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HOW DIAGNOSIS FITS INTO “PHM”? 
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* “Introduction to Prognostics” – Kai Goebel, NASA Ames – Tutorial at the First 
European Conference of the Prognostics and Health Management Society 2012 



OUTLINE 

 Introduction to Fault Diagnosis 

 Consistency-based Diagnosis 

 Consistency-based Diagnosis using GDE 

 Inclusion of temporal information within CBD 

 Possible Conflicts – a compilation technique for CBD 

 Some Application Examples 

 Efficient fault identification – Advanced Water Recovery System 

 Distributed diagnosis – Planetary rover 

 The link between CBD and Prognosis 

 Distributed prognosis – Centrifugal pump (rapid propellant system) 

 Current Challenges and Open Problems 
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INTRODUCTION TO 

FAULT DIAGNOSIS 
Fundamental concepts 



WHAT IS (AUTOMATED) DIAGNOSIS? 

 What is diagnosis? 

 The identification of the nature of an illness or other 

problem by examination of the symptoms (Concise 

Oxford English Dictionary, 2008) 

 It is very typical of the medical domain, but not 

exclusive: finding the cause that something is 

wrong 
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WHAT IS (AUTOMATED) DIAGNOSIS? 

 How the diagnosis process works? 

6 

1. We observe (some) 

symptom(s) 

 

I feel dizzy, and have nausea  Temperature at boiler over 

140ºC 

2. We need to know that 

something is wrong 

 

Dizzines is not a normal status Temperature must be < 130ºC 

3. We enumerate the set 

of illness / malfunctions 

that fits the symptoms 

 

•Problems in your neck (muscles 

pulled in the cervix) 

•Vertigo 

•Etc… 

•Sensor fault: blocked exhaust 

pipe 

•Etc… 

4. We perform 

additional tests to 

confirm or reject the 

diagnosis 

•Discomfort in the ear  vertigo 

•I was running for one hour at 

noon (36ºC outside temperature, 

high humidity, high ozone 

concentration)  Heatstroke 

 

•Relation pressure/temperature 

abnormal => sensor fault 



 

INTRODUCTION 

FAULT DIAGNOSIS 

 I will focus on automated diagnosis of physical 

devices (industrial, aerospace, etc…) 

 R. Davies, 1982  

 Process of reasoning and acting 

 To identify the cause of a wrong behaviour 

 To restore the desire functionality 

 L. Console, 2000 

 Task that given a system and a set of 

observations from an abnormal behaviour 

determines what’s wrong in the system in order to 

recover its working order  
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INTRODUCTION 

DIAGNOSIS STAGES 

 

 

 

 

 

 

 

 

 Fault Detection: An abnormal event reported. 

 Fault Isolation: Location of a fault. 

 Fault Identification: Size  and time of the fault (severity). 

8 

* “Fault Diagnosis” - Douglas Brown, Analatom Inc. – Tutorial at the 2013 
Annual Conference of the Prognostics and Health Management Society 
 

Detection 

Isolation 

Identification 

Has a crime been committed? 
 

What crime was committed 
and who committed it? 
 

How severe was the crime? 
 



INTRODUCTION 

DIAGNOSIS APPROACHES 

 No universally accepted taxonomy 

 Venkatasubramanian et al., 2003 

 BalaKrishnan and Honavar, 1998 

 Knowledge based 

 Tzafestas 87; Guida y Tasso 94; Stefik 95; Jackson 98; Schreiber et al. 99. 

 Case Based Reasoning 

 Schank 82; Kolodner 93; Watson 97. 

 Machine learning 

 Goldberg 89; Quinlan 93; Venkatusugramanian and Chan 97; Mitchell 97; 

Muggelton 99. 

 Model-based 

 Hamscher, Console and de Kleer 92; Patton and Chen 1991; Isermann 93; 

Gertler 98; Patton 2000. 
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INTRODUCTION 

MODEL-BASED DIAGNOSIS (MBD) 

 Proposed in the early 80's to overcome limitations of 

the traditional expert systems approach 

 Model-based diagnosis uses an objective model of the 

device (system) to be diagnosed. More specifically, 

different types of models can be considered: 

 structural (concerning the physical or logical structure of 

a device) 

 functional (describing the functions of a device) 

 behavioral (describing how a device works, i.e., how its 

functions are achieved) 

 teleological (describing the purposes of the use of a 

device) 

 or a combination of them 10 



INTRODUCTION 

MODEL-BASED DIAGNOSIS (MBD) 

Real 

System 

Observed 

Behaviour 

Diagnosis 

Discrepancy 

Model 

Predicted 

Behaviour 

Textbooks, design, first principles, … 
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INTRODUCTION 

WHY MODEL-BASED DIAGNOSIS? 

