A New Acoustic Emission Sensor Based Gear Fault Detection Approach

Authors: Yongzhi Qu, University of Illinois at Chicago Eric Bechhoefer, *GPMS LLC* David He, University of Illinois at Chicago Junda Zhu, NRG Systems

> Presented by: Yongzhi Qu University of Illinois at Chicago

Outline

- Introduction
- Methodology
- Experiments setup
- Results and discussion
- Conclusions

Introduction

- Machinery fault diagnostic sensors
 - Vibration Sensors: Accelerometers
 - Acoustic Emission sensors
 - L Oil debris sensors
- Vibration sensors are the most widely used, probability the most matured and effective techniques
- Acoustic emission shows high potential to initial fault detection and high sensitivity

Acoustic Emission

AE definition: Acoustic Emission (AE) is commonly defined as transient elastic waves within a material, caused by the release of localized stress energy.

IC COLLEGE OF

Acoustic emission vs. Vibration

	Vibration	Acoustic Emission
Advantage	Low costEasy to analysis	 Incipient fault Sensitive to fault location No resonance
Disadvantage	 Second derivative of the displacement Structural resonance 	 High sampling rate Large storage and computational burden Non-stationary

Outline

- Introduction
- Methodology
- Experiments setup
- Results and discussion
- Conclusions

State of Art Methods

Burst type AE signals
 Data driven methods
 High data sampling rate

IC COLLEGE OF

UNIVERSITY OF ILLINOIS ENGINEERING

- Li and He (2012), introduced an EMD-based AE feature quantification method followed by Artificial Neural Networks (ANN) to do AE signal classification for fault detection.
- Pandya *et al.*, (2013), developed a supervised learning methods for bearing fault detection using AE signals.

Challenge

- High data sampling rate
- Complicated signal processing methods
- Physical information missing
 - Bearing: Ball pass frequency
 - Gear: Meshing frequency and gear structure

IC COLLEGE OF

UNIVERSITY OF ILLINOIS AT CHICAGO ENGINEERING

• Long data training processing

Proposed AE processing methods

- Downshift AE signal frequency by heterodyning
- Collect AE signals with low sampling rate device

IC COLLEGE OF

UNIVERSITY OF ILLINOIS ENGINEER

• Process AE signals like vibration

Heterodyne

- Heterodyne is a radio signal processing technique commonly used in telecommunication.
- Two signals at frequencies f_1 and f_2 are combined in mixer to get two new signals at the frequency $(f \not \downarrow 1 f \not \downarrow 2)$ and $(f \not \downarrow 1 + f \not \downarrow 2)$
- Basic principle:

$$sin(\theta)sin(\varphi) = 1/2 cos(\theta - \varphi) - 1/2 cos(\theta + \varphi)$$
 (1)

IC COLLEGE OF

Spectral Kurtosis

 The SK of a signal x(t) is defined as the energy-normalized fourth-order spectral cumulant as:

 $K \downarrow x (f) = S \downarrow 4x (x) / S \downarrow 2x \uparrow 2 (f) - 2$

where $S \downarrow n \chi(f) = \langle |X(t,f)| \uparrow n \rangle$, (•) stands for the time averaging operator, X(t,f) is the complex envelop of signal x(t).

UIC COLLEGE OF

UNIVERSITY OF ILLINOIS AT CHICAGO ENGINEERING

• Kurtogram was proposed by Antoni and Randall (2006) to optimized the kurtosis

Time Synchronous Average

For a function x(t), digitized at a sampling interval nT, resulting in samples x(nT). Denote the averaged period by mT, Number of periods by N, TSA is given as (Braun, 1975):

 $y(nT)=1/N\sum r=0$ (nT-rmT)

(2)

IC COLLEGE OF

UNIVERSITY OF ILLINOIS ENGINEERING

Derivative signal from TSA

- **Residual signal**: defined as a synchronous averaged signal with the shaft, mesh and their harmonic frequencies removed
- Amplitude and phase modulation signal: Obtained by Hilbert transform.
- Teager's energy operator (Teager et al., 1992)

$$\psi[x\downarrow i] = x\downarrow i\uparrow 2 - x\downarrow i - 1 \cdot x\downarrow i + 1$$

where $\psi[x \downarrow i]$ is the ith element in EO, $x \downarrow i$ is the i^{th} element of x.

