
P R O G NOS TICS C E N TE R O F E X C E L L E N CE

Electronics Prognostics 
Tutorial 4

Presented by

Dr. Abhinav Saxena

On behalf of

Dr. José R. Celaya Galván
Research Scientist, SGT Inc. 

Presented at

2nd European Conference of the PHM Society
Nantes, France

July 10, 2014

Prognostics & Diagnostics Group

Discovery and Systems Health Area (DaSH)

Intelligent Systems Division

NASA  Ames Research Center, California USA



Agenda

• Introduction to Prognostics

• Introduction to Model-based Prognostics

• Research Approach for Prognostics of Electronics

• Accelerated Aging as a Prognostics Research Tool

• Case Study I: Prognostics of Electrolytic Capacitors

– Model-based approach example

• Case Study II: Prognostics of Power Transistors

– Precursors of Failure example

• Case Study III: Physics-based Prognostics of Capacitors

– Degradation modeling example

• Closing Remarks



INTRODUCTION TO 

PROGNOSTICS

Electronics PHM



Motivation (1/2)

• Future aircraft systems will rely more on electronic components

• Electronic components have increasingly critical role in on-board, 

autonomous functions for 

– Vehicle controls, communications, navigation, radar systems 

– Power electronic devices such as power MOSFETs and IGBTs are 

frequently used in high-power switching circuits

– The integrated navigation (INAV) module combines output of the GPS 

model and inertial measurement unit. 

• The filter capacitor of the power supply is the component which fails 

most often 

– faulty operation generates navigations errors in INAV

• Assumption of new functionality increases number of electronics faults 

with perhaps unanticipated fault modes

• We need understanding of behavior of deteriorated components to 

develop capability to anticipate failures/predict remaining RUL



Motivation (2/2)

Images courtesy : Boeing

Component:

Power Transistor

Line Replaceable Unit: 

Power Controller

• Components under study:

– Power MOSFET: IRF520Npbf, TO-220 package, 100V/9.27A

– IGBT: IRG4BC30KD, TO-220 package, 600V/16A

– Electrolytic Capacitor: 2200 uF, 10V



Definitions

• prog∙nos∙tic

– M-W.com – “Something that foretells”

– PHM Community – “Estimation of the Remaining Useful Life of a component”

• Remaining Useful Life (RUL) – The amount of time a component can be 

expected to continue operating within its stated specifications given:

– Its current health status, and

– anticipated future operating conditions

– Input commands

– Environment

– Loads

So what is “Prognostics” anyway?



Prognostic Algorithm Categories

• Type I: Reliability Data-based
– Use population based statistical model

– These methods consider historical time to failure data which are used to model the 
failure distribution.  They estimate the life of a typical component under nominal usage 
conditions.

– Ex: Weibull Analysis

• Type II: Stress-based
– Use population based fault growth model – learned from accumulated knowledge

– These methods also consider the environmental stresses (temperature, load, 
vibration, etc.) on the component.  They estimate the life of an average component 
under specific usage conditions.

– Ex: Proportional Hazards Model

• Type III: Condition-based
– Individual component based data-driven model

– These methods also consider the measured or inferred component degradation.  They 
estimate the life of a specific component under specific usage and degradation 
conditions.

– Ex: Cumulative Damage Model, Filtering and State Estimation

– Type IV: Predictive Analytics
– Data-mine information from large datasets and identify complex patterns that have 

been shown to lead towards anomalies of failures through collected history data 

– High dimensional large time-series datasets



Data-Driven Methods

• Model is based solely on data collected from the system

• Some system knowledge may still be handy:

– What the system ‘is’

– What the failure modes are

– What sensor information is available

– Which sensors may contain indicators of fault progression (and how 

those signals may ‘grow’)

• General steps:

– Gather what information you can (if any)

– Determine which sensors give good trends

– Process the data to “clean it up” – try to get nice, monotonic trends

– Determine threshold(s) either from experience (data) or requirements

– Use the model to predict RUL

• Regression / trending

• Mapping (e.g., using a neural network)

• Statistics



Data-Driven Methods

• Pros

– Easy and Fast to implement

• Several off-the-shelf packages are available for data mining

– May identify relationships that were not previously considered

• Can consider all relationships without prejudice

• Cons

– Requires lots of data and a “balanced” approach

• Most of the time, lots of run-to-failure data are not available

• Highrisk of “over-learning” the data

• Conversely, there’s also a risk of “over-generalizing”

– Results may be counter- (or even un-)intuitive

• Correlation does not always imply causality!

