

Electronics Prognostics

Tutorial 4

Presented by

Dr. Abhinav Saxena

On behalf of

Dr. José R. Celaya Galván Research Scientist, SGT Inc.

Prognostics & Diagnostics Group

Discovery and Systems Health Area (DaSH) Intelligent Systems Division NASA Ames Research Center, California USA

Presented at

2nd European Conference of the PHM Society

Nantes, France July 10, 2014

Agenda

- Introduction to Prognostics
- Introduction to Model-based Prognostics
- Research Approach for Prognostics of Electronics
- Accelerated Aging as a Prognostics Research Tool
- Case Study I: Prognostics of Electrolytic Capacitors
 Model-based approach example
- Case Study II: Prognostics of Power Transistors
 Precursors of Failure example
- Case Study III: Physics-based Prognostics of Capacitors
 - Degradation modeling example
- Closing Remarks

INTRODUCTION TO PROGNOSTICS

Electronics PHM

Motivation (1/2)

- Future aircraft systems will rely more on electronic components
- Electronic components have increasingly critical role in on-board, autonomous functions for
 - Vehicle controls, communications, navigation, radar systems
 - Power electronic devices such as power MOSFETs and IGBTs are frequently used in high-power switching circuits
 - The integrated navigation (INAV) module combines output of the GPS model and inertial measurement unit.
 - The filter capacitor of the power supply is the component which fails most often
 - faulty operation generates navigations errors in INAV
- Assumption of new functionality increases number of electronics faults with perhaps unanticipated fault modes
- We need understanding of behavior of deteriorated components to develop capability to anticipate failures/predict remaining RUL

Motivation (2/2)

- Components under study:
 - Power MOSFET: IRF520Npbf, TO-220 package, 100V/9.27A
 - IGBT: IRG4BC30KD, TO-220 package, 600V/16A
 - Electrolytic Capacitor: 2200 uF, 10V

So what is "Prognostics" anyway?

- prog·nos·tic
 - M-W.com "Something that foretells"
 - PHM Community "Estimation of the Remaining Useful Life of a component"
- Remaining Useful Life (RUL) The amount of time a component can be expected to continue operating within its stated specifications given:
 - Its current health status, and
 - anticipated future operating conditions
 - Input commands
 - Environment
 - Loads

Prognostic Algorithm Categories

- Type I: Reliability Data-based
 - Use population based statistical model
 - These methods consider historical time to failure data which are used to model the failure distribution. They estimate the life of a typical component under nominal usage conditions.
 - Ex: Weibull Analysis
- Type II: Stress-based
 - Use population based fault growth model learned from accumulated knowledge
 - These methods also consider the environmental stresses (temperature, load, vibration, etc.) on the component. They estimate the life of an average component under specific usage conditions.
 - Ex: Proportional Hazards Model
- Type III: Condition-based
 - Individual component based data-driven model
 - These methods also consider the measured or inferred component degradation. They
 estimate the life of a specific component under specific usage and degradation
 conditions.
 - Ex: Cumulative Damage Model, Filtering and State Estimation
- Type IV: Predictive Analytics
 - Data-mine information from large datasets and identify complex patterns that have been shown to lead towards anomalies of failures through collected history data
 - High dimensional large time-series datasets

Data-Driven Methods

- Model is based solely on data collected from the system
- Some system knowledge may still be handy:
 - What the system 'is'
 - What the failure modes are
 - What sensor information is available
 - Which sensors may contain indicators of fault progression (and how those signals may 'grow')
- General steps:
 - Gather what information you can (if any)
 - Determine which sensors give good trends
 - Process the data to "clean it up" try to get nice, monotonic trends
 - Determine threshold(s) either from experience (data) or requirements
 - Use the model to predict RUL
 - Regression / trending
 - Mapping (e.g., using a neural network)
 - Statistics