 Reusable models; a library of component models can be built 

and the models in the library re-used for the diagnosis of 

different devices or for other tasks 

 The models are “objective” 

 Possibility of diagnosing “new” devices 

 It is natural to deal with dynamic and time-varying 

behavior 

 It is natural and simpler to deal with multiple faults and 

with fault masking 

 Detailed explanations 
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INTRODUCTION 

MODEL-BASED DIAGNOSIS APPROACHES 

 Control Theory / Engineering (FDI community) 

 Robust Fault Detection and Isolation 

 Analytical Models, mainly 

 Generation and Analysis of Residuals (discrepancy) 

 Most commonly used techniques 

 State-observers 

 Parity-equations (Analytical Redundancy Relations) 

 Parameter Identification (or Estimation) 
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INTRODUCTION 

MODEL-BASED DIAGNOSIS APPROACHES 

 Artificial Intelligence (DX community) 

 Fault Isolation and Identification  

 (assumption: robust fault detection is available) 

 Qualitative/quantitative models 

 Conflict detection and (diagnosis) candidates 

generation 

 Diagnosis based on structure and behavior 

 Consistency-based diagnosis 

 Abductive diagnosis 

 Consistency-based Diagnosis with fault models  

 BRIDGE (integration of DX and FDI) 
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CONSISTENCY-BASED 

DIAGNOSIS 



CONSISTENCY-BASED DIAGNOSIS 

 Main Model-based Diagnosis framework from DX 

community 

 Historical background 

 Second generation Expert Systems (Davis, 1982-84) 

 First works in USA, late 70s – early 80s (@ MIT, 

Stanford Univ.) 

 Solid theoretical background (Reiter, 1987) 

 Computational paradigm - GDE (deKleer, 1987) 

 Early results: 

 mid/late-80s: static systems 

 late 80s, early 90s: dynamic systems 

 late 90s (mature)  large systems 16 



CONSISTENCY-BASED DIAGNOSIS 

BASIC ASSUMPTIONS (DE KLEER 03) 

 

 

 

 

 

 

 

 Physical system 

 Set of interconnected components 

 Known desired function 

 Design achieves function  

 System is correct instance of design 

 All malfunctions caused by faulty component(s)  

 Behavioural information 
17 



A CLASSIC EXPOSITORY EXAMPLE: 

THE POLYBOX (DE KLEER 87, 03) 

18 

M1 

M2 
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A2 
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MODEL-BASED APPROACH TO DIAGNOSIS 

Real 

System 

Observed 

Behaviour 

Diagnosis 

Discrepancy 

Model 

Predicted 

Behaviour 

Textbooks, design, first principles, … 
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OBSERVED BEHAVIOUR 
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MODEL-BASED APPROACH TO DIAGNOSIS 

Real 

System 

Observed 

Behaviour 

Diagnosis 
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Model 
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Textbooks, design, first principles, … 
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LOCAL PROPAGATION (I) 

M1 

M2 

M3 

A1 

A2 

X 

Y 

Z 

F 

G 

A 

B 

D 

E 

C 

[3] 

[2] 

[2] 

[3] 

[3] 

6 

22 



LOCAL PROPAGATION (II) 
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LOCAL PROPAGATION (III) 
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LOCAL PROPAGATION (IV) 
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LOCAL PROPAGATION (V) 
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PREDICTED BEHAVIOUR 
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MODEL-BASED APPROACH TO DIAGNOSIS 

Real 

System 

Observed 

Behaviour 

Diagnosis 

Discrepancy 

Model 

Predicted 

Behaviour 

Textbooks, design, first principles, … 

28 



DISCREPANCY FOUND 

 

 

 

 

 

 

 

 

 

 

 Detect Symptoms: F=12 and F=10 29 
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MODEL-BASED APPROACH TO DIAGNOSIS 

Real 

System 
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DIAGNOSIS FOR THE POLYBOX 
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DIAGNOSIS FOR THE POLYBOX 
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DIAGNOSIS FOR THE POLYBOX 
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DIAGNOSIS FOR THE POLYBOX 
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DIAGNOSIS FOR THE POLYBOX 
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CANDIDATES 

 

 

 

 

 

 

 

 

 

 Detect Symptoms: F=12 and F=10 

 Generate Candidates: {M1}, {A1}, {M2, A2}, {M2, 
M3} 
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CONSISTENCY-BASED 

DIAGNOSIS USING GDE 



CONSISTENCY-BASED DIAGNOSIS 

GENERAL DIAGNOSTIC ENGINE 

 GDE, de Kleer and Williams, 87 

 First model-based computational system for 

multiple faults 

 Main computational paradigm 

 Still a reference to compare any model-based 

proposal on DX community 
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GDE: THE COMPUTATIONAL PARADIGM 

FOR CONSISTENCY-BASED DIAGNOSIS 

39 
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GDE: THE COMPUTATIONAL PARADIGM 

FOR CONSISTENCY-BASED DIAGNOSIS 
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PREDICTION - REQUIREMENTS 

 

 

 

 

 

 

 

 

 

 Modeling structure 

 Modeling component behaviour 

 Predict overall behaviour 
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COMPONENT-ORIENTED MODELLING: 

COMPONENTS AND CONNECTIONS 

 Systems: components linked by connections via 

terminals 

 Components:  Normally physical objects 

 Resistors, diodes, voltage sources, tanks, valves 

 Terminals: unique comunication link  

 Connections: ideal connections (but may be modelled as 

components) 

 No resistance wires, loadless pipes... 

