On-Line Fault Detection in Wind Turbine Transmission System using Adaptive Filter and Robust Statistical Features

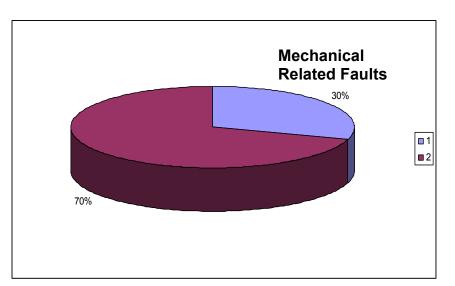
Ruoyu Li Remote Diagnostics Center SKF USA Inc. 3443 N. Sam Houston Pkwy., Houston TX 77086 Email: ruoyu.li@skf.com

Outline

- Introduction
- Theoretical Basis
- Data Collection
- Analysis Results
- Conclusion

Introduction

- Wind Power is the world's fastest growing renewable energy source.
- Reducing the cost of generating the wind energy becomes a critical issue.



[1] Ribrant, J., and Bertling, L.M., "Survey of Failures in Wind Power Systems With Focus on Swedish Wind Power Plants During 1997–2005," *Energy Conversion, IEEE Transactions on*, vol.22, no.1, pp. 167,173, 2007

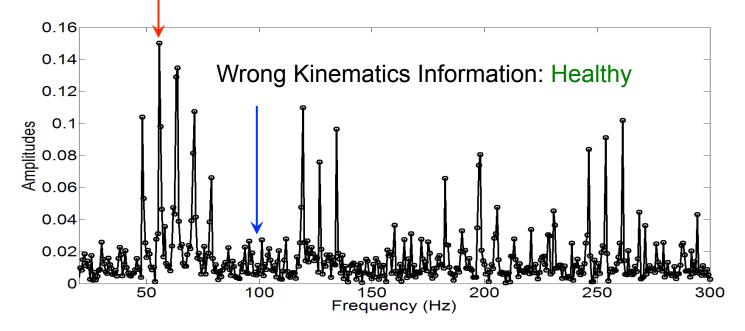
- Online condition monitoring of the wind turbine mechanical transmission system provides the following benefits:
 - □ Greatly reduce the maintenance cost,
 - □ Avoid catastrophic failure,
 - □ Improve the reliability of the whole system.

Challenges:

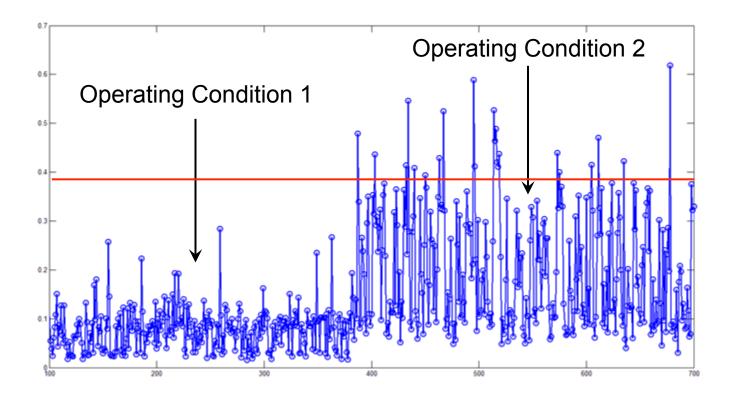
- Uncertain kinematics information
- □ Speed and loading variations
- □ Low fault signal-to-noise ratio
- □ Large volume of signal with different types

