based schemes are most suitable for fault detection
since they are inherently fast and cause a very short time
delay in real-time decision making. However, the informa-
tion from state estimation based algorithms may not be de-
tailed enough for subsequent control system reconfiguration.
Work presented by Wu and Zhang (N. E. Wu, Zhang, & Zhou,
2000; Y. M. Zhang & Jiang, 2002) recommends that param-
eter estimation schemes be used for control reconfiguration
and state estimation based schemes for FDD. A unified ap-
proach to state estimation/prediction and parameter estima-
tion/identification for FDD using particle filtering was thor-
oughly studied by M. Orchard (Orchard, 2007).

2.2 Failure Prognosis & Long-Term Prediction

The term prognosis has been used widely in medical prac-
tice to imply the foretelling of the probable course of a dis-
ease. In the industrial and manufacturing fields, prognosis is
interpreted to answer the question, “What is the RUL of a ma-
chine or component once an impending failure condition is
detected, isolated, and identified?” Within the context of this
work, prognosis is defined as (Vachtsevanos, Lewis, Roemer,
Hess, & Wu, 2006),

Definition 1 (Prognosis). The ability to predict accurately the
RUL of a failing component or subsystem.

Definitions for failure, probability of failure and RUL must be
well established before continuing the discussion on progno-
sis. First, the notion of a failure is defined.

Definition 2 (Failure). An event that corresponds to the fault-
dimension, L, entering an unwanted range, or hazard-zone.
The hazard-zone is defined by the upper and lower bounds,
Hub and Hlb, respectively.

The boundaries of the hazard zone are design parameters re-
lated to the false-alarm rate (type I error). It should be rec-
ognized any discussion regarding a failure over a future time
horizon t > t0 is stochastic in nature. Instead, the probability
of failure should be used.

Definition 3 (Probability of Failure). The probability of a
failure occurring at some time t, represented as,

pfailure (t) = p (Hlb ≤ L (t) ≤ Hub) , (1)

where p is a probability density function (pdf).
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Figure 1. Predicted fault growth curves, hazard zone and cor-
responding projection on the time-axis.

Finally, its often convenient to describe the minimum time-
horizon (or RUL) corresponding to a failure with a particular
level of certainty, represented by the symbol tRUL(lb).

Definition 4 (Remaining Useful Life (RUL)). The amount of
time before a failure occurs at the initial time of prediction,
t0. The time corresponding to the probability of failure can
be expressed as,

tRUL(lb) (t0) , min (t?) s.t. pfailure ( t?| t0) ≥ β, (2)

where t? ∈ (t0,∞) and 0 < β < 1. The symbols t0 and β
refer to the initial prediction time and the type-II error associ-
ated with the prediction accordingly.

Sometimes the term confidence level is used instead of the
type-II error, which is defined next.

Definition 5 (Confidence Level (CL)). Let the upper RUL
boundary, tRUL(ub), predicted at time t0 be defined as,

tRUL(ub) (t0) , min (t?) s.t. pfailure ( t?| t0) ≤ 1−β. (3)

where t? ∈ (t0,∞). Then the CL is defined by the following
probability,

CL =

ˆ tRUL(ub)

tRUL(lb)

pfailure (t?|t0) dt?. (4)

Additionally, CL is related to β by,

CL = 1− 2β. (5)

Figure 1 illustrates the predicted fault growth of a system
where a fault is detected at time tdetect and a prediction of the
RUL is made at time tprognosis. The boundaries of the hazard-
zone are defined by Hlb and Hub. The probability that a fail-
ure occurs outside this boundary is defined as the false-alarm
rate, α. The time corresponding to each predicted fault trajec-
tory in the hazard-zone is represented as a distribution on the
time-axis. The upper and lower RUL boundary values that
encompass a CL of 1 − 2β are represented as tRUL(ub) and
tRUL(lb), accordingly. The width of the corresponding confi-
dence interval is defined as,.

εRUL , tRUL(ub) − tRUL(lb). (6)

2
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Several approaches to prognosis have been investigated in re-
cent years, such as model-based (Yu & Harris, 2001; Paris
& Erodogan, 1963), data-driven (Schwabacher, 2005), hy-
brid methods and particle filtering (Orchard, 2007; Orchard,
Kacprzynski, Goebel, Saha, & Vachrsevanos, 2009).

2.3 Fault–Tolerant Control (FTC) Strategies

Modern systems rely on sophisticated controllers to meet in-
creased performance and safety requirements. A conventional
feedback control design for a complex system may result in
unsatisfactory performance, or even instability, in the event
of malfunctions in actuators, sensors or other system com-
ponents. To overcome such weaknesses, new approaches to
control system design have been developed in order to toler-
ate component malfunctions while maintaining desirable sta-
bility and performance properties. According to Y. Zhang
(Y. Zhang & Jiang, 2003), FTC is defined as,

Definition 6 (Fault-Tolerant Control (FTC) Systems). Con-
trol systems that possess the ability to accommodate system
component failures automatically [while] maintaining overall
system stability and acceptable performance.

Traditionally, FTC systems are classified into two categories:
passive and active (Y. Zhang & Jiang, 2008).

2.3.1 Passive Fault-Tolerant Control Systems (PFTCS)

Historically, when fault tolerance was an issue, controllers
were designed targeting selected faults with specific control
actions to mitigate the risk of impending failures (Isermann,
1984). Within such passive approaches, no fault information
is required and robust control techniques are employed to en-
sure the closed-loop system remains insensitive to specific
anticipated faults (Zhenyu & Hicks, 2006). The most com-
mon and widely studied PFTCS is robust control. Although
PFTCS are widely used, they lack an active reconfiguration
of the control law thus disallowing use of any external infor-
mation such as FDD and prognostics.

2.3.2 Active Fault-Tolerant Control Systems (AFTCS)

AFTCS react to system component failures by reconfiguring
control actions to maintain stability and acceptable system
performance. AFTCS FTC methodologies typically have two
main objectives: FDD and control reconfiguration (Rausch,
Goebel, Eklund, & Brunell, 2007). Several authors have re-
ported on the problem of FDD (Filippetti, Franceschini, Tas-
soni, & Vas, 2000; Kleer & Williams, 1987). In such con-
trol systems, the controller compensates for the effects of
faults either by selecting a pre-computed control law or by
synthesizing a new control scheme on-line (Skormin, Apone,
& Dunphy, 1994; Willsky, 1976). An AFTCS consist of
a reconfigurable controller, a FDD scheme and a reconfig-
uration mechanism (B. Wu, Abhinav, Khawaja, & Panagio-
tis, 2004). Types of AFTCS include adaptive robust control
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Figure 2. Conceptual plots for the fault dimension, L, prob-
ability of failure predicted at time tprediction and the tracking
error, e, versus time for three different reconfiguration scenar-
ios: (a) tRUL(lb) < tmission , (b) tRUL(lb) > tmission but the con-
trol is overcompensated leading to an unnecessary increase in
tracking error and (c) tRUL(lb) > tmission and the tracking error
is minimized.

(Saberi, Stoorvogel, Sannuti, & Niemann, 2000), expert con-
trol (Isermann, 1997; Levis, 1987; N. E. Wu, 1997), opti-
mal control (Bogdanov, Chiu, Gokdere, & Vian, 2006; Gar-
cià, Prett, & Morari, 1989; Kwon, Bruckstein, & Kailath,
1983), and hybrid control. Particular interest is the work
by (Bogdanov et al., 2006) and (Monaco, D.G., & Bateman,
2004) which introduces prognostic information into a con-
trol law using model predictive control. For systems where
on-line computation is feasible, MPC has proved quite suc-
cessful (Richalet, 1993; Richalet, Rault, Testud, & Papon,
1978). Monaco et al.(Monaco et al., 2004) demonstrated an
MPC based framework used to retrofit the F/A-18 fleet sup-
port flight control computer (FSFCC) with an adaptive flight
controller.

3 CONTROL ARCHITECTURE

The problem of incorporating prognosis in a control system
can be approached in a variety of ways. The efficacy of any
one approach depends on the problem formulation and the
specific application. Therefore, fixed performance criteria are
necessary to compare any two designs. In the scope of this
work, the controller performance criteria are determined by
the ability to prevent a failure while minimizing the impact on
overall system performance over a well-defined time horizon.
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MPC

Supervisor

ρ(t)

PHM
Module
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Controller

Physical
Process

y(t)u(t)

tmission

r(t)

Reconfigurable Controller Plant

Low-Level PHM Control Architecture

v(t)

∆u(t)
xm(t)

f(t)

Figure 3. Reconfigurable controller illustrating the internal
MPC controller and supervisor elements in addition to the ex-
ternal PHM module and connected plant.

Let these criteria be evaluated by the cost function, Θ,

Θ (Φ,Ψ) = Φ (tf ) +

ˆ tf

t0

Ψ (e (t)) dt, (7)

where the terminal cost is defined as,

Φ =

{
∞ : pfailure (tf ) ≥ β,
0 : otherwise.

(8)

The mappings Φ and Ψ represent the cost associated with the
performance and the final damage. The symbols L and e refer
to the fault dimension, and tracking error, accordingly. In the
scope of this work, the tracking error is defined as,

e , u− y (9)

3.1 Qualitative Example

Consider the plots in Figure 2 for the fault dimension, L,
probability of failure, pfailure and tracking error, e, versus
time for three different scenarios. The illustration of this
example is simplified by considering a single-input single-
output (SISO) case. Let the symbols emin and emax be con-
stant boundaries for the tracking error and tRUL(lb) repre-
sent the lower confidence bound of the RUL. In scenario (a)
the performance criteria is not relaxed and the RUL is not
achieved. That is, the probability of failure exceeds β before
time tmission. In scenario (b) the performance criteria is re-
laxed, more specifically emin and emax are extended to e+

min

and e+
max, to achieve the RUL. However, the performance cri-

teria is relaxed by more than what is actually necessary. In
scenario (c) the performance criteria is relaxed such that the
RUL requirement is satisfied, but not as much as scenario (b).

3.2 Control Architecture

The main elements of the control architecture are depicted in
Figure 3 on page 4. The control architecture is comprised
of the plant (physical process and production controller),
reconfigurable controller and a PHM module. Initially, the

production controller is utilized with no modification while
the PHM module continuously monitors the system for one
(or more) fault mode(s). Once a fault is detected, the RUL
is evaluated by the PHM module. If the estimated RUL is
greater than the desired RUL, no action is taken. During this
period the RUL is re-evaluated periodically. However, if the
estimated RUL is less than the desired RUL, a reconfigura-
tion action is triggered. The reconfigurable controller relaxes
constraints on the error boundaries by adjusting the weight
matrices in the MPC cost function. This continues until ei-
ther the RUL is satisfied or the weight matrices can no longer
be adapted. The remainder of this section presents a detailed
description of each module.

3.2.1 Plant (Nominal System)
The plant consists of the production controller and physical
process with a control input, u, internal state, x, measured
disturbance, v and output response y. Prognosis based con-
trol can only be considered once it’s established the RUL of
the plant can be directly controlled and observed. As a re-
sult, two important questions arise, “Under what conditions
can the RUL of the plant be controlled? . . . observed?” These
questions are answered by well defined criteria for RUL con-
trollability and RUL observability given in Definitions 7 and
8, accordingly.

Definition 7 (RUL Controllability). A system is RUL con-
trollable at time t0 if there exists a control input, u (t) ∈ U
on the interval t ∈ [t0, tf ] such that any initial RUL tRUL (t0)
can be driven to any desired RUL value, tRUL (tf ) ∈ TRUL.

Definition 8 (RUL Observability). A system is RUL ob-
servable at time t0 if for any initial state in the state space
x (t0) ∈ X and a given control input u (t) ∈ U defined on
the interval t ∈ [t0, tf ] the RUL, tRUL, can be determined for
[t0, tf ].

Remark 1. If the conditions for RUL controllability and ob-
servability are simultaneously satisfied, then the system is
said to be RUL stabilizable

Definition 9 (RUL Stabilizable). A system is RUL stabiliz-
able if for any initial state in the state space x (t0) ∈ X and
any control input u (t) ∈ U defined on the interval t ∈ [t0, tf ]
the plant is simultaneously RUL controllable and RUL ob-
servable.

3.2.2 Reconfigurable Controller
The two elements of the reconfigurable controller include the
low-level supervisor and the MPC controller.

Low-Level Supervisor – A logical unit used to continuously
monitor the output of the MPC controller to ensure it meets
the desired RUL and set-point requirements. More specifi-
cally, if the measured RUL, tRUL, is greater than the desired
mission time, tmission, then no reconfiguration is necessary;
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ρ[0] = 0; k = 0;

Figure 4. Flowchart of the low-level supervisor.

otherwise new acceptable minimum and maximum allowable
tracking errors, e+

min and e+
max, are adopted. Then, the ad-

justed set-point, ∆u, and modeled state estimate, xm, are
passed to the PHM module to estimate, tRUL. This estimate is
used as an input to the adaptation function, Γ, to update the
adaptation parameter, ρ. The cost function is updated using a
new value for ρ at time-instant k. When the estimated RUL,
tRUL, is less than the desired mission time, tmission, the adap-
tation parameter, ρ, increases, otherwise it decreases. This
process is re-iterated until ρ ≥ ρmax. When this occurs, the
controller makes no further adaptation attempts. An outline
of this process is shown as a flowchart in Figure 4.

Model Predictive Controller (MPC) – used to make adjust-
ments to the control signal, u, thereby altering the internal
states, x, and causing the RUL to increase. In the scope of
this work, constraints are imposed on the maximum allowable
tracking error, e. Foreshadowing briefly to the next chapter, it
can be proven if e is constrained by emin ≤ e (t) ≤ emax for
∀t ∈ [t0, tRUL], then ∆u must belong to Uδ ,
Uδ ∈ {∆umin ≤ ∆u (t) ≤ ∆umax| ∀t ∈ [t0, tRUL]} , (10)

where, {
∆umin = e+

min − emin,
∆umax = e+

max − emax.
(11)

Now, the optimal set-point adjustment ∆u is found by mini-
mizing the quadratic cost function,

J (x,∆u) = min
∆u∈Uδ

{
ˆ t0+T

t0

[
(x? − x)

>
(Qρ [k]) · · ·

(x? − x) + ∆u>R∆u
]
dt

}
, (12)

where x? is the desired state-space value . The weight matri-
ces Q and R are of size nx × nx and nr × nr, respectively.

PHM Module – In the scope of this work, the PHM mod-
ule is external to the reconfigurable controller. In general, the
prognostic control input to the PHM model includes the ref-
erence signal, r, modeled state estimate, xm, and set-point
adjustment ∆u.

4 STABILITY AND UNCERTAINTY ANALYSIS

The qualitative overview of the reconfigurable control ar-
chitecture in the section provides a basis for a quantitative
study of set-point reconfiguration with respect to stability and
boundedness.

4.1 Reference Model

The MPC requires a reference model of the plant to predict
the future set-point adjustments for control reconfiguration.
Ideally, the reference model is equivalent to the non-linear
plant dynamics. However, using a linear reference model
reduces the complexity of the optimal control problem and
guarantees a solution exists by optimizing over a convex set.
The linear reference model is written in state-space form as,
{

ẋm (t) = Amxm + Bm,rr (t) + Bm,vv (t) ,
ym (t) = Cmxm + Dm,vv (t) ,

(13)

where xm (0) = xm0 and Am, Bm,r, Bm,v , Cm and Dm,v

are real-valued matrices.

4.2 Composite System

The composite system is comprised of the plant and
MPC controller, as shown in Figure 5.

4.2.1 Plant
The control input to the plant, u, is defined as,

u (t) = r (t) + ∆u (t) , (14)

where ∆u is a set-point adjustment computed by the MPC.
The output of the plant and corresponding tracking error are
represented by y and e, accordingly.

4.2.2 MPC Controller
The MPC consists of a linear reference model, state observer
and an optimizer. The state-observer accepts the current con-
trol input, u, and plant output, y, as inputs. The output of the

5
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state observer, xm, is used to initialize the reference model.
The reference model is used to predict future state estimates
for a given set of future input references over a prediction
horizon and takes the form of (13). The optimizer solves for
a set-point adjustment ∆u by minimizing the cost function in
(12).

4.3 Error Analysis

Two types of errors are analyzed in this section: tracking er-
ror and modeling error. The tracking error corresponds to the
difference between the desired input reference, r, and plant
output, y. The modeling error represented by the symbol em,
corresponds to the error in the state estimates that occur as
a result of model mismatches propagated over the prediction
horizon. The tracking error of the composite system, e+ (re-
ferred to as the extended tracking error in the previous chap-
ter), is described by the differential equation

ė+ (t) = Aee
+ (t) + δu [k] · δ (t− kTs) . (15)

where Ae is Hurwitz and e+ (t0) = e (t0). The following
theorem provides the boundaries for the tracking error of the
composite system.

Theorem 1 (Tracking Error Boundaries with MPC). Let the
tracking error of the composite system be described by (15).
If the set-point adjustment, ∆u, is uniformly bounded in time
by ∆umin ≤ ∆u (t) ≤ ∆umax, then the tracking error of
the composite system, e+, must also be uniformly bounded in
time by, e (t0) + ∆umin ≤ e+ (t) ≤ e (t0) + ∆umax.

Proof. First, the explicit solution of (15) can be found,

e+ (t) = exp (Ae (t− t0)) e (t0) + . . .
ˆ t

t0

exp (Ae (t− τ)) (δu [k] · δ (τ − kTs)) dτ. (16)

xm(t)

Plant

r(t)

u(t)

State
Observer

+
+Optimizer

Reference
Model

MPC Algorithm

∆u(t)

y(t)

u(t)

y(t)

MPC
r(t)

+
+

Model Predictive Controller (MPC)

Composite System

Figure 5. Block diagram of the composite system showing
the inner-connections between the state observer, reference
model and optimizer within the MPC.

Applying the translation property of the Dirac-delta function
gives,

e+ (t) = exp (Ae (t− t0)) e (t0) + . . .

k∑

n=0

δu [n] · exp (Ae (t− nTs)) . (17)

Since ∆u is uniformly bounded, the cumulative sum of δu is
bounded by,

∆umin ≤
k∑

n=0

δu [n] ≤ ∆umax. (18)

Now, consider the worst case when eig (Ae) → 0−. Under
this condition, the explicit expression for e+ (17) becomes,

e+ (t) = e (t0) +

k∑

n=0

δu [n] . (19)

By applying (18) to (19), the boundary for the case when
eig (Ae)→ 0 can be given as,

e (t0) + ∆umin ≤ e+ (t) ≤ e (t0) + ∆umax. (20)

Finally, if Ae is Hurwitz, then (17) must always be less than
or equal to (19) for all t ≥ t0. Therefore, by the comparison
theorem, (17) must also be bounded by (20).

4.4 State-Variable Reconfiguration Analysis

Now that the tracking error of the composite system is shown
to be bounded, the effects of set-point adjustment on the fu-
ture state values can be studied.

4.4.1 Ideal (Matched) Case
First, consider the following definition for the change in the
state-variable,

∆x (t) , x+ (t)− x (t) , (21)

where x is the state of the system if ∆u ≡ 0 and x+ is the
reconfigured state of the system if a non-zero set-point ad-
justment ∆u were applied. Now, consider the case where
the linear reference model matches the dynamics of the plant.
The predicted change in the state-variable after reconfigura-
tion can be found using Theorem 2.

Theorem 2 (State Adjustment (Matched Model)). Consider
a closed-loop system which matches the linear-deterministic
reference model described by (13). The estimated change in
the state, ∆x̂, at time tk+q given at time tk can be computed
by,

∆x̂ (tk+q|tk) = eAm(tk+q−tk)∆x0 + . . .
ˆ tk+q

tk

[
eAm(t−τ) ·Bm,r∆u (τ)

]
dτ, (22)
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Figure 6. Predicted fault-growth curves, hazard zone and cor-
responding projection on the time axis for the best-case and
worst-case reconfiguration boundaries.

Proof. The dynamics of the reconfigured state can be ex-
pressed as,

ẋ+ (t) = Amx+ (t) + Bm,rr (t) + Bm,r∆u (t) . (23)

Next, taking the time derivative of (21) and substituting the
first-order dynamics of x and x+ gives,

∆ẋ (t) = Am∆x (t) + Bm,r∆u (t) , (24)

The explicit solution to this first-order differential equation is
found as,

∆x (t) = eAm(t−t0)∆x0 + . . .
ˆ t

t0

[
eAm(t−τ) ·Bm,r∆u (τ)

]
dτ. (25)

Finally, since this is is assumed to be a perfectly matched
model, ∆x̂ ≡ ∆x. Therefore, the state estimate at time tk+q

given at time tk can be found by using (25).

4.4.2 Non-Ideal (Unmatched) Case
The estimated change in the state at time tk+q given at time
tk when the reference model does not match the closed-loop
system dynamics can be found if the structure of the reference
and the closed-loop system models are assumed.
Claim 1 (State Adjustment (Unmatched Model)). Consider
the case of the unmatched linear reference model in (13). If
modeling error over the prognostic horizon, q, is bounded by
a constant ēm such that,

− |ēm| ≤ em (t) ≤ |ēm| . (26)

for ∀t ∈ [tk, tk+q] at time-instant k, then the change in the
state, ∆x, at time tk+q given at time tk is bounded by,

∆xlb ≤ ∆x (tk+q|tk) ≤ ∆xub, (27)

where,
{

∆xlb = ∆x̂ (tk+q|tk)− |ēm|
∆xub = ∆x̂ (tk+q|tk) + |ēm| (28)

4.5 RUL Analysis

Given uncertainty boundaries for the state-vector x, the best-
case and worst-case prediction boundaries for RUL estimates
can be studied in a stochastic manner.

4.5.1 Boundary Conditions
The absolute upper and lower-boundary conditions for each
state vector at time t are defined as xub and xlb,

xub (tk+p|tk) = · · ·
{
xm + ∆xub : |xm + ∆xub| ≥ |xm + ∆xlb|
xm + ∆xlb : |xm + ∆xub| < |xm + ∆xlb| , (29)

xlb (tk+p|tk) =
{
xm + ∆xub : |xm + ∆xub| ≤ |xm + ∆xlb|
xm + ∆xlb : |xm + ∆xub| > |xm + ∆xlb| . (30)

Now, assume that ∂L
|∂x| ≥ 0. Then, the lower boundary (or

worst case conditions) for RUL must occur when x = xub,

t?
RUL(lb) = tRUL(lb)

∣∣
x=xub

. (31)

Similarly, the upper boundary (or best-case condition) for
RUL occurs when x = xlb,

t?
RUL(ub) = tRUL(ub)

∣∣
x=xlb

. (32)

By applying the lower-bound as the most conservative esti-
mate for tRUL(lb), the resulting RUL gained after reconfigura-
tion is defined as,

∆tRUL(lb) , t?
RUL(lb) − tRUL(lb). (33)

Additionally, the corresponding confidence interval width of
the reconfigured RUL is defined as,

ε?RUL = t?
RUL(ub) − t?RUL(lb). (34)

An illustration of the predicted fault growth curves for nomi-
nal, best-case reconfiguration and worst-case reconfiguration
conditions is provided in Figure 6.

4.6 Metrics

Presented are three metrics to evaluate the effectiveness of
the reconfiguration routine: remaining life increase (RLI) and
prediction uncertainty increase (PUI) and reconfiguration ef-
ficiency, represented by the symbol η.

4.6.1 Remaining Life Increase (RLI)
RLI is a standardized measure of the relative net increase in
RUL, defined as,

RLI ,
t?
RUL(lb) − tRUL(lb)

tRUL(lb)
. (35)

For the case whenRLI < 0, the RUL decreases (∆tRUL < 0)
thereby leading to an implausible or undesirable reconfigura-
tion action.
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(a) (b)

Figure 7. Photo of the (a) X-38 crew re-entry vehicle and its
(b) corresponding rudder actuator.

4.6.2 Prediction Uncertainty Increase (PUI)

PUI is a standardized measure of the relative net increase in
the width of the RUL confidence interval, defined as,

PUI , ε?RUL − εRUL

εRUL

. (36)

4.6.3 Reconfiguration Efficiency

Evaluation of RUL feasibility can be difficult to explicitly
quantify. A quick estimate of the relative increase in RUL
can be made by evaluating the relative change in the cost as-
sociated with the plant state before and after reconfiguration.
First, define the cost corresponding to the weight ρ as,

J (ρ,xm,∆u) = min
∆u∈Uδ

{
Jx (ρ,xm) + J∆u (∆u)

}
, (37)

where,

Jx (ρ,xm) = ρ (x? − xm)
>

(Qρ [k]) (x? − xm) (38)

and,
J∆u (∆u) = ∆u>R∆u. (39)

Now, the percent change in the cost before and after reconfig-
uration, η, can be computed,

η (ρ) =
Jx (0,xm)− Jx (ρ,xm)

Jx (0,xm)
, for ρ ∈ (0,∞) , (40)

where η > 0 corresponds to a net increase in RUL and η < 0
corresponds to a net reduction in RUL.

5 EXAMPLE APPLICATION

An EMA is examined as an example for PHM-based control
reconfiguration. An EMA was selected in part due to its avail-
ability and its emergence as a solution of choice for future
flight control actuation systems. More specifically, the rudder
of the NASA X-38 crew re-entry vehicle, shown in Figure 7,
was selected as the system of interest. A failure modes, ef-
fects and criticality analysis (FMECA) of the X-38 rudder ac-
tuator was examined to identify the most critical component,
degradation of the motor winding insulation.