 Possible faults: defective components, broken 

connection 

42 



MODELING STRUCTURE 

 

 

 

 

 

 

 

 

 

 MULT(M1), MULT(M2), MULT(M3), ADD(A1), ADD(A2), 
in2(M1)=in1(M3), out(M1)=in1(A1), out(M2)=in2(A1), 
out(M2)=in1(A2), out(M3)=in2(A2) 43 
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MODELING BEHAVIOR 

 Constrains / relations among 

 Input/Output variables 

 Internal parameters 

 Various directions 

 No implicit reference to or implicit assumptions 

about context (existence or state of other 

components) : no function-in-structure principle 
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MODELING BEHAVIOR 

 

 

 

 

 

 

 

 

 

 MULT(x)  OK(x)  out(x) = in1(x) * in2(x) 
ADD(x)  OK(x)  out(x) = in1(x) + in2(x) 
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PREDICTION - PRINCIPLES 

 Infer the behaviour of the entire device from 

 Structural description 

 Component models 

 Observations (inputs/measurements) 

 

 Preserve dependencies on component models – 

OK(M1) 

 

 Propagate the effects of local models along the 

interaction paths (connections) 

 

 Propagate not only in the causal direction 46 



PROPAGATION 

CAUSAL DIRECTION (I) 

 

 

 

 

 

 

 

 

 

 [A]=3  [C]=2  X=6 (M1) 
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PROPAGATION 

CAUSAL DIRECTION (II) 

 

 

 

 

 

 

 

 

 

 [B]=2  [D]=3  Y=6 (M2) 
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PROPAGATION 

CAUSAL DIRECTION (III) 

 

 

 

 

 

 

 

 

 

 X=6  Y=6  F=12 (A1) 
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PROPAGATION 

“BACKWARD” DIRECTION (II) 

 

 

 

 

 

 

 

 

 

 [F]=10  X=6  Y=4 (A1) 
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GDE: THE COMPUTATIONAL PARADIGM 

FOR CONSISTENCY-BASED DIAGNOSIS 
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SYMPTOMS 

 

 

 

 

 

 

 

 

 Symptoms are contradictions that indicate an 
inconsistency between observations and correct 
behaviour 

 But other potential sources of contradictions 

 Imprecise measurements 

 Bugs in the model 

 Bugs in propagation 
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SYMPTOMS DETECTION 

 Symptoms occur as contradictory values for one 

variable 

 Predicted plus observed 

 Predicted following two different paths 

 

 Dissimilarity measure: determine the level of 

“contradictoriness” between the values 
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SOME SYMPTOMS FOR THE POLYBOX (I)  
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SOME SYMPTOMS FOR THE POLYBOX (II)  
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SOME SYMPTOMS FOR THE POLYBOX (III)  
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SOME SYMPTOMS FOR THE POLYBOX (IV)  
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GDE: THE COMPUTATIONAL PARADIGM 

FOR CONSISTENCY-BASED DIAGNOSIS 
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IDENTIFY CONFLICTS 

 Conflict (informal): set components involved in the 

discrepancy; they cannot be all working properly 

 Polybox (minimal) conflicts 

 F=[10]  F=12  {M1, M2, A1}, {M1, M3, A1, A2} 
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IDENTIFY CONFLICTS 

 Polybox (minimal) conflicts 

 F=[10]  F=12  {M1, M2, A1}, {M1, M3, A1, A2} 

 X=6  X=4   {M1, M2, A1}, {M1, M3, A1, A2} 

 Y=6  Y=4   {M1, M2, A1}, {M1, M3, A1, A2} 

 Z=6  Z=8   {M1, M3, A1, A2} 

 G=[12]  G=10  {M1, M3, A1, A2} 

 By definition,any superset of a conflic set is a conflict 

 {M1, M2, A1}  {M1, M2, A1, A2}  {M1, M2, M3, A1, A2} 

 Minimal conflict: conflict no proper subset of which is a 

conflict 

 It is essential to represent the conflicts through the set of 

minimal conflicts (to avoid combinatorial explosion) 

 At least one component in each conflict must be 

faulty!!! 60 



CONFLICTS GENERATION WITH ATMS 

1. The problem solver performs inferences 

2. The Assumption-based Truth Maintenance System (ATMS) 

records the dependencies between inferences 

 Introduce observations as facts 

 Support each local propagation with a correcteness assumption for 

the component 

 Label of a node: (minimal) environments that entails the 

prediction 

 Records components that support prediction 

 Avoids recomputation 

 Symptoms: produce NOGOODS 

 

