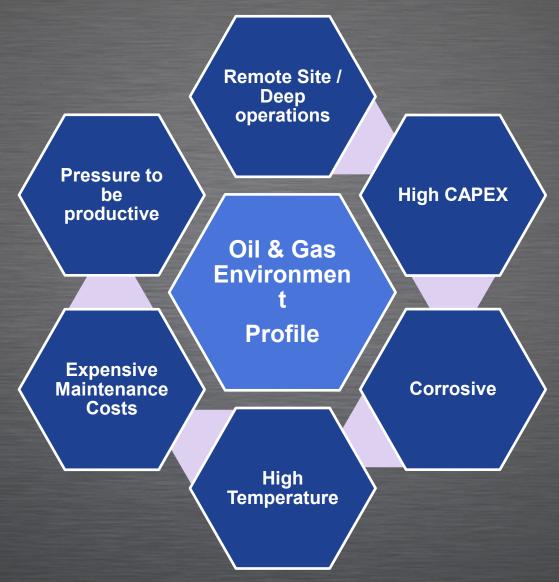
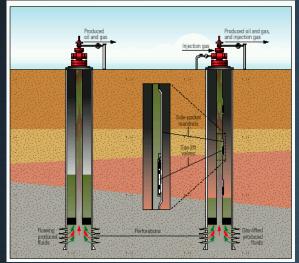
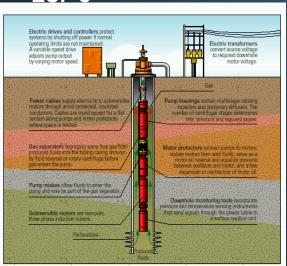
GE Oil & Gas

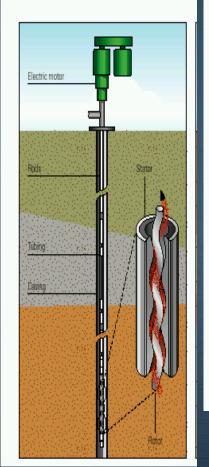
Prognostics for Oil & Gas Artificial Lift applications


William Carrillo 2013 PHM Conference New Orleans

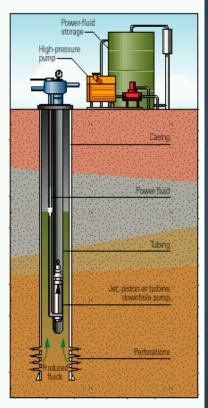
What's our application?

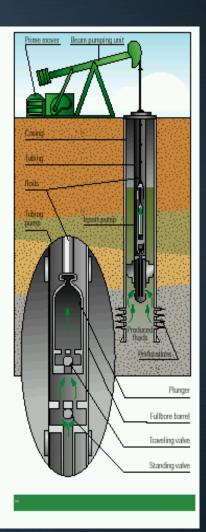


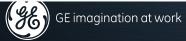



Definition of Artificial Lift

Gas Lift




PCP

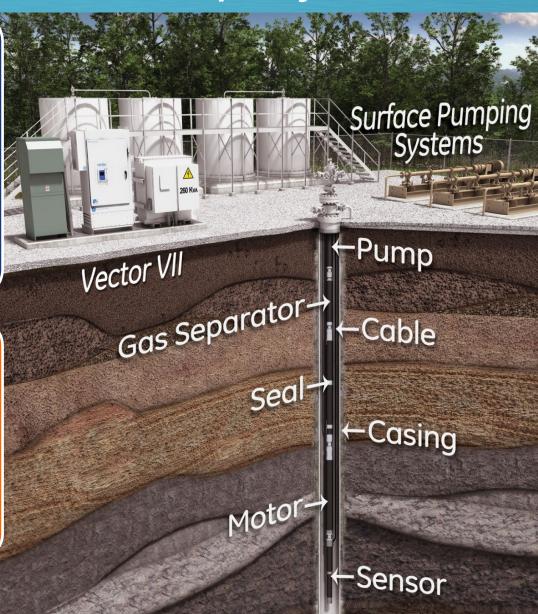


HydroLift Hydraulic Pumps

Beam pump

Electro Submersible Pump System

Monitor



- Intake Pressure
- Intake Temperature
- Motor Temperature
- Discharge Pressure
- Vibration
- Motor Current
- Casing Pressure
- Tubing pressure

Control

- ESP Motor Frequency
- ESP Remote Start
- ESP Remote Stop

Diagnostics using Analytic Analysis

Typical ESP failures & causes

FAILURES

Mechanica

- Leaking
- * Failed pressure test
- * Stuck (e.g. does not rotate
- * Burst
- * Beni
- * Broken
- * Disconnecte

Material

- * Burn
- * Corroded
- Worn
- * Melted
- * Overheated

Flectrica

- * Short circuit
- * Open circuit
- * Faulty power

Others

- * Plugged with solids
- * Contaminated fluid

Design related

Improper:

- * Equipment capacity
- * Material selection
- * System configuration

Fabrication

*Manufacturing problem
*Improper quality control

Storage &

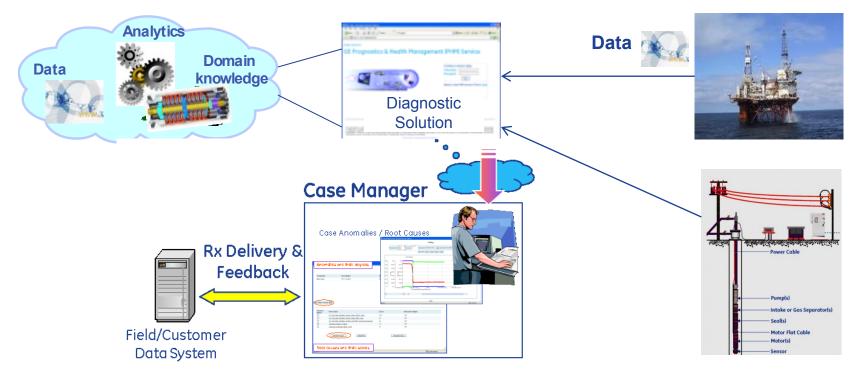
* Improper storage
* Improper transportation

Installation

- * Assembly procedure
- * Installation procedure

Operational

- Normal wear and tearInstallation or
- inadequate training


Reservoi

- * Reservoir fluids
- * Reservoir performance

Diagnostics for ESP

Program

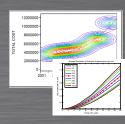
Development of a functional M&D system for ESPs

Transition to live field system

Advantage

Reliable lift performance
Reduced equipment downtime
Increased installed base and margin

Deliverables and Business value


Decision Optimizatio n

Deliverables

Models & Tools:

- Long term service agreements
- Optimize Spares & Logistics
- Optimize Maintenance

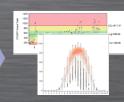
Business Impact

- Lower cost of quality
- Lower lifecycle costs

Advanced Reliability

Models & Tools:

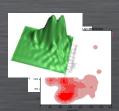
- Survival Analysis
- Recurrent Event Analysis
- Probabilistic design models


- Improved reliability
- Improved availability

Anomaly Detection

Tools & Algorithms:

- Anomaly Detection
- Change-Point Detection
- Data Fusion


- Reduce downtime
- Services revenue

Report & Algorithms:

- Data mining identify issues (known, emerging)
- Data for probabilistic design

- Optimized operation
- ESP improved tracking

How much will a failure cost?

Lost production cost (Estimated):

Price of oil barrel: \$100

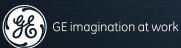
Typical production: 500 b/d

Water cut: 70% (percentage of water per each barrel produce)

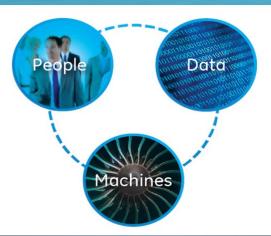
Estimated downtime: 2 days (per incident in remote areas)

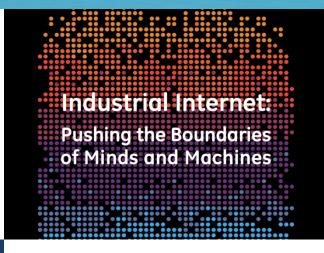
Estimated incidents per year: 10

Estimated savings: 500 b/d x 20 x 0.3 x \$100 = \$3MM !!

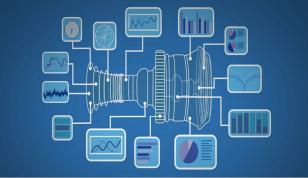

Intervention cost (Estimated):

Onshore conventional well: \$5K to \$25K per intervention


Onshore unconventional well: \$150K to \$250K per intervention

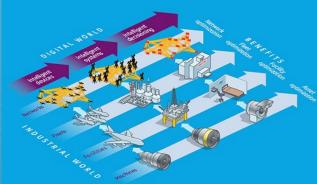

Offshore well: Up to \$1MM per intervention

Intervention costs is often a deciding factor for customer sale!



Industrial Internet

200 sensors across the turbine generate 300 data points per second of performance and operation every hour.


Intelligent Machines

Advanced Analytics

People at Work

Intelligent Machines

Advance Analytics

People at Work

In conclusion

The key for a successful Prognosis solution implementation is an adequate management of Big Data. At GE Oil & Gas, the Industrial Internet will provide the tools and means necessary to achieve this goal and facilitate the transition to Brilliant Machines.

For more information, please visit...

GE Oil & Gas Artificial Lift (ESP)

- http://www.ge-energy.com/products and services/products/electric submersible pumping systems/index.jsp
- http://www.ge-energy.com/products and services/products/artificial lift controls/index.jsp

Industrial Internet

http://www.ge.com/sites/default/files/Industrial Internet.pdf

GE Predictivity™ Industrial Internet Solution

https://www.ge.com/b2b/predictivity

Data Management & Data Analytics Software

http://www.ge-ip.com/products/data-management-data-analytics/c557