5.1 Prognostic Model

In the case of the brushless DC motor, the winding tempera-
ture is related to the power loss in the copper windings, as-
suming the copper losses are the primary source of power
loss. A first order thermo-electrical model, shown in Fig-
ure 8, can be used to describe the relationship between power
loss in in the copper windings with respect to the winding-
to-ambient temperature (Gokdere, Bogdanov, Chiu, Keller, &
Vian, 2006; Nestler & Sattler, 1993), represented as Twa and
defined as,

Twa (t) , Tw (t)− Ta (t) (41)

where the symbols Tw and Ta correspond to the winding tem-
perature and ambient temperature respectively. The symbols
R0, Cwa and Rwa refer to the winding resistance, thermal ca-
pacitance and thermal resistance of the windings, accordingly.
The equivalent state space representation can be written as,

Ṫwa (t) =

[
− 1

RwaCwa

]
Twa (t) +

[
R0

Cwa

]
i2m (t) (42)

Motor winding insulation degrades at a rate related to the
winding temperature, Tw. Let the RUL be represented as,
tRUL. The RUL at time t can be related to Tw using Arrhe-
nius’ law (Gokdere et al., 2006),

tRUL (t) = c0 exp

(
Ea

kBTw (t)

)
, (43)

where the symbols Ea, kB and c0 are constants represent-
ing activation energy, Boltzmann’s constant and an empirical
model fit, respectively. Next, let the fault dimension, L, be
defined as the accumulated RUL consumed,

L (t) = L0 +

ˆ t

t0

1

tRUL (τ)
dτ. (44)

where L0 is the initial fault dimension. Substituting (43) into
(44) gives,

L (t) = L0 +

ˆ t

t0

c−1
0 exp

(
− Ea
kBTw (τ)

)
dτ. (45)

By differentiating both sides with respect to time and applying
the second fundamental theorem of integral calculus to the
right-hand side, an expression for L̇ can be found,

L̇ (t) = c−1
0 exp

(
− Ea
kBTw (t)

)
, (46)

R0i
2
m(t) RwaCwa

+

Twa(t)

−

Figure 8. Schematic of the first-order thermal model.
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5.2 Model Uncertainty

Consider the effects of model uncertainty for a linear system
with an unmatched linear reference model. In this example
only the motor current is of interest; therefore, consideration
of the entire state estimate is simplified to the scalar quan-
tity, im. Values for ∆Am and ∆Bm,r are obtained by using
new values for the modeling parameters after adjusting physi-
cal modeling parameters randomly to within their correspond-
ing uncertainties. A sinusoidal input with a an amplitude of
60 deg was used as the reference applied to the linear actua-
tor model. The sample-time between predictions was set at
Ts = 0.05 s. Monte Carlo simulations were conducted for
a range of frequencies from 0.1 Hz to 10 Hz. The percent
change in motor current vs. reference frequency was esti-
mated from each set of Monte Carlo simulations. According
to the results, the standard deviation of the percent change in
motor current is approximately less than 0.2014 for 95% of
the simulations.

5.3 Long-Term State Predictions with Uncertainty

It can be shown the modeling error corresponding to a 95%
confidence interval is approximately,

−0.395̂im ≤ em (t) ≤ 0.395̂im (t) (47)

where îm is the estimated value of the motor current. By ap-
plying (29) and (30), a 95% confidence interval for the motor
current can be expressed as,

0.605̂im (t) ≤ im (t) ≤ 1.395̂im (t) . (48)

To demonstrate this boundary, consider the actuator exam-
ple with the maximum reconfiguration possible, which corre-
sponds to an adaptation parameter ρ ≫ 1. Let the reference
signal be sinusoidal with an amplitude of 60 deg and a fixed
frequency of 2 Hz. The corresponding actuator position refer-
ence signal before and after reconfiguration is shown in Fig-
ure 9. Also shown is the set-point adjustment applied to the
reference signal and the corresponding motor current with un-
certainty boundaries. The reconfiguration efficiency for large
values of ρ was computed as η = 0.19.

5.4 RUL Estimation & Uncertainty

RUL estimation and uncertainty are examined for a simple
reference signal. Recall, the input to the prognostic model
is the squared current value, i2m and Jx (ρ,xm) is directly
proportional to i2m. After reconfiguration, the cost function
reduces by a factor of η. Therefore, the quantity (1− η) i2m
can be used to represent the input to the prognostic model af-
ter reconfiguration. This can be demonstrated using a simple
example. Let the reference signal be a sinusoidal input with
a frequency of 2 Hz and an amplitude of 60 deg. For these
conditions im was simulated as,

im (t) = 7.07 sin (4πft) . (49)
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Figure 9. Plots of the (a) actuator position (b) applied set-
point adjustment and (c) corresponding motor current with
95% uncertainty boundaries. Dashed / solid lines correspond
to the upper / lower 95% confidence boundaries.

For the nominal case when ρ = 0, the current is bounded by,

4.277 sin (4πt) ≤ im (t) ≤ 9.863 sin (4πt) . (50)

and the input to the prognostic model is bounded by,

18.29 sin2 (4πt) ≤ i2m (t) ≤ 97.27 sin2 (4πt) . (51)

Similarly, after applying the MPC for ρ ≫ 1, the reconfigu-
ration efficiency becomes η = 0.19. The input to the prognos-
tic model is adjusted by a factor of (1− η), which becomes,

14.82 sin2 (4πt) ≤ i2m (t) ≤ 78.79 sin2 (4πt) . (52)

Applying these boundaries to the input of the prognostic
model, a plot of the fault dimension (life consumed) ver-
sus the prognostic horizon can be obtained for the cases be-
fore and after reconfiguration, provided in Figure 10. From
the plot values for ∆tRUL, εRUL and ε?RUL are computed as
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Figure 10. Plot of life consumed versus prognostic horizon
before and after reconfiguration for a sinusoidal reference in-
put with a frequency of 2 Hz and an amplitude of 60 deg.

6.178×102 hrs, 5.393×103 hrs and 5.003×103 hrs, accord-
ingly. This allows the metrics RLI and PUI to be computed as
0.116 and −0.080, respectively.

6 CONCLUSIONS

This body of work constitutes a significant effort regarding
the specific role of RUL in control systems. The overall con-
trol scheme was defined as a module which adjusts the ref-
erence set-points to the local production controller in order
to sacrifice a fixed amount of performance to achieve an in-
crease in RUL. The modules of the reconfigurable controller,
the MPC and state observer, were defined mathematically and
analyzed to demonstrate stability and boundedness. Finally,
the reconfigurable control framework was evaluated using an
EMA Simulink model. Results acquired from the simulation
demonstrated the feasibility of the approach.
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ABSTRACT 

A simulation method to detect and locate damage in frame 
structures by defining a damage index is proposed. 
Structural members are Timoshenko beam type. The method 
defines a damage index which is the reduction percentage of 
H2 norm of the structure at certain locations in both healthy 
and damaged states. Structure modeling is done by finite 
element method. 

1. INTRODUCTION 

Defining a damage index (D.I.) has been on focus in many 
publications. Extensive literature reviews on vibration-based 
damage detection methods is published by Doebling, Farrar, 
Prime and Shevitz (1996) and Carden and Fanning (2004).  
Looking to these various vibration based techniques, 
particularly those using modal parameters, the D.I. method 
seems more promising. The basic idea behind defining 
damage indices is that changes in physical properties of a 
structure will eventually alter some of the system intrinsic 
properties such as some of natural frequencies, mode shapes 
or mode shape curvatures (Choi & Stubbs, 2004). A 
Damage Index is defined based on the changes of the jth 
mode curvature at location i (Stubbs, Kim, & Farrar, 1995). 
Choi and Stubbs (2004) used the strain energy of pre and 
post damaged structure to define D.I.. Also combination of 
D.I. and neural network method is used to identify damage 
in structures (Dackermann, Li, & Samali, 2010). In mode 
shape curvature based D.I.; changes in the damage index 
and relating these changes with the potential locations are 
assessed by statistical methods. Normal distribution of 
damage indices in different locations is extracted and D.I. 
values which are two or more standard deviation away from 
the mean D.I. value are reported to be most probable 
location 

 

 

of damage (Stubbs, et al., 1995). An extension to mode 
shape curvature method is that one can take into account all 
frequencies in the measurement range and not just the modal 
frequencies. In other words one may use Frequency 
Response Function (FRF) instead of mode shape data. It is 
claimed that this method can detect, localize and assess 
damage extent. The theory is fostered with some 
experimental results (Sampaio, Maia, & Silva, 1999). 

Nevertheless development of suitable and reliable damage 
metrics and identification algorithms is still an issue to be 
investigated. D.I. as a scalar quantity is a damage metric that 
gives a criterion to judge the extent of damage of a structure 
(Giurgiutiu, 2008). Although these methods are well 
applicable in some cases but are not usually applicable to 
the cases that the sizes of cracks are small relative to the 
structure, or the crack is somewhere in a wide area of the 
structure. The main reason is that small cracks do not 
change the lower modal properties appreciably and thus 
they are not easily detectable using experimental data. It 
should be noted that this limitation is not due to lack of 
sensitivity of the method, but it is due to the practical 
limitations of exciting higher modes. Excitation of higher 
modes requires significant amount of energy which may not 
be viable to large structural systems (Ginsberg, 2001).  

2. PROBLEM STATEMENT 

A 2D frame type structure as shown in Figure 1 is studied. 
A D.I. based on H2 norm, as discussed in next section, is 
formulated to compare the healthy and damaged state of the 
structure and localize the damage. The structure is modeled 
using 16 two-node Timoshenko beam element in which 
each node has 3 degrees of freedom (DOF). Timoshenko 
beam theory has proved to give more accurate results when 
the length of the beam element is relatively short (Reddy, 
2004). Damage is modeled by reducing the stiffness in the 
element confined between nodes 11 and 4 by 80%. The

Mahdi Saffari et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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                                    Figure 1. Frame structure configuration and strain gauge sensors placement 

material properties of the members are considered as: 

           � � 200 ��� , � � 80 ���, � � 7800 ��
��

           (1) 

The cross section of members is 3�� � 3�� and the length 
of each horizontal or vertical member is 1 m (Figure 1). 

The structure is fixed in all DOF ��, �, �� at node 1 and 
only in translational DOF  ��, �� at node 2. Hence the 
structure has 28 free DOFs. There are 12 strain gauge 
sensors placed in different locations of the structure. There 
are relatively more strain gauges near the damaged link to 
have more accuracy in finding damage. The input force is 
applied on node number 3 as shown in the Figure 1. Mass 
and stiffness matrices of the structure are found after 
assembling the global stiffness and consistent mass matrix 
of all elements using finite element technique.   The system 
damping is assumed to be proportional to the system 
stiffness and mass matrices based on Rayleigh damping as: 

                                       � � �� � ��                           (2)                        

The parameters � and � are considered here to be 0 and 
0.001, respectively. 

3. PROBLEM FORMULATION 

The governing equations of a linear structure in the finite 
element form can be described as  (Gawronski, 2004) 

                               ��� � ��� � �� � ��                         (3)      

For the 2D frame structure discussed in previous section, �, � and � are 28 � 28 mass, damping and stiffness 
matrices, respectively. �� is input vector and � is nodal 
displacement vector and both are 28 � 1 vectors.   is the 
input force magnitude. 

The desired output is the strains in specified members. This 
output is a linear combination of system nodal 
displacements.  For example, for the element with strain 
gauge S4: 

                                            "4: %� � �������
����

                          (4)                

��	, ��
: Displacement of node 8 and 9 in x- direction 

&	�
: Length of member 8-9 

%�: Strain in member 8-9 

Thus the output vector y has 12 strain components which 
can be related to the nodal displacement vector q as  

                                              ' � (��                                    (5) 

where (� is a 12 � 28 matrix. 

   

3.1 Modal model 

Modal model in structures is a standard modeling procedure 
in which modal displacement vector ���� is related to the 
original nodal displacement vector q as 

                                           � � Φ��                                      (6) 

in which �Φ) is the system modal matrix whose columns are 
eigenvectors (normal modes) of the system. 

Now by substituting Eq. (6) into Eq. (3) an then multiplying 
the resulting equation from left side by transpose of �Φ), 
one may write: 

                           ����� � ����� � ���� � Φ���           (7) 

in which  

�� � Φ�MΦ 

                                          �� � Φ�DΦ                                 (8) 

�� � Φ�KΦ 
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are modal mass, modal damping and modal stiffness 
matrices which are diagonal due to orthogonality of 
eigenvectors.  (Rao, 2007) 

Also the output vector described in Eq. (5) can be written 
as:  

                                         ' � (����                                        �9� 

 in which  (��  is the modal system output matrix written as: 

                                   (�� � (�Φ                                   (10) 

Multiplying Eq. (7) by the inverse if the modal mass, ����, 
from the left side yields: 

            ��� � ��������� � �������� � ����Φ���      (11) 

or  

                    ��� � 2ZΩ��� � Ω�� � ��                        (12) 

in which 0 � ����/���/ is the diagonal matrix of 
eigenvalues (natural frequencies): 

                                    Ω � 12� 3 04 5 40 3 2�
6                          (13) 

and 7  is the diagonal modal damping matrix defined as: 

                                    7 � ��
�����                                 (14) 

Modal system input matrix �� is also defined by 

                                  �� � ����Φ���                                 (15)         

3.2 H2 norm 

Based on modal representation of the linear system, and 
derived system modal matrices, the H2 norm of the system 
is defined. Norms are employed to quantify the intensity of 
system response to standard excitations, such as unit 
impulse, or white noise of unit standard deviation. H2 norm 
is used to compare two different situations. It should be 
noted that H2 norm of a mode with multiple inputs (or 
outputs) can be broken down into the rms sum of norms of 
that mode with a single input (or output) (Gawronski, 
2004).  

Now let us consider a flexible structure with one actuator 
(or one input) and n modes (n=system DOF), the modal 
input matrix B is then: 

                                    �� �
89
99
9:
�����...���<=

==
=>
                                      (16) 

For the 2D frame structure discussed before, �� has 28 
rows and one column and ��� corresponds to the actuator 
effect on ?th mode.  

Similar to the actuator properties,  for @ sensors installed on 
a A DOF structure, the output matrix is as follows: 

B                        (�|��� � D(�� , (�, … , (��  F               (17) 

For mode number G 

                               (�� �
89
99
9:
(���(��...(���<=

==
=>
                                    (18) 

The H2 norm of the ?th mode of a structure with a set of @ 
sensors is the rms sum of the H2 norms of the mode with 
each single sensor from this set. Norm of a structure with 
one actuator and multiple sensors is defined as (Gawronski, 
2004) 

                            H���H I ������������
�����

                            (19) 

The Gth sensor H2 norm of the structure corresponding to 
each sensor could be derived similar to modal H2 norm as 
(Gawronski, 2004): 

                           J���J I ���	�����
	��
��	�	

                            (20) 

4. DAMAGE INDEX (D.I.) 

To localize damaged elements of a structure, a damage 
index attributed to the sensor (sensor damage index) is 
defined (Gawronski, 2004). By denoting the norm of the Gth 
sensor of the healthy structure by J��� J, and the norm of 

the Gth sensor of the damaged structure by J���! J. The Gth 

sensor index of the structural damage is defined as a 
weighted difference between the Gth sensor norms of a 
healthy and damaged structure as: 

                       �K�� � L"#
	� "���"#
	� "��"#
	� "�
� L                                   (21) 
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                       Figure 2.  Sensor damage indices 

5. RESULTS 

The H2 norm damage index defined in Section 4 has been 
evaluated for the 2D frame structure as described before in 
section 2. Using the modal finite element formulation 
elaborated in Section 3, Figure 2 indicates the sensor D.I. in 
all 12 sensors. 

 As it can seen from Figure 2,  the sensor number 6 (S6) has 
the highest D.I. value indicating that the most probable 
place to have damage is member between nodes 4 and 11 
(member 11-4) which is indeed the location of the defined 
damage. 
The developed algorithm can be easily applied to identify 
multiple damage locations in the case that structure has 
more than one damaged spot. Naturally, more sensors 
should be added to reasonably accurate results and increase 
the algorithm sensitivity.  

In this example it is assumed that the structural member 
between nodes 5 and 7 (member 5-7) is divided into 4 
elements and members 5-6 and 5-8 are also divided into 3 
elements and new strain gauges are installed on these new 
elements as shown in Figure 3. Damage is introduced to 
element 13-14 (S14) as well as previous member 11-4 (S5).  

 
Figure 4. Sensor damage index for structure with two 

damage spots. 

It is assumed that both members have 80% reduction in 
stiffness �K. Figure 4 indicates the sensor D.I. for this new 
damage configuration. It could be seen that the algorithm 
has accurately identified the exact damage locations 
because the damage index in 5th and 14th locations are the 
two highest. 

6. CONCLUSION 

A methodology to detect and locate damage in frame 
structures by defining a damage index is formulated. 
Structural members are modeled as Timoshenko beams 
type. The method defines a damage index which is the 
reduction percentage of H2 norm of the structure at certain 
locations where strain gauges are installed and compares 
both healthy and damaged states. However to have accurate 
results one should install enough number of sensors. There 
is room to extend this work by installing different types of 
sensors such as accelerometers or to find the minimum 
number of required sensors to have accurate results as 
possible.  

  

 
Figure 3. Frame structure with two damage spots 
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ABSTRACT 

In structural health monitoring, features extraction 
from measured data plays an important role. In order to 
enhance information about damage, we propose in this 
paper, a new damage detection methodology, based on 
the Hilbert transform and multivariate analysis. Using 
measurements given by distributed sensors of a smart 
composite structure, we apply the Hilbert transform to 
calculate an envelope matrix. This matrix is then treated 
using multivariate analysis. The subspaces associated to 
the envelope matrix are used to define a damage index 
(DI). Furthermore, from perturbation theory of 
matrices, we propose a bound associated to this DI, by 
inspecting this bound, decision on the health of the 
structure is generated. Experimentation on an actual 
composite smart structure will show the effectiveness 
of the proposed approach. 

1. INTRODUCTION  

 Composite structures have been increasingly 
adopted by the aviation community to provide high 
performance, strength, stiffness and weight reduction. 
One of the major concerns associated with composites 
is the susceptibility to impact damage,(Staszewski 
2002). Impact damage may occur during manufacture, 
service or maintenance. Low-velocity impacts are often 
caused by bird strikes, runway stones and tool-drops 
during maintenance. Impacts can induce serious 
damage to composites such as delamination, matrix and 
fiber cracking. Faced with these various damages, a 
structural health monitoring system (SHM) is needed 
and if possible in real time. 
 SHM methods are implemented on structures 
known as "smart structures", (Giurgiutiu et al. 2002). 
These structures consist of a network sensors and 
actuators and offer a monitoring capability for real-time 
application. Recently emerged piezoceramic patches 
have the potential to improve significantly 

developments of structural health monitoring systems. 
These patches offer many advantages, among of them: 
lightweight properties, relative low-cost and can be 
produced in different shapes. Recently, (Su et al. 2006) 
have developed a sensor network for SHM using 
printed circuit to embed piezoceramic patches into a 
composite structure. 
 Damage is a structural state which is different from 
a reference state that is healthy. A damage event is not 
meaningful without comparisons between two different 
structural states. The greatest challenge is to ascertain 
what changes are sought in the signal after the presence 
of damage. Features extraction is therefore a key step in 
the processing of signal sensor. In SHM, feature 
extraction is the process of identifying damage-
sensitive properties derived from the measured 
response data of a smart structure; it serves an indicator 
to describe the damage and its severity. These extracted 
features are termed as damage index (DI). Recently, the 
method of empirical mode decomposition (EMD) and 
Hilbert transform have been applied in SHM, (Huang et 
al. 1998). By applying EMD and Hilbert transform in a 
measured data, (Yang et al. 2004) have developed a 
method to detect the damage time instant and damage 
location, in addition they propose in others works the 
identification of linear structure using the EMD and 
Hilbert transform, (Yang et al. 2003a; Yang et al. 
2003b). 
 In recent years, techniques based on multivariate 
statistics have been also applied in SHM. As the name 
implies, multivariate analysis is concerned with the 
analysis of multiple measurements from sensors and 
treats them as a single entity. There are two major 
multivariate techniques in SHM, principal components 
analysis (PCA) and independent components analysis 
(ICA). These techniques serve two purposes, namely 
order reduction and feature extraction by revealing 
structure hidden in the measurement, (Kerschen et al. 
2005). By applying a PCA on the sensor time 
responses, (De Boe and Golinval 2003) have developed 
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a damage index based on angle between subspace to 
detect and locate damage, in addition (Hajrya et al. 
2011) have applied the same principle and they propose 
a bound based on correlation coefficient that 
automatically decides if a composite structure is in 
healthy or damaged state. Using independent 
component analysis combined with artificial neural 
network, (Zang et al. 2004) have used a mixing matrix 
which is extracted from ICA to detect and locate 
damage. 
 In this work, we propose an original damage index 
(DI) based on the calculation of an envelope matrix. 
This matrix is built using the Hilbert transform of time 
response matrix measurements. Furthermore, from 
perturbation theory of matrices, we define a bound that 
automatically decides if the composite structure is in 
healthy or damaged status. 
 The paper is organized as follows: In the next 
section the experimental test is presented. In section 3, 
the mathematical formulation of the Hilbert transform 
and the multivariate analysis are briefly described. In 
section 4, our methodology for damage detection is 
presented. In section 5, the proposed damage detection 
scheme is applied on an experimental laboratory test 
bench. Finally, conclusions and further directions will 
be drawn in section 6. Main terms, table and figures are 
illustrated at the end of the paper before the references. 

2. EXPERIMENTAL TEST BENCH 

 The structure employed consists of a piece of 
composite fuselage; it was manufactured by INEO 
DEFENSE which is a partner in the MSIE research 
program. The structure consists of a carbone-epoxy 
composite plate with dimensions: �400 � 300 � 2mm� 
and it is made up of 16 layers. The layers sequences 
are: [0°2,+45°2,-45°2, +90°2, -90°2, -45°2, +45°2, 0°2]. 
The properties of the composite plate are detailed in 
table 1. Using a modal approach, we have performed in 
a previous work, (Hajrya et al. 2010), an optimal 
placement of ten piezoceramic patches (figure 2), with 
dimensions �30 � 20 � 0.2 mm�. The piezoceramic 
patches are made on lead zirconate titanate (PZT). 
Figure 1 is a diagram and it shows the positions of the 
ten PZT in the composite plate. It is to be noted that in 
our work, only nine PZT are used (PZT 6 is not taken 
into account in the damage detection methodology). 
Sensor PZT 6 will be used in another work for sensor 
fault detection. 
 Figure 2 shows the experimental smart composite 
plate and it was used as baseline for damage detection. 
In order to develop a damage detection methodology, 
we have used a second composite plate with the same 
dimensions and numbers of PZT (at the same location), 
but, in this plate, impact damage was produced 
throwing a ball at high velocity: the damage is located 

at the middle of the plate. Figure 3 shows the location 
of this impact damage. 
 The input excitation generation and the data 
acquisition were made using a commercial system 
dSPACE ®. The input excitation consists in a signal 
pulse with 1ms width. Signals were acquired with 
sampling frequency ��  100 ���, time duration was �  0.65� and �  2�� time samples were recorded 
for each channel: one corresponding to the excitation 
applied to the PZT actuator and the others concern the 
measurements collected by the PZT sensors. Figure 4 
shows the time responses of sensor PZT 7 in the case of 
the healthy and damaged plate while we have used PZT 
10 as actuator, i.e. (Path PZT 10-PZT7): only the 512 
first samples are displayed. 

3. MATHEMATICAL FORMULATION 

3.1 Hilbert transform  

The Hilbert transform of an arbitrary signal ���� is 
defined as, (Bendat and Piersol 2000): �����=�������  �  �!�"�#$!�%∞$∞  (1) 

Equation (1) is the convolution integral of ���� and �1/'�� and it performs a 90° phase shift or quadrature 
filter to construct the so-called analytic ���� expressed 
by: ����=���� ) *����� (2) 

Equation (2) can also been written as follow: ����=+��� · +-.�#� (3) 

where +��� is called the envelope signal of ���� and /��� is 
called the instantaneous phase signal of ����, we have 
the relations:  +���  0�1��� ) ��1��� 

/���  �23$� 4���������5 (4) 

The envelope +��� depicts the energy distribution of ���� in the time domain.  
In practice, the data are discretized in time, let: 6��� be a discretized measurement vector at instant � 

from 3  PZT sensors, that are instrumented in the 
composite smart structure: 6���  7����� 8 �9��� … �;<���=>

 (5) 

The data matrix of measurements ? @ A;<�B gathering � samples 6�����  1, … , �� is defined as follows:  ?  76�1� 8 6��� 8 6���= (6) 
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In our case of study, we have 3  8, �  2��, 3 E�. 
The matrix ? has been autoscaled by subtracting the 
mean and dividing each line by its standard deviation. 
For sensor F and instant k, the analytic signal �9���, the 
envelope signal +9��� and the instantaneous phase  /9��� are given by: 
 �9���=�9��� ) *��9��� (7) 

+9���  G�91��� ) ��91��� (8) 

/9���  tan$� 4��9����9���5 (9) 

Using Eq. (8), we define the envelope vector K��� at 
instant � for the 3  sensor: K���  7+���� 8 +9��� … +;<���=>

 (10) 

For example, the corresponding envelope signal of 
sensor PZT 7 in the case of healthy and damaged 
structures are depicted in figure 5, only the 512 first 
samples of the envelope signals are displayed. 
According to Eq. (10), we define the envelope matrix L @ A;<�M of the matrix measurements ? @ A;<�M by: 
 L  NK�1� 8 K��� 8 K���O (11) 

This envelope matrix L gathers P samples K���, �� 1, … , ��: 

3.2 Multivariate analysis 

 As stated in section 1, multivariate analysis 
concerns the analysis of multiple measurements from 
sensors and treats them as a single entity. In our work, 
the single entity concerns the envelop matrix L @A;<�M. One way to study the matrix L is to use the 
singular value decomposition (SVD), (Golub 1983): 
The matrix L @ A;<�M admits two orthogonal matrices: Q  7R�, 8 , R;< = @ A;<�;< 

S  7T�, 8 , T;< = @ AM�;<  
(12) 

such that  U  Q> · ? · S  diagYZ�, 8 , Z[\ ]  ^F3_3 , �`  3  Q> · Q  a;< , S> · S  a;<  (13) 

where U @ A;<�;< is the matrix of singular values, the 
columns of the matrix Q @ A;<�;< contain the left 
singular vectors and the columns of the matrix S @ AP�;< contain the right singular vectors. 

The SVD of the matrix L provides important insight 
about the orientation of this set of vectors, and 
determines how much the dimension of L can be 
reduced, (Kerschen et al. 2005). One way to reduce the 
dimension of L is to take the sum of all singular values 
then to delete those singular values that fall below some 
percentage of that sum, (De Boe and Golinval 2003). In 
our work, we have decided to fix a percentage sum of 
98%. 

According to this, the SVD of matrix L take the 
following form: L  �Q� Q1� · bU� cc U1d · �S� S1�> 

 L� ) L1 

(14) 

where: Q� @ A;<�;efg,U� @ A;efg�;efg ,S� @ AM�;efg ,  Q1 @ A;<�Y;<$;efg\,U1 @ AY;<$;efg\�Y;<$;efg\, S1 @ AM�Y;<$;efg\, 3hij is the retained dimension after reduction. 
The columns of the matrix Q� are called the principal 
left singular vectors and the columns of the matrix S� 
are called the principal right singular vectors. 
Analogously, the columns of the matrix Q1 are called 
the residual left singular vectors and the columns of the 
matrix S1 are called the residual right singular vectors. 

4. DAMAGE DETECTION METHODOLOGY  

The presence of damage in the structure cause 
change in the stiffness and mass matrices. 
Consequently, damage will introduce change in the 
response of the measurement sensor and the matrix 
measurements ?, see (Hajrya et al. 2011) for the 
demonstration. Hence, the envelope matrix L is also 
modified. Figure 5 depicts the corresponding envelope 
signal of sensor PZT 7 and one can see that there is a 
significant difference in the envelope signal of the 
healthy and damaged structures. 