Uncertain kinematics information

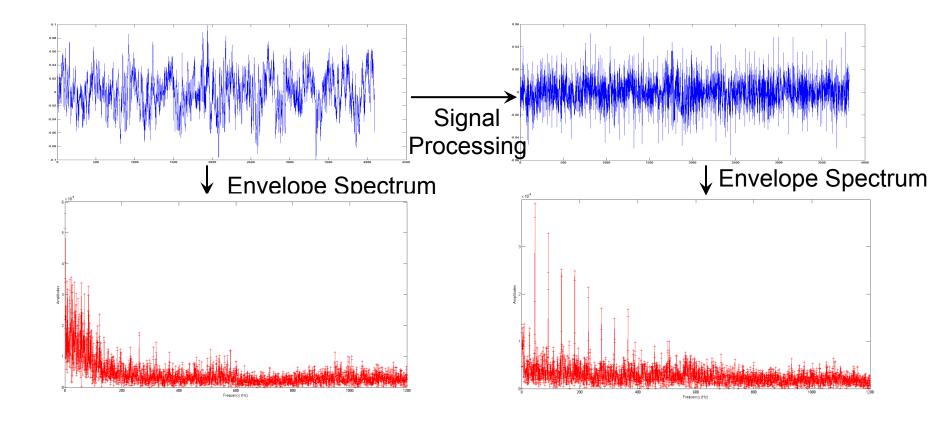
Right Kinematics Information: Bearing Issue



Speed and loading variations



• Low fault signal-to-noise ratio



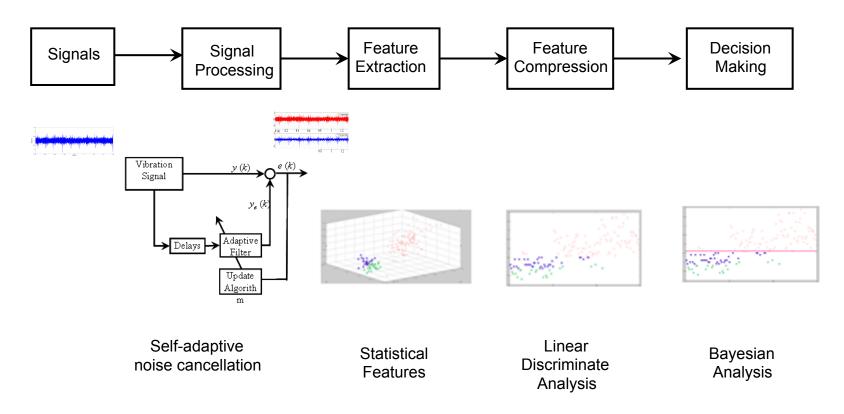
Large volume of signal with different types

- □ When gating condition met the requirements, a wind farm with size of 1000 wind turbines,
 - 72000 to 230400 extracted trend values daily
 - 24000 to 96000 time waveforms and spectrums daily

In real applications, effective fault detection algorithms are an essential part of the condition monitoring system, especially for the online continuous monitoring systems, like wind turbine condition monitoring systems.

Theoretical Basis

Schema of the Proposed Methodology



Theoretical Basis...

