

Application of Event Based Decision Tree and Ensemble of Data Driven Methods for Maintenance Action Recommendation

James K. Kimotho, Christoph Sondermann-Woelke, Tobias Meyer and Walter Sextro

Agenda

- Data Preparation
- Evolution of methods
 - Parametric based ensemble of data driven methods
 - Event based decision tree and support vector machines (SVM)
 - Event based decision tree and ensemble of data driven methods
- Results
- Conclusions

Data Preparation

- Data files split into smaller files of 5000 data instances each
 - For easier handling
 - Occupies less memory
- Processing done in Matlab environment
 - Data converted to *.mat files
- Separation of confirmed problems and nuisance data
- Removal of constant parameters, repeated parameters and implausible values
- Isolation of cases with missing information
 - processed separately

- Parametric based ensemble of data driven methods
- Data driven methods: based on machine learning approach
- Ensemble: aggregation of results from several methods

- Parametric based ensemble of data driven methods
- State of the art data driven methods:
 - K-Nearest Neighbors (kNN)
 - Artificial Neural Networks (ANN)
 - Classification and regression trees (CART)
 - Bagged tress (BT)
 - Random forests (RF)
 - Support vector machines (SVM)
- Data usage:
 - Training
 - Input: parametric data
 - Target: problem labels
 - Testing
 - Input: parametric data
 - · Output: predicted problem labels

- Parametric based ensemble of data driven methods
- Training approach for each algorithm
 - Batch training using 40 nuisance cases per batch

Evolution of Methods

Parametric based ensemble of data driven methods

Performance Evaluation

Algorithm	Average		
	accuracy		
kNN	89%		
ANN	88%		
CART	83%		
BT	93%		
RF	94%		
SVM	90%		
Ensemble	95%		

Ensemble of algorithms

- Aggregation of results from several algorithms
- Weighted voting to obtain final class

Training accuracy: quite impressive ⁽ⁱ⁾

- Event based decision tree and SVM
- How can we use the event code?
- Event code indicates:
 - System or subsystem that measurements are taken from
 - Reason why the code was generated
- Two categories of cases were identified:
 - Cases with single events
 - Cases with multiple events
- Decision tree constructed based on event codes
- Parametric data used to derive decision rules for events appearing in multiple problems.
- For cases with multiple events, SVM was used to build a model for each event
 - SVM selected since it is robust

- Event based decision tree and SVM
- Construction of event based decision tree

- Event based and ensemble of data driven methods
- Ensemble method employed to improve classification
- Methods employed:
 - SVM with optimally tuned parameters
 - Bagged trees
 - Random forests
- 165 models of each algorithm were built
- Final classification obtained through majority voting

Evolution of Methods •••••

- Event based and ensemble of data driven Methods
- Construction of event based decision tree for event E35590 ···}

Results

Distribution of classification results of the test data

- Last two methods: nuisance data considered only for single events
- Performance analysis

	No. of outputs	No. of incorrect outputs	No. of nuisance outputs	Score
Method 1	303	133	149	21
Method 2	332	122	162	48
Method 3	331	121	159	51

Conclusions

- Methodologies for maintenance action recommendation based on event codes and parametric data have been presented
- Combination of event based decision tree and ensemble of data driven methods improves classification
- Methodologies presented led to our team being ranked position three
- Method can be improved if more information on the equipment and parametric data is revealed

Thank you for your kind attention!

James K. Kimotho james.kuria.kimotho@uni-paderborn.de Tel. 05251/60-1819 Fax 05251/60-1803 Mechatronik und Dynamik Universität Paderborn Pohlweg 47-49 33098 Paderborn