Data-Driven Methods

Pros & Cons

- Pros
 - Easy and Fast to implement
 - Several off-the-shelf packages are available for data mining
 - May identify relationships that were not previously considered
 - Can consider all relationships without prejudice
- Cons
 - Requires lots of data and a "balanced" approach
 - Most of the time, lots of run-to-failure data are not available
 - Highrisk of "over-learning" the data
 - Conversely, there's also a risk of "over-generalizing"
 - Results may be counter- (or even un-)intuitive
 - Correlation does not always imply causality!
 - Can be computationally intensive, both for analysis and implementation
- Example techniques
 - Regression analysis
 - Neural Networks (NN)
 - Bayesian updates
 - Relevance vector machines (RVM)

Physics-Based Methods

- Description of a system's underlying physics using suitable representation
- Some examples:
 - Model derived from "First Principles"
 - Encapsulate fundamental laws of physics
 - PDEs
 - Euler-Lagrange Equations
 - Empirical model chosen based on an understanding of the dynamics of a system
 - Lumped Parameter Model
 - Classical 1st (or higher) order response curves
 - Mappings of stressors onto damage accumulation
 - Finite Element Model
 - High-fidelity Simulation Model
- Something in the model correlates to the failure mode(s) of interest

Physics-Based Models

Pros & Cons

- Pros
 - Results tend to be intuitive
 - Based on modeled phenomenon
 - And when they're not, they're still instructive (e.g., identifying needs for more fidelity or unmodeled effects)
 - Models can be reused
 - Tuning of parameters can be used to account for differences in design
 - If incorporated early enough in the design process, can drive sensor requirements (adding or removing)
 - Computationally efficient to implement
- Cons
 - Model development requires a thorough understanding of the system
 - High-fidelity models can be computationally intensive
- Examples
 - Paris-Erdogan Crack Growth Model
 - Taylor tool wear model
 - Corrosion model
 - Abrasion model

INTRODUCTION TO MODEL-BASED PROGNOSTICS

Electronics PHM

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), u(t)) + w(t)$$
$$y(t) = h(\mathbf{x}(t)), u(t)) + v(k)$$

$$R(t_p) = t_{EOL} - t_p$$

- State vector includes dynamics of the degradation process
- It might include nominal operation dynamics
- EOL defined at time in which performance variable cross failure threshold
- Failure threshold could be crisp or also a random variable

Model-based prognostics (2/2)

- Tracking of health state based on measurements
- Forecasting of health state until failure threshold is crossed
- Compute RUL as function of EOL defined at time failure threshold is crossed

Methodology

RESEARCH APPROACH FOR PROGNOSTICS OF ELECTRONICS

Electronics PHM

High Level Research Efforts at PCoE

- Identification of the components of interest and critical failure modes
- Development of prognostics models and algorithms
 - Identification of precursors of failure for MOSFETs under different failure mechanism conditions
 - Identification of precursors of failure for different IGBT technologies (CALCE)
 - Modeling of degradation process in these devices
 - Development of prognostics algorithms
- Prognostics for output capacitor in power supplies (Vanderbilt)
 - Electrical overstress and thermal overstress
 - Development of prognostics algorithms
- Accelerated Life Testing
 - Thermal overstress aging of MOSFETs and IGBTs
 - Electrical overstress aging testbed MOSFETs
 - Electrical overstress aging testbed for Capacitors
- Effects of lightning events of MOSFETS (LaRC)
- Effects of ESD events of MOSFETS and IGBTs
- Effects of radiation on MOSFETS and IGBTs

Research Approach

Prognostics Algorithm Maturation through Validation Experiments

Prognostics Algorithm Maturation through Validation Experiments

ACCELERATED AGING AS A PROGNOSTICS RESEARCH TOOL

Electronics PHM

- Traditionally used to assess the reliability of products with expected lifetimes in the order of thousands of hours
 - in a considerably shorter amount of time
- Provides opportunities for the development and validation of prognostic algorithms
- Such experiments are invaluable since run-to-failure data for prognostics is rarely or never available
- Unlike reliability studies, prognostics is concerned not only with time to failure of devices but with the degradation process leading to an irreversible failure
 - This requires in-situ measurements of key output variables and observable parameters in the accelerated aging process with the associated time information
- Thermal, electrical and mechanical overstresses are commonly used for accelerated aging tests of electronics