Signal Processing

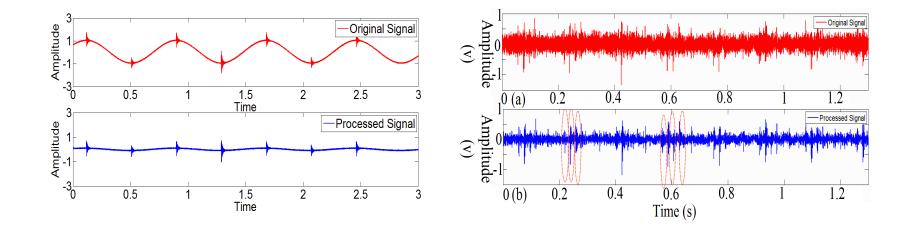
Simulation Example

$$y_1 = \sin(w^* p i^* t)$$

 $y_2 = A_t^* e^{-N^* t} * \sin(w_1^* p i^* t)$

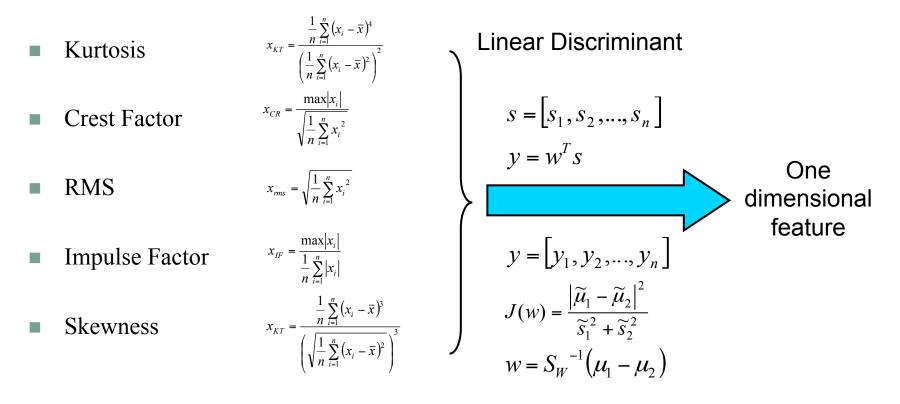
Real Vibration Signals

Vibration signal with bearing inner race defect



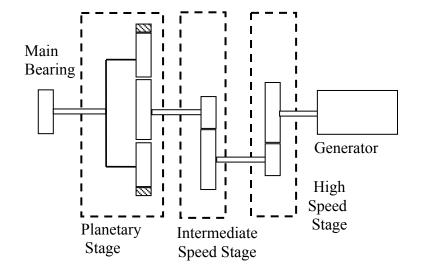
Theoretical Basis...

Extracted Features



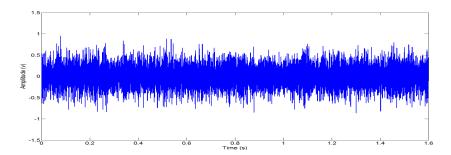
Data Collection

- SKF IMx-W
 - A robust measurement unit designed for installation in wind farms on and off-shore.
 - Sixteen analogue inputs and two digital inputs.
 - Simultaneous measurement of all channels.
 - Multi-parameter gating.

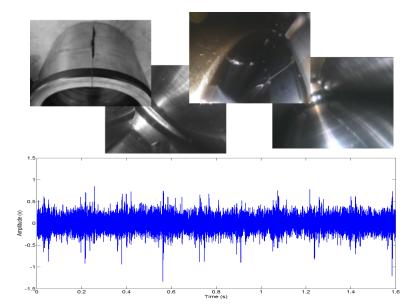


Data Collection...

 Recently, a number of SKF IMx-W, WinCon units were installed on a fleet of wind turbines to perform the online condition monitoring.



Vibration signal of the healthy gearbox



Signal of the gearbox with bearing inner race defect

Data Collection...

- When gating conditions meet the settings:
 Key features value: 10 Minutes
 Time Waveform: 8 hours
 Spectrum: 8 hours
 Sampling frequency: 5.12 kHz
- Sampling time length: 1.6 seconds

Vibration signal of the healthy wind turbine

0

-1

0

-1

0(a)

0 (b)