– Can be computationally intensive, both for analysis and implementation

• Example techniques

– Regression analysis

– Neural Networks (NN)

– Bayesian updates

– Relevance vector machines (RVM)

Pros & Cons



Physics-Based Methods

• Description of a system’s underlying physics using suitable 

representation

• Some examples:

– Model derived from “First Principles”

• Encapsulate fundamental laws of physics

 PDEs

 Euler-Lagrange Equations

– Empirical model chosen based on an understanding of the dynamics of 

a system

• Lumped Parameter Model

• Classical 1st (or higher) order response curves

– Mappings of stressors onto damage accumulation

• Finite Element Model

• High-fidelity Simulation Model

• Something in the model correlates to the failure mode(s) of interest



Physics-Based Models

• Pros

– Results tend to be intuitive

• Based on modeled phenomenon

• And when they’re not, they’re still instructive (e.g., identifying needs for more 

fidelity or unmodeled effects)

– Models can be reused

• Tuning of parameters can be used to account for differences in design

– If incorporated early enough in the design process, can drive sensor 

requirements (adding or removing)

– Computationally efficient to implement

• Cons

– Model development requires a thorough understanding of the system

– High-fidelity models can be computationally intensive

• Examples

– Paris-Erdogan Crack Growth Model

– Taylor tool wear model

– Corrosion model

– Abrasion model

Pros & Cons



INTRODUCTION TO MODEL-

BASED PROGNOSTICS

Electronics PHM



Model-based prognostics (1/2)

• State vector includes 

dynamics of the 

degradation process

• It might include nominal 

operation dynamics

• EOL defined at time in 

which performance 

variable cross failure 

threshold

• Failure threshold could be 

crisp or also a random 

variable

13



Model-based prognostics (2/2)

• Tracking of health 

state based on 

measurements

• Forecasting of 

health state until 

failure threshold is 

crossed

• Compute RUL as 

function of EOL 

defined at time 

failure threshold is 

crossed

14
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Methodology
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High Level Research Efforts at PCoE

• Identification of the components of interest and critical failure modes

• Development of prognostics models and algorithms

– Identification of precursors of failure for MOSFETs under different failure mechanism 

conditions

– Identification of precursors of failure for different IGBT technologies (CALCE) 

– Modeling of degradation process in these devices

– Development of prognostics algorithms

• Prognostics for output capacitor in power supplies (Vanderbilt)

– Electrical overstress and thermal overstress

– Development of prognostics algorithms

• Accelerated Life Testing

– Thermal overstress aging of MOSFETs and IGBTs

– Electrical overstress aging testbed MOSFETs

– Electrical overstress aging testbed for Capacitors

• Effects of lightning events of MOSFETS (LaRC)

• Effects of ESD events of MOSFETS and IGBTs

• Effects of radiation on MOSFETS and IGBTs

17



Research Approach

Development of remaining life prediction algorithms that take into account the 
different sources of uncertainty while leveraging physics-based degradation models 

that considers future operational and environmental conditions

Development of degradation models based on the physics of the device and the 
failure mechanisms

Development of accelerated aging testbeds that facilitate the exploration of 
different failure mechanisms and aid the understanding of damage progression 

Identification of precursors of failure which play an essential role in the prediction of 
remaining life 

Identification of failure modes and their relationship to their particular 
failure mechanisms



Prognostics Algorithm Maturation through Validation 

Experiments
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Prognostics Algorithm Maturation through Validation 

Experiments

20

		
		

		
TRL	2	

TRL	3	

TRL	4	

Aging	under	thermal	
and	electric	stresses	

Aging	under	electric	stresses	

Aging	under	thermal	stresses	

C(t) =
⇣

2 R 0

dC

⌘⇣
Ve0− Ve ( t )

j eo t we

⌘

ESR(t) = 1
2

(ρE dC PE )
⇣

j eo t we

Ve0− Ve ( t )