Designing the overstress aging tesdbed

THERMAL OVERSTRESS AGING OF POWER TRANSISTORS

Electrical Overstress Aging

- Goal: Electrical Overstress Aging
 - To induce damage modes such as hot carriers in Silicon
 - Operate at the limits of power specs from manufacturer to age device under electrical overstress through power cycling
 - Started seeing lot of devices failing

Thermal-Mechanical Stresses

- The device structure can be regarded as a bi-metal assembly
 - Copper (internal heat sink) is the substrate
 - Silicon die is attached to the substrate with solder (die-attach)
- Thermally mismatched assembly due to difference in coefficient of thermal expansion (ppm/° C).
 - Copper: 16-18,
 - Silicon: 2.6-3.3, and
 - Lead-free Solder: 20-22.9

 Damage of the die-attach interface was observed visually using failure analysis techniques like X-Ray (below) and Scanning Acoustic Microscopy

Pristine device

Aged device (#8)

- This learning resulted into strategy for the application of thermal overstress in the form of thermal cycles
- This is achieved by
 - Power cycling the devices without use of any external heat sink
 - Causing self heating during the power switching operation
- The goal is to induce package related failures like die-attach damage
- Failure is defined as
 - Latch up
 - Loss of gate control (failure to turn ON)
 - Thermal runaway

Aging Experiments

• Hysteresis control is used to provide thermal cycles needed for acceleration

- Collecting the ground truth data
 - Heat transfer performance due to thermal conduction decreases with die-attach damage
 - Voids, cracks, other mechanical damage
 - MIL-750 standard method 3161 provides a methodology for thermal impedance measurements for power MOSFET
 - Delta source-drain voltage method
 - Body diode is used to measure junction temperature
 - Heating curves can provide an assessment of the thermal characteristics of the die-attach

Die-Attach Damage Assessment (2/2)

- Results for Device #11
- 1 sec. heating time
- Same power applied to both tests (same heating profile)
- Steep slope starting at ~10ms is indicative of the die attach damage
- This method can be included as a BIT in order to periodically assess dieattach damage

Aged device under thermal cycling heats up considerably faster than a pristine device

ELECTRICAL OVERSTRESS AGING OF POWER TRANSISTORS

- The main strategy is the
 - application of electrical overstress
 - fixed junction temperature in order to
 - avoid thermal cycles
 - avoid package related failures
- Accelerated test conditions are achieved by electrical operation regime of the devices at temperatures within the range below maximum ratings and above the room temperatures.

Accelerate aging strategy (2/2)

- The highest acceleration factor for aging can be achieved in the proximity of the SOA boundary
- Instability points represent the critical voltages and currents limiting the SOA
- An electrical regime close to the SOA boundary serves as the accelerator factor (stressor) and it is expected to reduce the life of the device
- The safe operation area boundary shifts closer to the origin as the temperature increases

Simulated I-V characteristics and instability boundary at 300° K for power MOSFET.

Aging system description (1/3)

- Three main components in terms of hardware
 - Electrical operation unit of the device
 - custom made printed circuit boards for the instrumentation circuitry and gate drivers
 - commercially available power supplies and function generator to control the operation of the DUT
 - An in-situ measurement unit of key electrical and thermal parameters
 - commercially available measurement and data acquisition for slow and high speed measurements
 - Thermal block section for monitoring and control of the temperature

Aging system description (2/3)

Thermal block for measurement and control of device temperature

Aging system description (3/3)

Experiment on power MOSFET (1/2)

- IRF520Npbf power MOSFET
 - TO220 package,100V/9A.
- Electrical overstress used as acceleration factor. High potential at the gate
 - Vgs=50V, Vgs rating is 20V max.
 - Vds=2.4V with a 0.2 ohm load.
- Temperatures kept below maximum rating T_imax=175°C
- Objective is to induce failure mechanism on the gate structure

Experiment on power MOSFET (2/2)

Degradation process as observed on threshold voltage (V_{th})