4.1 Damage index  

Let Lk, L! @ A;<�M be respectively the envelope 
matrices of the healthy and unknown structures. 
According to section 3.2, there SVD is defined as 
follow: 

L�  �Q�� Q1�� · bU�� cc U1�d · �S�� S1��>
 L�� ) L1� (15) 

L!  �Q�! Q1!� · bU�! cc U1!d · �S�! S1!�> L�! ) L1! 
(16) 
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We suppose that the dimensions of all components in 
Eq. (15) and (16) are equals to those in Eq. (14). 
In our methodology, we are interested in studying the 
principal left and right singular vectors. 
Let: Q��  NR��� 8 R�9k 8 R�;efg� O @ A;<�;efg ,  be the 
principal left singular vectors of the healthy smart 
structure,  S��  NT��� 8 T�9k 8 T�;efg� O @ AM�;efg ,  be the 
principal right singular vectors of the healthy smart 
structure,  Q�!  NR��! 8 R�9! 8 R�;efg! O @ A;<�;efg ,  be the 
principal left singular vectors of the unknown smart 
structure,  S�!  NT��! 8 T�9! 8 T�;efg! O @ AM�;efg ,  be the 
principal right singular vectors of the unknown smart 
structure. 
We define the angle between R�9�  and R�9!  and the angle 
between T�9�  and T�9!  as, (De Boe and Golinval 2003): 

|cos p9|  qrR9�qR9!sq  tYR9�\> · R9!t 
p9  cos$�|cos p9|, p9 @ 70, '2=   
|cos u9|  qrT9�qT9!sq  tYT9�\> · T9!t 

u9  cos$�|cos u9|, u9 @ 70, '2=   
(17) 

According to this, we define two angle vectors v and  w by :  v  Np� 8 p9 8 p;efgO>, w  Nu� 8 u9 8 u;efgO>
 

 
We propose the following new damage index DI: 

DI  z{sin v{1
1 )|sin w|11 (18) 

Theoretically, when the current state is healthy, then 
the damage index DI is null, but if the current state is 
damaged, then the damage index is different from zero. 
In order to improve the damage detection methodology 
under experimental conditions, we define in the next 
subsection a bound associated to the DI and it is based 
on the work of Wedin, (Wedin 1972). 

4.2 Definition of a bound for the damage index  

 Wedin have studied the perturbation of matrices 
using subspaces. Our contribution in this subsection is 
to extend the theoretical work developed by Wedin in 
the case of experimental SHM system.  
Define first a new envelope matrix L} � @ A;<�M of the 
healthy smart structure: L} �  Lk ) δL� (19) 

where δL� @ A;<�B is a matrix which reflects the effect of 
noise in an experiment. 
According to subsection 3.2, the SVD of Lk and L} � are 
defined as follow: 

L�  �Q�� Q1�� · bU�� cc U1�d · �S�� S1��> L�� ) L1� (20) 

L} �  �Q��� Q�1�� · 4U}�� cc U}1�5 · �S��� S�1��>
 L}�� ) L}1� 

(21) 

Let vk and wk the two angle vectors, repectively 

between the left singular vectors of Lk and L} �and the 
right singular vectors Lk and L} �, these angle vectors are 
calculated using Eq. (17) . 
According to (Wedin 1972), we define two residual 
matrices ���, �1� as: ���  L� · S��� � Q��� · U}��  YL� � L} �\ · S��� �δL� · S��� 

(22) 

�1�  �Lk�> · Q��k � S��k · U}�k ��Lk�> � YL} k\>� · Q��k ��δLk�> · Q��k 
(23) 

Given, the aforementioned definitions, Wedin’s 
theorem sates: 
 
Theorem  

If � � � 0 and � � 0 such that min ZYL}��\ � � ) � and max ZYL}1�\ � � 

And let �  max 0�����1 ) ��1��1, then 
 

�{sin vk {1 � ��|sin wk|1 � �� � 
According to this theorem, we define a bound � as: �  √2 �� (24) 

In order to improve the bound �, we make 3 
experimental tests of the healthy smart structure and we 
calculate the mean of the bound: 

��  13 � �-
;

-��  (25) 

The detection procedure is as follow  
If DI � �� then the unknown smart structure is in 
healthy state, 
Else the unknown smart structure is in damaged state. 
To summarize the damage detection methodology, we 
use the following steps: 
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Damage detection methodology 
 

1. Measure acquisition of the healthy smart 
structure ?k, 

2. Repeat 3 times the experiment for the 
healthy smart structure: ?�-�, *  1. . . 3, 

3. Center the data matrices ?k, ?�-� and 
normalize them using the standard 
deviation, 

4. Using Eq. (8) and (11), calculate the 
envelope matrix L�and L}-�, 

5. Using Eq. (13), applied the SVD for 
matrices Lk and L}-�, 

6. Reduce the dimension if possible, 
7. Using the Wedin’ theorem and Eq.(24), 

calculate the bound �-, *  1 8 3, 
8. Calculate the mean bound �� �; ∑ �-;-�� , 

9. Measure acquisition of the unknown 
smart structure ?!, 

10. Center the data matrix ?! and normalize 
it using the standard deviation, 

11. Using Eq. (8) and (11), calculate the 
envelope matrix L!, 

12. Using Eq. (13), applied the SVD for the 
matrix L!, 

13. Reduce the dimension if possible, 
14. Using Eq. (17), calculte cos v and cos w  

15. Calculate sin v and sin w , 

16. Using Eq. (18), calculate the damage 
index DI between the healthy envelope 
matrix L� and the unknown envelope 
matrix L!, 

17. If : DI � �� : Then the unknown smart 
structure is in healthy state,  
Else the unknown smart structure is in 
damaged state. 

5. APPLICATION TO THE COMPOSITE 
SMART STRUCTURE 

The damage detection methodology described 
previously is applied to detect the impact damage of the 
composite plate presented in section 2. In the first step 
of our application, we were interested by using PZT 10 
as an actuator while the others PZT are sensors (PZT 6 
is not taken into account in the damage detection). 
Following the methodology developed, we have 
performed six measurements for the healthy composite 
plate and one measurement for the damaged composite 
plate. Using these measurement matrices, the envelope 
matrix for each healthy and damaged state was 

calculated. Before the calculation of the damage index 
DI and its associated bound �, we have search for each 
state of the composite plate to reduce the dimension of 
the envelope matrices. According to the 98% 
percentage sum of singular value fixed in subsection 
3.2, we see using figures 6 and 7 that the dimension of 
the envelope matrices cannot be reduced, those the 
dimension remain: Lk, L� @ A��1��

. Using the six 
experiments of the healthy composite state, the mean 
value of the bound was first calculated: ��  c. �c. 
The damage index between the healthy and damaged 
composite plates defined in Eq. (18) is: �a  �. ��. 
One can we see that the DI is upper than the mean 
value of the bound, then damage is detected. In order to 
illustrate the efficiency of the damage detection 
methodology in term of false alarms, we have done 
another experiment of the healthy structure which is 
strictly independent from the others done previously, in 
this case, �a  c.  ¡ and it is lower than ��  0.4042. 

In second step of our application, we have used 
PZT 7 as actuator, according to the same methodology, 
we have obtained the result depicted in table 3 a 
damage index �a  �. �c, one can we see that the DI is 
upper than the mean value of the bound ��  c. ¢�. 
No false alarms were detected. 
 

6. CONCLUSION 

 In this paper, a damage detection methodology was 
developed to enhance feature information about 
damage. This methodology is based on the calculation 
of a damage index which consists on comparing 
subspaces of the healthy and damaged state of envelope 
matrix. This DI was associated with a bound. 
 The efficiency of the proposed approach was 
successively applied to detect experimentally impact 
damage in the composite smart plate. The proposed 
method presents a cheap computational cost and seems 
to be well adapted for structural health monitoring in 
real time application. 
 For the work under progress, we are investigating 
the localization of the impact damage in damaged 
composite plate. 
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3  Number of sensors in the composite smart structure � Number of samples 6��� Measurements vector at instant � ? Matrix measurements  K��� Envelope vector  L Envelope matrix  L� Envelope matrix of the healthy structure L} � Envelope matrix of a second experiment of the 
healthy structure L! Envelope matrix of the unknown structure Q Matrix of left singular vectors  S Matrix of right singular vectors v Angle vector between the left singular vectors 

of the healthy matrix L� and unknown matrix L!, w Angle vector between the right singular 
vectors of the healthy matrix L� and unknown 
matrix L!, v� Angle vector between the left singular vectors 

of the two healthy matrices L� L} � w� Angle vector between the right singular 
vectors of the two healthy matrices L� L} � 

DI Damage index  �  Bound of the damage index ��  Mean value of the damage index £?� Matrix of noise ?> Transpose of matrix ? * Imaginary number A Set of real number  

 
Figure 1: Placement of the PZT in the composite plate 

 
 

 
 

Figure 2 Healthy composite plate bonded with ten PZT 
patches 

 
 

Figure 3: Impact damage in the composite structure 

 
Figure 4: Impulse response of the healthy and damaged 

smart structures path: actuator PZT 10-sensor PZT7 
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Figure 5: Envelope signal of the healthy and damaged 
structures: path: Actuator PZT 10-Sensor PZT7 

 

Figure 6: Order reduction of the healthy smart structure 

 
Figure 7: Order reduction of the damaged smart 

structure 
 

Table 1 Mechanical property of the carbone-epoxy 
composite plate 

 

Table 2 Result of the damage detection in the case of 
the use of actuator PZT 10 

 

 DI¤¥¦ � 
Damage plate  3.37 0.4042 

Safe plate 0.2602 0.4042 
 

Table 3 Result of the damage detection in the case of 
the use of actuator PZT 7 

 DI¤¥¦ � 
Damage plate 3.3056 0.5374 

Safe plate 0.2190 0.5374 
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ABSTRACT 

This work concers the problem of fault detection using 

data-driven methods without the assumption of 

gaussianity. The main idea is extend the Runger's U
2
 

statistical distance measures to the case where the 

monitored variables are not gaussian. The proposed 

extension is based on Gaussian Mixture Models and 

Parzen windows classifiers to estimate the required 

conditional probability distributions. The proposed 

methodology was applied to an APU dynamic model 

and showed better results when compared to classical 

fault detection techniques using Multivariate Statistical 

Process control with Hotelling’s T
2
 metrics.

*
  

1. INTRODUCTION 

Data-driven methods comprise a powerful set of tools 

for performing failure prognosis and diagnosis. Such 

group of methods includes clustering and classification 

techniques, where the data is divided into groups on the 

basis of some specific distance measure (Duda et al., 

2001). Statistical measures are a usual choice for such 

methods. The origins of clustering and classification 

methods based on statistical measures may be linked to 

the works of Mahalanobis (1936) and Hotelling (1933), 

which are related, respectively, to the Mahalanobis 

distance (MD) (De Maesschalck et al., 2000) and the T
2
 

statistic (Kourti and MacGregor, 1995). Such statistical 

distance measures are the basis of Multivariate 

Statistical Process Control (MSPC), which consists of a 

group of multivariate analysis techniques that can be 

used in health monitoring and diagnosis in industrial 

                                                           
* Gomes, J. P. P. et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 United 

States License, which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original author and source 

are credited. 

environment, such as chemical plants (Kourti and 

MacGregor, 1995) and mining enterprises (Yacher and 

Orchard, 2003). Statistical measures are also employed 

in other fields of knowledge such as image processing 

and pattern recognition (Webb, 2002). In these fields, 

similar concepts are used for the definition of the 

Gaussian. Both in the Gaussian classifier and in the 

MSPC techniques, an usual assumption is to 

considerthe underlying joint distributions of the 

monitored variables as Gaussian (or at least can be 

approximated as). Literature presents various examples 

of the use of such types of methods for Prognostics and 

Health Management (PHM): Kumar et al. (2008) 

present the use of MD for monitoring electronic 

systems; Mimnagh et al. (2000) present the use of 

Hotelling’s T
2
 statistic for the diagnostics of a 

helicopter drive system; Leão et al. (2009) show the 

application of MSPC for monitoring the health of 

electro-mechanical systems. 

 The abovementioned methods may provide poor 

performance when the gaussianity assumption is not 

verified. Since many practical problems do not satisfy 

such gaussianity assumption, extensions of these 

methods have been proposed to address non-Gaussian  

problems (Webb, 2002). One solution of this type is the 

use of Gaussian Mixture Models (GMM) to 

approximate the joint probability density of the 

variables of interest. Another possibility is the use a 

composition of Gaussian kernels for approximating the 

joint density in a non-parametric way. Such method is 

commonly referred as Parzen windows.  

 This work presents extensions to GMM or Parzen 

windows classifiers, which can provide better results 

for PHM solutions. Such extensions are inspired by the 

U
2
 statistical distance (Runger, 1996), which was 

introduced by Runger in the context of MSPC (on the 

assumption of Gaussian joint distributions). Runger’s 
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U
2
 statistic is based on the division of the set of 

monitored variables (x) into two subsets: the first one 

(y) includes variables which are affected by the failure 

under consideration; the second one (z) encompasses 

variables which are not affected by the failure but are 

correlated to the variables of the first subset. Examples 

of the latter include operational and environmental 

conditions. The proposed methods are extensions of 

Runger’s work to non-Gaussian problems, which are 

based on the calculation of the conditional likelihood 

p(y|z) using the densities estimated through GMM or 

Parzen windows. 

 In order to illustrate the use of the proposed 

methods, a simulation model of an aircraft Auxiliary 

Power Unit (APU) is employed. Different failure 

modes are simulated using such model and the 

proposed methods are used for failure diagnosis. Their 

performance is compared to that of the aforementioned 

traditional methods described in literature. 

 The remaining sections are organized as follows: 

section 2 describes the theoretical background 

associated to MSPC, Gaussian, GMM and Parzen 

windows classifiers; section 3 presents the novel 

methods proposed in this work; section 4 presents the 

simulated tests and results and section 5 is the 

conclusion. 

2. THEORETICAL BACKGROUND 

2.1 Statistical Distances, MSPC and the Gaussian 

Classifier 

The application of statistical theory for fault detection 

relies on the assumption that the characteristics of the 

data variations are relatively unchanged unless a fault 

occurs in the system. This is a reasonable assumption 

under the definition of a fault as an abnormal process 

condition. It implies that the statistical properties of the 

data are repeatable for the same operating conditions, 

although the actual values may not be predictable 

(Chiang et al, 2001). The repeatability of the statistical 

properties allows the use of statistical measures, based 

on statistical distances, for the detection of abnormal 

behaviors on a process. 

  Eq. (1) presents the well known Mahalanobis 

Distance (MD): 

T

M ∑
−

−−=
1

)()()( µµ xxx  (1) 

where x is the feature vector associated to an 

observation and µ and Σ are respectively the mean 

values and the covariance matrix of a given dataset. 

These statistical properties can be estimated as 

∑
=

=
n

i

i
n 1

1
xµ  (2) 

and 

( )( )[ ]∑
=

−−
−

=Σ
n

i

T

n 11

1
µµ ii xx  (3) 

where {xi, i = 1, 2, ..., n} is a given set of observations. 

 The MD is used to define one of the most popular 

MSPC methods called Hotelling’s T
2
 statistic. In 

Hotelling’s T
2
 statistic, a statistical model is built using 

Eq. (2) and Eq. (3) given a dataset X containing n 

instances of a feature vector x. Each instance is 

composed by k monitored variables. All feature vectors 

in X are obtained for a healthy system (without faults).  

 After this training stage, the MD is calculated for 

each new instance xnew and the result is compared with 

a threshold in order to detect anomalies. Hotelling’s T
2
 

statistic is defined as: 

  
T

T ∑
−

−−=
12

)()( µµ newnew xx  (4) 

where µ and Σ are estimated using Eq. (2) and Eq. (3) 

for the dataset X and xnew is a new instance of the 

feature vector x that needs to be classified as healthy or 

faulty.    

 The same principles are involved in a popular 

classification method, mainly employed in the pattern 

recognition literature, the Quadratic Gaussian Classifier 

(QGC, or simply Gaussian Classifier). For fault 

detection, the QGC can be formulated to solve the 

problem of one class classification, that is, to classify 

the operation of a system as healthy or not. 

 Using Bayes’ theorem one could obtain the 

probability of a system being healthy (H=1) given a 

feature vector x according to Eq. (5). 

)(

)1()1|(
)|1(

x

x
x

p

HPHp
HP

==
==

 (5) 

 Since the unconditional probability density p(x) is 

not related to the health state of the system, it is not 

useful to decide if the system operation is healthy or 

faulty (H=0). Therefore, it can be ignored in the 

statistical measure. 

 Considering the prior probabilities of the system 

being healthy or faulty (P(H=1) or P(H=0)) are not 

affected by the x, these can be also be ignored, 

resulting on: 

)1|()|1( =∝= HpHP xx  (6) 

Assuming p(x|H=1) to be a Gaussian distribution one 

can use the following statistical measure to detect 

anomalies based on xnew. 







−∑−−

∑
∝= − T

newnewknewHp )()(
2

1
exp

||)2(

1
)|1( 1

2/1
µµ

π
xxx

(7) 

 It is possible to notice in Eq. 7 the presence of a 

term identical to that of expression  Eq. 1, which is the 
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MD. It is the only term that depends on xnew, so that the 

result is similar to that presented by Hotelling’s T
2
 

statistic. 

 An MSPC method proposed by (Runger, 1996) 

provides relevant improvements in Hotelling’s T
2
 

statistic and QGC. In many real applications it is 

possible that only a subset of the monitored variables 

are affected by a failure. The main idea in this method 

is to restrict the analysis to these fault-sensitive 

variables but without excluding the influences of other 

non fault-sensitive variables in system behavior. 

     Consider an observation xi of the feature vector: 

[ ]ikiji1i xxxx LL=  (8) 

Assuming that a fault only affects variables xi1 up to xij, 

one can divide xi into two sets:  

[ ]iji1

T

i xxy K=  (9) 

and 

[ ]ik1)i(j

T

i xxz K+=  (10) 

where yi contains the features that are sensitive to an 

incipient failure and zi contains those that are not 

sensitive to the failures. 

 The idea of Runger’s U
2
 statistic is to calculate 

Hotelling’s T
2
 statistic and subtract the influence of zi 

in the final calculated distance while keeping zi 

influence in yi behavior. 

 Runger’s U
2
 statistic can be defined as: 

)()(
122

z
z

T

zTU µµ −−−= ∑
−

newnew zz  (11) 

 It can be noticed that the MD is employed to 

compare znew with a statistical model built using a 

subset of X comprising only the variables not affected 

by faults. The result is subtracted from Hotelling’s T
2
 

statistic.    

2.2 GMM and Parzen Windows Classifiers 

All methods presented in section 2.1 have the 

assumption that the healthy data follows a Gaussian 

distribution. However, that assumption may be invalid 

in some real applications. 

 In order to overcome this problem, many authors 

have proposed methodologies mostly based on the 

usage of nonparametric estimators for the distribution 

of the healthy data (Webb, 2002), (Duda et al., 2001). 

With that estimation, it is possible to approximate 

p(x
new

|H=1). In these cases, the statistical measure can 

be defined by Eq. (6) with no need for assumptions on 

the particular distribution for the data. 

 Two of the most commonly used nonparametric 

estimation methods are the Parzen windows and the 

GMM. 

 Parzen windows is a non parametric estimator based 

on the idea of approximating the distribution to be 

estimated by a superposition of kernel functions 

centered on each of the xi samples in X. Based on that, 

and using the  formulation presented in Eq. (6), it is 

possible to estimate p(x
new

|H=1) according to Eq. (12) . 
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where h is the smoothing parameter and K(.) is the 

kernel function, chosen a priori. 

 One important drawback when applying Parzen 

windows is the curse of dimensionality occurring when 

dealing with high dimension data. In these cases, a 

limited number of data vectors can result in a sparse 

dataset witch could difficult the task of distribution 

estimation. One way to overcome this problem is the 

application of so called semi-parametric estimators 

such as GMM. 

 The GMM approach models the distribution to be 

estimated as a composition of a set of weighted 

Gaussian distributions. The general expression for 

p(x
new

|H=1) can be written as:       

∑
=

==
m

l

lnewlnew GHp
1

),()1|( θπ xx  (13) 

where πl are the weights of each of the l Gaussian 

models whose parameters µl and Σl are expressed in θl. 

 The values for parameters πl and θl can be obtained 

according to the Expectation-Maximization algorithm 

as presented originally in (Dempster et al, 1977). 

 Implementation details and information about other 

nonparametric estimators based classifiers can be found 

in many references such as (Webb, 2002) and (Duda et 

al., 2001). 

3. PROPOSED METHOD 

Although some authors proposed methodologies to 

monitor systems that provide non-Gaussian data, no 

previous work exploited the differentiation of variables 

which are affected by failure from those that are not. 

This feature was the main contribution in the 

development of Runger’s U
2
 when compared to 

Hotelling’s T
2
 in the Gaussian case. 

 Using the same definitions presented in Eq. (8), Eq. 

(9) and Eq. (10), one can rewrite Eq. (5) as: 

),(

)1()1|,(
),|1(

zy

zy
zy

p

HPHp
HP

==
==

 (14) 

 The joint distribution of y and z can be rewritten in 

terms of the conditional probability. This substitution 

leads to. 

),(

)1()1|()1,|(
),|1(

zy

zzy
zy

p

HPHpHp
HP

===
==

 (15) 
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 The hypothesis assumed for Runger U
2
 is that the 

fault only affects the subset of the feature vector 

defined by y. This hypothesis can be reformulated by 

saying that the distribution of z does not change 

whenever the system is healthy or faulty. In this case 

we have: 

)()1|( zz pHp ==  (16) 

With Eq. (15) and Eq. (16) we have: 

),(

)1()()1,|(
),|1(

zy

zzy
zy

p

HPpHp
HP

==
==  (17) 

The joint probability p(y,z) can be expressed by:  

)()|(),( zzyzy ppp =  (18) 

Resulting in:  

)()|(

)1()()1,|(
),|1(

zzy

zzy
zy

pp

HPpHp
HP

==
==

 (19) 

That leads to: 

)|(

)1()1,|(
),|1(

zy

zy
zy

p

HPHp
HP

==
==

 (20) 

 Using the same simplification procedures described 

for the Gaussian case, it yields:   

)1,|(),|1( =∝= HpHP zyzy  (21) 

 The conditional probability of y given z in a healthy 

system can be obtained by: 

)(

)1|,(
),|1(

z

zy
zy

p

Hp
HP

=
∝=  (22) 

 For the classification of x
new

 as healthy or faulty we 

have: 

)(

)1|,(
)|1(

new

newnew

new
p

Hp
HP

z

zy
x

=
∝=

 (23) 

 where p(y
new

,z
new

|H=1l) and p(znew) can be estimated 

using any nonparametric estimation method as the ones 

presented in section 2.2. 

 Analyzing the result obtained in Eq. (23) it may be 

noticed that the basis of the proposed method is to 

estimate the conditional probability of y given z instead 

of the joint probability of y and z as presented in Eq. 

(6). The new method is expected to provide greater 

sensitivity and therefore better performance for fault 

diagnosis and health monitoring applications.  

4. SAMPLE APPLICATION 

To demonstrate how the proposed method could be 

applied in a real system and to compare the results 

against some classical methods, a sample application 

will be presented. The application consists of the 

detection of faults in an Auxiliary Power Unit (APU).  

 The Auxiliary Power Unit is a gas turbine device on 

a vehicle with the purpose of providing power to other 

systems when main engines are turned off. This power 

can be either pneumatic, obtained through the bleeding 

of compressed air, or electrical, obtained by coupling a 

generator to the APU shaft. They are commonly found 

on medium and large aircraft, as well as some large 

land vehicles. Its primary purpose is usually to provide 

bleed air to start the main engines. It is also used to run 

accessories such as air conditioning units and hydraulic 

pumps. A simplified APU representation is illustrated 

in Figure 1. 

 

Generator

Gearbox

Air Inlet

Bleed

Turbine

Fuel Injection

Burner

Compressor

 

Figure 1: A simplified representation of an APU 

 In order to provide data for the APU fault detection, 

a mathematical model was developed using Matlab/ 

Simulink. Figure 1 shows a schematic view of the 

mathematical model developed. The main modeled 

blocks are represented in Figure 2.  
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Figure 2: Simulation blocks and their relations in the 

depeloped APU model. 

 In the model, the compressor, burner and turbine 

model blocks were designed according to 

thermodynamic principles and information provided by 

nonlinear maps that describe the behavior of a real 

APU. The controller block comprises the control of 

shaft speed using fuel flow. The shaft block receives 

torque values from mechanical loads coupled to the 

APU shaft and calculates shafts rotation.  

 The main variables present in the model and used as 

measurements in the sample applications are the 

Exhaust Gas Temperature (EGT), Bleed Pressure (BP) 

and Fuel Flow (FF). The influences of ambient pressure 

(Pamb) and ambient temperature (Tamb) were also 

modeled. 

 Six different failure modes were seeded into the 

model, one at a time. These failure modes are: 

• Bleed pressure sensor bias 

• Fuel flow sensor bias 

• Shaft speed sensor bias 

• Exhaust gas temperature sensor bias 

• Loss of compressor efficiency 

• Loss of turbine efficiency 

 For the present study, four different fault detection 

methodologies were applied. Hotelling’s T
2
, Runger 

U
2
, the GMM classifier (GMMC) and the GMM 

classifier with selection of variables of interest 

(GMMC-SV). The GMMC-SV classifier is the 

proposed method described in section 3 using GMM to 

estimate p(ynew,znew|H=1) and p(znew).  

 The feature vectors comprised the steady state 

values for EGT, BP, FF, Tamb and Pamb during a 

simulation of APU startup. Considering Eq. (23), 

values of EGT, BP and FF were selected to form y and 

Tamb and Pamb composed vector z. All signals were 

corrupted with gaussian noise.  

 To characterize the behavior of the APU without 

faults, 1,000 simulations of APU startups were 

performed for different condition of pressure and 

ambient temperature. Both ambient conditions were 

simulated as following Gaussian distributions. 

 In Hotelling’s T
2
 and Runger’s U

2
 the generated 

dataset was used to estimate the mean vectors and 

covariance matrices presented in Eq. (4) and Eq. (11) 

respectively. In GMMC and GMMC-SV the 

distributions were estimated using a composition of 

five Gaussian distributions. The weights and 

parameters of each Gaussian were estimated using the 

EM algorithm. 

 For the generation of the test dataset, 12,000 

simulations were performed, being 6,000 simulations of 

a healthy system and 6,000 simulations of the system 

with fault in different levels of severity (1,000 

simulations for each failure mode). 