61 

NOGOODS are the MINIMAL CONFLICTS 



INFERENCE RECORDING VIA ATMS 

 Graphical representation 

ATMS nodes 

 

 Facts 

 

 Assumed node 

 

 Derived node 

 Inference recording 

if A=3, C=2 and M1 OK, X=6 
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INFERENCE RECORDING VIA ATMS 
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INFERENCE RECORDING VIA ATMS 
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GDE: THE COMPUTATIONAL PARADIGM 

FOR CONSISTENCY-BASED DIAGNOSIS 
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CANDIDATES 

 Candidate: hypothesis of how the device differs 

from model 

 Represented as a set of assumptions 

 Assumptions included: faulty 

 Assumptions not included: correct 

 

 

 

 

 

 

 Diagnosis: identify every candidate consistent 

with observations 66 

Candidate example: {M2, A2} 
 
Meaning:  M2, A2 are faulty 
  M1, M3, A1 are correct 



CANDIDATE GENERATION 

 Since at least one component in each conflict must be faulty 

 Each candidate has to account for all conflicts 

 Each candidate has to retract at least one correctness 

assumption out of each conflict 

 Construct candidates as Hitting Set of (minimal) conflicts 

 Ca candidate, Ci conflict, Ca  Ci    Ci  

  Ca, Ca  i Ci 

 

 Each superset of a candidate is also a candidate: 

 Minimal candidates: minimal hitting set of minimal 

conflicts 

67 



CANDIDATE GENERATION EXAMPLE 

 

 

 

 

 

 
     

 Minimal conflicts 

 

 

 

 Minimal candidates 
68 
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{ M1,  A1,  M2 } 
 
{ M1,  A1,  M3,  A2 } 

[M1], [A1], [M2, M3], [M2, A2] 



CBD USING GDE 

SUMMARY 

 It is based just on correct behavior models 

 No fault models are needed for fault isolation 

 Fault isolation is straightforward 

 

 Conflict calculation at run time, by means of a dependency recording 

engine (ATMS) 

 

 Diagnosis candidates computed as the minimal hitting set of  minimal 

conflicts 
 

 Minimal conflicts and minimal diagnosis usually avoid exponential 

time and space 

 

 Defined for static systems, discrete-valued models, but is 

ready for real-life, complex systems? 69 



CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

70 

 Let’s consider a three-tank system 

 

 

 

 

 

 

 

 It has a set of related components like the polybox 

 We are measuring the level in the tanks 



CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 1: predict behavior 

 Modeling structure 

 Relations between tanks, pipes/valves, and sensors as seen in the previous 

slide 

 

 

 

 Modeling component behaviour 

 

 

 

 
 Predict overall behavior 

 Local propagation 
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CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 2: detect symptoms 

 

 

 

 

 

 

 

 Differences between sensor measurements and 

estimations 
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CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 3: identify conflicts 

 

 

 

 

 

 

 

 Let’s assume we see a discrepancy in the 

measurement h1 
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CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 3: identify conflicts 
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CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 3: identify conflicts 
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CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 3: identify conflicts 
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CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 3: identify conflicts 

77 {{T1}} 
{{T1, V1}} 

h2 is 
measured!!! 



CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 3: identify conflicts 

 {{T1, V1}} is a conflict 

 However, GDE has to consider all possible 

propagations, e.g., h2 can also be computed from 

 

 

 

 

 

    

 After doing all possible propagations: {{T1, V1}} is 

the minimal conflict 
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{{T1, V1}} {{T1, V1, T2}} {{T1, V1, T2, V2}} 

 {{T1, V1}} {{T1, V1, T2, V2}} 



CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 4: Candidate generation 

 Minimal candidates: [T1], [V1]  

79 



MAIN DIFFICULTIES FOR CONTINUOUS 

DYNAMIC SYSTEMS 

 Inclusion of time in the models  

 There is no general extension for dynamic systems and Reiter’s 

theory  
 Not obvious how to model continuous systems in a component-based 

approach 

 Current estimations depend on current and past 

80 How is this 
computed??? 



MAIN DIFFICULTIES FOR CONTINUOUS 

DYNAMIC SYSTEMS 

 On-line simulation  

 Very demanding for continuous dynamic systems, especially if  

 Local models 

 Local propagation (which may easily stop!)  

 

 On-line dependency recording: difficulties  

 Very demanding on memory terms 
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MAIN DIFFICULTIES FOR CONTINUOUS 

DYNAMIC SYSTEMS 

 Conflict generation 

 Consistency-check is not trivial: 

 Dynamic systems may exhibit considerable delays 

 We need incremental diagnosis 

 How we can discriminate between faults? 

Different 
symptom 

activation times 
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INCLUSION OF TEMPORAL 

INFORMATION WITHIN CBD 



INCLUSION OF TEMPORAL INFORMATION IN 

THE DX MODELS: EARLY APPROACHES (SURVEY) 

 Several extensions proposed for GDE 

 DEDALE (Dague et al. 1987)  CATS (Dague et al. 