EXAMPLE: ELECTRICAL OVERSTRESS AGING OF ELECTROLYTIC CAPACITORS

Accelerated aging system

- Allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure essential for the development of physics-based degradation models and RUL prediction
- Electrolytic capacitor 2200uF, 10V and 1A
- Electrical overstress >200 hr
 - Square signal at 200 mHz with 12V amplitude and 100 ohm load

Electrical Overstress Aging System

Degradation observed on EIS measurements

Re(Z)/0hm

CASE STUDY I: PROGNOSTICS OF POWER TRANSISTORS PRECURSORS OF FAILURE EXAMPLE

Electronics PHM

Modeling for Power MOSFET under thermal overstress

- Two-transistor model is shown to be a good candidate for a degradation model for model-based prognostics.
- The model parameters K, and W1 could be varied as the device degrades as a function of usage time, loading and environmental conditions.
- Parameter W1 defines the area of the healthy transistors, the lower this area, the larger the degradation in the twotransistor model. In addition, parameter K serves as a scaling factor for the thermal resistance of the degraded transistors, the larger this factor, the larger the degradation in the model.

Precursor of Failure

- As case temperature increases, ON-resistance increases
- This relationship shifts as the degradation of the device increases
- For a degraded state, ONresistance will be higher at any given case temperature
- This is consistent with the dieattach damage since it results on increased junction temperature operation
- This plot can be used directly for fault detection and diagnostics of the die-attach failure mechanism

Degradation process data

Empirical Degradation Model

- An empirical degradation model was selected for the modelbased algorithms
- Exponential based function to capture degradation process
- Two parameters in the model which will be estimated online

Prediction of Remaining Life

RUL Prediction – Considerations & Assumptions

- A single feature is used to assess the health state of the device $(\Delta R_{DS(ON)})$
- It is assumed that the die-attach failure mechanism is the only active degradation during the accelerated aging experiment
- Furthermore, $\Delta R_{DS(ON)}$ accounts for the degradation progression from nominal condition through failure
- Periodic measurements with fixed sampling rate are available for $\Delta R_{\text{DS(ON)}}$
- A crisp failure threshold of 0.05 increase in $\Delta R_{DS(ON)}$ is used
- The prognostics algorithm will make a prediction of the remaining useful life at time t_p, using all the measurements up to this point either to estimate the health state at time t_p in a regression framework or in a Bayesian state tracking framework
- It is also assumed that the future load conditions do not vary significantly from past load conditions

RUL Prediction Algorithms

- Gaussian Process Regression
 - Algorithm development cases used to select covariance matrix structure and values
- Extended Kalman filter
 - Empirical degradation model
 - State variable: Normalized ON-resistance and degradation model parameters
 - Arbitrary values for measurement and process noise variance
- Particle filter
 - Empirical degradation model
 - State variable: Normalized ON-resistance, degradation model parameters
 - Exponential growth model used for degradation model parameters
 - Arbitrary values for measurement and process noise variance

RUL estimation results

CASE STUDY II: PROGNOSTICS OF ELECTROLYTIC CAPACITORS MODEL-BASED APPROACH EXAMPLE

Electronics PHM

- Integrated Avionics systems consists of:
 - Global Positioning System (GPS) module
 - Integrated navigation (INAV) module combines output of the GPS model and Inertial measurement unit
 - Power Supply module

Methodology

Steps 1 -2: Accelerated Aging and Precursors of Failure Features

Electrical Overstress Aging System

Degradation observed on EIS measurements

Degradation on lumped parameter model

C and ESR are estimated from EIS measurements

Methodology

Empirical Degradation Model

- Based on observed degradation from capacitance
 parameter
- Using training capacitor data to estimate degradation model parameters
- Assumed exponential model based on capacitance loss
- Parameter estimation with least-squared regression

$$C_k = e^{\partial t_k} + k$$

Degradation model results

Validation	Test	Training	α	β	σ^2	
test	capacitor	capacitor	(95% CI)	(95% CI)		
T_2	#2	#1, #3#6	0.0162	-0.8398	1.8778	
			(0.0160, 0.0164)	(-1.1373, -0.5423)		
T_3	#3	#1, #2, #4#6	0.0162	-0.8287	1.9654	
			(0.0160, 0.0164)	(-1.1211, -0.5363)		
T_4	#4	#1-#3, #5, #6	0.0161	-0.8217	1.8860	
			(0.0159, 0.0162)	(-1.1125, -0.5308)		
T_5	#5	#1#4, #6	0.0162	-0.7847	2 10/1	
			(0.0161, 0.0164)	(-1.1134, -0.4560)	2.1041	
T_6	#6	#1#5	0.0169	-1.0049	2.9812	
			(0.0167, 0.0170)	(-1.2646, -0.7453)		