 To verify the performance of each method the 

Receiver Operating Characteristic (ROC) curve was 

used. The ROC curve was generated by varying the 

fault detection threshold and collecting false alarm rate 

and correct detection rate for each of the methods. In a 

ROC curve it is possible to classify the performance of 

the methods by evaluating the area under the curve. 

Better methods yield greater areas under the curve.  
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Figure 3: ROC curves for the implemented fault 

detection methods  

The area under the ROC curve for each method is 

presented in Table 1. 

Table 1: Area under ROC curve 

Method Hotelling’s 

T2 

Runger 

U2 

GMMC GMMC-

SV 

Area 0.838 0.860 0.875 0.884 

 

 It is possible to notice a significant difference in the 

performance when comparing methods that assume 

gaussianity in the data and methods that do not rely on 

that assumption. Methods that can deal with non-
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Gaussian distributions achieve better scores. In the 

present case, such a finding can be ascribed to the 

nonlinearity of the simulation model employed to 

generate the data. 

 Analyzing Gaussian and non Gaussian methods 

separately, one can notice a superior performance of the 

methods where the subset of the monitored variables 

are selected. This result was already mentioned in 

(Runger, 1996) for Gaussian data and was extended for 

non Gaussian data in this work. The proposed GMMC-

SV presented the better performance overall. 

5. CONCLUSION 

 This work presented a novel data-driven 

methodology for fault detection. The concept of 

anomaly detection in a subset of the monitored 

variables proposed by (Runger, 1996) was extended to 

the case where the monitored variables do not followed 

a Gaussian distribution.  

 The method was tested using an APU dynamic 

model and showed betters results when compared to 

classical fault detection methods.  
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ABSTRACT 

Large complex systems, such as power plants, ships and 

aircraft, are composed of multiple systems, subsystems 

and components. When they are considered as 

embedded in system operating as a fleet, it raises 

mission readiness and maintenance management issues. 

PHM (Prognostics and Health Management) plays a 

key role for controlling the performance level of such 

systems, at least on the basis of adapted PHM strategies 

and system developments. However, considering a fleet 

implies to provide managers and engineers with a 

relevant synthesis of information and keep it updated 

regarding both the global health of the fleet and the 

current status of their maintenance efforts. For 

achieving PHM at a fleet level, it is thus necessary to 

manage relevant corresponding knowledge arising both 

from modeling and monitoring of the fleet. In that way, 

this paper presents a knowledge structuring scheme for 

fleet PHM management applied to marine domain.  

1. INTRODUCTION 

1.1 Context 

Large complex systems, such as power plants, ships 

and aircraft, are composed of multiple systems, 

subsystems and components built on different 

technologies (mechanical, electrical, electronic or 

software natures). These components follow different 

rates and modes of failures (Verma et al., 2010), for 

which behaviour can vary all along the different phases 

of their lifecycle (Bonissone and Varma, 2005), and 

maintenance actions strongly depends on this context 

(e.g. failure modes that occur, Cocheteux et al., 2009). 

When they are considered as embedded in system 

operating as a fleet, it raises mission readiness and 

maintenance management issues. 

In many cases, a fleet or plant operation is optimized 

(in terms of production or mission planning), making 

system availability a primary day to day concern. Thus, 

PHM plays a key role to ensure system performance 

and required, most of the time, to move from ―fail and 

fix‖ maintenance practices to ―predict and prevent‖ 

strategies (Iung et al., 2003), as promoted by Condition 

Based Maintenance (CBM)/PHM strategy mainly based 

on Condition‐Monitoring capacities. Nevertheless, even 

if a condition monitoring program is in operation, 

failures still occur, defeating the objective for which the 

investment was made in condition monitoring 

(Campos, 2009). Moreover, the huge amount of 

condition monitoring activity, coupled with limitations 

in setting alarm levels (Emmannouilidis et al., 2010), 

has led to a problem for maintenance crew coping with 

the quantity of alarms on a daily basis (Moore and 

Starr, 2006). 

From a practical point of view, predictive diagnosis 

aims at providing, to maintenance crew, key 

information about component current state and/or 

helping to decide the adapted maintenance action to be 

done, in order to anticipate/avoid failure. However, 

when considering a fleet of systems in the way to 

enhance maintenance efforts and facilitate the 

decision‐making process, it is necessary, at the fleet 

level, to provide managers and engineers with a 

relevant synthesis of information and keep it updated 

regarding both the global health of the fleet and the 

current status of their maintenance efforts on 

components (Hwang et al., 2007). 

Such an issue, at the fleet level, has to be tackled 

considering an information system enabling to 

gather/share information from individuals for synthesis, 
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case retrieval, engineering purposes. It enables to reuse 

particular data, such as maintenance history, reliability 

analysis, failure analysis, data analysis at a fleet level in 

order to provide knowledge. The reuse of such data 

requires turning them into information by adding 

semantic aspect while considered at the fleet level 

(Umiliacchi et al., 2011). 

The semantic perspective at the fleet level allows: 

 to unambiguously understand the data,  

 to use them for reasoning as far as the reasoning 

knowledge has been modeled 

 to put them in situation in order to enable 

comparison. 

1.2 From collection of PHM systems to fleet 

integrated PHM system  

PHM systems involve the use of multiple methods for 

acquiring and gathering data, monitoring and assessing 

the health, diagnosis and prognosis. Numerous 

approaches have been developed both for the diagnostic 

and prognostics purpose within system health 

monitoring. Such approaches are mainly data-driven 

methods, model-based and even hybrid. Moreover, 

dealing with systems requires, on the one hand, to 

consolidate data with for instance data fusion strategies 

(Roemer et al., 2010, Niu et al., 2010), and on the other 

hand, to take into account the system environment 

(Peysson et al., 2008), in order to provide relevant 

information for supporting diagnosis, prognostics, 

expertise or reporting processes. 

However, most of these approaches cannot be applied 

in a straight-forward manner because they 

insufficiently support the multitude of different 

equipment, sub-system at system/plant-wide and 

provide only limited automation for failure prediction 

(Krause et al., 2010). 

Hence, a main concern today in single and, even 

more, in multiple PHM systems design lies in the 

limitation due to the use of proprietary/closed 

information system leading to harden the integration of 

multiple applications. Hence, for instance, the 

Department of Defense policy community requires the 

use of open information systems to enable information 

sharing (Williams et al., 2008). Main standards used in 

the PHM systems are CBM+, Integrated Vehicle Health 

Management (IVHM) architecture (Williams et al., 

2008), MIMOSA
*
… The two main parts of the later are 

dedicated to Open System Architecture for Enterprise 

Application Integration (OSA-EAI) and Open System 

Architecture for Condition Based Maintenance (OSA-

CBM) (Thurston and Lebold, 2001). OSA-CBM 

improves CBM application by dividing a standard 

                                                           
* www.mimosa.org 

CBM system into seven different layers, with technical 

modules solution as shown in figure 1. According to 

the OSA-CBM architecture, the health assessment is 

based on consumed data issued from different condition 

monitoring systems or from other health assessment 

modules. In that way, health assessment can be seen as 

the first step to manage global health state of complex 

systems (Gu et al., 2009). It allows to define if the 

health in the monitored component, sub-system or 

system has been degraded. 

Although the use of standard brings syntaxes to 

warehouse data collection (Umiliacchi et al., 2011), it 

lacks semantics to benefit from 

information/event/decision made upon a component for 

its reuse on another component at the fleet level. 

Gebraeel (2010) proposes to consider a fleet of 

identical systems where each system consists of the 

same critical equipment. Such an approach is context 

dependent and provides a low level of reusability but 

allows, to some extent, comparison. 

In a general case, where several different systems are 

considered as a fleet, several PHM systems and data 

warehouse coexist. Hence, a straightforward way to 

bring semantic at a fleet level is to develop and use 

ontology. 

1.3 Fleet integrated PHM review 

A fleet generally refers to a gathering of group of ships 

and by extension the term is also used for any kind of 

vehicle (e.g. trains, aircrafts, or cars). For industrial 

systems, the term fleet designs a set of assets or 

production lines. In general, a fleet refers to the whole 

of an owner’s systems. In operational context, it refers 

to a subset of the owner fleet, e.g. a set of ships 

managed by a superintendant, or assets of a production 

site. Hence, the fleet here is only an abstraction point of 

view to consider a set of objects for a specific purpose 

(e.g. a unit maintenance planning), for a given time 

(e.g. before the end of the current mission). Indeed, the 

fleet can be viewed as a population consisting of a 

finite set of objects (individuals) on which a study is 

ongoing. In this context, a fleet is generally a subset of 

the real fleet under consideration, i.e. a sub fleet related 

to the aim of the study. Individuals making up the 

fleet/sub fleet may be, as needed, the systems 

themselves (Bonissone and Varma, 2005), (Patrick et 

al., 2010). When specific subsystems are under 

investigation, a fleet of all similar subsystems or 

installations is considered. Finally, a set of equipment 

may be also considered when a fleet is fitted 

(Umiliacchi et al., 2011). In the following, systems, 

sub-systems or equipments constituting the fleet, 

according to the study purpose, will be referred to as 

units. 
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In fact, fleet’s units must share some characteristics that 

enable to group them together according to a specific 

purpose. These common characteristics may be of 

technical, operational or contextual nature. They allow 

to put data or information related to all the fleet units 

on the same benchmark in order to bring out pertinent 

results for monitoring, diagnostics or maintenance 

decision making. 

Both fleet assignment and fleet maintenance scheduling 

problems have been studied mainly focusing on an 

optimization purpose (e.g. (Charles-Owaba et al., 

2008), (Patrick et al., 2010)). Fleet management aims at 

maximizing adaptability, availability and mission 

success while minimizing costs and resources usage. 

When considering maintenance operator’s point of 

view, fleet management aims at making decisions that 

affect asset life extension and performance, operational 

costs and future planning  (Wheeler et al., 2009), 

(Bonissone and Varma, 2005),(Williams et al., 2008). 

Nevertheless, fleet’s predictive maintenance, i.e the fact 

of monitoring units’ behaviors regarding the 

comparable behavior  within the fleet, has rarely been 

addressed as a whole in the literature. (Umiliacchi et 

al., 2011) show the importance of having a standard 

format for the diagnostic data in order to facilitate their 

understanding across several subsystems and trains 

within a railway fleet. In (Patrick et al., 2010), the 

authors notice that thresholds indicative of condition 

indicators limits could be derived from statistical 

studies of fleet wide behaviors and known cases of 

faults. A more direct and less expensive maintenance 

technique is mentioned in (Reymonet et al., 2009). It 

consists in applying to the failed system the technical 

solution corresponding to a similar incident already 

solved with a comparable asset. Nevertheless, 

knowledge derived from the fleet in (Patrick et al., 

2010) and (Reymonet et al., 2009) which arises from 

the same kind of units, in a domain where customized 

units are common, may give poor results. 

1.4 Industrial Challenge 

Behind the need of fleet PHM management stand an 

industrial demand. On one hand, the users of PHM 

system are fleet owners as well as fleet maintainers. 

Fleet owners aim at operating their fleet using 

indicators regarding not only single system but (sub) 

sets of systems as well. It requires being able to handle 

several indicators coming from several PHM systems in 

a common way in order to make easier data 

fusion/aggregation/synthesis, Human-Machine 

Interface (HMI) and their interpretation. Fleet 

maintainers would like to take benefit from 

event/decision already made in order to facilitate, 

enhance and/or confirm them. On the other hand, PHM 

system developers would like to decrease their 

development time and cost. All the previous 

requirements could be done through the reuse of parts 

of PHM system already existing on similar systems. 

From the operational point of view, efficient 

maintenance decision needs to analyze complex and 

numerous interrelated symptoms in order to identify the 

real (health) problem. The diagnostic process requires 

comparison between information coming from several 

subsystems. Moreover, diagnostics tasks are today still 

under the supervision of human experts, who can take 

advantage of their wide and long-term experience 

allowing appropriate actions to be taken (Umiliacchi et 

al., 2011). Such practical consideration raises 

limitations due to time consuming, repeatability of 

results, storage and transfer of knowledge. 

For achieving PHM at a fleet level, it is necessary to 

manage relevant corresponding knowledge arising both 

from modeling and monitoring of the fleet. That leads 

to increasingly consider environment and condition of 

usage within the PHM main processes (Patrick et al., 

2010) in order to allow monitored data and 

corresponding health to be analyzed by means of 

comparison from different points of view (for instance 

regarding the level considered or the operating 

condition). Indeed, monitored data and elaborated 

Health indicators strongly depends on the usage of the 

component. For instance engine cylinder temperatures 

are related to both the required power output and the 

cooling system for which inlet air or water depends on 

the external temperature. It is thus necessary to manage 

these criteria in order to compare for instance cylinder 

temperature within similar condition in terms of both 

power and external temperature in the available fleet-

wide data. 

The paper focuses on a knowledge structuring scheme 

for fleet PHM management in the marine domain. The 

goal of the proposed approach is to allow fleet units to 

benefit from the predictive maintenance features within 

a fleet scale. This could be possible by looking at the 

fleet level for further and complementary knowledge to 

the unit level. Such knowledge may emerge from 

similar situations already encountered among fleet units 

historical data/information. Next section introduces 

Fleet-wide Knowledge-based model development 

starting with the issue raised, and then presenting the 

basis of knowledge domain modeling and finally the 

fleet-wide expertise retrieval. The last section is 

dedicated to an illustrative industrial example dealing 

with fleet of diesel engines. 

2. Fleet-wide Knowledge-based model  

2.1 Issues  

PHM development is a knowledge-intensive process, 

requiring a processing of expert knowledge together 
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with heterogeneous sources of data (Emmannouilidis et 

al., 2010). Such issue is strengthened at the fleet level. 

To support the main PHM processes development and 

to achieve a better understanding of monitored data, 

especially for diagnostic and maintenance decision 

making purposes, the underlying domain knowledge 

needs to be structured. Such system should enable to: 

 Manage condition monitoring activities  

 Associate monitored data with component 

operating condition 

 Support diagnostic process with fleet-wide 

comparison facilities (i.e. benefits in a repeatable 

way of the fleet-wide expertise) 

 Pro-actively anticipate failure (i.e. provide 

targeted maintenance actions recommendation). 

It will ensure consistent information to be used 

throughout, from raw data acquisition to fleet-wide 

comparison (Figure 1). The key factor to turn data into 

such information is to enhance data with semantic 

context by means of ontology. 

 

Figure 1: Proactive fleet management hierarchy, 

(Monnin et al., 2011a) 

2.2 Basis of Knowledge modeling 

Knowledge domain modeling relies on formal language 

that allows concepts to be described as well as the 

relationships that hold between these concepts. Starting 

from basic concepts, complex concepts can therefore be 

built up in definitions out of simpler concepts. Recent 

developments in the semantic modeling, based on 

information used and its context, have led to techniques 

using ontology to model complex systems. The 

ontology stores the relationships between physical 

components in a system, as well as more abstract 

concepts about the components and their usage (Figure 

2). The key benefit over simple databases is that 

reasoning can take place to infer the consequences of 

actions or changes in the ontology instances 

(Umiliacchi et al. 2011). 

Thus, information about the system can be inferred 

from the contextual information provided by the 

ontology. For instance, consider a fleet of ships each of 

them having one or more diesel engines for propulsion 

and/or electric power generation. With an ontology-

based system, both propulsion engine and generator 

engine can be considered as diesel engine. Thus, the 

system can handle a generic request for the state of the 

diesel engine and the corresponding data. 

 

Figure 2: Scheme of concepts relationships 

2.3 Fleet-wide expertise retrieval 

For both diagnostic comparison and expertise sharing 

purposes, contextual information from the ontology 

enables to group component together given a particular 

context (e.g. component with the same usage). Four 

levels of context are defined in order to provide 

comparison facilities: 

 Technical context 

 Service context 

 Operational context 

 Performance context 

These contexts defined within the ontology allow both 

to group instance sharing similar properties and to infer 

information about the system such as health indicators. 

The technical context can be seen as the first and 

obvious level of comparison. It allows the technical 

features of the components to be described in the 

ontology. By means of taxonomy of components 

(Figure 3), it enables to conceptually describe 

components of a fleet. As a consequence, for instance, 

two different components (e.g. a propulsion engine and 

power generator engine) can be considered of the same 

type if a particular feature is considered (e.g. aspiration 

system). 

However, from a practical point of view, the operating 

context influences the component behavior. The 

operating context can be split in service context and 

operational context. 

The service context deals with sub-system for which 

component, even if similar, undergoes different 

solicitations. For instance, diesel engines can be both 

used for propulsion and electric power generation. Both 
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engines are diesel engines and can be compared from 

technical points of view. However, even if the 

components belong to the same type, their functioning 

(i.e. service context) is quite different (e.g. load 

changes, redundancy). On the other hand, components 

that belong to different types can be compared in a 

way, since they operate in the same service context  

 

Figure 3: Part of the component ontology 

The operational context defines the operating condition 

of a system (e.g. environment, threats). It provides 

contextual information according to the system 

operation. The definition of system taxonomy within 

the ontology enables to distinguish the operational 

contexts (e.g. Figure 4). This level describes higher 

operational requirements that can help the diagnostic 

process. For instance, abnormal behavior can be caused 

by the system environment. In that case the contextual 

information do not only concern technical or service 

context level.  

 

Figure 4: Part of system taxonomy 

Finally, the performance context is linked to the key 

purpose of the fleet and defines, to some extent, the 

needs of optimization. For instance, a commercial fleet 

will focus on costs whereas a military application will 

be focused on availability. From a fleet-wide 

comparison point of view, the performance context 

enables large and global consideration to comparatively 

assess the global health of the fleet. 

By means of taxonomies, each context can be described 

and both similarities and heterogeneities can be 

considered within the diagnostic process.  

Therefore, the contextual information provided by the 

ontology allows better identification of component 

operating condition - i.e. component health. It enables 

to provide the data of the monitored component with 

the corresponding context defined in the ontology. The 

significant health indicator can be defined according to 

the corresponding component and context. 

In that way, health condition situation of component 

can be gathered according to different criteria (i.e. 

context description). From the diagnosis point view, 

abnormal behaviors, which are depicted through the 

health condition, can be defined by symptom 

indicators. The relationship between symptoms and 

faults is also considered in order to make available a 

certain understanding (i.e diagnosis) of the 

corresponding health condition (Figure 5).  

 

Figure 5: Part of the PHM ontology 

Coupling with the data of monitored component, the 

abnormal behavior can be early detected. The 

corresponding indicators (performance, symptom…) 

allow early diagnostic and enable failure anticipation 

leading to plan adapted maintenance actions. The fleet-

wide knowledge-based model, supported by means of 

ontology enables efficient predictive diagnosis and 

failure anticipation. The contextual information 

structured and stored within the ontology makes fleet-

wide comparison easier. The fleet-wide expertise can 

be gathered, analyzed and reused, in a repeatable way. 

The next section provides a case study of the fleet-wide 

knowledge-based model within an industrial PHM 

platform. 

3. Industrial application 

The industrial application demonstrates how the 

preceding concepts are embedded in a commercial 

application (Leger, 2004, Monnin, 2011b) developed 

by PREDICT. The example presents abnormal situation 

analysis helping using similar case retrieval within the 

fleet. The aim of the analysis is to anticipate failure, i.e. 

to perform predictive diagnosis. First we present the 

case under consideration, second the fleet wide 

knowledge platform, and finally situation monitoring 

and analysis. 
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3.1 Case Description 

Diesel engines are critical onboard component of ship. 

In many cases they provide both propulsion of the ship 

and electrical power within many possible 

configurations. Avoiding blackout is of primary 

concerns and marine diesel engine monitoring and 

maintenance tend to benefit from advanced technology. 

Indeed, because embedded maintenance facilities are 

limited, a better knowledge of the engine health 

condition will allow to better drive maintenance actions 

needed when ships are in port.  

For the purpose of this example, the fleet is limited to 

diesel engines. Seven engines are considered and 

briefly presented in Table 1. In this table an extract of 

the technical features of the engines are given as well 

as their use (i.e. propulsion, electric power generation 

and auxiliary).  

Engine Ref 

Output 

power 

(kW) 

Nb. of 

Cylinder 
… Use 

Wärtsilä 12V38 8 700 12V  ElectricPower 

Wärtsilä 12V38 8 700 12V  ElectricPower 

Baudouin6M26SRP1 331 6L  Auxiliary 

Man V8-1200 883 8V  ElectricPower 

Man V8-1200  883 8V  Propulsion 

Wärtsilä 16V38 11600 16V  ElectricPower 

Wärtsilä 12V38 8 700 12V  Propulsion 

Table 1: Extract of engine fleet technical features 

3.2 Fleet-wide knowledge-based platform 

The ontology model is coded in OWL (Ontology Web 

Language) which is a formal ontology language, using 

the 
†
Protégé ontology editor. The Protégé platform 

supports the modeling of ontologies. The ontologies 

can be exported into several formats including 

Resource Description Framework (RDF) and OWL. 

For the purpose of the underlying software application, 

the ontology model is integrated by means of an SQL-

backed storage and the java framework JENA
‡
 is used 

for ontology exploitation through the KASEM 

platform. It provides the user with a web portal that 

allows benefiting of the fleet-wide expertise. The JENA 

inference engine allows semantic queries and inference 

rules to be solved within the platform. Relevant 

contextual information can be retrieved and gathered 

for the purpose of, for instance, failure anticipation, 

investigation or expertise sharing. 

The underlying monitoring data are collected by means 

of a data warehouse (MIMOSA compliant). The 

                                                           
† http://protege.stanford.edu/ 
‡ http://jena.sourceforge.net/index.html 

platform integrates the ontology model on top of the 

warehouse data collection. Given an application, the 

data can be made available on-line, off-line or even on-

demand. A typical architecture is given Figure 6. 

 

Figure 6: Typical architecture of Fleet-wide PHM 

system 

3.3 Abnormal behavior Monitoring and Predictive 

Diagnosis  

The diesel engine under consideration within the fleet 

includes regulatory sensor measurement as well as 

alarm monitoring system for the purpose of 

certification. Moreover further sensor measurements 

are also available for the engine operation. Some of 

commonly used sensor measurement are  Cylinder 

temperature, Oil temperature, Oil pressure, SeaWater 

Temperature, SeaWater Pressure, FreshWater, 

Temperature, FreshWater Pressure, Turbocharger 

temperature, Speed, Power output. 

From a predictive diagnosis point of view existing 

alarm monitoring systems are not sufficient since they 

do not allow failure to be anticipated. Once the alarm 

occurs, the remaining time to failure is too short for 

preventing it. Moreover, the cause identification of 

such alarms must be analyzed subsequently. 

Abnormal behavior can be monitored by means of 

specific indicators such as symptoms and analyzed 

within their contexts (i.e. technical, service, operational 

and performance). For the sake of illustration, we 

consider cylinder temperatures for diesel engines. In 

normal conditions the cylinders temperatures are 

changing in a similar way. Thus, a health indicator of 

abnormal behavior shall be built by detecting any 

evolution of one of the temperatures disconnected from 

the rest of the set of temperatures. Figure 7 illustrates 

temperatures measurement evolution of a diesel engine. 

Two behaviors are highlighted on the graph. The first 

behavior, labeled A, shows a normal situation where 

the temperatures are correlated despite one of them is a 
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couple of degrees below. The second behavior, labeled 

B, shows a decorrelation of the lowest signal.  

Such data trend analysis, even if coupled with a 

detection process, will not allow to anticipate failure. 

Whereas the abnormal behavior is highlighted, 

contextual information that enable the understanding 

(i.e. diagnostic) of the behavior are missing. Retrieving 

similar situation and comparing it is almost not 

possible.  

 

Figure 7: Zoom over a one-hour period of cylinder 

temperature measurement, zone A shows a normal 

behavior, while zone B an abnormal situation.  

The knowledge-based model proposed allows 

providing such monitoring data with the corresponding 

context at different levels. Thus, fleet-wide comparison 

of the cylinder temperature evolution is enabled 

according to criteria such as technical context (e.g. 

same number of cylinders), service context (e.g. 

propulsion vs. electric power generation). If the 

corresponding fault has been identified and linked to 

the health condition situation (Figure 5), the underlying 

expertise can be retrieved.  

Figure 8 presents an example of fleet-wide expertise 

retrieval results. For the given engines of the fleet 

(Table 1), some diagnostic results are proposed and 

summarized. With such a system, the expert, in face 

with a particular situation, can make any association to 

find out the closest cases with the case to solve and 

shall concentrate on the most frequent degradation 

modes already observed. From the different contextual 

information available, the system helps understanding 

the behavior without hiding its complexity with too 

simplistic rules. 

4. CONCLUSION 

Fleet-wide PHM requires knowledge-based system that 

is able to handle contextual information. Diagnosis and 

maintenance decision making processes are improved 

by means of semantic modeling that deals with 

concepts definition and description. In this paper, a 

knowledge model is proposed. Contextual information 

is structured by means of specific contexts. These 

contexts allow considering fleet component similarities 

and heterogeneities. Data of the monitored component 

are considered within their context and enhance the 

identification of the corresponding health condition.  

From a diagnosis point of view, the analysis of 

abnormal health condition leads to link the description 

of such behavior with the corresponding diagnosis and 

maintenance decision. Thus, the expertise becomes 

available within the fleet.  

The fleet knowledge model has been done according to 

a marine application. The resulting ontology has been 

integrated in the KASEM industrial PHM platform and 

an example of use and results have been shown.  

 
Figure 8: Sample of results for a fleet-wide cases 

retrieval visualization 
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ABSTRACT

Within condition based maintenance (CBM), the whole as-
pect of prognostics is composed of various tasks from multi-
dimensional data to remaining useful life (RUL) of the equip-
ment. Apart from data acquisition phase, data-driven prog-
nostics is achieved in three main steps: features extraction
and selection, features prediction, and health-state classifica-
tion. The main aim of this paper is to propose a way of im-
proving existing data-driven procedure by assessing the pre-
dictability of features when selecting them. The underlying
idea is that prognostics should take into account the ability
of a practitioner (or its models) to perform long term predic-
tions. A predictability measure is thereby defined and applied
to temporal predictions during the learning phase, in order to
reduce the set of selected features. The proposed methodol-
ogy is tested on a real data set of bearings to analyze the effec-
tiveness of the scheme. For illustration purpose, an adaptive
neuro-fuzzy inference system is used as a prediction model,
and classification aspect is met by the well known Fuzzy C-
means algorithm. Both enable to perform RUL estimation
and results appear to be improved by applying the proposed
strategy.