1990)  DOGS (Taillibert & Loiez, 1997) 

 Inclusion of temporal indices for values 

 MIMIC (Dvorak & Kuipers, 1990) 

 Qualitative values with different time stamps 

 SIDIA (Guckenbiehl & Shaffer-Richter, 1990), 

MUDIA 

 Improves GDE with values over intervals 

 Magellan-MT (Dressler et al., 1994) 

 Avoid qualitative simulation 
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CONSISTENCY-BASED DIAGNOSIS 

SOME SOLUTIONS 

 Topological methods 

 On-line backward search through a causal or functional 

structure 

 estimation = propagation through causal/functional structure 

 consistency check (of qualitative values) 

 if a discrepancy is found: propagation backward: where is the 

source of inconsistency?    

 Off-line dependency-recording (i.e. compilation) 

techniques 

 System Description = Structural and Behavioural Information 

 Most of the times topology is fixed 

 Set of available observations is fixed and know beforehand 

 Is possible to propagate values/energy through every path? 

 No, if no structural faults are present 85 



ON-LINE FORWARD PROPAGATION 

AND BACKWARD SEARCH (SURVEY) 

 On-line backward search through a causal or functional 

structure:  

 CAEN (Bousson & Travé-Massuyès, 92), 

 causal graphs, influences,...  

 DYNAMIS (Chittaro et al., 1996), 

 Topological + behavioural + functional (and teleological) 

models 

 TRANSCEND (Mosterman & Biswas, 1997; 1999) 

 Fault detection using state-observers: provide qualitative 

signatures 

 Temporal causal graphs from bond-graphs (continuous & 

discrete behaviour  hybrid systems)  
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OFF-LINE DEPENDENCY-RECORDING (I.E. 

COMPILATION) TECHNIQUES (SURVEY) 

 FDI community:  

 Staroswiecki and Declerk 1989,  Staroswiecki et al., 1997 

 Lunze and Schiller, 1992 

 Nyberg, 2001, 2008 

 Ploix, 2001, 2003, 2005 

 Blanke, 2003, 2006 

 AI / DX community:  

 DOGS (Loiez & Taillibert, 1997)  

 DRUM-II (Frölich & Nejdl, 1997)  

 Washio et al., 1997 

 Ligeza and Gorny, 2000 

 PCs (Pulido and Alonso, 1999, 2004 / Bregon et al. 2009, 

2014) 

 BRIDGE (FDI & AI communities ) 

 Cordier et al. 2000; 2004 

 BRIDGE task group within MONET2 

 IEEE TSMC Part B, Special Issue on Bridge, 2004 
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POSSIBLE CONFLICTS 
A compilation technique for CBD 



POSSIBLE CONFLICTS 

Motivation: 

 How Consistency-based Diagnosis can be applied to 

continuous dynamic systems without on-line 

dependency-recording 

 Following GDE-like computational approach 
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POSSIBLE CONFLICTS  

(PULIDO AND ALONSO, 1999; 2004) 

 Dependency-Compilation technique 

 In industrial environments the set of available 

measurements is known and fixed beforehand 

 

 Main ideas 

 Not every sub-system in SD can be a conflict 

 A minimal conflict is a strictly over-determined set of 

constraints 

 It can be solved using local propagation 

 

 we will compute the set of (minimal) over-

determined systems off-line!!! 90 



POSSIBLE CONFLICTS COMPUTATION 

 Computing Possible Conflicts:  

 Generate an abstract representation of system as a 

hypergraph (some extensions to use causal graphs, 

temporal causal graphs, and bond graphs) 

 Derive the minimal set of overdetermined 

subsystems (Minimal Evaluation Chains, MECs). 

 Equivalent to all MSO sets and all minimal ARRs)  

 Generate Minimal Evaluation Models (MEMs) that 

are generated from MECs by introducing causality in 

the structural model. Obtain for each MEC all 

globally consistent causal assignments.  

91 



A CLASSICAL EXAMPLE REVISITED 
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STEP 1: REPRESENTING SD AS AN 

HYPERGRAPH 
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STEP 2: SEARCHING FOR  

OVER-CONSTRAINED SUB-SYSTEMS 

 Minimal evaluable chain, MEC:  

 Connected and strictly over-determined sub-systems 

 At least, one observation  
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STEP 3: CAN THE MEC BE SOLVED  

USING LOCAL PROPAGATION? 

 Each hyper-arc in a MEC can be solved in 

different ways 

 Each MEC generates an and-or graph  

 In the and-or graph zero, one or more Minimal 

Evaluation Models, MEM, can be found:  

 Predictions are done from observations 

 Only local propagation is used 

 A possible discrepancy is found:  

 If an observed variable is predicted once 

 If a non-observed variable is predicted twice  

95 



STEP 3: CAN THE MEC BE SOLVED  

USING LOCAL PROPAGATION? 