⌘

Cl (t) = eα t + β

ESR(t) = 1
2

(ρE dC PE )
⇣

j eo t we

Ve0− Ve ( t )

⌘

Physics	inspired		
empirical	
Model	

First	Principles		
Model	

First	Principles		
Model	for	mul ple	failure		

modes	



ACCELERATED AGING AS A 

PROGNOSTICS RESEARCH 

TOOL

Electronics PHM



Accelerated Aging

• Traditionally used to assess the reliability of products with expected 

lifetimes in the order of thousands of hours

– in a considerably shorter amount of time

• Provides opportunities for the development and validation of prognostic 

algorithms 

• Such experiments are invaluable since run-to-failure data for 

prognostics is rarely or never available

• Unlike reliability studies, prognostics is concerned not only with time to 

failure of devices but with the degradation process leading to an 

irreversible failure

– This requires in-situ measurements of key output variables and observable 

parameters in the accelerated aging process with the associated time 

information

• Thermal, electrical and mechanical overstresses are commonly used for 

accelerated aging tests of electronics



THERMAL OVERSTRESS AGING OF POWER 

TRANSISTORS

Designing the overstress aging tesdbed



Electrical Overstress Aging

• Goal: Electrical Overstress Aging

– To induce damage modes such as hot carriers in Silicon

– Operate at the limits of power specs from manufacturer to age 

device under electrical overstress through power cycling

– Started seeing lot of devices failing

24



Thermal-Mechanical Stresses

• The device structure can be regarded as a bi-metal assembly

– Copper (internal heat sink) is the substrate

– Silicon die is attached to the substrate with solder (die-attach)

• Thermally mismatched assembly due to difference in coefficient of 

thermal expansion (ppm/°C). 

– Copper: 16-18, 

– Silicon: 2.6-3.3, and 

– Lead-free Solder: 20-22.9



Damage Assessment

• Damage of the die-attach interface was observed 

visually using failure analysis techniques like X-Ray 

(below) and Scanning Acoustic Microscopy

Pristine device Aged device (#8)



Accelerated Aging Methodology

• This learning resulted into strategy for the application of 

thermal overstress in the form of thermal cycles 

• This is achieved by 

– Power cycling the devices without use of any external heat sink

– Causing self heating during the power switching operation

• The goal is to induce package related failures like die-attach 

damage

• Failure is defined as

– Latch up

– Loss of gate control (failure to turn ON)

– Thermal runaway



Aging Experiments

• Hysteresis control is used to provide thermal cycles needed for acceleration

Case temperature control law Accelerated aging regime



Die-Attach Damage Assessment (1/2)

• Collecting the ground truth data

– Heat transfer performance due to thermal conduction decreases with 

die-attach damage

• Voids, cracks, other mechanical damage

– MIL-750 standard method 3161 provides a methodology for thermal 

impedance measurements for power MOSFET

• Delta source-drain voltage method

• Body diode is used to measure junction temperature

– Heating curves can provide an assessment of the thermal 

characteristics of the die-attach



Die-Attach Damage Assessment (2/2)

• Results for Device #11

• 1 sec. heating time

• Same power applied to 

both tests (same heating 

profile)

• Steep slope starting at 

~10ms is indicative of the 

die attach damage

• This method can be 

included as a BIT in order 

to periodically assess die-

attach damage

Aged device under thermal cycling 

heats up considerably faster than a 

pristine device



ELECTRICAL OVERSTRESS 

AGING OF POWER 

TRANSISTORS



Accelerate aging strategy (1/2)

• The main strategy is the 

– application of electrical overstress 

– fixed junction temperature in order to 

• avoid thermal cycles

• avoid package related failures

• Accelerated test conditions are achieved by 

electrical operation regime of the devices at 

temperatures within the range below maximum 

ratings and above the room temperatures.