1. INTRODUCTION

Due to rapid growth in industrial standards, effective mainte-
nance support systems are main area of focus nowadays. Dif-
ferent strategies have been adapted to assess machinery condi-
tion in real time and to avoid costly maintenance procedures.
In this context, Condition Based Maintenance (CBM) strat-
egy facilitates the competitive needs of industry by preventing
costly maintenance activities, and thus, improving availabil-
ity, reliability and security of machinery (Tobon-Mejia et al.,

Javed et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

2011). In CBM, researchers show keen interest in less de-
veloped phase of prognostics that determines or predicts the
remaining useful life (RUL) of a system (machinery) under
certain operational conditions (Jardine et al., 2006). However,
accurate prognostic systems are still scarce in the industry and
need for an improvement is inevitable.
Prognostics can be categorized mainly into three approaches:
experience based, model based and data driven methods
(Heng & Zhang, 2009; Lebold & Thurston, 2001b; Ramasso
& Gouriveau, 2010). Among these approaches data driven
methods are considered to be a trade-off between experience
based and model based approaches. They are increasingly
applied to machine prognostics due to their effectiveness and
ability to overcome limitations of latter categories (El-Koujok
et al., 2008).
Mainly, the degradation process of a system (component) is
reflected by features that are extracted from a sensor signal.
These features are main source of information for prognos-
tics model to estimate RUL. So, most importantly, in exist-
ing data-driven procedure of prognostics, critical phase of
prediction should be met in appropriate manner for further
classification and RUL estimation. However, from afore said
procedure two issues can be pointed out. Firstly, there is
no unique way to select most relevant features that are pre-
dictable and contribute for better RUL estimation. Secondly,
the predictability should be assessed according to prediction
model as well as horizon of prediction. This paper contributes
to extend the existing approach by proposing a slight modifi-
cation of features selection phase on the basis of predictabil-
ity.
This paper is organized as follows. Section 2. discusses data-
driven prognostics approach and points out the importance of
the prediction accuracy. Following that, section 3. presents an
improved framework for feature selection, based on the pre-
dictability assessment of features. Section 4. aims at defining
the whole prognostics model that is employed in this paper.
Both aspects of multi-steps ahead prediction and of health

1
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state classification are considered. Section 5. deals with sim-
ulation and results discussion. Finally, section 6. concludes
this research work.

2. DATA-DRIVEN PROGNOSTICS

2.1 Prognostics process flow

In maintenance field, prognostics considered as a key task
within CBM that predicts RUL of machinery under certain
operational modes and facilitates decision making. Thereby,
the main objective of prognostics is to estimate RUL of sys-
tem (component) before occurrence of failure state. There-
fore, within CBM concept, the whole aspect prediction and
failure can be viewed as set of certain activities that must be
performed in order to accomplish predictive maintenance pro-
cedures (Lebold & Thurston, 2001a).
Mainly, data-driven methods alter raw (unprocessed) data into
useful information and forecast global performance of the
system. In order to deduce RUL, prognostic task is applied
by performing forecasts in time and further analyzing them by
classification module to approximate most probable states of
the system (Fig. 1 and 2). More precisely, in a first stage, data
acquisition from sensor sources is performed, and further pre-
processed before feeding prediction model. The second stage
of data-preprocessing is composed of two distinct phases i.e.,
feature extraction module, that is accomplished by signal pro-
cessing techniques and feature selection module that depends
on data mining approaches. Finally, in third stage of prognos-
tics, prediction module forecasts observations in time, that are
further analyzed by the classifier module to determine most
probable states of the system. Lastly, RUL is derived by he
estimated time to attain the failure state.
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Figure 1. Prognostics process flow

2.2 Underlying predictability problem

From data-driven approaches, artificial intelligence (AI)
based tools like artificial neural networks and neuro-fuzzy
(NFs) have successfully been employed to perform non-linear
modeling of prognostics (W.Q. Wang et al., 2004; Lebold &
Thurston, 2001a). The standard of AI approaches is divided
into two phases, i.e., learning phase and testing phase. As,
monitored input/output data is the main source of information
for prediction model, therefore, firstly the behavior is learned
by monitored data and secondly, the test phase uses learned
model to predict current and future states of degrading equip-
ment.
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Multidimensional data
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time
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Selected Features
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time
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Figure 2. From data to RUL

In classical way prognostics model is learned by set of fea-
tures that are acquired by sensor signal. Thereby, the model
must be retrained upon these features, until significant per-
formance level is achieved. This approach can be time ex-
pensive because some of the features can be very hard to be
predicted. In other words, there is no use in retaining such
features that are not predictable. So, the learning phase of
prognostics modeling should consider the important steps of
“feature selection” and “prediction modeling” in a simultane-
ous manner in order to retain or reject features on the basis
of predictability. Thereby, this implies predictability to be de-
fined (next section).

3. SELECTION OF PREDICTABLE FEATURES

3.1 Accuracy vs predictability

Predictability attributes to the significance in making predic-
tions of future occurrence on the basis of past information. It
is important to understand the prediction quality in a frame-
work that is dependent on the considered time series pre-
dictability. As, predictability in terms of given time series is
not a well defined terminology for real-world processes, few
works focus on the predictability aspect (Kaboudan, 1999;
W. Wang et al., 2008; Diebold & Kilian, 2001). Assuming
that, in order to determine prediction quality, predictably can
be measured on the basis of forecast error based approach.
Various measures have been reported in literature to judge the
quality of prediction or selecting a prediction model (Saxena
et al., 2008, 2009, 2010; Monnet & Berger, 2010). See Eq.
(1) for a set of potential metrics that can be used to assess
predictability:

MSE = 1
N ×

∑N
i=1

(
yipred − yiact

)2

MAPE = 100
N ×

∑N
i=1

∣∣∣
(
yipred − yiact

)
/yiact

∣∣∣
RMSE =

√
MSE

CVRMSE = RMSE/µy

MFE = 1
N ×

∑N
i=1

(
yipred − yiact

)

(1)
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From these measures MSE, MAPE and RMSE are most com-
mon accuracy measures for prediction, whereas CVRMSE
and MFE can be employed to model selection. However,
there is no general measure that can be explicitly employed
to predictability factor of prognostics.
Generally, any type of signal will not be predicted with
the same accuracy at different horizons of prediction. So,
assuming that, the critical prediction phase in prognostics
must be met accurately in order to provide efficient infor-
mation. Therefore, predictability in prognostics not only is
closely related to prediction model but also to the horizon
of prediction that is judged as useful. On this basis, a new
measure is proposed in this paper to assess predictability in
prognostics.

3.2 Defining the predictability concept

Assessing the prognostics model requires the user to be able
to define a suitable limit to prediction for the desired perfor-
mance. According to author’s knowledge, the predictability
concept is not well described. So, it can be defined as:
“The ability of a given time series TS to be predicted with an
appropriate modeling tool M , that facilitates future outcomes
over a specific horizonH , and with desired performance limit
L”. Formally we propose it as:

Pred (TS/M,H,L) = exp
−
∣∣∣∣ln( 1

2 ).
MFETS/M,H

L

∣∣∣∣ (2)

where, Eq. (2) shows the emperical formulation in which
MFETS/M,H represents the mean forecast error Eq. (1), that
measures average deviation of predicted values from actuals.
The ideal value for this criteria is 0, if the value ofMFE > 0
then prediction model tends to underforecast, else if the value
of MFE < 0 then prediction model tends to overforecast.
Moreover, the fixed limit of accuracy is denoted by L (chosen
by the user). The exponential form of predictability can attain
maximum value “1” as MFE is minimizes, and a given TS
is considered predictable, if the coefficient of predictability
ranges between [0.5, 1] (Fig. 3).

-L 0 +L
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P
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Pred(MFE,L)

Figure 3. Illustration of predictability measure

4. PROGNOSTICS MODELING

4.1 Multi-steps ahead prediction

In prognostics, forecasting the global health state of a system
is difficult task to achieve due to inherent uncertainity. How-
ever, from the category of data driven prognostics, AI based
approaches like ANN and NFs can be quiet easily applied to
such complex and non-linear environment.
Such connexionist systems have good capability to learn and
adapt from environment and capture complex relationship
among data. They are increasingly applied to prediction prob-
lems in maintenance field (Yam et al., 2001; Chinnam &
Baruah, 2004; El-Koujok et al., 2011). They appear to be po-
tential tools, in order to predict degrading behavior, and thus
forecast the global state of the system.
Multi-step ahead (MSP) modeling can be achieved different
ways by using connexionist tools. However, in this case, the
most common MSP model can be achieved via iterative ap-
proach. MSPs are obtained using a single connexionist tool
that is tuned for single-step ahead prediction x̂t+1. The pre-
dicted value is further utilized as one of the regressors of pre-
diction model, and this process is followed in an iterative way
until estimation x̂t+H , as shown in Fig. 4. Formally:

x̂t+h =





* if h = 1,
f1
(
xt, . . . , xt+1−p, [θ

1]
)

* elseif h ∈ {2, . . . , p},
f1
(
x̂t+h−1, . . . , x̂t+1, xt, . . . , xt+h−p, [θ

1]
)

* elseif h ∈ {p+ 1, . . . ,H},
f1
(
x̂t+h−1, . . . , x̂t+h−p, [θ

1]
)

(3)
where, t denotes temporal index variable, p is for number
of regressors used and H states the horizon of prediction.
Whereas,

{
f1, [θ1]

}
states for single-step ahead prediction

model, with its parameter calculation performed during learn-
ing phase.
In this paper the Adaptive Neuro-Fuzzy Inference System
(ANFIS) is used as a the one step-ahead prediction model. A
detailed description of this tool can not be given in the paper.
One can cite to (Jang, 1993; Li & Cheng, 2007) for theoretical
background.
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Figure 4. Multi-steps ahead predictions with iterative model
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4.2 Classification step

The main aim of the classification phase is to determine most
probable states of the degrading system, and thus provid-
ing a snapshot of time from projected degradations. In this
phase, the temporal predictions made by the prediction mod-
ule are analyzed by classifier module to determine most prob-
able functioning modes of system (component). Most impor-
tantly, reliable and effective classification results better RUL
estimation (Fig. 5). However in this case, due to the absence
of ground-truth information the classification phase is met by
well known Fuzzy C-Means (FCM) approach to illustrate our
concept.
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Figure 5. Classification Module

FCM is used as an unsupervised clustering approach that as-
signs temporal predictions to different classes based on fuzzy
partitioning. In other words, a data point with a membership
grade between [0, 1], can belong to various groups (Bezdek,
1981). Formally, the FCM clustering is attained by assign-
ing membership to every data point that corresponds to each
cluster center that is based on the measured distance between
a data point and center of the cluster. Mainly, if a data point
is closer to particular cluster center, therefore, a greater mem-
bership value is assigned. Moreover, the summation of mem-
bership grades from all data points correspond to a member-
ship equal to ’1’. Mainly, FCM aims to operate in an iterative
manner to determine cluster centers that reduces following
objective function:

J =

n∑

i=1

c∑

j=1

(uij)
m
.‖xi − vj‖ 2 (4)

where, ‖xi − vj‖ 2 represents the euclidean distance between
the ith data point and the jth cluster center, uij describes the
membership of the ith data point to the jth centroid, andm >
1 is a weighting exponent.

5. EXPERIMENTS AND DISCUSSION

5.1 Experimental setup

The proposed methodology for feature selection is illustrated
by real data set of bearings form NASA data Repository. The

data set consisted of multiple time series (variables) from dif-
ferent instances and contaminated with measurement noise
(Fig. 6) i.e., representing history of fault degradation process.
Moreover there is no information about the bearing condition
and manufacturing variations. The simulation process is com-
posed of three stages i.e., data-preprocessing, feature predic-
tion and selection and health state classification to estimate
RUL.
For experimental purpose, in the first stage only 8 variables
(features F1-F8) are utilized from bearing data set, and fil-
tered for noise removal.
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Figure 6. Filtered feature from bearing data set

The second phase corresponds to proposed feature selection
methodology based on predictability. So, for illustration pur-
pose ANFIS is used as potential connexionist tools to per-
form MSP. Each prediction model is tuned according to set-
tings shown in Table 1. The training and testing data sets were
composed of 40 bearings data each. However, to achieve MSP
over different horizons, model training is met by a data set of
40 bearings, whereas, 5 test cases are employed for analysis
purpose. All the predictions are analyzed by potential mea-
sures of accuracy (Eq. 1). In order to perform feature selec-
tion, proposed predictability measure is employed to validate
our concept (Eq. 2).

ANFIS-Parameters Settings
Input / Output layer neurons 3 / 1
Number of input membership functions 3
Type of input membership functions Pi-shaped
Number of rules 27
Fuzzy Inference System First order Sugeno
Defuzzification method Weighted Average
Output Membership function Linear
Learning Algorithm Hybrid Method
Number of epochs 100
Training performance MSE

Table 1. ANFIS model settings

Finally, classification phase partitions the temporal predic-
tions into four modes of degradation, i.e., each mode repre-

4

Annual Conference of the Prognostics and Health Management Society, 2011

558
[paper 68]



Annual Conference of the Prognostics and Health Management Society, 2011

sents fault progression toward end of life.
To show the concept of predictability for better classifica-
tion and RUL estimation, simulations are performed on all
features (F1-F8) and also with selected features that are pre-
dictable (excluding F2 and F3). Therefore, the obtained re-
sults from both cases give better perception of estimated RUL.

5.2 Prediction results

In the test phase, predictions are performed over different
horizons (Fig 7). The horizon length for short term, mid-term
and long term based on 35/80/140 steps ahead. The obtained
outputs form each prediction tool are analyzed in a compre-
hensive manner using different performance metrics. To ex-
emplify this scenario, a test case of bearing is presented in
Table 2.
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Figure 7. Example of predicted feature

In the selection phase, the outputs from selected models are
assessed by MFE criteria and also with the proposed measure
of predictability.
Among all features the MFE values for features F2 and F3
were not within bounds of desired performance criteria. Sim-
ilar findings were achieved with the proposed measure of pre-
dictability Eq. (2). The validity of proposed measure can be
clearly demonstrated by results from bearing test 1, as shown
in Fig. 8. By these results it is well understood that F2 and F3
are not predictable according to defined predictability crite-
ria. Therefore, better predictable features are F1, F4, F5, F6,
F7 and F8, which can be selected for further classification to
determine probable functioning modes of degrading asset.

5.3 Classification results

For illustration the temporal predictions from bearing test 1
are used for classification and RUL estimation. Therefore, the
results are organized in two different cases for in an explicit
manner for better perception and understanding (Fig. 9 and
10). In the first case classification is achieved with all features
(F1- F8), whereas in the second case the classification is per-
formed on predictable features only i.e.,excluding F2 and F3.
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Figure 8. Predictable and not predictable feature set

It can be clearly judged from the results below that the first
case shows inferior classification as compared to the classifi-
cation performed by features that are selected on the basis of
predictability. Moreover, the RUL deduced from second case
of classifications is closer to the actual RUL, thus, validating
better prognostics accuracy and improvements achived from
proposed methodology.
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Figure 10. Classification with predictable features
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F1 F2 F3 F4 F5 F6 F7 F8
RMSE 0,111 2,3911 4,431681 0,0742 0,0495 0,0382 0,0334 0,507
MAPE 0,015 0,1166 0,219175 0,0024 0,0829 0,001 0,2909 0,103
CVRMSE 0,017 0,1503 0,314495 0,0031 0,1041 0,0016 0,3959 0,129
MFE -0,083 1,5625 3,041406 0,0576 -0,008 0,0192 0,0237 0,013
Pred 0,682 0,0007 7,88E-07 0,7662 0,9648 0,9149 0,8961 0,944

Table 2. Predictability of bearing test(1) over long-term horizon

6. CONCLUSION

In this paper an improvement to existing data-driven prognos-
tics approach has been presented. The proposition is based on
the assessment of the predictability of features that impacts
the accuracy of prognostics. The proposed methodology was
met in three phases: 1) learning the prognostics model, 2)
assessing temporal predictions on the basis of predictability,
and 3) selecting those features that are better to be predictable.
Mainly, multi-step ahead predictions were performed by AN-
FIS predictor. Lastly, set of predictable features were clas-
sified to determine possible fault modes, thanks to Fuzzy
C-means clustering approach. The comparative analysis of
classifications of test cases, show the efficiency of proposed
methodology of “predictability based feature selection”.
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ABSTRACT 

An integrated fault detection, diagnosis and reconfigurable 

control design method is studied in this paper with explicit 

consideration of control input constraints. The actuator fault 

to be treated is modeled as a control effectiveness loss, 

which is diagnosed by an adaptive algorithm. For fault 

detection, an observer is designed to generate the output 

residual and a minimum threshold is set by an H∞ index. To 

design the reconfigurable controller, an auxiliary matrix is 

introduced and a linear parameter varying (LPV) system is 

constructed by convex combination. Linear matrix 

inequality (LMI) conditions are presented to compute the 

design parameters of controllers and related performance 

index. The system performances are measured by the 

ellipsoidal sets regarding the domain of attraction and 

disturbance rejection respectively. For illustration, the 

proposed design techniques are applied to the flight control 

of a flying wing aircraft under large effectiveness loss of 

actuators. 

1. INTRODUCTION 

The reconfigurable fault-tolerant control design methods 

have been studied widely in the literature to meet increased 

requirements for reliability and safety in modern control 

systems (Zhang & Jiang, 2008). One key component in 

fault-tolerant control systems is the fault detection and 

diagnosis (FDD) module, which has been studied 

extensively in the past decades (Isermann, 2006). With 

information provided by FDD, the controller is adjusted 

according to some reconfiguration mechanism to maintain 

desirable performances. One challenging problem in 

designing reconfigurable fault-tolerant control system is 

how to integrate the FDD with the controller effectively to 

guarantee the system performance, such as stability, etc. 

Another practical consideration is to take the control input 

constraints into control system design procedure, since 

almost all practical applications involve actuators 

constrained by limited power, for example, the deflection of 

control surfaces in aircraft is constrained by amplitude and 

rate limitation. Hence, it is very significant to provide some 

design methods for the reconfigurable control problem with 

explicit consideration of control input constraints. 

Currently, the constrained control systems are widely 

studied in the literature (Tarbouriech & Turner, 2009). 

Although there are still many open problems remained to be 

investigated, many useful results have been obtained due to 

efforts of past decades. Based on the fact that system 

performance can be improved if the controller can be 

designed to allow actuator saturation compared with that 

obtained within control limits. Along with this idea, many 

researchers have made their efforts in this direction of 

research. For example, a saturated system is represented by 

a polytopic model to solve the output tracking 

problem (Tarbouriech, Pittet & Burgat, 2000). An improved 

set invariance condition is given in (Hu, Lin & Chen, 2002) 

to obtain a less conservative estimation of domain of 

attraction. As will be shown in this paper, these results 

provide a tool to solve the reconfigurable control problem. 

The reconfigurable control problem with actuator saturation 

is still not well addressed in the literature, and only a few 

results available in recent years. Generally speaking, there 

are two types of approaches to deal with such issues: one 

using the command management techniques (Bodson & 

Pohlchuck, 1998; Zhang & Jiang, 2003; Zhang, Jiang & 

Theilliol, 2008), and the other relating to controller 

design (Pachter, Chandler & Mears, 1995; Guan & Yang, 
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2009). For example, the actuator rate saturation problem is 

solved by a linear programming algorithm in (Pachter et al., 

1995). An adaptive output-feedback controller is designed 

with online estimation of actuator faults by Guan et al. 

(2009). However, only the stability problem is studied in 

that paper. 

In this paper, we aim to solve the reconfigurable output 

tracking control problem of linear systems subject to both 

actuator saturation and disturbances. The actuator saturation 

is tackled with by using the set invariance condition given 

by  Hu et al. (2002). The controller can be adjusted 

automatically with estimated fault amplitude provided by an 

adaptive diagnostic algorithm, after a fault occurs and is 

detected by an observer-based detector. 

The paper is organized as follows: The problem to be 

treated is stated in Section 2. An integrated design of the 

reconfigurable controller with fault diagnosis is presented in 

Section 3. To detect a fault, an observer is designed in 

Section 4. Then, a nonlinear model of an aircraft is used to 

test the proposed design techniques in Section 5. Finally, 

some concluding remarks are given in Section 6. 

2. PRELIMINARIES AND PROBLEM STATEMENT 

To illustrate the basic ideas in this paper, a scalar control 

system with state-feedback controller is taken as an 

example: 

 
     

   

x t ax t bu t

u t f x

 


 (1) 

The fault under consideration is the loss of control 

effectiveness such that 

      fu t t u t  (2) 

where  fu t  represents the output of the impaired actuator, 

and    0,1t   is the control effectiveness factor.   0t   

means the total outage of the actuator, while 1 denotes a 

healthy actuator. Partial loss of control effectiveness is 

given by a value between 0 and 1. It is assumed that 

  0t   in this paper. 

To compensate the control effectiveness loss, the following 

control law can be adopted: 

      1u t t f x  (3) 

From Eqs. (2) and (3), it follows that 

          1

fu t t t f x f x    (4) 

Obviously, the system performance is not impaired in the 

presence of actuator fault while the control law shown in 

Eq. (3) is in action. However, the fault cannot be known a 

prior, and only its estimation is available. In this case, Eq. 

(3) should be replaced by 

      1u t t f x  (5) 

where  t  is an estimation of  t . 

If the estimation process can be carried out accurately and 

quickly enough, then the performance loss can be reduced to 

its minimum. For a constant fault   0ft t    occurring at 

ft , the performance can be recovered completely when 

 t  converges to 
0 . The controller structure for 

compensation of effectiveness loss is shown in Fig. 1. 

     fx t ax t bu t  t   1 t f x  u fu

FDD



 
Fig. 1  Compensation principle for effectiveness loss 

 

Above discussions can be extended readily to the 

multivariable systems. From practical point of view, since 

the control power is limited and the disturbance exists, then 

the plant to be controlled in this paper is given by: 

 

         

   

     

satt t t t t

t t

t t t

     



 

x Ax BM u Eω

y Cx

e r y

 (6) 

where   nt x ,   mt u ,   pt y  are the state, input, 

and output vectors respectively.   qt ω  is an 

immeasurable disturbance vector bounded by   0t ω . 

  pt r  is the reference signal vector bounded by 

  0t rr .  te  is the tracking error vector. A , B , C  and 

E  are known parameter matrices of appropriate 

dimensions. It is assumed that  ,A C  is detectable.  sat   is 

a standard vector-valued saturation function with its 

elements given by: 

      sat sign min 1, ,  1,2, ,i i i i m  u u u  (7) 

where  sign   represents the signum function.  

  m mt M  is a diagonal matrix representing the 

effectiveness factors of actuators, and denoted by: 

 
        

 

1 2diag , , ,

, ,  0 1,   1,   1,2, ,

m

i i i i i

t t t t

t i m

  

    



      

M
 (8) 
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where diag   represents a diagonal matrix. 

 ,  1,2, ,i t i m   are unknown stepwise fault signals. 
i  

and 
i  represent the known lower and upper bound of  i t  

respectively. 

The control objective in this paper is to realize stable 

tracking of a reference signal in the presence of faults and 

amplitude constraints of actuators. The overall control 

system configuration is shown in Fig. 2. The fault detection 

and diagnosis (FDD) module is used to detect a fault and 

provide an estimation of fault amplitude denoted by 

        1 2diag , , , mt t t t  M .  

With estimated control effectiveness factors from FDD, the 

reconfigurable controller adjusts automatically its parameter 

to recover the performance of the closed-loop system. In 

this paper, an observer is used to detect a fault, and an 

adaptive algorithm is designed to estimate the fault 

amplitude. After a fault is detected by the observer, the 

adaptive diagnostic algorithm is activated automatically. 

Otherwise, a unitary matrix is passed to  tM . In summary, 

the observer is used to determine when a fault occurs, and 

the adaptive diagnostic algorithm is used to estimate its 

amplitude. 

Reconfigurable
Controller

ue yr
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M
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x

 

Fig. 2  System configuration 

 

It is well known that the tracking error integral action of a 

controller can effectively eliminate the steady-state tracking 

error (Zhang & Jiang, 2001). Denote    
0

t

t d    e , 

     
T

T T
t t t  

 
x , then the following augmented 

system can be obtained from Eq. (6) such that 

          satt t t t t      A BM u Ed  (9) 
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To eliminate the fault effect, the reconfigurable controller is 

realized by 

      1t t tu M K  (10) 

Substituting Eq. (10) into Eq. (9), it is obtained that 

            1satt t t t t t      A BM M K Ed  (11) 

3. INTEGRATION OF RECONFIGURABLE CONTROLLER 

WITH FAULT DIAGNOSIS 

LMI conditions will be presented in this section to design 

the controller gain K , while the estimated fault amplitude 

 tM  is obtained by an adaptive algorithm.  

Lemma 1 (Hu & Lin, 2001) Let , mu v  and suppose that 

1,   1,2, ,i i m v , then 

    sat Co ,   1,2, ,2m

j j j    u u v  (12) 

where Co   denotes the convex hull. m m

j

   is a 

diagonal matrix whose elements are either 0 or 1, and 

j m j

  I . For brevity, 1,   1,2, ,i i m v  is written as 

1v  in the following. 