IC COLLEGE OF

Gear Condition Indicators (CIs)

- **RMS**: $x \downarrow rms = \sqrt{1/N \sum_{i=1}^{i=1} N} (x \downarrow i \uparrow 2)$
- P2P:Peak-to-peak amplitude
- Crest factor : the ratio of the peak and RMS

 $CF = |x| \downarrow peak / x \downarrow rms$

• **Kurtosis**: the fourth order statistics of a signal, defined as:

$$Kurt = \frac{N\sum_{i=1}^{N} (x_i - \overline{x})^4}{(\sum_{i=1}^{N} (x_i - \overline{x})^2)^2}$$

IC COLLEGE OF

Gear Condition Indicators (CIs)

FM4: The FM4 parameter is simply the kurtosis of the difference signal.

$$FM4 = \frac{N\sum_{i=1}^{N} (d_i - \overline{d})^4}{(\sum_{i=1}^{N} (d_i - \overline{d})^2)^2}$$

where di is the *i*-th element of the difference signal, N is the length of difference signal.

NA4: NA4 is an improved version of FM4. NA4 keeps the sidebands information.

UIC COLLEGE OF

$$NA4 = \frac{N\sum_{i=1}^{N} (r_i - \overline{r})^4}{(\frac{1}{M}\sum_{j=1}^{M}\sum_{i=1}^{N} (r_{ij} - \overline{r}_j)^2)^2}$$

Outline

- Introduction
- Methodology

• Experiments setup

- Results and discussion
- Conclusions

Test rig

Test rig: Designed by SpectraQuest AE sensors: Physical Acoustic corporation

Seeded Fault

In the faulty gearbox, one of the intermediate gears with 48 teeth was damaged by cutting the root of a gear tooth with a depth equal to half width of the gear tooth by EDM (electric discharge machining) with a wire of 0.5 mm diameter, to simulate the root crack damage in real applications.

Seeded Faults

Data Acquisition Systems

Testing Conditions

• Multiple input speeds were tested, 10-60Hz

Input shaft speed (Hz)	10	20	30	40	50	60
Faulty gear shaft frequency	5.56	11.1	16.7	22.2	27.8	33.3
Output shaft speed	4.17	8.33	12.5	16.7	20.8	25

IC COLLEGE OF

UNIVERSITY OF ILLINOIS AT CHICAGO ENGINEERING

0 loading condition are tested

Outline

- Introduction
- Methodology
- Experiments setup
- Results and discussion
- Conclusions

UNIVERSITY OF ILLINOIS AT CHICAGO

EKING

ENGINE

Raw data analysis

Results of Proposed Methods

Results (cont.d)

UIC COLLEGE OF

Conclusions

- Heterodyne can effectively shift the frequency of AE signals down
- Using Spectral kurtosis and TSA can largely enhance the fault feature
- Kurtosis based CIs works well for tooth crack fault

Reference

- Antoni J. (2006), "The spectral kurtosis: a useful tool for characterizing nonstationary signals", *Mechanical Systems and Signal Processing*, Vol. 20, No. 2, pp. 282–307.
- Antoni J. and Randall R.B. (2006), "The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines", *Mechanical Systems and Signal Processing*, Vol. 20, No. 2, pp. 308–331.
- Braun S. (1975), "The exaction of periodic waveforms by time domain averaging", *Acustica*, Vol. 32, No.2, pp. 69 77.
- Li R. and He D. (2012), "Rotational Machine Health Monitoring and Fault Detection Using EMD-Based Acoustic Emission Feature Quantification", *IEEE Transactions on Instrumentation and Measurement*, Vol. 61, No.4, pp. 990–1001.
- cFadden P.D. (1987), "A revised model for the extraction of periodic waveforms by time domain averaging", *Mechanical Systems and Signal Processing*, Vol.1, No.1, pp. 83 – 95.

Thank you

Questions?