- The optimal parameter presented along the 95% confidence interval.
- The residuals are modeled as a normally distributed random variable with zero mean and variance

- Implementation of prognostics algorithm with Kalman filter
- Capacitance loss considered as state variable
- EIS measurements and lumped parameter model used to obtained measured capacitance loss values
- Empirical degradation model used to generate the state transition equation
- Use one Capacitor for testing and the rest for model parameter estimation (leave one out test)
- Failure threshold of 20% drop on capacitance based on MIL-C-62F

Kalman filter implementation

 State transition equation derived from degradation model

$$C_{k} = e^{at_{k}} + b$$

$$\frac{\partial C}{\partial t}$$

$$\frac{\partial C}{\partial t} = aC - ab$$

$$\frac{C_{t} - C_{t} - D_{t}}{D_{t}} = aC_{t} - D_{t} - ab$$

$$C_{t} = (1 + aD_{t})C_{t} - D_{t} - abD_{t}$$

$$C_{k} = (1 + aD_{k})C_{k} - 1 - abD_{k}$$

• State-space model for filter implementation

$$C_{k} = A_{k}C_{k-1} + B_{k}u + v$$

$$y_{k} = hC_{k} + w, \text{where}$$

$$A_{k} = (1 + \alpha\Delta_{t}),$$

$$B_{k} = -\alpha\beta\Delta_{k},$$

$$h = 1, u = 1.$$

- Assumed measurements are not available at some point in time
- Filtering setup used in forecasting mode to predict future states
- Predictions done at 1 hr. intervals
- State transition equation used to propagate state (n: number of prediction steps, *l*: last measurement at *t_l*)

$$\hat{C}_{l+n} = A^n C_l + \mathop{\text{ad}}\limits^{n-1} A^i B_{i=0}$$

Tracking and forecasting (Cap. #6)

Relative Accuracy

$$RA = 100 \left(1 - \frac{RUL^* - RUL^{'}}{RUL^*}\right)$$

t_p	RA_{T2}	RA_{T3}	RA_{T4}	RA_{T5}	RA_{T6}	RA	$ \begin{array}{c} 25 \\ \hline \bullet Cap \#1 \\ \hline \bullet Cap \#2 \\ \hline \bullet Cap \#3 \\ \hline \bullet Cap \#5 \\ \hline \hline \\ \hline \\$
24	94.8	95.5	91.9	96.9	99.7	95.5	
47	97.4	99.3	96.4	96.7	91.7	96.7	5
71	87.5	91.9	84.5	94.1	97.1	91.9	0 50 100 150 200
94	85.6	90	78.9	94.8	94.2	90	Aging 12 (nr)
116	86	99.1	76.5	98	96.2	96.2	
139	77.8	95.8	53.1	96.7	81.1	81.1	
149	82.1	98.4	46.9	94.8	86.6	86.6	
161	77.2	87.3	16.6	87.5	89.8	87.3	
171	26.6	26.4	N/A	34.8	63.7	30.7	

CASE STUDY III: PHYSICS-BASED PROGNOSTICS OF CAPACITORS DEGRADATION MODELING EXAMPLE

Electronics PHM

Capacitor Structure

- An aluminum electrolytic capacitor, consists of
 - Cathode aluminum foil,
 - Electrolytic paper, electrolyte
 - Aluminum oxide layer on the anode foil surface, which acts as the dielectric.
 - Equivalent series resistance (ESR) and capacitance(C) are electrical parameters that define capacitor health

assembled.jpg Open Structure

cathode

Degradation Mechanisms

Capacitor Degradation Model

Degradation Model: Electrical Circuit Equivalent

Capacitance Degradation Model

• Decrease in electrolyte volume :