From Lemma 1, if there exists an auxiliary matrix H  

satisfying 

    1 1t t M H  (13) 

then there always exist 
2

1

0,  1

m

j j

j

 


   such that 

          
2

1

1

m

j j j

j

t t t t t   



        A BM M K H Ed  (14) 

If ,  1,2, ,2m

j j   are taken as the scheduled parameters 

and can be obtained online, then Eq. (14) is actually an LPV 

system. Define 

    1t tF M H  (15) 

then it is not difficult to find out that (13) imposes a 

polyhedral set constraint on system states of Eq. (14) as 

follows: 

           1,   1,2, ,it t t t i m   F FL  (16) 

For estimation of domain of attraction, an ellipsoidal set is 

defined as follows: 

         T| 1,   0t t t     P P P  (17) 

Theorem 1 If there exist matrices  m n p

k

 
Y , 

 m n p

h

 
Y , a positive definite matrix    n p n p  

Q , and a 

positive scalar   such that 
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11

0,   1,2, ,i i h i m
 

  
 

k Y

Q
 (18) 

   T T 2 2

0 0

1
2 0

 1,2, ,2

j k j h

m

r

j

 


        



AQ QA EE Q B Y Y
 (19) 

then   P  is an invariant set with 1P Q , 
kK Y P , 

hH Y P , and with the fault diagnostic algorithm being 

realized by: 

 

 

       
2

T1 1

, 
1

0 0,   1,2, ,

Proj

m

i i

i f

i f i i i i j j r j r

j

t t i m

t t t t t
 



      

  


   

  
       

  
Pb k K H

  (20) 

where  , .i i i   0i   is pre-specified positive scalar. ib  

is the i-th column of B . 1

ik  is a row vector with its i-th 

element being 1 and the other elements being 0.  
,  

Proj
i i   

 

is a projection operator defined as follows: 

  
,  

ˆ   and  00,

             or

ˆProj     and  0

,  else

i i

i i

i i

X

X X

X

 

 

   

  




   





 (21) 

Proof:  Denote 

             1 2diag , , , mt t t e t e t e t     E M M  (22) 

Define a Lyapunov function 

        
T 1 2

1

m

i i

i

V t t t e t   



 P  (23) 

Its derivative with respect to time is given by: 

 

        

       

2
T 1

1

T 1

1

2

          2 2

m

j j j

j

m

i i i

i

V t t t t

t t e t e t 

  

 

 







      

 





P A BMM K H

PEd

 (24) 

Since 

 

           

     

T T TT

T T 2 2

0 0

1
2

1

t t t t t t

t t r

   


   


 

  

PEd PEE P d d

PEE P

 (25) 

then it follows that: 

            
T 1 2 2

0 0

1

2
m

i i i

i

V t t t e t e t r     



   M  (26) 

where 

   
2

1 T

1

1
2

m

j j j

j

t


 



      P A BMM K H PEE PM ‡  (27) 

Since  

      1 1

mt t t

  MM E MI  (28) 

it follows that: 

    
2

1

1

2

m

j j j

j

t t  



      PBE M K HM M  (29) 

where 

 
2

T T

1

1
2

m

j j j

j








        PA A P PEE P PB K HM  (30) 

Since 

            1 1 1 1 1

1 1

m m

i i i i i i i

i i

t t e t t e t t     

 

  BE M b k M b k  (31) 

then it can be obtained from Eqs. (20) and (26) that 

 

             
T T2 2 2 2

0 0 0 0 1V t t r t r t t              
   

P PM

  (32) 

With Eqs. (23) and (32), it is not difficult to verify that 

  P  is an invariant set by satisfying 

  2 2

0 0 0r   PM  (33) 

which is equivalent to Eq. (19). 

To complete the proof, it is still needed to guarantee that 

    t P FL , of which an equivalent condition can be 

stated as follows: 

  
   

   T

max   
1

. .   1

i
t

i

t t

s t t t




 

 
 

   
  

F

P

 (34) 

By using the method of Lagrange multipliers, it is not 

difficult to obtain that 

    1 T

i i it t  F P F  (35) 

Since 

        
T

1 T 1 1 T 1

i i h h
i i

t t t t          F P F M Y Q Y M  (36) 

then by Schur complement, an equivalent condition for 

    P FL  is given by: 

 
 11

0,   1,2, ,
h

i
t

i m

  
    

  

M Y

Q
 (37) 
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The extreme point set of  1 t
M  can be defined as follows: 

 
 



1 1

1 2diag , , , ,    ,  

                                        1,2, , ;  1,2, ,2

j j

m i i i

m

or

i m j

          

 
 (38) 

then from the convexity of  , there always exist 0j  , 

2

1

1

m

j

j




   such that 

  
2

1

1

m

j

j

j

t 



 M  (39) 

From Eq. (39), it gives 

    
2 2

1 1

1 1

m m

j

j j i iii
j j

t   

 

       M k  (40) 

then (37) can be written as: 

 

2
1 12

1

1

1 1
0

1,2, , ;  1,2, ,2

m

m

j i i i i h
j j

j

mi m j

  




 
   

        

 




k Y k Y

Q
Q

 (41) 

It is sufficient for (18) to guarantee that (41) holds true. This 

ends the proof.   □ 

Remark 1:  The values of ,  1,2, ,2m

j j   are needed 

online in the adaptive diagnostic algorithm as shown in Eq. 

(20). One way to obtain them (Wu, Lin & Zheng, 2007) is 

shown as follows:  

    
1

1 1
m

j i i i i
i

z z  


       (42) 

where 1 2

1 22 2 1m m

mz z z j      , and  

         

       

1 1 1 1

1 1 1 1

1,    

sat
,

else

r r

i i r i i ri

i i r i i r

m t t m t t

m t t m t t

 

 

 

 

 


 




H K

k K k H

k K k H

 (43) 

Since   P  is an estimation of the domain of attraction, it 

is desirable to obtain the largest one. This is a volume 

maximization problem. In general, there are two ways to 

maximize   P . Since the volume of   P  is proportional 

to  det Q , one direct way is to construct an determinant 

maximization problem (Vandenberghe, Boyd & Wu, 1998) 

as follows: 

 
   

0, , , 0

sup          logdet

                 s.t.     18  and 19

k h  Q Y Y

Q

 (44) 

The other way is to use a prescribed bounded convex 

reference set 
RX  to maximize   P , which can take its 

shape into consideration. Two typical sets of 
RX  are the 

ellipsoids and polyhedrons. By taking an ellipsoid 

      T

0 | 1,   0n pX t t t     R R  as the reference 

set, the following optimization problem can be formulated: 

    

     

0, , , 0

0

sup                 

                 s.t.      

                            18  and 19

k h

a X

b







 



Q Y Y

P  (45) 

Let 21/  , since  0X   R , then  0X  P  is 

equivalent to  R P . By Schur complement, (45) can be 

written as: 

  

     

0, , , 0
inf                 

                 s.t.      0

                            18  and 19

k h

a

b






 

 
 

 

Q Y Y

R

Q

I

I
 (46) 

For a reference set described by a polyhedron 

 0 0 0

0 1 2conv , , , ,NX x x x  0X  P  is equivalent to 

 
T

0 0

i ix x P . Then by Schur complement, the first LMI in 

Eq. (46) should be replaced by: 

 
 

T
0

0
0i

i

x

x

 
  
  Q

 (47) 

In another aspect, the system states cannot be guaranteed to 

converge to the origin due to the disturbances and actuator 

faults. Hence, a performance index is needed for the 

disturbance rejection problem, which can also be described 

by a prescribed bounded convex reference set. Assumed that 

this set is denoted by X
, then an optimization problem can 

be formulated as follows: 

    

     

0, , , 0
inf                 

                 s.t.      

                            18  and 19

k h

a X

b






 

 

Q Y Y

P  (48) 

To address the disturbance rejection and domain of 

attraction simultaneously, a scaled version of   P  is 

defined as follows: 

 

        T 1| 1,   ,  0,  0 1n pt t t           S S S = P S

  (49) 

From the convexity (Hu et al., 2002) of both (18) and (19), 

it is not difficult to verify that all the trajectories staring 

from within   P  will enter   S  and remain inside it if 

there exist 0, , , , 0k h s  Q Y Y Y  satisfying (18), (19) and 
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 T T 2

0

1

1
2 0,  1,2, ,2

1
0,   1,2, ,

m

j k j s

i i s

r j

i m

   






        

 
  

 

AQ QA EE Q B Y Y

k Y

Q

  (50) 

Therefore, to solve the disturbance rejection problem with 

guaranteed domain of attraction, the following optimization 

problem can be formulated: 

 
   

   

       

0, , , , 0

0

inf                 

                 s.t.      

                            

                           18 , 19  and 50

k h s

a X

b X

c






 

 

 

Q Y Y Y

S

P
 (51) 

Remark 2:  The controller gain K  computed from (51) 

may be too high to be used in practice. To adjust the 

controller gain K , since 
kK Y P , then the following 

inequality can be added into the optimization problems: 

 T ,  0k k m  Y Y I  (52) 

By Schur complement, (52) is equivalent to 

 0
m k

n

 
 

 

YI

I
 (53) 

4. OBSERVER-BASED FAULT DETECTION 

To activate the adaptive diagnostic algorithm as shown in 

Eq. (20), the time ft  when a fault occurs is needed to be 

known. It is the responsibility of fault detection. In this 

paper, the fault detection is carried out by comparing the 

output residual with the threshold to be set. 

To detect the fault, an observer is defined as follows: 

 
          

   

satt t t t t

t t

      



x Ax B u L y y

y Cx
 (54) 

where  tx  and  ty  are estimation of  tx  and  ty  

respectively. 

Denote      ,x t t t e x x      ,y t t t e y y then an 

observer error equation can be obtained without 

incorporating  tω  

 
          

   

satx x m

y x

t t t t

t t

      



e A LC e B M u

e Ce

I
 (55) 

With  ,A C  being detectable, it is not difficult to obtain the 

observer gain L  such that A LC is stable. Then a fault is 

detected if   ,y ft e where f  is a pre-specified 

threshold. If    0 0 ,x x then 0f   is sufficient to detect 

a fault. 

However, when  tω  is presented, false alarm may be 

generated with above detector, even if    0 0x x  is 

satisfied. Increasing 
f  may prevent a false alarm, but it 

may lead to a detector which is insensitive to a fault of small 

amplitude. Hence, it is desirable to determine a minimum 

threshold. 

In the presence of the disturbance  tω , the observer error 

equation becomes: 

 
            

   

satx x m

y x

t t t t t

t t

       



e A LC e B M u Eω

e Ce

I
 (56) 

Assumed that  0 0x e , then by Laplace transformation, it 

is obtained that 

            
1

saty n ms s t s G s s


       e C A LC B M u ωI I  

  (57) 

where    
1

nG s s


   C A LC EI . 

Since no fault occurs when 
ft t , that is  f mt t M I , 

then Eq. (57) can be written as: 

      y s G s se ω  (58) 

Since the disturbance  tω  is unknown, then the H
norm 

of  G s  can be used, which is denoted by: 

    maxsup 
w

G s G jw




     (59) 

Where sup denotes the least upper bound, 
max  denotes the 

maximum singular value of a matrix, and 1j   . 

 G s


 actually gives out the peak gain of  G s  across all 

frequencies. Hence, a minimum threshold for setting fault 

alarms can be given by: 

     0min f G s 


  (60) 

With the minimum threshold, the fault detection can be 

carried out by 

 
   

   

min : No fault occurs
  

A fault has occurredmin :

y f

y f

t

t





  
 

  

e

e
 (61) 

Remark 3:  With the threshold given in (60), there still 

exist a possibility that the fault detector is insensitive to 

some kinds of fault which may result in small output 

residuals compared  with the threshold. In this case, the 
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adaptive diagnostic algorithm will not be activated after 

fault occurring, and the system performance can only be 

guaranteed by the robustness of the controller designed. 

Since our emphasis is put on avoiding the false alarm due to 

disturbance, other fault detection methods which may be 

more sensitive to the faults will not be discussed in detail in 

this paper. Actually, as will be shown in next section, the 

controller is robust enough to guarantee the tracking 

performance under serious faults while the adaptive 

diagnostic algorithm is not activated. 

5. APPLICATION EXAMPLE 

For illustration, the design techniques are applied to the 

flight control of a Zagi flying wing aircraft  (Beard & 

McLain, 2011). In this example, the control objective is to 

track the pitch angular and roll angular commands. In the 

straight and level trim condition with airspeed 10 (m/s) and 

altitude 50 (m), a linearized model can be obtained as 

follows: 

     

   

t t t

t t

 



x Ax Bu

y Cx
 

 0    0    0             1            -0.0001

 0    0    1             0             0.1665

 0    0   -2.5369    0             1.3228

 0    0   -0.0000   -5.6319    0

 0    0    0.1817    0            -

A

3.4009

 
 
 
 
 
 
 
 

,

    0              0              0

    0              0              0

    0              4.8744     6.3103

  -20.8139    0              0

    0              3.6834    -1.8480

 
 
 
 
 
 
 
 

B ,
1 0 0 0 0

0 1 0 0 0

 
  
 

C  

where the states  
T

, , , ,p q r x  represent the pitch angle 

(rad), roll angle (rad), and roll rate (rad/s), pitch rate (rad/s), 

yaw rate (rad/s) in body frame. The controls  
T

, ,e a r  u  

represent the deflection angles (rad) of elevator, aileron and 

rudder respectively. The control effectiveness matrix B  is a 

normalized control matrix such that the control inputs are 

constrained by the unitary limits.  

To compute the controller gains with the design method in 

Section 4.1, it is assumed that 
5 1E I , 

0 710R I , 
7 R I , 

0 1.5r  , 1  , 
0 1  , 0.2,  1,  1,2, ,i i i m    , 510  . 

Then by solving the optimization problem (51) with (53), it 

is obtained that * 0.22  , * 10.1667  , and 

    0.5505   -0.3489   -0.1205    0.1068   -0.0567   -0.2250    0.1294

   -0.3489    0.4144    0.1617   -0.0543    0.0704    0.1420   -0.1615

   -0.1205    0.1617    0.0805   -0.0169    0.0318    0.04

P

68   -0.0628

    0.1068   -0.0543   -0.0169    0.0330   -0.0082   -0.0430    0.0186

   -0.0567    0.0704    0.0318   -0.0082    0.0249    0.0220   -0.0265

   -0.2250    0.1420    0.0468   -0.0430    0.0220    0.1079   -0.0549

    0.1294   -0.1615   -0.0628    0.0186   -0.0265   -0.0549    0.0764

 
 
 
 
 
 
 
 
 
 
 

 

   34.0816  -17.4027   -5.4353   10.1004   -2.6318  -13.7182    5.9938

   33.3249  -43.7326  -20.7667    4.7188  -10.6075  -12.9678   16.7942

   27.1748  -36.9970  -18.2546    3.7820   -6.2969  -10.59

K

28   14.4132

 
 
 
  

 

For design of the fault detector, the desired poles for 

A LC  are assumed to be  1, 2, 3, 4, 5     . Then by pole 

placement, it is obtained that  
T

 1.3112   -0.4096   -0.0615    2.3566    0.0939

-0.5300    2.1190   -1.4849    0.4902    0.3049

 
  
 

L  

It follows from (60) that a minimum threshold for setting 

fault alarms can be given by 

 min 1.6424f   

To verify the tracking performance of the designed 

controller under fault situations, the nonlinear model with 6 

degree of freedom is used, and it is assumed that the 

effectiveness factor of the elevator is reduced to be 0.2 at 

15ft  , and the effectiveness factors of both aileron and 

rudder are reduced to be 0.2 at 55ft  . The learning rates 

for the adaptive diagnostic algorithm are specified by 

100, 1,2, ,i i m   . The reference commands for the pitch 

angle and the roll angle are both given by the square signals 

with time period of 20 seconds each, and the amplitudes for 

both maneuvers are 10 degrees.  

Then through simulation with the nonlinear model of the 

aircraft, the tracking results are given by Fig. 3. For 

comparison, the tracking results in normal case are also 

presented in this figure. It is obvious that good performance 

is achieved for both tracking of the pitch angle and roll 

angle commands. Though the effectiveness loss of elevator 

at 15ft   has impaired the tracking performance, it is 

recovered quickly. This is actually contributed by excellent 

function of our integrated fault detection, adaptive diagnosis 

and reconfiguration algorithm. After malfunction of the 

elevator, the output residuals exceed the threshold for fault 

alarm as shown in Fig. 4. Then the adaptive diagnostic 

algorithm presented in (20) is activated to start the fault 

estimation process, which is shown in Fig. 5. Due to fast 

estimation of the effectiveness factor of the elevator, 

according to the control law in (10), the effectiveness loss is 

compensated quickly as shown in Fig. 6, which results in 

good tracking performance under fault condition as shown 

in Fig. 3.  

In addition, from Fig. 4, it can be found out that the 

residuals in normal case are not equal to zero, which results 

from the un-modeled dynamics of the aircraft. However, 

their values are smaller than thresholds. Hence, a false alarm 

has been avoided by using the fault detection method 

proposed in Section 4.  

For effectiveness loss of both aileron and rudder at 55ft  , 

the output residuals are smaller than the threshold, and these 

faults have not been detected. However, good tracking 
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performance of the roll angle command can still be achieved 

as shown in Fig. 3 due to strong robustness of the controller 

designed. Since the effectiveness loss of aileron and rudder 

is not compensated, the responses of these two actuators are 

not approaching those in normal case as shown in Fig. 6. 

For information, some other state variables from the 

nonlinear model are also given as in Fig. 7, which indicates 

that the aircraft has reached new equilibrium points under 

both the normal case and the fault case. These states are 

, ,e e eX Y Z  for aircraft position in inertial frame, , ,U V W  for 

aircraft velocity in body frame, and   for yaw angle. From 

Fig. 7, it can be seen that the main influence of effectiveness 

loss of elevator is on the pitch rate, while the effectiveness 

loss of aileron and rudder mainly affect the roll rate, yaw 

rate, and lateral-directional velocity in body frame. For an 

intuitionistic comparison, the 3D trajectories of the aircraft 

under both normal case and fault case are also presented in 

Fig. 8. 
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Fig. 3  Tracking of Pitch Angle and Roll Angle Command 
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Fig. 4  Output residuals 
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Fig. 5  Effectiveness factor estimation 
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Fig. 6  Actuator outputs 
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Fig. 7  Other states of aircraft 
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Fig. 8  3D trajectories of the aircraft 

 

6. CONCLUSION 

An integrated active fault-tolerant control method against 

partial loss of actuator effectiveness and saturation is 

proposed in this paper. LMI conditions are presented to 

compute the design parameters by integrated design of 

reconfigurable controller and fault diagnosis module. An 

observer is designed to detect a fault, and a minimum 

threshold is set to avoid the false alarm induced by 

disturbances. The system performance is described by two 

ellipsoidal sets regarding the domain of attraction and 

disturbance rejection respectively.  

The proposed design techniques are applied to flight control 

of a flying wing aircraft under actuator faults. The nonlinear 

model of the aircraft is used for simulation, and satisfactory 

tracking performance can be obtained. The effectiveness 

loss of the elevator can be detected and compensated by the 

proposed integrated design method. However, the fault 

detector proposed in this paper is not sensitive to the faults 

of both aileron and rudder, though good tracking 

performance can still be achieved. This should be improved 

in our future work. 
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AAAABSTRACTBSTRACTBSTRACTBSTRACT

It is difficult to diagnose the faults, especially
multiple faults, in redundant systems by
traditional diagnostic strategies. So the problem of
multiple fault diagnostic strategy for redundant
system was researched in this paper. Firstly, the
typical characters of multiple faults (minimal
faults) were analyzed, and the problem was
formulated. Secondly, a pair of two-tuples were
applied to denote the possible and impossible
diagnostic conclusion at different diagnostic
stages respectively, and a multiple fault diagnostic
inference engine was constructed based on
Boolean logic. The inference engine can
determine the system diagnostic conclusions after
executing each test, and determine whether a
repair action was needed, and further determine
whether a next test was needed. Thirdly, a method
determining the next best test was presented.
Based on the proposed inference engine and test
determining method, a multiple fault diagnostic
strategy was constructed. Finally, a simulation
case and a certain flight control system were
applied to illustrate the proposed diagnostic
strategy. The simulation and practical data
computational results show that the presented
diagnostic strategy can diagnose multiple faults in
redundant systems effectively and it is of certain
application value.

1.1.1.1. INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

With the rapid development of aviation projects,
the designers have attached more importance to

system reliability and safety. In the aviation
domain, redundant techniques are usually adopted
to improve system reliability. At the same time, as
technology advances, there is a significant
increase in the complexity and sophistication of
aviation systems, which can easily induce
multiple faults in all probability. Hence, studying
the problem of multiple fault diagnosis in
redundant systems is very important and
significant. Unfortunately, there are little
literatures referring to the problem at present.

A great variety of aviation systems with
redundancy and with little or no opportunity for
repair or maintenance during the operation may
induce multiple faults, thus, a single failure
assumption does not hold for this situation.
Furthermore, the combinations of multiple faults
may be of great multiplicity, and different fault
combinations likely take on the same failure omen
due to non-linearity, coupling and time-variance
among the system components, and especially due
to the redundant design in some systems. Thus, it
becomes a difficult problem to diagnose multiple
faults in redundant systems.

In the literature in the recent years, many scholars
show great interesting on the multiple fault
diagnostic problems [1-6]. Nevertheless, the premise
of multiple fault diagnosis is enough sensor data
acquired by executing multiple tests
simultaneously. In practical application, tests are
executed sequentially rather than simultaneously
in most cases, so it is imperative important to
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study multiple fault sequential diagnostic strategy
problem. Shakeri et al [7,8] have studied the
problem based on sequential test and presented a
multiple fault diagnostic optimization generation
method, known as Sure strategies. The paper
mainly considers the problem of multi-fault
sequential diagnosis in redundant systems.

2.2.2.2. PROBLEMPROBLEMPROBLEMPROBLEM FFFFORMULATIO NORMULATIO NORMULATIO NORMULATIO N

The diagnostic strategy problem is defined by the
five-tuple (FFFF,PPPP,TTTT,CCCC,BBBB), where FFFF={f1,…,fm}is a set
of independent failure sources, PPPP =[P(f1), …, P(fm)]
is the a priori probability vector associated with
the set of failure sources FFFF, TTTT={t1, t2,…, tn}is a
finite set of n available binary outcome tests,
CCCC={c1, c2,…, cn}is a set of test costs and BBBB
=[bij]m×n is fault-test dependency matrix where
bij=1 if test tj detects fi, otherwise bij =0.

The form of multiple faults are of great diversity,
moreover, multiple faults refer to complex fault
mechanism and relate closely to the practical
application environment and the specific objects.
In order to simply the problem, the paper mainly
considers the multiple faults with additivity. Let’s
define FSFSFSFS(fi)={={={={tj| bij=1, 1≤ j ≤n}}}} to denote the
signature of failure state fi, it indicates all the tests
that monitor failure state fi, FSFSFSFS(fi, fj) denotes the
failure signature of the multiple faults, fi and fj. If
they both satisfy additivity, then

( , ) ( ) ( )i j i jf f f f=FS FS FSFS FS FSFS FS FSFS FS FS∪ (1)

Nevertheless, there exist many multiple faults
which don’t satisfy Eq.(1), especially in systems
with redundancy. Consider the digraph model in
Figure1. The AND nodes α1 and α2 show the
system is redundant. If only f3 or f4 occurs
individually, t2 will not detect them, yet if they
both occur, t2 can detect them, hence
FSFSFSFS(f3)∪FSFSFSFS(f3) FSFSFSFS(f3 ,f4).The fault combination
{f3, f4} related to the AND node α2 is usually
termed minimal fault, which can be considered as
a special fault state in multiple fault redundant
analysis. The minimal faults for the example are
s5={f3, f4} and s6={f1, f2, f3}.

t1

t2

t3

t4

f1

f2

f3

f4

a1

a2

Figure 1. An example system with redundancy

In fault-tolerant systems, the failure sources SSSS can
be derived by adding minimal faults to the single
fault set, i.e., SSSS ={s1,s2,…,sz}, where si={fi}
for1≤i≤m corresponds to each single failure
source respectively, and sm+1~sz corresponds to
minimal fault of the system respectively.

In Figure1, SSSS={{f1},{f2},{f3},{f4},{f3,f4},{f1,f2,f3}},
The corresponding fault-test dependency matrix
DDDD=[wij]n×z is shown in Table 1.

Table1. The extended dependency matrix of the example

Tests

Failure sources t1 t2 t3 t4
s1={f1} 0 1 0 0
s2={f2} 1 0 0 0
s3={f3} 0 0 0 1
s4={f4} 0 0 1 0
s5={f3,f4} 0 1 1 1
s6={f1,f2,f3} 1 1 1 1

Through the previous analysis, the multiple fault
diagnostic strategy problem in redundant systems
can be defined by the five-tuple (SSSS,PPPP*,TTTT,CCCC,DDDD),
where SSSS denotes the extended fault states,
PPPP*denotes the fault probability vector, PPPP*(si)=P(fi)
for1≤i≤m, PPPP*(si) for m+1≤i≤z equals the product
of correlation single fault sets. DDDD denotes the
extended dependency matrix. TTTT and CCCC have the
same meaning as defined before.

3.3.3.3. BOOLEANBOOLEANBOOLEANBOOLEAN LLLLOGICALOGICALOGICALOGICAL IIIINFERENCENFERENCENFERENCENFERENCE EEEENGINENGINENGINENGINE

Usually, a test is not enough to unambiguously
isolate failure sources. However, according to the
outcomes of the test, faults can be divided into
possible diagnostic conclusion and impossible
diagnostic conclusion. Based on the ideal and
using the compact set conception provided by
Shakeri, let the two-tuple(XXXX,GGGG) describes
diagnostic conclusion of the system at different
time, where XXXX={xk| xk ⊂ SSSS*} and GGGG(GGGG ⊆ SSSS*) denote
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possible and impossible diagnostic conclusion at
present time epoch respectively, and SSSS*= SSSS∪{s0},
s0 denotes fault-free conclusion. Set XXXX is complete
and is a set cluster consisting of compact sets.
Compact set x (x ∈ XXXX) denotes the possible
diagnostic conclusion, which is consistent to the
known test outcomes and composed of minimal
faults. If there is given(XXXX,GGGG), where
XXXX={x1,x2,…,xq}, then xk ∈ XXXX, (xk∩∩∩∩GGGG)=Ø. Denote
diagnostic conclusion corresponding to PASS and
FAIL outcomes of the test tj by (XXXXjp, GGGGjp) and (XXXXjf ,
GGGGjf) respectively.

The impossible diagnostic conclusion, GGGGjp and GGGGjf,
can be calculated by:

{ }
0

| , ( )

{ }
jp i k i k j

jf

s s s s t

s

= ⊆ ∀ ∈

=

G G TSG G TSG G TSG G TS

G GG GG GG G

∪

∪
(2)

Where TSTSTSTS(tj)={si|wij=1,for1≤i≤z} denotes the
signatures of test tj, indicating all the failure states
detectable by test.

The possible diagnostic conclusion, XXXXjp and XXXXjf,
can be get through the following steps.

First, XXXXjp and XXXXjf can be expressed by:

(1 )
k jp i jp

k jf i jf

jp k ij i
x G s G

jf k ij i
x G s G

x w s

x w s

=∅ ∉

=∅ ∉

= ⋅ −

= ⋅

∑ ∑

∑ ∑

XXXX

XXXX

∩

∩

(3)

Then, let (3) expand to and/or expressions, and
simply them based on the following logical rules.

0

,
,

k k k i i i

i i k k i k

s s s s s s
s s s s s s s
⋅ = + =
⋅ = + ⋅ =

(4)

where sign “·” denotes logical multiplication
operation, s1·s2 denotes that the two faults occur
simultaneously; sign “+” denotes logical add
operation, and shows that at least one of the two
faults occurs.

The further simplification of (3) can be based on
the rule 1.

Rule1:Rule1:Rule1:Rule1: If si ⊂ sk, then si · sk=sk; if si ∪ sj=sk, then si ·

sj=sk. For example, in tableⅠ, s3 · s5=s4· s5=s5, and
s3 · s4=s5 due to s3, s4 ⊂ s5 and s3∪ s4= s5

At last, eliminate compact sets which include
elements of GGGG, and get possible diagnostic
conclusion, XXXXjp and XXXXjf.