32



Accelerate aging strategy (2/2)

• The highest acceleration factor 

for aging can be achieved in the 

proximity of the SOA boundary

• Instability points represent the 

critical voltages and currents 

limiting the SOA

• An electrical regime close to the 

SOA boundary serves as the 

accelerator factor (stressor) and 

it is expected to reduce the life of 

the device

• The safe operation area 

boundary shifts closer to the 

origin as the temperature 

increases

33
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Aging system description (1/3)

• Three main components in terms of hardware

– Electrical operation unit of the device 

• custom made printed circuit boards for the instrumentation 

circuitry and gate drivers

• commercially available power supplies and function generator to 

control the operation of the DUT

– An in-situ measurement unit of key electrical and thermal 

parameters 

• commercially available measurement and data acquisition for 

slow and high speed measurements

– Thermal block section for monitoring and control of the temperature

34



Aging system description (2/3)
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Aging system description (3/3)
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Experiment on power MOSFET (1/2)

• IRF520Npbf power MOSFET

– TO220 package,100V/9A.

• Electrical overstress used as acceleration factor. High 

potential at the gate

– Vgs=50V, Vgs rating is 20V max.

– Vds=2.4V with a 0.2 ohm load.

• Temperatures kept below maximum rating Tjmax=175°C

• Objective is to induce failure mechanism on the gate 

structure

37



Experiment on power MOSFET (2/2)
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• Degradation process as observed on threshold voltage (Vth)
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Accelerated aging system

• Allows for the understanding of the effects of failure 

mechanisms, and the identification of leading 

indicators of failure essential for the development 

of physics-based degradation models and RUL 

prediction

• Electrolytic capacitor 2200uF, 10V and 1A

• Electrical overstress >200 hr

– Square signal at 200 mHz with 12V amplitude and 100 

ohm load

40



Electrical Overstress Aging System
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Degradation observed on EIS measurements 
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PROGNOSTICS OF POWER 
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Modeling for Power MOSFET under thermal overstress

• Two-transistor model is shown to be a 
good candidate for a degradation 
model for model-based prognostics. 

• The model parameters K, and W1 
could be varied as the device degrades 
as a function of usage time, loading 
and environmental conditions. 

• Parameter W1 defines the area of the 
healthy transistors, the lower this area, 
the larger the degradation in the two-
transistor model. In addition, parameter 
K serves as a scaling factor for the 
thermal resistance of the degraded 
transistors, the larger this factor, the 
larger the degradation in the model.



Precursor of Failure

• As case temperature increases, 

ON-resistance increases

• This relationship shifts as the 

degradation of the device 

increases

• For a degraded state, ON-

resistance will be higher at any 

given case temperature

• This is consistent with the die-

attach damage since it results 

on increased junction 

temperature operation

• This plot can be used directly for 

fault detection and diagnostics 

of the die-attach failure 

mechanism



Degradation process data

46

Normalized ON-state resistance (ΔRDS(ON)) 

and filtered trajectory for device #36 

• Cases #08, #09, #11, #12 and 

#14 are used for algorithm 

development purposes. 

• Case #36 is used to test the 

algorithms. 



Empirical Degradation Model

• An empirical degradation model was selected for the model-

based algorithms

• Exponential based function to capture degradation process

• Two parameters in the model which will be estimated on-

line

47



Prediction of Remaining Life



RUL Prediction – Considerations & Assumptions

• A single feature is used to assess the health state of the device 

(ΔRDS(ON))

• It is assumed that the die-attach failure mechanism is the only active 

degradation during the accelerated aging experiment

• Furthermore, ΔRDS(ON) accounts for the degradation progression from 

nominal condition through failure

• Periodic measurements with fixed sampling rate are available for 

ΔRDS(ON)

• A crisp failure threshold of 0.05 increase in ΔRDS(ON) is used

• The prognostics algorithm will make a prediction of the remaining useful 

life at time tp, using all the measurements up to this point either to 

estimate the health state at time tp in a regression framework or in a 

Bayesian state tracking framework

• It is also assumed that the future load conditions do not vary 

significantly from past load conditions

49



RUL Prediction Algorithms

• Gaussian Process Regression

– Algorithm development cases used to select covariance matrix structure and 

values

• Extended Kalman filter

– Empirical degradation model

– State variable: Normalized ON-resistance and degradation model 

parameters

– Arbitrary values for measurement and process noise variance

• Particle filter

– Empirical degradation model

– State variable: Normalized ON-resistance, degradation model parameters

– Exponential growth model used for degradation model parameters

– Arbitrary values for measurement and process noise variance

50



RUL estimation results
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• Integrated Avionics systems consists of:

– Global Positioning System (GPS) module

– Integrated navigation (INAV) module combines output of 

the GPS model and Inertial measurement unit

– Power Supply module

Case Study: Avionics System
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Methodology



Steps 1 -2: 

Accelerated Aging and Precursors 

of Failure Features
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Electrical Overstress Aging System
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Degradation observed on EIS measurements 
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Degradation on lumped parameter model
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C and ESR are estimated from 

EIS measurements
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Ck = e
at
k + b



• Based on observed degradation from capacitance 

parameter

• Using training capacitor data to estimate 

degradation model parameters

• Assumed exponential model based on capacitance 

loss

• Parameter estimation with least-squared 

regression

60

Empirical Degradation Model

Ck = e
at
k + b



Degradation model results

61

• The optimal parameter presented along the 95% confidence 

interval. 

• The residuals are modeled as a normally distributed 

random variable with zero mean and variance 



• Implementation of prognostics algorithm with Kalman filter

• Capacitance loss considered as state variable

• EIS measurements and lumped parameter model used to 

obtained measured capacitance loss values

• Empirical degradation model used to generate the state 

transition equation

• Use one Capacitor for testing and the rest for model 

parameter estimation (leave one out test)

• Failure threshold of 20% drop on capacitance based on 

MIL-C-62F

62

Prognostics algorithm



Kalman filter implementation

• State transition equation 

derived from degradation 

model

• State-space model for filter 

implementation
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Ck = e
at
k + b



• Assumed measurements are not available at some 

point in time

• Filtering setup used in forecasting mode to predict 

future states

• Predictions done at 1 hr. intervals

• State transition equation used to propagate state 

(n: number of prediction steps, l: last measurement 

at tl)
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Prediction mode

Ĉl+n = AnCl + AiB
i=0

n-1
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Tracking and forecasting (Cap. #6)
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Relative Accuracy 
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• An aluminum electrolytic capacitor, consists of 

– Cathode aluminum foil, 

– Electrolytic paper, electrolyte

– Aluminum oxide layer on the anode foil surface, which acts as 

the dielectric.

– Equivalent series resistance (ESR) and capacitance(C) are 

electrical parameters that define capacitor health
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Ref 

:http://en.wikipedia.org/wiki/File:ElectrolyticCapacitorDis

assembled.jpg Open Structure
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Degradation Mechanisms
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Capacitor Degradation Model
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Degradation Model: Electrical Circuit Equivalent
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• Decrease in electrolyte volume :

• Capacitance (C) ): Physics-Based Model:

• Electrolyte evaporation dominant degradation phenomenon

– First principles: Capacitance degradation as a function of electrolyte loss 
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Capacitance Degradation Model

(1)

(2)

(3)



• Oxide breakdown observed - experimental data 

• The breakdown factor is exp. function of electrolyte evaporation 

Cbk(t) = exp f(Veo – Ve(t))

• Updated in capacitance degradation model :
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Capacitance Degradation Model
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Dynamic Model of Capacitance
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Dynamic Model of Capacitance

(6)

(7)



• Decrease in electrolyte volume :

• ESR

– Based on mechanical structure and electrochemistry.

– With changes in RE (electrolyte resistance )
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Dynamic Model of ESR

(8)
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Electrolyte Volume Estimation for TOS Experiment 
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RA Results – Discussion: EOS Experiment

Capacitance - Over RA summary for  model 
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RUL and Validation – EOS -Experiment – ESR 

Degradation Model  
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CLOSING REMARKS

Electronics PHM



Remarks (1/2)

• Electronics PHM Maturity (scientific and 

engineering challenges still present)

• Research approach challenges

– How to balance lack of knowledge of the 

system vs own expertise on particular PHM 

tools

– Data-driven or model-based?

• Data is always needed but more important, 

information about degradation processes is 

key
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Remarks (2/2)

• Aging systems as a research tool

– Value in terms of exploration of precursors of 

failure and their measurements is evident

– Still an open question on how degradation 

models and algorithms are translated to the real 

usage timescale

• Use of physics

– It should be embraced

• A success in Electronics PHM in an real usage 

application will require the right team
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