 $Ve(t) = V_{e0} - (w_e A_s j_{eo} t)$

(1)

(2)

where:

V: dispersed volume at time t, V_e : initial electrolyte volume A_s : surface area of evaporation, j_{eo} : evaporation rate t: time in minutes, w_e = volume of ethyl glycol molecule

• Capacitance (C)): Physics-Based Model:

$$C = (2\epsilon_R \epsilon_O A_s)/d_C$$

- Electrolyte evaporation dominant degradation phenomenon
 - First principles: Capacitance degradation as a function of electrolyte loss

$$\mathcal{D}_1: C(t) = \left(\frac{2\epsilon_R \epsilon_0}{d_C}\right) \left(\frac{V_{e0} - V_e(t)}{j_{eo} \ t \ w_e}\right),\tag{3}$$

where:

- C : capacitance of the capacitor,
- ϵ_R : relative dielectric constant,
- ϵ_O : permittivity of free space,
- d_C : oxide thickness.
Capacitance Degradation Model

- Oxide breakdown observed experimental data
- The breakdown factor is exp. function of electrolyte evaporation

$$C_{bk(t)} = \exp f(V_{eo} - V_{e(t)})$$

• Updated in capacitance degradation model :

$$C = (2\epsilon_R \epsilon_0 A_s c_{bk})/d_C,$$
$$\mathcal{D}_{11} : C(t) = c_{bk(t)} \left(\frac{2\epsilon_R \epsilon_0}{d_C}\right) \left(\frac{V_{e0} - V_e(t)}{j_{eo} \ t \ w_e}\right)$$

From the structure of capacitor we have the electrolyte volume (V_e) expressed in the form of oxide surface area (A_s) as :

The first order discrete approximation for change in electrolyte volume can be expressed as:

$$\frac{dV_e}{dt} = -(w_e A_s j_{eo}),$$

$$V_{e(k+1)} = V_{e(k)} + \frac{dV_e}{dt} \Delta t,$$

$$V_{e(k+1)} = V_{e(k)} - (w_e A_s j_{eo}) \Delta t.$$
(5)

Dynamic Model of Capacitance

$$V_{e(k)} = \frac{C_k}{2\epsilon_R\epsilon_0 c_{bk}} d_C^2,$$

$$V_{e(k)} = (C_k)\alpha$$
(6)

Similarly Capacitace can be expressed as :

$$C_{k+1}\alpha = C_k\alpha + \frac{dV_e}{dt}\Delta t,$$

$$C_{k+1}\alpha = C_k\alpha - (w_eA_sj_{eo})\Delta t, \text{ hence}$$

$$C_{k+1} = C_k - \frac{(w_eA_sj_{eo})}{\alpha}\Delta t.$$
(7)

The complete discrete time dynamic model for capacitance degradation can be summarized as :

$$\mathcal{D}_4: C_{k+1} = C_k - \left(\frac{2\epsilon_R\epsilon_0 w_e A_s j_{eo} c_{bk}}{d_C^2}\right) \Delta t$$

Dynamic Model of ESR

• Decrease in electrolyte volume :

 $Ve(t) = V_{e0} - (w_e A_s j_{eo} t)$

- ESR
 - Based on mechanical structure and electrochemistry.
 - With changes in R_E (electrolyte resistance)

$$ESR = \frac{1}{2} \left(\frac{\rho_E d_C P_E e_{bk(t)}}{A_s} \right)$$

$$\mathcal{D}_2 : ESR(t) = \frac{1}{2} \left(\rho_E \ d_C \ P_E \right) \left(\frac{j_{eo} \ t \ w_e e_{bk(t)}}{V_e(t)} \right)$$
(8)

Dynamic ESR degradation Model :

$$\mathcal{D}_5: \frac{1}{ESR_{k+1}} = \frac{1}{ESR_k} - \left(\frac{2w_e A_s j_{eo}}{\rho_E \ P_E \ d_C^2 \ e_{bk(t)}}\right) \Delta t$$

where:

 ρ_E : electrolyte resistivity,

 ${\cal P}_E$: correlation factor related to electrolyte spacer porosity and average liquid pathway,

 $e_{bk(t)}$: resistance dependence oxide breakdown factor

Electrolyte Volume Estimation for TOS Experiment

Parameter	\bar{X}	\tilde{X}	S.D	C.I
$\hat{ heta_1}(mm^3)$	523.6112	523.6113	0.0026	[523.6098, 523.6127]
$\hat{\theta}_2(mm^2/t)$	0.0161	0.0161	1.8748×10^{-5}	[0.01614, 0.01611]
$\hat{ heta_3}(mm/t^2)$	3.8077×10^{-7}	3.8072×10^{-7}	6.9373×10^{-9}	$[0.3769 \times 10^{-6}, 0.3846 \times 10^{-6}]$
RMSE	26.2232	26.2277	0.0483	[26.1965, 26.2500]
RMSPE	0.8589	0.8591	0.0016	[0.8580, 0.8598]

Summary for Linear Regression Electrolyte Degradation Model

Volume estimation for all capacitors

Volume estimation Error

3500

3000

RA Results – Discussion: EOS Experiment

RUL and Validation – EOS -Experiment – Capacitance Degradation Model

RUL and Validation – EOS -Experiment – ESR Degradation Model \mathcal{D}_5

Predictions at different aging time 81

RUL and Validation – TOS - Experiment - Capacitance

Electronics PHM

CLOSING REMARKS

- Electronics PHM Maturity (scientific and engineering challenges still present)
- Research approach challenges
 - How to balance lack of knowledge of the system vs own expertise on particular PHM tools
 - Data-driven or model-based?
 - Data is always needed but more important, information about degradation processes is key

- Aging systems as a research tool
 - Value in terms of exploration of precursors of failure and their measurements is evident
 - Still an open question on how degradation models and algorithms are translated to the real usage timescale
- Use of physics
 - It should be embraced
- A success in Electronics PHM in an real usage application will require the right team

- To my colleague **Dr.Chetan Kulkarni** for our collaboration in Prognostics for Capacitors
- To my colleagues Dr. Kai Goebel and Dr.
 Abhinav Saxena for sharing material from previous tutorial to complement this one
- To Impact Technologies for helping to set up a vision and research direction for Electronics PHM and for multiple collaborations in related topics

Publications (1/3)

[1] G. Sonnenfeld, K. Goebel, and J. R. Celaya, "An agile accelerated aging, characterization and scenario simulation system for gate controlled power transistors," in *IEEE AUTOTESTCON 2008*, pp. 208–215, 2008.

[2] J. R. Celaya, N. Patil, S. Saha, P. Wyscoki, and K. Goebel, "Towards accelerated aging methodologies and health management of power MOSFETs," in *Annual Conference of the Prognostics and Health Management Society, 2009*, (San Diego, CA), 2009.

[3] J. R. Celaya, S. Saha, P. Wyscoki, and K. F. Goebel, "Effects of lightning injection on power-MOSFETs," in *Annual Conference of the Prognostics and Health Management Society, 2009*, (San Diego, CA), 2009.

[4] J. J. Ely, T. X. Nguyen, G. N. Szatkowski, S. V. Koppen, J. J. Mielnik, R. K. Vaughan, P. F. Wysocki, J. R. Celaya, and S. Saha, "Lightning pin injection testing on MOSFETS," *NASA Technical Memorandum*, vol. TM-2009-215794, 2009.

[5] N. Patil, J. Celaya, D. Das, K. Goebel, and M. Pecht, "Precursor parameter identification for insulated gate bipolar transistor (IGBT) prognostics," *IEEE Transactions on Reliability*, vol. 58, no. 2, pp. 271–276, 2009.

[6] B. Saha, J. R. Celaya, P. F. Wysocki, and K. F. Goebel, "Towards prognostics for electronics components," in *IEEE Aerospace conference 2009*, (Big Sky, MT), pp. 1–7, 2009.