Consider the data in Table1. Initially, the
diagnostic conclusion (XXXX,GGGG) is (FFFF*,Ø), where
FFFF*={{s0},{s1},…,{s6}}. Provided four test are
executed, and t1 PASS, t2 ,t3 ,t4 FAIL. First, derive
the impossible diagnostic conclusion GGGG={s0,s2,s6}
according to (2); then get the possible diagnostic
conclusion based on (3) (4), XXXX=s1s3s4+s5; simply it
to XXXX=s5 according to rule 1. In the form of set, the
possible diagnostic conclusion is XXXX={{s5}}.

After getting the diagnostic conclusion (XXXX,GGGG), use
the rule 2 to determine whether the repair
operations are needed.

RRRRule2:ule2:ule2:ule2: If |XXXX|=1, all the faults in XXXX should be
repaired; if no test gives any information gain, i.e.,
XXXXjp= Ø or XXXXjf= Ø for tj∈TTTT, then all the faults in XXXX
should be repaired too.

Refresh the diagnostic conclusion after repair
operations based on rule 3.

RRRRule3:ule3:ule3:ule3: If fault state si has been repaired, then
refresh the diagnostic conclusion according to (5).

0

*

{ | } { }k k is s s s′ ← ∈ ≠ ∅ −

′ ′← −

G G SG G SG G SG G S

X S GX S GX S GX S G

∪ ∩ (5)

4.4.4.4. MMMMULTIULTIULTIULTI----FAULTFAULTFAULTFAULT DDDDIAGNOSTICIAGNOSTICIAGNOSTICIAGNOSTIC SSSSTRATEGYTRATEGYTRATEGYTRATEGY

Multi-fault diagnostic strategy is constructed as
follows: first, judge whether the candidate tests
can provide information at the present diagnostic
conclusion (XXXX,GGGG). If not, replace all the candidate
fault components; otherwise, select the best test
according to the heuristic function, then, judge the
system states according to outcomes of the test.
The heuristic function used to guide test selection
is given by:

( ; )
arg max

j

j

t T
j

IG t
j

c
∗

∈

⎧ ⎫⎪ ⎪
= ⎨ ⎬

⎪ ⎪⎩ ⎭

XXXX
(6)

where cj corresponds cost of tj, IG(XXXX;tj)denotes
average mutual information between test tj and
possible diagnostic conclusion XXXX. The (6) means
that the test with maximal diagnostic information
per cost should be selected with a priority.
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IG(XXXX;tj)is calculated by:

( ) ( ) ( ) ( )
( ; ) ln ln

( ) ( ) ( ) ( )
jp jp jf jf

jIG t
P P P P

⎧ ⎫
= − +⎨ ⎬

⎩ ⎭

X X X XX X X XX X X XX X X X
XXXX

X X X XX X X XX X X XX X X X

P P P P
(7)

Given X={X={X={X={x1,x2,…,xz}}}} and xk={sk1,…,skq}, so P(XXXX)
can be calculated by:

1 1

( ) 1 1 ( )
j

qz

k
k j

P P s
= =

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∏ ∏XXXX (8)

Especially , if XXXXjp=Ø or XXXXjf= Ø, then IG(X;tj)=0.

If there exist more than one (≥2) compact sets
after executing the test tj, then, do further
according to rule 4.

Rule4:Rule4:Rule4:Rule4: Given the dimensions of the possible
diagnostic conclusion satisfies |XXXX|≥2.... If tj TTTT,
IG(XXXX;tj)=0，then repair all the faults in XXXX, refresh
diagnostic conclusion after repair according to
(5)otherwise, select the next best test according to
(6).

MMMMultiultiultiulti-F-F-F-Faultaultaultault DDDDiagnosticiagnosticiagnosticiagnostic SSSStrategytrategytrategytrategy GenerationGenerationGenerationGeneration
AlgorithmAlgorithmAlgorithmAlgorithm

Step1: Input the basic data (SSSS,PPPP*,TTTT,CCCC,DDDD), and
create ψ used to store diagnostic nodes. Initially,
ψ={(FFFF*,Ø)}, create an empty set D used to store
the decision tree.

Step2: Repeat the following steps until ψ= Ø,
output D.

2.1: Select a diagnostic node from ψ, denoting it

by(XXXX,GGGG),and put it in D, analyze dimension of XXXX.

2.2: IFIFIFIF |XXXX|=1, THEN

IF x∪G=SG=SG=SG=S *, (x∈XXXX), THEN

-Action: remove XXXX from ψ to D.

Return.

IF x∪GGGG    SSSS*, (x∈XXXX), THEN

-repair all the faults in x,

-generate a new diagnostic node (XXXX’,GGGG’)
under the node (XXXX,GGGG) and store it in ψ

Return.

ELSEELSEELSEELSE IFIFIFIF |XXXX|>1, THEN, calculate possible

conclusion set after each candidate test,

e.g., after test tj, denote the possible

conclusion set by XXXXjp and XXXXjf. Calculate

diagnostic information of each

candidate test.

IF no test givegivegivegive any information, viz., XXXXjp (or

XXXXjf)=Ø for  tj∈TTTT, THEN
-repair all the faults in XXXX,,,,

-remove XXXX from ψ.

Return.

IF there exist some tests giving diagnostic

information, THEN

-select the best test according Eq.(6),

denoting it by tk, store the new diagnostic

conclusion (XXXXkp, GGGGkp) and (XXXXkf, GGGGkf)

produced by tk in ψ and the test tk in D.

Return.

5.5.5.5. APPLICATIONAPPLICATIONAPPLICATIONAPPLICATION STUDYSTUDYSTUDYSTUDY

A simulation example with five failure nodes, five
test nodes and an AND node is used to verify the
presented algorithm. The multi-signal flow model
of the system is shown in Figure2. The minimal
fault is {f1, f3}, and the extended dependency
matrix with failure state probability is shown in
Table2. The minimal fault probability equals to
the product of the correlation single faults.

t 1

t 2

t3 t4

f5 f1

f2

f4

f3  

a1

t 5

Figure 2. A simulation example with redundancy

Table2. The Extended dependency matrix with fault probability of the
simulation example

Fault sources tests Fault
probabilityt1 t2 t3 t4 t5

s 1={f1} 0 1 0 0 1 0.014
s 2={f2} 0 0 1 1 0 0.027
s 3={f3} 1 0 0 1 1 0.125
s 4={f4} 1 1 0 0 0 0.068
s 5={f5} 1 1 1 1 0 0.146
s6={f1,f3} 1 1 1 1 1 0.002

The corresponding fault diagnostic tree applying
the proposed algorithm is shown in Figure3.
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t 2
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t3

NoFault

NoFault NoFault

Figure 3. The multi-fault diagnostic tree

The fault tree has 11 leaf nodes, number the nodes
sequentially from left to right, and analyze the
masking false failures and hidden failures of each
leaf node. The results are shown in Table3.

Form the results in Table3, obviously, there are no
hidden failures and masking false failures in all
diagnostic conclusions. Hence, realize multiple
fault diagnosis for systems with redundancy
effectively and accurately.

Note that there exist two shaded nodes in Figure3,
x10 and x11. Let denote the diagnostic conclusions
of the two nodes by (XXXX10,GGGG10) and (XXXX11,GGGG11)
respectively, it can be referred that:
GGGG10={s0,s1,s3,s6}, GGGG11={s0}, XXXX10={{s5}, {s2,s4}}
and XXXX11={{s1,s5},{s3,s5},{s6},{s1,s2,s4},{s2,s3,s4}}
respectively. It is obvious that the possible
diagnostic conclusions are not unique, yet, all the
tests have been selected, and no test can provide
diagnostic information any more, so all the faults
in XXXX should be repaired according rule 4. When
the union of possible diagnostic conclusion and
impossible diagnostic conclusion equals to SSSS*,
terminate the diagnostic process.

Table3. The hidden failures and masking false failures for each leafnode

Leafnodes Passed tests Repaired
faults

Hidden
failures

Masking false
failures

x1={s0} DP (1)={t2,t4} Ø Ø Ø
x2={s2} DP (2)={t1,t2} Ø Ø Ø
x3={s0} DP (3)={t2,t3} {s3} Ø Ø
x4={s2} DP(4)={t2} {s3} Ø Ø
x5={s1} DP (5)={t1,t4} Ø Ø Ø
x6={s0} DP (6)={t2,t4} {s4} Ø Ø
x7={s1} DP(7)={t4} {s4} Ø Ø
x8={s1,s2} DP(8)={t1} Ø Ø Ø
x9={s3,s4} DP(9)={t3} Ø Ø Ø
x10={s2,s4,s5} DP(10)={t5} Ø Ø Ø
x11={s2,s4,s5,s6} DP(11)= Ø Ø Ø Ø

Consider the digraph model of F18 Flight Control
System (FCS) for the left Leading Edge Flap
(LEF) in Figure4, which was used as an example
in [9]. The minimal faults for the example are
{FCCA,FCCB}, {FCCA,CHNL3},
{FCCB,CHNL2}, and {CHNL2,CHNL3}. The
extended dependency matrix is shown in table 4.

Flight c ontrol
c ompute r  A

a1

t1

F C C A

CH N L
2

CH N L
1

CH N L
4F C C B

CH N L
3

a2

A S Y M

L E F

L S D UFlight c ontrol
c ompute r  B

Control Cha nne l 2

Control Cha nne l 1

Control Cha nne l 4

Control Cha nne l 3

Le a ding Edge  Fla p
Se rvo /Drive  Unit

Asymme try 
Control

Le a ding 
Edge  Fla p

t3t2

t6

t7

t4

t5

t9

t8

Figure 4. Diagraph model of subsystem LEF

Table4.The extended dependency matrix of subsystem LEF

Failure sources
Tests

Probability
t1 t2 t3 t4 t5 t6 t7 t8 t9

s0={f0} 0 0 0 0 0 0 0 0 0 0.9906

s1={LEF} 1 0 0 0 0 0 0 0 0 0.001

s2={LSDU} 1 1 0 0 0 0 0 0 0 0.001

s3={ASYM} 1 0 1 0 0 0 0 0 0 0.001

s4={FCCA} 0 0 0 1 1 0 0 1 0 0.001

s5={FCCB} 0 0 0 0 0 1 1 0 1 0.001

s6={CHNL1} 0 0 0 1 0 0 0 0 0 0.001

s7={CHNL2} 0 0 0 0 1 0 0 0 0 0.001

s8={CHNL3} 0 0 0 0 0 1 0 0 0 0.001

s9={CHNL4} 0 0 0 0 0 0 1 0 0 0.001

s10={FCCA,FCCB} 1 1 1 0 0 0 0 0 0 0.0001

s11={FCCA,CHNL3} 1 0 1 0 0 0 0 0 0 0.0001

s12={FCCB,CHNL2} 1 0 1 0 0 0 0 0 0 0.0001

s13={CHNL2,CHNL3} 1 0 1 0 0 0 0 0 0 0.0001

The diagnostic tree of subsystem LEF adopting the proposed
reference engine and diagnostic strategy is shown in Figure5.
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Obviously, the presented diagnostic strategy can
diagnose multiple fault of the LEF correctly. The
diagnostic tree is very complex due to many types
of multiple faults. The traditional diagnostic
strategies based on single fault assumption can’t
diagnose the multiple faults in redundant systems.
For example, in the daily maintenance action of
the LEF, if FCCA occurs fault, the single

assumption-based diagnostic strategy can’t
diagnose it due to the existing AND node α1, but
if CHNL3 also occurs fault during next flight
mission, it will result in severe accident. The
proposed diagnostic strategy can efficiently and
correctly diagnose these faults in subsystem LEF,
so with higher application value in practical
engineering.
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Figure 5. Diagnostic tree of subsystem LEF

6.6.6.6. CCCCONCLUSIONSONCLUSIONSONCLUSIONSONCLUSIONS

The paper mainly considers the multiple fault
diagnostic strategy problem arising in systems
with redundancy. The paper first formulates the
problem, then presents multiple fault inference
engine based on Boolean logic and three
additional inference rules. The inference engine

can be applied to determine the possible
diagnostic conclusion and impossible diagnostic
conclusion accurately after executing each test.
Based on the knowledge, an efficient multiple
fault diagnostic strategy for redundant systems is
constructed. An efficient multiple fault diagnostic
strategy for the F18 FCS is constructed by the
proposed method. The analysis results show that
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the strategy can diagnose multiple faults in the
FCS, and can avoid missed diagnosis and false
diagnosis. Hence, the proposed multiple fault
diagnostic strategy can be applied to practical
engineering.
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ABSTRACT 

A turbofan used in flight or in a bench test cell 

produces a lot of data. Numeric measurements describe 

the performance of the engine, the vibration conditions 

and more generally the behavior of the whole system 

(engine + bench or aircraft). It seems reasonable to 

embed an application capable of health diagnosis. This 

inboard monitoring system should use very light 

algorithms. The code need to work on old fashion 

FADEC calculators (Fault Authority Digital Engine 

Control) built on a technology dating more than 20 

years. Snecma, as an engine manufacturer, has a great 

knowledge of the engine design and its behavior. This 

knowledge helps to select the best inputs for a good 

abnormality detection process, hence limiting the need 

of a too complex solution. In this article, I describe a 

very simple anomaly detection algorithm designed for 

embedding on light computers. This algorithm was 

validated on a bench test cell running a military 

engine.
*
 

1. THE CONTEXT 

During the development process, engine parts or 

prototypes are tested in a bench cell environment. The 

engine and the bench itself are connected to many 

sensors (more than a thousand). Afterward, during 

standard missions, only a subset of those sensors is 

kept; but the engine continues to send a lot of messages 

carrying a potential knowledge about its behavior. Our 

goal is to fetch a part of this information to be able to 

detect potential abnormalities. An application to detect 

anomaly should work during the test process on 

benches but also during real flights. One of our main 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 

concerns is to develop a code that may be implemented 

on current computers such as FADEC or eventually 

ACMS (Aircraft Condition Monitoring System). 

Today’s calculators in use do not have a big computing 

power, neither much memory. For example, it may be 

difficult to implement complex signature classification 

algorithms (Cômes 2010a, 2010b, 2011, Cottrell 2009, 

Lacaille 2009c, 2011). Most of the work should be 

done on the fly using mathematic filters with little 

amount of memory for calibration. 

 

The volume of data available during bench tests is 

really huge. Analyzing simultaneously too many 

sensors will damage the quality of a mathematic 

computation, so we choose to build many small 

instances of the same algorithm. Each instance deals 

with a small (but reasonable) amount of measurements; 

it produces its own diagnostic outputs (detection and 

anticipation or prognostic). Each separate result is an 

indication of the behavior of a specific component 

according to specific faults. All such results are merged 

together by a higher decision layer. This complex 

fusion algorithm embeds a selection step which gives a 

great indication of what detectors (instances) should be 

implemented for on board work. This article presents 

the first part of the whole process: the detection layer 

called CES for continuous empirical score. 

 

This work presents a specific code that is both light and 

efficient. Much solutions proposed to monitor engines 

and detect abnormalities are built around specific 

components and the code is generally cut in two parts 

for embedding acquisition and ground analysis 

(Lacaille and Nya Djiki 2009, Flandrois 2009, Lacaille 

2009a, 2009c, 2011). Other types of monitoring 

algorithms are fully dedicated to ground analysis; in 

general they work on a larger time scale using 

successive flights to detect trends and build prognostics 

(Cômes 2010a, 2010b, 2011, Lacaille 2011). Those 

solutions need large databases and even use some 
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datamining analysis to preprocess the observations 

(Seichepine 2011).  

The current proposition is a general detector of unusual 

behavior and it is built in one standalone application 

dedicated for embedded systems. 

2. THE DETECTION ALGORITHM 

2.1 Inputs 

Looking at a specific component, one finds probable 

faults, corresponding signature indicators and running 

constraints. All this data is reported in the FMECA 

(Failure Mode, Effects, and Criticality Analysis) 

document which lists all failure modes of all 

components of each engine system with corresponding 

occurrence probabilities. Then for one specific 

component and a small list of potential faults it is 

possible to isolate a small amount of indicators divided 

in two subsets.  

 The first subset describes the fault signatures; 

we call it the endogenous subset. 

 The second one gives the constraints or the 

description of the execution context during 

which such fault may occur. This second set of 

inputs is called the exogenous subset because 

it describes the working conditions that should 

apply for a valid detection. 

The two input subsets are not used the same way: the 

exogenous subset serves the identification of an 

acceptable context when the endogenous subset is only 

studied for abnormality detection when the context is 

accepted. 

Each subset is made of indicators that do not necessary 

correspond to the raw measurements. A small 

preprocessing stage should be implemented. We select 

a set of online linear filters (moving averages and 

autoregressive filters) with the help of company 

experts. Eventually, mathematic computations, 

relations between sensor outputs, are also used in place 

of the initial measurements (Lacaille 2007). On more 

powerful computers one may try to mathematically 

reduce dimensionality using PCA (Principal 

Component Analysis) (Lacaille 2009c) or other 

advanced algorithms like the LASSO (Lacaille 2011b). 

2.2 Outline 

This algorithm is based on a very simple assumption: 

“most of the time the engine is working under normal 

conditions; then when something unusual happens, it 

may be easily detected as an outlier”. 

How does it work? Look at a new input, the exogenous 

part of the input describes the context, then look at 

what happened for the endogenous indicators when this 

context “nearly” applies. If the endogenous observation 

resembles the already observed ones, everything is 

usual: no abnormality. Otherwise the behavior is 

unusual: this is an anomaly. 

Such algorithm needs some sort of memory to store 

normal conditions, a distance computation to compute 

proximity of context observations and a score which is 

another distance or likelihood to see if an observation is 

an outlier. 

 

The computation is controlled by quality estimations: 

 To define a context as usual or normal, a 

minimum amount of observations is needed. If 

the engine is often in such “running context” 

the quality of the “normal” flag is high 

otherwise it is not clear. The adequacy 

measurement computes an indicator of 

neighborhood. If new measurements are really 

new, for example “never observed”, the 

adequacy should be low (distance from current 

context to other measurements is high); 

otherwise the adequacy is high when the 

current and some already observed contexts are 

similar (distance between current and past 

context observations is low). 

 When the context is clearly identified, the local 

variance of the endogenous indicators (on 

similar context/exogenous data) gives a 

precision indication
†
. This precision value 

indicates the quality of the outlier detection. 

When the precision is high, the endogenous 

indicators should be almost constant for a given 

running context. Hence the detection of an 

outlier is easy. However, if the precision is low, 

the variance of the endogenous measurements 

is high so the detection is a little fuzzier. 

Adequacy and precision are used together to build 

some global quality indicator. 

2.3 Definition of the proximity 

In the exogenous domain, the main computation is the 

proximity. This is a distance between a current 

(exogenous) context and some stored observations. 

We will note u a vector of exogenous measurements. 

Let u* be the current observation and Hu the set of 

historic exogenous measurements stored in a little 

database
‡
. The distance between a current u* and any 

uHu is noted d(u*,u)=||u*-u||u where the u-norm 

corresponds to an Euclidian norm straighten according 

to the distribution of the exogenous measurements 

stored in the historic database (Eq. 1). 

)()'(),( 12
uuuuu*u u   **d  (1) 

                                                           
† High precision corresponds to low local variance. 
‡ This database will be automatically updated; it is not a 

temporal buffer but a selection of interesting templates. 
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Where u = cov(U) is the correlation matrix of the 

stored exogenous context observations
§
. 

This distance is coded easily without computation of 

the correlation matrix and its inverse as shown in the 

following algorithm: 

 

Let U = (u1 … un)’ be the matrix of all exogenous 

measurements stored in the database and  be its 

mean. 

Compute QR = U- the unary and upper triangular 

decomposition of the centered observations. 

Compute r = (u*’-U)R
-1

 which will be a rectangular 

matrix with n rows (the number of stored 

observations) and mu columns (if mu is the 

dimension of the exogenous vector). As R is a 

triangular matrix the computation of r is 

straightforward. 

Finally make d the vector of n rows by computing 

for each row the Euclidian norm of the 

corresponding mu-dimension vector in r: d
2
 = <r,r>. 

 


umj jiii r*d
1

2

,

22 )( uuu* for i=1…n. 

 

The proximity value is defined as a given quantile of 

the computed distances di(u*). Eq. 2 defines 

prx(u*,Hu) as the proximity of u* to the history Hu  

with percentile parameter u. 

  uprxd  )(),(P u*u*u  (2) 

As the number of observation is finite, this quantile is 

just an approximation. For example we may select the 

first value of the “sorted” distances d’i < d’i+1 which 

realizes the preceding constraint: uni /  and 

uni  /)1( . 

2.4 Definition of the adequacy 

The adequacy is an indicator of novelty according to 

the exogenous observations. It should increase when 

new observations are already seen, or equivalently if 

new observations are common to the observations 

stored in our database.  

We keep a buffer of the last observed data Bu. For each 

observation u* in this buffer its proximity to the history 

Hu is prx(u*). This list of proximities should be 

compared to distances accepted in the history. We also 

have an equivalent list of proximities prx(u) for all u in 

Hu but each computed with all observations in Hu 

excepted the singleton {u}. The proximity value has 

the dimension of a distance so the sum of all squared 

                                                           
§ Along this article, a Gaussian approximation is made 

following an assumption that things may behave “normally” 

in a local context. However this is just an approximation so 

computed proportions are not exact observed probabilities, 

but the dimension of each object is respected. 

proximities follows a statistic law equivalent to a ². 

The ratio f (Eq. 3) of the two corresponding sums (local 

distances over normal distances) approximately follows 

a Fisher law F(#Bu,#Hu) (where #B denotes the 

cardinal of the set B). 










u

u

Hu
u

H

Bu*
u

B

u

u*

)(

)(

2

#

1

2

#

1

prx

prx

f  (3) 

The numerator is high if the new observations are far 

from the stored historic data. The way it is “far”, is 

normalized by a standard measure of proximity done of 

normal observation (the denominator). 

An adequacy value may be defined as the p-value 

associated to this statistic test (Eq. 4): 

)P(1 fFadequacy   (4) 

2.5 Risk of abnormality 

Each time a new observation is available, and if the 

current adequacy is high, the endogenous 

measurements should be analyzed. We want to 

compare this new observation with the ones already 

observed when the context was similar. 

 

We extract a subset of the stored input database with 

observations close to the current context. This is 

inferred from the computation of the proximity values. 

Our subset is the set of historic observations 

corresponding to a proximity percentile x (Eq. 5
**

). 

We denote H the stored set of all historic observations 

including exogenous and endogenous indicators (Hu 

and Hx are the respective projections of H on the 

exogenous and endogenous indicators):  













 


 x

ij

ddii ij
)()(1#

1
/),()( u*u*H

1Hxuu*H  (5) 

This subset of the historic storage contains couples of 

exogenous and endogenous indicators, but it is defined 

only from computations on context (exogenous) 

observations. 

 

The score is computed from the likelihood of the 

endogenous observations according to a local Gaussian 

law defined empirically by the selected subset of 

endogenous historic data. If x* is the current 

endogenous observation, for each xHx(u*), we 

compute d(x*,x)=||x*-x||x as we did previously on 

exogenous observations:  

                                                           
** The bold 1 here (Eq. 5, 10 and 12) denotes the indicator 

function. 
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)()()'(),( 12
xxu*xxxx*   **d x  (6) 

This time x(u*) refers to the covariance matrix of the 

selected endogenous observations in Hx(u*). The (u*) 

notation is only there to recall that the subset Hx(u*) 

contains only endogenous measurement that were 

chosen with approximately similar context. 

 

Finally, for each couple (ui,xi) in H(u*) we have a 

distance measure di(x*)= d(x*,xi) on exogenous data 

(Eq. 6) and an equivalent proximity distance di(u*) on 

endogenous data (Eq. 1). To take into account the 

proximity in the score computation we weight the 

endogenous distances by the context proximity
††

: 














)(),(
2

)(),(
2

2

)(1

1

)(1

)(

),(

u*Hxu

u*Hxu

u*

u*

x*

x*u*

ii i

ii i

i

d

d

d

score  (7) 

As this measure has the dimension of a ² with mx 

degrees of freedom (mx is the dimension of the 

endogenous vector) the anomaly risk indicator is 

defined by 

)P( 2 scorerisk
xm    (8) 

2.6 Risk precision 

The preceding computation gives a risk of abnormality, 

but this essentially depends on the observations already 

observed. Hence it is necessary to follow another 

quality indicator that gives a precision for this result. 

Our choice is to use an indicator based on the local 

variance of the endogenous data according to the 

current context. 

 

Let j be the variance of one of the endogenous 

observations xj on H and the equivalent j(u*) on 

H(u*). The ratio of those two variances is a Fisher, so 

we take the corresponding p-value and the mean on all 

components j. This is given by (Eq. 9) where generic 

variable F is a Fisher stochastic variable with the 

adequate number of freedom degrees #H(u*) and #H: 
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 (9) 

                                                           
†† This is one proposition, other weighted computation are 

possible for Eq. 7. 

This precision value is a number between 0 and 1 that 

increases when the variance on the local context 

decreases
‡‡

. 

2.7 Update of the database 

Each time a new observation (u*, x*) is acquired one 

first computes the adequacy, the risk and its precision; 

but the database should also be updated. The 

observations stored in this database represent the 

normal behavior of the monitored system. As this set 

should maintain a small size, one must focus only on 

the “best” observations and store them as templates.  

 

Hence a test is made to check if the new observation is 

more relevant than the worse one already stored. If this 

is the case the new observation replaces the other. 

 

A “worse” observation is selected as the one that is the 

least useful for our purpose. That’s an observation 

which may be suppressed from the history without 

“much” loss in the evaluation of the proximities and 

risks
§§

. At first, this observation is selected among the 

ones (set H
-
) with the lower values of proximity. A new 

percentile -
 is defined for this purpose (Eq. 10): 













 





  
ij

prxprxii ij )()()1(#

1
/),( uuH

1HxuH  (10) 

Then the observation with the lowest risk is selected. 

 


 
Hxu

xuxu
),(

),(minarg),( risk  (11) 

This observation is replaced by the current one (u*, x*) 

if the current context is still unknown (belong to the set 

H
+
 defined by Eq. 12) and if the current score is greater 

than the “worse” one. The first constraint limits the 

number of templates belonging to the same context. 

The second condition ensures that the new added 

observation corresponds to something really different.  

 

A fourth percentile threshold + 
is used for the context 

constraint: 

 












 





  1/),( )()()1(#

1

ij

prxprxii ij uuH
1HxuH (12) 

                                                           
‡‡ We certainly may find a better multivariate solution here. It 

should take endogenous correlation into account. 
§§ As a first implementation of this algorithm, a stochastic 

metropolis algorithm was programmed to update the 

database. It adds more freedom and converges to better 

solutions but the random process makes it difficult to validate 

on a real time implementation. It was then decided to 

temporarily replace the stochastic method by a least precise 

but more easily controllable deterministic rule. 
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Then the new observation (u*, x*) replaces the “worse” 

one if it belong to H
+
 and if score(u*, x*)>score(u

-
, x

-
). 