 MEMs are not evaluated off-line  provide a model 

for simulation  fault detection is on-line 

 What is a possible conflict? Set of relations in a MEC 

containing, at least, one MEM 
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CONSISTENCY-BASED DIAGNOSIS 

WITH POSSIBLE CONFLICTS 

97 

Possible Conflicts 

Identification 

Predict 

Behaviour 

by PC 

simulation 

Possible 

Conflict 

Confirmation? 

Generate 

Candidates 

Refine 

Diagnosis 

New Observations 

Possible 

Conflicts 

computation 

Off-line On-line 



INCLUSION OF TEMPORAL INFORMATION 

 Differential constraints (Dressler et al. 1996; Chantler et 

al., 1996) 

 

 Interpretations (propagations through differential 

constraints) 

 Integral 

 Derivative 

 Extension of hypergraph and hyperarc definitions 

 

 

 

 

 PCs can be computed with either integral or derivative 

causality 
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AN EXAMPLE: 

THREE-TANK SYSTEM 

99 

 Let’s consider again the three-tank system 

 

 

 

 

 

 

 

 Which are the Possible Conflicts for this system? 



AN EXAMPLE: 

THREE-TANK SYSTEM 
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 Step 1 - System as a hypergraph 

 

 

 

 

 

 

 



AN EXAMPLE: 

THREE-TANK SYSTEM 
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 Step 2 - Minimal Evaluation Chains - MECs 

 

 

 

 

 

 

 



AN EXAMPLE: 

THREE-TANK SYSTEM 

 Step 3 - Possible Conflict 1 
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AN EXAMPLE: 

THREE-TANK SYSTEM 

 Step 3 - Possible Conflict 2 
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AN EXAMPLE: 

THREE-TANK SYSTEM 

 Step 3 - Possible Conflict 3 
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AN EXAMPLE: 

THREE-TANK SYSTEM 

 PCs identified 3 minimal computational subsystems that 

decompose the complete system and that can be simulated 

independently.  

 

 PCs are based on Reiter’s theory of diagnosis from first 

principles  

 Are able to automatically generate fault isolation 

candidates from model of correct behavior 

 Components involved within each PC: 

 For PC1: T1, V1 

 For PC2: T2, V1, V2 

 For PC3: T3, V2, V3 

 
105 



AN EXAMPLE: 

THREE-TANK SYSTEM 

Stuck fault in  
valve position at t=100 sec. 
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AN EXAMPLE: 

THREE-TANK SYSTEM 

 Fault: Blockage in V1 

 2 PCs trigger 

 2 of the residuals 

deviate, PC1 and PC2: 

 PC1:  {V1, T1} 

 PC2:  {V1, V2, T2} 

 

 Fault candidates: 

 [[V1], [T1, V2], [T1, T2]] 

 

 [V1] is the only single-

fault candidate 
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CBD WITH PCS 

SUMMARY 

 It is a quite simple but powerful approach to automatically 

perform fault detection and isolation (thanks to the AI and 

CBD background) 

 By using PCs, we computed a subset of minimal submodels 

which: 

 Define the minimal conflicts that can appear in a system 

 Avoids online dependency recording 

 Allows incremental diagnosis 

 Provides simulation submodels to estimate the behavior of the 

system 

 Can be run in separate processors “allowing” distributed diagnosis 

 Provides automatic fault isolation 

 Allows multiple fault diagnosis 

 Facilitates the integration with distributed prognostics solutions 
108 



CBD WITH PCS 

EXTENSIONS 

 The approach presented in this work is just the basic theory 

underlying CBD and PCs. Currently there are extensions 

for: 

 Integration of both simulation and state observers for fault 

detection 

 Integration of qualitative information for fault isolation 

 Efficient fault identification with minimal parameter estimators 

 Extension to hybrid systems fault diagnosis 

 Distributed diagnosis 

 Distributed and system-level prognosis 

 Multiple fault identification 
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SOME APPLICATION 

EXAMPLES 



PCS APPLICATION EXAMPLES 

 Efficient fault identification (advanced water 

recovery system) 

 Distributed diagnosis (planetary rover) 

 Distributed prognostics (centrifugal pump) 

 Efficient fault diagnosis when no first first principles model 

is available (beet sugar factory) 

 Fault detection, isolation and identification (spacecraft 

power distribution system) 

 Integrated system-level diagnosis and prognosis (electrical 

power system in a planetary rover) 

 Integrated diagnosis/prognosis 
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EFFICIENT FAULT 

IDENTIFICATION 
Advanced Water Recovery System  



ADVANCED WATER RECOVERY SYSTEM 
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ADVANCED WATER RECOVERY SYSTEM 
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ADVANCED WATER RECOVERY SYSTEM 
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ADVANCED WATER RECOVERY SYSTEM 
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ADVANCED WATER RECOVERY SYSTEM 
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ADVANCED WATER RECOVERY SYSTEM 



ADVANCED WATER RECOVERY SYSTEM 
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ADVANCED WATER RECOVERY SYSTEM 
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DISTRIBUTED 