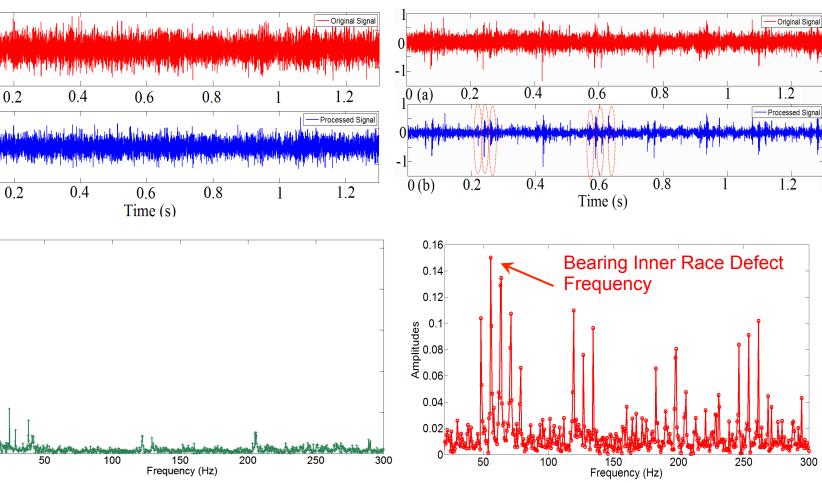
0.025

0.02

S 0.015 Amplitudes 0.01

0.005

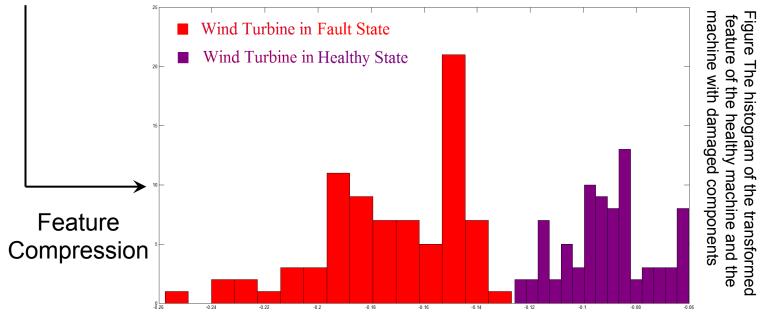
0



Vibration signal of the damaged wind turbine

Table The calculated values of the processed signal of healthy gearbox and the gearbox with defect

Healthy Gearbox			Gearbox with Defect		
	Mean	STD		Mean	STD
Kurtosis	2.9413	0.2080	Kurtosis	6.7379	1.8137
Crest Factor	8.3849	1.7355	Crest Factor	12.8863	1.6221
RMS	2.0668	1.0749	RMS	1.6640	0.6494
Impulse Factor	10.5101	2.1233	Impulse Factor	17.6538	2.7323
Skewness	-0.0181	0.0892	Skewness	-0.0545	0.1636

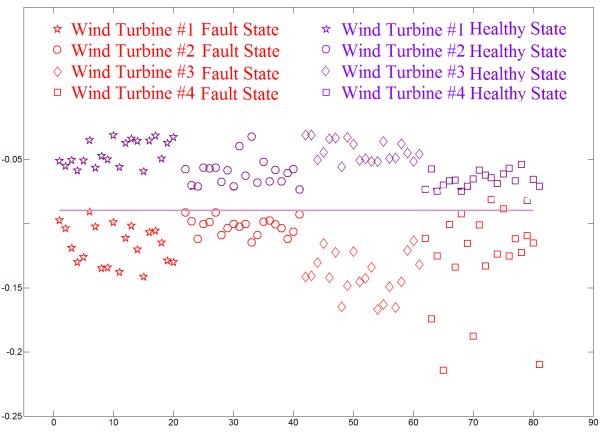


0.9 boundary:

•The system is deployed to a newly created wind farm

•The least fault sensitive boundary

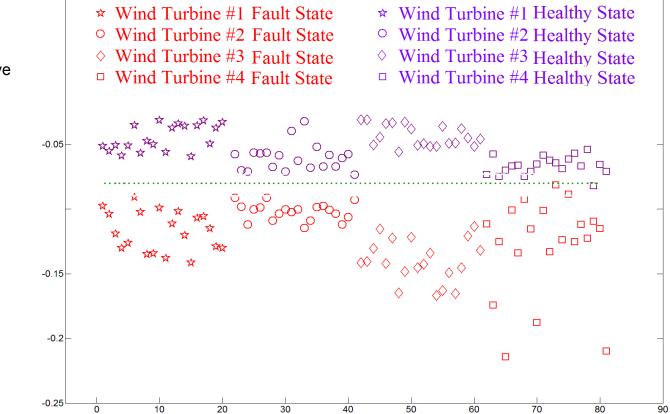
• 98.750% fault detection accuracy



0.5 boundary:

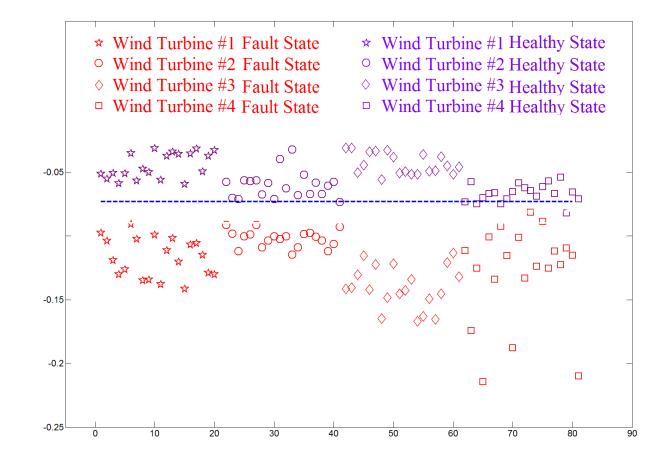
•The moderate fault sensitive boundary

• 99.375% fault detection accuracy



0.1 boundary:

- •The most fault sensitive boundary
- 96.875% fault detection
 accuracy



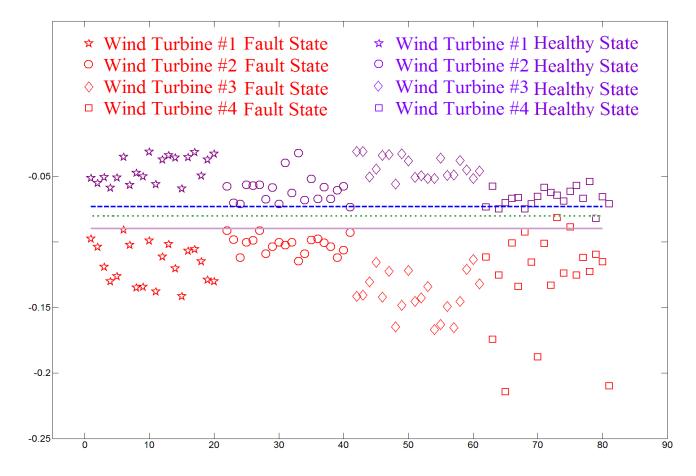
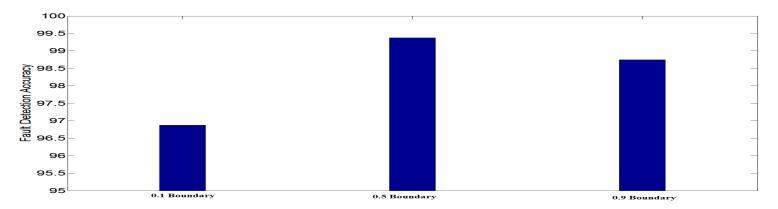


Figure. The transformed feature and the decision boundaries with different prior statistics (blue line: P(Healthy)=0.1, green line: P(Healthy)=0.5,pink line: P(Healthy)=0.9)

Table The confusion matrix of the different boundaries

		Calculated Healthy	Calculated Fault
0.1 Boundary	True Healthy	75	5
	True Fault	0	80
0.5 Boundary	True Healthy	80	0
	True Fault	1	79
0.9 Boundary	True Healthy	80	0
	True Fault	2	78



Conclusion

- An effective automatic fault detection methodology has been developed.
- The methodology consists:
 - Adaptive filtering technique to improve the fault SNR
 LDA to reduce the features' dimensions.
- Wind turbine vibration signals obtained in real operation were used to demonstrate the effectiveness of the presented methodology.

Conclusion...

In future work, it will be interesting to study the effectiveness of the developed method on a variety of rotating equipments in different industries and applications, such as ranging arms in the mining industries, pumps in the paper mill, and motors in the food industries, and so on.

Questions?