 

At the beginning, the database is initialized with the 

first observations. Intermediates states of the history H 

may be stored to help the engineers understand the 

behavior of the detector and optimize the configuration 

thresholds. 

3. FIELDED IMPLEMENTATION 

There are two reasons for the deployment of HM 

algorithms in the test benches: 

 

To monitor the installation and the tested machine: in 

spite of automated and human monitoring of safety 

parameters, a slow degradation of a body of the 

machine or the bench cell (engine, gearbox, torque 

transmissions ...) may lead to a sudden and unexpected 

failure. 

The economic impact may therefore prove prohibitive 

regarding the program developments underway. Indeed, 

apart from the exorbitant repair cost, time penalizes 

programs. It is therefore essential to anticipate such 

events by deploying a system that allows, not to replace 

what already exists in terms of real-time monitoring, 

but defensively to detect any abnormality, known or 

not, which may lead to a destructive event. 

 

Maturation of algorithms: by definition, the HM 

algorithms must evolve continuously. 

Indeed, even if their developments for embedded 

applications require a high TRL, the unexpected, 

related to new applications or exceptional operating 

conditions ever encountered, requires them to evolve in 

light of this new experience. Similarly, these same 

algorithms deployed on ground applications need to be 

matured. This maturation in the test cells is beneficial 

both for the monitoring of these facilities themselves 

and the embedded systems. 

 

 

Figure 1: Example of a Health Monitoring system 

deployed in a test bench. 

 

We distinguish the machine from the facility bench 

because it may be subject to special supervision 

regardless of the tested machine. The sensors are 

installed on the machine and on the equipments of the 

bench. Depending on their type, signals they deliver are 

digitalized and stored in databases at: 

 High frequency for dynamic measurements 

issued by the accelerometers, displacement 

sensors, strain gauges, microphones and 

unsteady pressure sensors. 

 Low frequency for temperature, static 

pressures, rpm measurements and dynamic 

signals processed. In the example using the 

CES algorithm, these types of parameters are 

exploited. 

In the following sample application we focus on the 

health of a shaft for transmitting torque from low 

frequency settings. (CES algorithm, left branch of 

Figure 1). Other implementations of the LF algorithm 

are also under investigation (Lacaille 2010b). For HF 

implementations see (Klein 2009) and (Hazan 2010a 

and 2010b). 

3.1 Current benchmark 

One accelerometer and one thermocouple are mounted 

on the ball bearing which bears the shaft to be 

monitored. One room microphone is located in the test 

cell near the bench equipment. Sensors measure the 

radial displacement of the shaft relative to a fixed 

structure. 

 

The context parameters which influence the above 

parameters are: 

 The shaft speed, calculated from the signal of 

a phonic wheel linked to the rotating shaft. 
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 The position of an air intake valve which 

directly affects the torque felt by the shaft. 

 The torque measurement itself. 

 The pressure of a piston chamber which loads 

axially the ball bearing of the shaft and hence 

affects its dynamic response. 

Conditioning systems of sensors and storage bases can 

be either specific or common to several benches. 

 

A supervisor computer, in turn: 

 Hosts and executes the algorithms from a 

dedicated development and maturation 

platform (Lacaille 2009b, 2010b). 

 Receives and manages the high and low 

frequency data. 

 Generates alert messages. 

3.2 Implementation 

The algorithm consists of standard modules, all 

customizable and available from a tools library of the 

development and maturation studio (see 

implementation graph on Figure 2). 

 The “Read File” module reads the low 

frequency data files as they arrive in a file 

directory managed by the supervisor.  

 In this example, the “Average” module splits 

each original signal into indicators using 

moving averages. This has the effect of 

smoothing the original signal. 

 The “Instances” blocks contain the heart of the 

CES algorithm and are run in parallel. 

 The “Demultiplexing” module separates 

endogenous and exogenous parameters.  

 The CES module delivers the abnormality risk 

and a quality indicator computed as the 

geometric mean of the previously computed 

adequacy and precision.  

 The “Message” module issues anomalies 

whenever the adequacy is above a given 

threshold (confidence regarding the current 

situation) and when the risk exceeds another 

threshold. (A third threshold limits the number 

of detections waiting the risk to down-cross its 

value before launching a new alert.) 

 

 

Figure 2: Implementation of the CES algorithm. 

3.3 Algorithm’s instances 

In the implementation, each instance of parameters is 

dedicated to a special supervision such as: 

 

Change of the dynamic behavior of the transmission 

shaft: in this case (Figure 3), the endogenous 

parameters are by-revolution tracked signals vibrations 

levels in low frequency computed from the bearing’s 

accelerometer and sensors that directly measure the 

radial displacement of the shaft. These levels are 

representative of the dynamic response of the shaft 

according to its imbalance, which can itself be a 

consequence of geometric imperfections or thermal 

expansion. 

 

 

Figure 3: Instance configuration for change detection in 

the dynamic behavior of the transmission shaft. 

 

Change of the mechanical behavior of the ball bearing: 

(Figure 4) the endogenous parameters are low 

frequency signals coming from the bearing temperature 

and energy levels by frequency bands. The energy 

levels are computed from the wideband signals of the 

accelerometer and the room microphones. For this 

instance setting, assumption is made that whether a 

gradual bearing spalling occurs, levels of endogenous 

parameters will increase (energy levels in specific 

frequency bands). 
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Figure 4: Instance configuration for change detection in 

the mechanical behavior of the ball bearing. 

For these two instances, the context is given by the 

shaft speed, the position of an air intake valve and the 

torque transiting through a transmission shaft between 

the output of a multiplier box and the machine under 

test. 

It is worth noting an additional context parameter for 

the instance in Figure 3 compared to Figure 4: the 

piston pressure of the axial loading for the ball bearing 

which has a direct influence on the tracked levels 

coming from the accelerometer and the displacement 

sensors. 

The amount of endogenous parameters is not 

exhaustive and is linked to the amount of sensors that 

can be much greater than what is presented for those 

two instances. 

 

(A third instance shown on Figure 2 is not developed 

here.) 

3.4 Experimental observations 

Early in the test campaign, when the algorithm starts 

from zero, the adequacy was never up and fluctuates as 

the context data have never been encountered. 

However, when the adequacy exceeds a preset 

threshold, it stays high. At this point when the risk 

reached the detection threshold, a message is generated 

(the star on Figure 5). 

 

The algorithm finished its calibration when no new 

templates are added to the database. The adequacy 

keeps the maximum value and almost all observed 

detections correspond to acknowledged anomalies. 

 

 

Figure 5: Results are displayed on screen and may be 

interpreted. 

4. CONCLUSION 

In this article we described a light algorithm able to 

detect unusual behavior of a system made from an 

engine and/or a bench cell. The original point in this 

code is the management of the input data as a couple of 

sensors subsets dedicated to the context identification 

and the monitoring itself. We may also quote the way 

the detection is controlled by different quality 

indicators taking into account both the context 

identification and the precision of the estimation. This 

algorithm was first installed on a bench for maturation 

of the code but also to monitor the bench. 

An offline test was build for statistic computation of the 

main performances indicators for such detection 

algorithm. This test was build from data recorded 

during a machine test bench of 15 days. We registered 

all real problems observed during the test (such as stall) 

and we add synthetic degradations based on expert 

knowledge. The process was repeated 28 times with 

random positioning of the simulated degradation. A 

cross validation scheme was applied: it gives a false 

alarm rate of less that 1% (with a precision of  4%) 

and a detection probability of more than 55% ( 20%). 

 

The definitions of the KPI are given below: 

 
   

 Detected

HealthyHealthyDetected

DetectedHealtyPFA

P

PP

P





 (13) 

which gives 

)P()1())P(1(

))P(1(

FaultyFaulty

Faulty
PFA








  (14) 

and 

   1P FaultyDetectedPOD  (15) 

where  is the type I error and  the detection test 

power (Lacaille 2010a). 

 

The PFA result corresponds to the requirements for 

such algorithm on bench test application, however the 

POD is a little low but is greatly improved by the 

fusion layer and an optimization of the threshold 

parameter is in progress. 
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NOMENCLATURE 

ACMS Aircraft Condition Monitoring System 

AQV Adequacy Quality Value 

CES Continuous Empirical Score 

DB Database 

FADEC Fault Authority Digital Engine Control 

FMECA Failure Mode, Effects, and Criticality 

Analysis 

HM Health Monitoring 

KPI Key Performance Indicator 

LASSO Least Absolute Shrinkage and Selection 

Operator 

PFA Probability of False Alarm 

POD Probability of Detection 

TRL Technical Readiness Level 

NOTATIONS 

u Vector of context (exogenous) indicators 

x Vector of endogenous indicators 

mu, mx Dimensions of exogenous and 

endogenous vectors 

H History storage database 

(Hu, Hx) DB projection on respectively exogenous 

and endogenous indicators 

 (u*, x*) Current observation 

(u
-
, x

-
) “Worse” observation in the DB (the least 

useful observation) 

H(u*) Observations in the neighbor of the 

current context 

prx A quantile distance to the current history 

DB 

adequacy Confidence  to be already observed 

risk Probability of abnormality 

precision Reliability of the risk value 

di(u), di(x) Component of the proximity (distance to 

one observation of the DB) in exogenous 

or endogenous projection 

u Percentile threshold for the definition of 

the proximity value 

x Percentile threshold for the definition of 

the context neighborhood 

-
 Percentile threshold for the selection of 

the “worse” stored observation in update 

process of the DB 

+
 Percentile threshold for context 

replacement constraint in update process 
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ABSTRACT 

GE monitors a large number of heavy duty equipment for 

energy generation, locomotives and aviation. These 

monitoring and diagnostic centers located world-wide sense, 

derive, transmit, analyze and view terabytes of sensory and 

calculated data each year. This is used to arrive at critical 

decisions pertaining to equipment life management - like 

useful life estimation, inventory planning and finally 

assuring a minimum level of performance to GE customers. 
Although a large number of analytical tools exist in today’s 

market, however there is a need to have a tool at disposal 

which can aid not just in the analytical algorithms and data 

processing but also a platform for fleet wide deployment, 

monitoring and online processing of equipment. We 

describe a Prognostics & Health Management (PHM) 

application for GE Energy which was implemented using 

GE Intelligent Platform products, and explore some 

capabilities of both the application and the analytics tool. 

1. INTRODUCTION 

GE monitors a very large number of heave duty equipment 
for energy generation, locomotives and aviation. The main 

purpose of this monitoring analysis is to analyze the usage 

and condition of these equipment components, and to assist 

the users at Monitoring & Diagnostics (M&D) center to 

perform proactive maintenance activities, root causing 

existing problems and assist in planning for future 

downtime periods. This information can be used to help 

them to plan parts inventory and logistics, thus ensuring a 

higher reliability and availability for GE customers. 

Various systems and sub-systems require the use of 

advanced data driven techniques to integrate the large 

amount of field data captured with the existing empirical 
and physics based models Jammu, Vinay(2010), et al,.  

 

These data driven methods are also used to assist the 

engineers to unearth hidden relations and patterns in key 
parameters of interest Vachtsevanos (2006), et al. We 

present in this paper a platform offering from GE Intelligent 

Platforms called Proficy Cause+ and Troubleshooter™ (GE 

Intelligent Platforms), (CSense Systems (Pty) Ltd) and 

discuss some of the key lessons learnt by applying it to 

monitor and develop prognostics & health management 

tools for GE equipment.  

This paper is organized as follows: we provide a brief 

outline of the PHM schema developed and flow of 

information in Section 2. We then discuss the different 

sources of captured or derived information and patterns 
searched and the data pre-processing philosophy that are 

used by GE M&D in order to develop a robust and reliable 

PHM system. We also discuss in brief an anomaly detection 

algorithm to highlight one of the many anomaly detection 

methods used to monitor critical equipment and related 

alarm generation. We next introduce GE Intelligent 

Platforms Proficy platform in Section 3 and describe how it 

enables one to perform offline analysis, integrate with 

existing PHM platforms and perform field implementation. 

Section 4 contains some preliminary methods for anomaly 

detection that were used for a PHM implementation case 

study. Finally Section 5 has some pointers to what we are 
planning to do in near future and conclusions based on this 

study. The information used in this case study consists of 

data from GE Energy equipment that was anonymized and 

scaled to avoid disclosure of proprietary information. This 

does not in any way affect the validity of the methodology 

or implementation as described in the paper. 

2. PROBLEM DEFINITION 

In order to enable GE’s Monitoring and Diagnostic Centre 

to detect insipient anomalies and failures in energy 

generation turbines and subsequently take corrective action, 

automated monitoring of the parameters of interest such as 
the following: operating temperatures, pressure ratios, 

Nanda, Hu This is an open-access article distributed under the terms of the 

Creative Commons Attribution 3.0 United States License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited. 
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power produced, measured variables compared to their set 

point values, performance levels relative to empirically 

derived operating profiles, ambient conditions, etc.  Hence it 

is required to automate the process of detecting anomalies in 

performance levels and pick up sudden shifts, and 

automatically provide possible root causes for observed 
anomalies. Further, if future performance levels can be 

predicted accurately, it would enable field engineers to 

suggest suitable control settings to power plant personal. 

The PHM system developed has the following schema and 

flow of information (Figure 1) 

 

 Figure 1: Schema of PHM system developed 

In the following subsections, we outline some of the 

required components for a practical PHM system 

deployment. This includes capturing multiple data sources, 

pre-processing and anomaly detection methods. We describe 

some of these details in the following sections. 

2.1 Major Sources of Information captured for PHM 

The data captured for remote monitoring & control is of 

varied types and can be broadly classified into following 

types: 

a. Historical operational data: various sensor signals are 
stored in both central and distributed data bases. These 

contain equipment performance and component wise 

data at various time intervals. Different PHM 

applications may require customized data sampling 

rates depending upon the specific failure modes in the 

components for which PHM applications are 

developed. 

b. Controller Data: Onboard and centrally located 

controllers use and generate multiple logical values for 

accurate controlling process. These calculations are 

stored and are used for developing predictive or 

diagnostic methods. 

c. Engineer observations: Various free-form and 

structured textual information are recorded by GE field 

engineers and M&D personal when responding to 

customer calls.  

d. Repair & Maintenance Data: Detailed descriptions 

relating to previous repairs and maintenance procedures 

and inspections performed on equipment are stored in 

various data repositories. 

2.2 Types of PHM Signals & Patterns Monitored 

A typical PHM system can be used to perform real time or 

offline processing to provide accurate equipment remaining 

life estimate thus enabling subsequent decisions to be taken. 

This requires multiple types of derived values, some of 

which are mentioned below and are monitored on a 

continual basis by the onsite controller or central analysis 

modules: 

a. Statistical Quantities: Various statistical measures 

like higher order moments of key parameters, 

moving statistical calculations, etc. See (Casella, G 

& Berger R. L, 1990) for more details. 

b. Evolving physical quantities: In addition to static 

measures or feature calculations, time evolving 

nature of the major parameters are critical to detect 

failures. 

c. Deviation from expected values: Most engineering 

parameters have pre-defined set values and are 

tracked for deviations from their set point values. A 

significant deviation and the direction of deviation 

is an indicator for certain failure modes and 

insipient failures in critical components. 

d. Model residuals: Increasing residuals between 
empirically derived models and observed values 

can give insights into impending failures and 

isolation using appropriate classification models. 

2.3 Data Preprocessing for PHM Modeling 

Prior to any subsequent PHM models being developed, raw 

data captured typically has to be processed to ensure that 

proper variations are captured, no biases are introduced and 

the underlying distributions generating real life data are 

modeled correctly. The following are some of the processes 

that one might consider during a PHM application: 

a. Filtering: raw sensor data is filtered on multiple 

dimensions to include relevant time periods, 
operating modes of equipment, ambient conditions 

and failure modes. 

b. Frame Specific Segmentation: sensor and 

controller data are sampled based on specific frame 

types to average out against biases arising from 

multiple designs and operating ranges of key 

parameters. 
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c. Smoothing: protecting against biases in model 

development and parameter learning. Also, to 

prevent faulty rules due to outliers arising out of 

data quality issues, certain statistical or model 

based smoothening modules have been 

implemented. 

d. Data Quality: In addition to the above mentioned 

data preprocessing, it is also required to resolve 

data quality issues such as missing data, faulty 

sensor readings and out of range values.  

Due to the nature of multiple key health indicators that are 

monitored, there was a need felt to implement different 

anomaly detection algorithms that can capture different 

failure modes. Different types of data driven methodologies 

have been developed in order to develop a robust PHM 

system – including soft computing (Bonissone, P., & Kai 

Goebel), reliability and remaining useful life estimation (see 

Ebeling (2005), machine learning methods and the fusion of 
these methods with physics concepts. In the following 

section we outline one such anomaly detection method that 

was implemented for our PHM case study. These anomaly 

detection methods would isolate abrupt changes in operation 

patterns, which are then used for subsequent analysis and 

decision making process. 

2.4 Anomaly Detection Algorithm 

Both online and batch mode implementations have been 

tested for anomaly detection, and an example algorithm is 

described below. Interested user can see following 

references for advanced analytics methods used: Kumar, 
Vipin et al(2005), (Russel S &Norvig P, 2002); (Duda R.O, 

Hart P.E & Stork, D.G 2001) 

Multi-variate Hypothesis testing method Hotelling’s T-

Square was proposed by Harold Hotelling (Hu, Xiao, Qui, 

Hai and Iyer, Naresh, 2007), (M. Markou & S. Singh, 

2007). It is a multivariate technique that captures the 

changes in data from multiple parameters by using their 

covariance information. This is a generalization of the 

Student’s t statistic used in multiple hypothesis testing. 

Consider a time series as: 

T

m tXtXtXtX ))(),....(),(()( 11  

Where m is the number of variables sampled at each time t, 

Xi(t) are the parameter sampled at regular intervals. 

Assuming X(t) is a multi-variate normal ~N(μ, Σ), where μ  
and Σ are the multivariate mean and co-variance matrix 

respectively. 

The mean and variance μ and Σ are estimated as follows: 

T
mXXXX ).....,( 21                                               (1) 








n

i

TXtXXtX
n

W
1

))()()((
1

1
                 (2) 

Hotelling T2 Statistic for X(t): 
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The Null Hypothesis states that X(t) is  NOT different from 

previous n samples or that no change occurred. Large values 

of T-Square statistic imply that the null hypothesis was not 
true. This was implemented using thresholds in Matlab ™ 

(Mathworks). The test comprised of testing the Hotelling-T 

Square Statistic if it exceeded a present threshold, thereby 

confirming a change/anomaly at given time instant. 

This statistic uses the statistical distance and incorporates 

multivariate variance-covariance matrix, to detect 

significant shifts and linear relationships. 

We optimized the various parameter settings and threshold 

values for the anomaly detection module by analyzing 

different turbine frame types. This was then run for each of 

the monitored equipment health indicator and each time it 

was run, we fused the outputs from multivariate Hotelling-T 
square with other anomaly detection algorithms. This was 

done in order to capture both local anomalies (uni-variate 

sense) and system level anomalies (multivariate sense) 

across more than a single monitored parameter at same time 

instant.  

2.5 Alarm Generation Process 

Due to a large number of equipment that are being 

monitored and their key parameters, there is a definite need 

to keep the fleet wide alarm rates to have a high probability 

of detection with a very low false alarm rate. For this 

purpose, we implemented a time based alarming process and 
optimized it with respect to the field data, observed failure 

rates and deployed the algorithms with an ability to change 

the alarming settings based on fleet requirements. 

3. PROFICY ADVANCED ANALYTICS TOOLSET 

Proficy® is a suite of commercial-off-the-shelf software 

solutions that are designed to help solve the operations 

challenges in infrastructure and/or manufacturing industries. 

Proficy software suite offers the depth and breadth of 

capabilities from control and optimization.  

Proficy software Suite provides a whole solution from data 

collection, data management, data visualization to data 

analysis for remote monitoring and diagnosis.  
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Figure 2. Remote Monitoring & Diagnosis Process 

 

Proficy troubleshooter/cause+ (Figure 3) suite is the key 

software to perform advanced data analysis and knowledge 
discovery. It provides a platform to facilitate all steps of 

advanced analytics 

 

Figure 3. Troubleshooter/Cause+ Functionalities 

 

Analyze: troubleshooter wizards provide rich analytics 

models and powerful visualization tools for subject matter 

experts to speed up the process of data exploration and 
knowledge discovery.  

Design: Troubleshooter architect provides integrated 

development and simulation environment for application 

engineers to design and debug analytic solutions with pre-

built database interface, various data preprocessing/post-

processing techniques, and internal or external 

algorithms/analytics models 

Deploy: Cause+ provides a deployment environment for 

operation managers to run the analytics solutions in real-

time, event-triggered, or scheduled manners.   

3.1 Offline Analysis 

The Troubleshooter Wizards (continuous or discrete) guide 
users through troubleshooting processes in the developer 

environment. Using the Wizards, various tools are available 

to identify the causes of process deviation using historical 

data. Preparing data is made quick and easy using graph and 

trend views, and modeling the industrial process is intuitive. 

From there, knowledge about the process can be gleaned 

effectively and combined with the knowledge of expert 

personnel to develop an integrated solution to process 

problems.  

This solution can then be further customized and tested 

within Architect, and deployed in real-time in the cause+ 
engine by Action Object Manager. 

3.2 Solution Design         

The Proficy Architect environment (Figure 4) enables the 

development of solution blueprints, used to visualize the 

process in the simulated mode. It contains user-friendly 

libraries and simple-to-configure blocks with which solution 

are developed. Various features in the menu and the 
explorer-type view are available for easy navigation in large 

solutions. A powerful troubleshooting compiler produces 

simulation and debugging on the execution ability of a 

blueprint after development. 

 

Figure 4: Proficy Architect IDE 

This environment enables great flexibility in developing 

specific condition monitoring and decision-support 

solutions. The user can choose from high-level rapid 

prototyping tools to lower-level programming functions in 

scripting or in any of a number of programming languages 

that supports Component Object Model (COM, such as 
Visual C#/C++ and Visual Basic).  

3.3 Online Deployment  

The Action Object Manager provides a simple and easy way 

to deploy and monitor Action Objects. It allows users to 

easily maintain all your Action Objects from one central 

point of access. An Action Object (AO) is the name given to 

an executing blueprint. This blueprint could have been 

created and deployed from a number of services, including 

Architect, Troubleshooter Wizards, or other Proficy tools. 

Proficy Advanced Analytics also provides a toolkit for fleet 

asset monitoring. The toolkit can apply the same action 
object to a large number of assets programmatically, which 

make fleet monitoring easier and more reliable. 

3.4 Integration of Proficy with Existing Platforms  

The Proficy Advanced Analytics software provides a series 

of interface tools  (Figure 5) to integrate existing algorithms 

into the system (CSense Systems (Pty) Ltd). Some of the 

tools are General script, .NET script, COM Wrapper, .NET 

Wrapper, Matlab script. So users can plug their existing 

algorithms/ modules directly into the Proficy Advanced 

Analytics environment and seamlessly integrate with other 

part of the system. For example, Matlab code can be 
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plugged into the system directly (Matlab license is needed to 

run the code). Compiled Matlab objects can also be 

integrated. The COM Wrapper block allows the user to 

integrate external COM components within the Proficy 

Advanced Analytics environment. In this way the user can 

add custom functionality, own code/libraries, or third party 
libraries/components to the solution.  

Those tools provide great flexibility to end users, who can 

easily re-use their existing modules develop and deploy 

PHM platforms. In summary, Proficy advanced analytics 

provides a series of tools from offline-analysis to online 

deployment so PHM users can focus on the most creative 

but challenging part of the job.  

 

        Figure 5: Tools in Proficy Advanced Analytics 

4. IMPLEMENTATION  

The PHM case study described for GE Energy was 

implemented on Proficy® platform. We tested the various 

PHM models developed on 200 units operational data for a 

six month duration at multiple time resolutions.  

 

Figure 6: Multiple trending in Proficy® 

Some of the data exploratory and model analysis done as 
explained in Section 2 earlier and was performed to 

understand the distributions of key parameters of interest, 

detecting outliers and evolution of key metrics over time. 

Figure 6 above depicts some of the basic plots explored in 

Proficy® toolset. As shown, multiple variables can be 

examined at instantaneous periods of time, understanding 

basic distributions and plots such as scatter plots, line plots, 

overlay plots and histograms. 

Deviations of various key parameters from their calculated 

values and set points can be crucial in a PHM advisory 

system. An example of such deviations is shown in Figure 

7a. 

Also, as depicted in Figure7b, some of these critical 

differentials are tracked over a period of time and early 

warnings can be picked up to perform enhanced monitoring 

of high risk units. Some of these can also be used to 

deviations can also be used to monitor certain frequently 

occurring failures and plan for inventory and spare parts. 

 

Figure 7a: Predicted Vs Actual Values 

A total of over 1 million rows of operational data were 

analyzed in the above mentioned PHM case study. Initial 

results indicated a probability of detection over 80%. This is 

significant as there was little monitoring capability available 

for some of the turbine generation capability earlier and 
given that this is work in progress, we are hopeful to 

increase the probability of detection rates to very high 

values, keeping the false alarm rates under control.  

 

Figure 7b: Tracking evolution of deviations 

The main objective is to understand and capture the patterns 
of increasing deviations and raise appropriate alarms for 

user to be able to perform exception based monitoring. This 

would ensure a high productivity and increased reliability. 

5. CONCLUSION AND FUTURE DIRECTION  

As depicted in this case study for GE Energy, a PHM 

system using real failures on key equipment was 

implemented using some of the existing platforms and using 

GE Intelligent Platform.  

On the PHM algorithms side one of the key lessons learnt 

was to develop PHM algorithms with a high degree of 

explain-ability to end user: this ensures easy acceptance by 

field personal and relation of physics of failure with 
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advanced PHM methods seamless. As this is still work in 

progress, we plan to improve the quality of results by fusing 

multiple methods developed individually and using all 

sources of information available to monitor the equipment. 

On the Proficy side, we plan on linking the current GEIP 

algorithmic capability with GE SmartSignals® algorithms 
and linking some of the existing legacy algorithms with the 

Proficy toolset. Also in pipeline is to enhance the native 

prognostic methods capability within Proficy, thus 

increasing it’s analytical power to include advanced 

methods. 

The authors would like to acknowledge that Matlab is a 

trademark of Mathworks (http://www.mathworks.com) and 

.NET is a trademark of Microsoft 

(http://www.microsoft.com). 
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