DIAGNOSIS 
Planetary rover 



MOTIVATION 

 Autonomous vehicles like UAVs and 

rovers receive command sequences from 

humans 

 E.g., as a set of waypoints with scientific 

objectives to achieve at each 

 Unexpected situations can cause the 

vehicle to go into a safe mode while 

engineers diagnose the problem, which 

might take a long time 

 An autonomous decision-making system 

that includes automated diagnosis and 

prognosis in making optimal decisions 

can save time, money, and increase 

mission value 

 

 122 * E. Balaban, S. Narasimhan, M. Daigle, I. Roychoudhury, A. Sweet, C. Bond, 
G. Gorospe . “Development of a mobile robot test platform and methods for 
validation of prognostics-enabled decision making algorithms”, Int. J. Prognost. 
Health Manag. 4 (1) (2013). 



ROVER TESTBED 

 
 Developed rover testbed for hardware-

in-the-loop testing and validation of 

control, diagnosis, prognosis, and 

decision-making algorithms 

 Skid-steered rover (1.4x1.1x0.63 m) 

with each wheel independently driven 

by a DC motor 

 Four lithium-ion battery packs 

provide power to the wheels 

 Separate battery pack powers the 

data acquisition system 

 Onboard laptop implements control 

software 

 Flexible publish/subscribe network 

architecture allows diagnosis, 

prognosis, decision-making to be 

implemented in a distributed fashion 

Controlling Laptop Batteries 

Data Acquisition 

and Power 

Distribution 

Motors 

Phone 
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ROVER TESTBED SENSOR SUITE 
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Measurement Type Manufacturer Location/comments Measurement Type 

GPS (longitude and 

latitude) 
Motorola On the smartphone 

GPS (longitude and 

latitude) 

Gyroscope (roll, pitch, 

yaw) 
Motorola On the smartphone 

Gyroscope (roll, pitch, 

yaw) 

Motor temperature Omega 
On each motor (to be 

implemented) 
Motor temperature 

Battery temperature  Omega 
On each battery pack (to 

be implemented) 
Battery temperature  

Position encoder Maxon On each drive motor Position encoder 

Battery voltage Custom 

On a custom PCB board 

measuring individual 

battery pack voltages 

Battery voltage 

Total current Custom 

On a custom PCB board 

measuring individual 

battery pack voltages 

Total current 

Individual motor 

current 
Custom 

On a custom PCB board 

measuring individual 

motor currents (on the 

battery side of the motor 

controllers) 

Individual motor current 



INTEGRATED DECISION MAKING 

ARCHITECTURE (BALABAN ET AL., 2013) 

1. Rover receives control inputs (individual wheel speeds) and sensors produce 

outputs 

2. Low-level control modifies wheel speed commands to move towards a given 

waypoint in the presence of diagnosed faults 

3. Diagnoser receives rover inputs and outputs and produces fault candidates 

4. Prognoser receives rover inputs and outputs and predicts remaining useful 

life (RUL) or rover and/or its components (eg, batteries, motors) 

5. Decision maker plans the order to visit the waypoints (science objectives) 

given diagnostic and prognostic information. It can also selectively eliminate 

some of the waypoints if all of them are not achievable due to vehicle health or 

energy constraints. 
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INTEGRATED AND DISTRIBUTED APPROACH 

 Distributed approach needed to solve the problem 

efficiently 

 Common modeling framework for modeling both nominal and 

faulty system behavior and handling both the diagnosis and 

prognosis tasks 

 Use structural model decomposition to distribute the problem 
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DISTRIBUTED DIAGNOSIS ARCHITECTURE 
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LOCAL DIAGNOSER DESIGN 

 Diagnosers designed to be globally diagnosable, i.e., they 

have enough local diagnostic information to independently 

generate globally correct diagnoses 

 Design process is a search process 

 Start with minimal submodels and expand/merge until submodel 

is globally diagnosable (enough measurements from other parts of 

the system are added) 

 Each local diagnoser operates fully independently from 

other local diagnosers 

 Has its own model for residual generation 

 Does its own fault detection 

 Does its own fault isolation 

 Does its own fault identification 

 No communication and no central diagnosis 

coordinator 
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CASE STUDY: MINIMAL SUBMODELS (PCS) 

 

Battery 
Submodels 

Motor Electrical 
Submodels 

Wheel 
Submodels 
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CASE STUDY: DIAGNOSER SUBMODELS 

 Batteries 
Submodel 

Wheel/Motor Submodels 
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DISTRIBUTED DIAGNOSIS 

 Residual Generation 

 Local observer (eg, Kalman filter, unscented Kalman filter, 

particle filter) based on nominal local submodel computes nominal 

behavior as a reference 

 Residual computed as measured value minus reference value 

 Fault Detection 

 Nominally residual is approximately zero 

 Fault detected when residual deviation from zero is statistically 

significant 

131 
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DISTRIBUTED DIAGNOSIS 

 Fault Isolation 

 Initiated upon fault detection 

 Residual deviations abstracted to qualitative 0, +, and -  values for 

changes in magnitude and slope (termed qualitative fault 

signatures) 