[7] P. Wysocki, V. Vashchenko, J. Celaya, S. Saha, and K. Goebel, "Effect of electrostatic discharge on electrical characteristics of discrete electronic components," in *Annual Conference of the Prognostics and Health Management Society, 2009*, (San Diego, CA), 2009.

[8] J. Celaya, A. Saxena, P. Wysocki, S. Saha, and K. Goebel, "Towards prognostics of power MOSFETs: Accelerated aging and precursors of failure," in *Annual Conference of the Prognostics and Health Management Society 2010*, (Portland, OR), 2010.

Publications (2/3)

[9] J. R. Celaya, P. Wysocki, V. Vashchenko, S. Saha, and K. Goebel, "Accelerated aging system for prognostics of power semiconductor devices," in *IEEE AUTOTESTCON, 2010*, (Orlando, FL), pp. 1–6, 2010.

[10] A. E. Ginart, I. N. Ali, J. R. Celaya, P. W. Kalgren, D. P. S, and M. J. Roemer, "Modeling SiO2 ion impurities aging in insulated gate power devices under temperature and voltage stress," in *Annual Conference of the Prognostics and Health Management Society 2010*, (Portland, OR), 2010.

[11] C. Kulkarni, G. Biswas, X. Koutsoukos, J. Celaya, and K. Goebel, "Integrated diagnostic/prognostic experimental setup for capacitor degradation and health monitoring," in *IEEE AUTOTESTCON, 2010*, (Big Sky, MT), pp. 1–7, 2010.

[12] C. Kulkarni, G. Biswas, X. Koutsoukos, J. Celaya, and K. Goebel, "Aging methodologies and prognostic health management for electrolytic capacitors," in *Annual Conference of the Prognostics and Health Management Society 2010*, (Portland, OR), 2010.

[13] C. Kulkarni, G. Biswas, X. Koutsoukos, J. Celaya, and K. Goebel, "Diagnostic/prognostic experiments for capacitor degradation and health monitoring in DC-DC converters," in *ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems*, (Philadelphia, PA), 2010.

[14] C. Kulkarni, G. Biswas, X. Koutsoukos, K. Goebel, and J. Celaya, "Physics of failure models for capacitor degradation in DC-DC converters," in *The Maintenance and Reliability Conference (MARCON)*, (Knoxville TN), 2010.

[15] S. Saha, J. Celaya, B. Saha, P. Wysocki, and K. Goebel, "Towards modeling the effects of lightning injection on power MOSFETs," in *Annual Conference of the Prognostics and Health Management Society 2010*, (Portland, OR), 2010.

[16] S. P. Bharadwaj, A. E. Ginart, I. N. Ali, P. W. Kalgren, J. Celaya, and S. Poll, "Solar cells aging estimation based on impedance characterization," in *IEEE Aerospace Conference 2011*, (Big Sky, MT), 2011.

Publications (3/3)

[17] J. R. Celaya, C. Kulkarni, G. Biswas, and K. Goebel, "Towards prognostics of electrolytic capacitors," in *AIAA Infotech*@*Aerospace 2011*, (St. Louis, MO), 2011.

[18] J. R. Celaya, A. Saxena, V. Vashchenko, S. Saha, and K. Goebel, "Prognostics of power MOSFET," in *23rd International Symposium on Power Semiconductor Devices and ICs*, (San Diego, CA), 2011.

[19] J. J. Ely, T. X. Nguyen, G. N. Szatkowski, S. V. Koppen, J. J. Mielnik, R. K. Vaughan, P. F. Wysocki, J. R. Celaya, and S. Saha, "Lightning pin injection test: MOSFETS in "ON" state," *NASA Technical Memorandum*, 2011.

[20] C. Kulkarni, G. Biswas, J. Celaya, and K. Goebel, "Prognostics techniques for capacitor degradation and health monitoring," in *The Maintenance and Reliability Conference (MARCON)*, (Knoxville TN), 2011.

Contact:

Jose.celaya@nasa.gov

http://prognostics.nasa.gov

THANK YOU !!

7/2 1/2 01 ⁴90