 Derived symbolic form of deviations compared to model-predicted 

deviations to isolate faults 

 Each new residual deviation provides more information for 

reducing the candidate set 

 Also use temporal order of residual deviations within a submodel 

(termed relative measurement orderings) 

 Fault Identification 

 For each fault hypothesis, use (minimal) local observer based on 

faulty system model to estimate fault parameters (and system 

state) 

 Fault hypotheses that cannot match measurements are eliminated 
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SOME RESULTS 
INCREASES IN MOTOR FRICTION AND ELECTRICAL RESISTANCE 
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DISTRIBUTED 

PROGNOSIS 
Centrifugal pump 

(rapid propellant system) 



THE LINK BETWEEN DIAGNOSIS AND 

PROGNOSIS 

 

 

 

 

 

 

 

 

 

 

 

• Diagnosis – identification (parameter estimation) – “Process of 
determining the state of a component to perform its function(s)” 

• Prognosis – “Estimation of remaining life of a component or 
subsystem” 
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MOTIVATION 

 Fast propellant 

 Secure system 

 We need fault diagnosis and 

prognosis 

 Prognosis is computationally 

expensive 

 Propose model decomposition 

approach to define local state-

parameter estimation problems from 

the global problem 

 Allows estimation to be 

performed more efficiently 

 Allows damage estimation to be 

naturally distributed 

 
136 



CASE STUDY 

 Apply framework to centrifugal pump 

 Complex electro-mechanical devices used for fluid delivery in 

water systems, spacecraft fueling, etc. 

 Often undergo continuous usage, so require regular maintenance 

 Provide a critical function, so failures can cause loss of mission 

 Centrifugal pump operation 

 Fluid enters the inlet, impeller 

rotation forces fluid through  

the outlet 

 Impeller rotation driven by  

electric motor 

 Bearings help minimize friction 

 Bearing housing contains  

lubricating oil 

 Wear rings prevent excessive  

internal leakage 
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MODEL REPRESENTATION 

 PCs may be derived from system equations or graphical 

representations 

 Graphical representations that include causality are preferred because they are 

more efficient and result in a simpler decomposition algorithm 

 Use hypergraph structure to represent model and define a 

decomposition algorithm based on that 

 Variables are vertices 

 Hyperedges are causal  

relationships 

 Derived directly from  

system equations 
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DECOMPOSITION 

ALGORITHM 
 Start at a measurement variable 

 Propagate back to predecessor variables 

 Stop propagation at measured variables 
and input variables, continue propagation 
on other variables until measured or 
input variables are reached 

Tt

To

Tr

rt

rr

Ta

wt

ω

AwA

pp

ps

V

Qi

Ql

Q

ωs

τe

τl

pd

wr

Tt

To

Tr

.

.

.

rt

rr

.

.

ω
.

Q
 .

A
  .

Example: Tr 

To

Trrr

Taω

wr

Tr

.
rr

.

139 



MODEL DECOMPOSITION RESULTS 
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DISTRIBUTED FAULT PROGNOSIS 

ARCHITECTURE 
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RESULTS 

ESTIMATION AND PREDICTION PERFORMANCE 
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RESULTS 

SCALABILITY 
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CURRENT CHALLENGES 

AND OPEN PROBLEMS 
(In Model-based Diagnosis) 



CURRENT CHALLENGES 

AND OPEN PROBLEMS 

 Modelling!!! 
 

 On line simulation 

 Problems with dynamic systems: initial conditions or derivatives 
estimation 

 

 What is the source of complexity? 

 Complex systems or large systems (# components) 

 

 Multiple modelling: 

 At what level of abstraction are we modelling? 

 How we can combine results from different levels of abstraction? 
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CURRENT CHALLENGES 

AND OPEN PROBLEMS 

 Real time model-based diagnosis 

 

 Distributed diagnosis 

 

 Diagnosis of Hybrid Systems 

 

 Autonomous Systems 

 

 Integration of Model-based diagnosis: 

 with other diagnosis techniques 

 with other tasks: prognostics, re-configuration, repair, 
monitoring, supervision/FTC,... 

 model-based diagnosis in the product life-cycle 

 (re-usable) model libraries 146 
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 Conferences 

 PHM: http://www.phmsociety.org/ 

 DX: http://dx-2014.ist.tugraz.at/ 

 IJCAI: http://ijcai.org/ 

 Safeprocess: http://safeprocess15.sciencesconf.org/ part of IFAC 

organization, 

 IFAC world conference: http://www.ifac2014.org/ 

 Journals 

 Artificial Intelligence Journal 

 International Journal of the PHM Society (IJPHM) 

 Journal of AI Research 

 IEEE Transactions On Systems, Man and Cybernetics 

 AI Communications 

 Control Engineering Practice 

 Engineering Application on Artificial Intelligence 

 … 
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