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 Ensembles of Models for Prognostics and Health 

Management (PHM):

o Accuracy

o Confidence Estimation

o Incremental Learning

Tutorial Contents
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ENSEMBLES OF MODELS
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Data & Information

Model 1 Model 2 Model H...

Outcome 1 Outcome 2 Outcome H...

Combination

Aggregated outcome

Ensembles of Models
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1. Generate the individual models of the ensemble

2.    Combine the outputs of the individual models

Model 1 Model 2 Model H

Model 1 Model 2 Model H...

Outcome 1 Outcome 2 Outcome H...

Combination

Aggregated outcome

...

Developing an Ensemble of Models
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ENSEMBLES OF MODELS FOR 

PROGNOSTICS AND 

HEALTH  MANAGEMENT
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 Ensembles of Models for Prognostics and Health 

Management (PHM):

o Accuracy

o Confidence Estimation

o Incremental Learning

Tutorial Contents
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 Accuracy:

o What is it?

o Why ensembles?

o How?

A. Generate the individual models of the ensemble

B. Combine the outputs of the individual models

o Application: prognostics of turbofan engines
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 Fault Detection:

 Low rate of False Alarm

 Low rate of Missing Alarm

False Alarm

Rates

Missing

Alarm

Rates

0,24% 0,38%

Example:

Detection

Model

Normal 

Condition

level

P

…

Accuracy: What is it? 
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 Fault Diagnostics:

 Low Misclassification rate

C1 = Inner race

C2 = Balls

C3 = Outer race

Example:

Diagnostic

Model

Vibrational

signals

Inner race faults o = true

 = diagnostic model
Outer race faults

Balls’ faults

Misclassification rate = 0,78%

Accuracy: What is it? 
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 Prognostics
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Example:

Accuracy: What is it? 
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 Accuracy:

o What is it?

o Why ensembles?

o How?

A. Generate the individual models of the ensemble

B. Combine the outputs of the individual models

o Application: prognostics of turbofan engines
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“I’ll ask the audience”

combination of the answers

multiple performers

individual answer

Why Ensembles?
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 Condorcet Jury Theorem (1786) 

• 2 class problem

• H classifiers (H is an odd number)

• 𝑝1 = probability that an individual classifier chooses the correct class 

(equal for all the classifiers and all the patterns)

• the classifier outcomes are independent

• ensemble outcome: simple majority voting of the H classifiers

Class 1 Class 2

Number of votes

3

6

Ensemble outcome = class 2

Why Ensembles? [Diagnostics] 
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• 𝑝𝑒𝑛𝑠 = probability that the ensemble chooses the correct class

• If  
𝑝1 > 0.5
𝐻 → ∞

 Condorcet Jury Theorem (1786) 

• 2 class problem

• H classifiers (H is an odd number)

• 𝑝1 = probability that an individual classifier chooses the correct class 

(equal for all the classifiers and all the patterns)

• the classifier outcomes are independent

• ensemble outcome: simple majority voting of the H classifiers

𝑝𝑒𝑛𝑠 → 1

𝑝𝑒𝑛𝑠 = 𝑃 majority of the classifiers choose the correct class =

𝑃 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡
𝐻+1

2
classifiers choose the correct class =

 
𝑘=

𝐻+1

2

𝐻 𝑃{𝑘 classifiers choose the correct class}= 
𝑘=

𝐻+1

2

𝐻 𝐻
𝑘

𝑝1
𝑘 1 − 𝑝1

𝐻−𝑘

Why Ensembles? [Diagnostics] 
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Why Ensembles? [Diagnostics] 
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Why Ensembles? 

 Questionable outcomes provided by ensemble of models…

Who will you choose… 

Jesus or Barabbas?
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Why Ensembles? 

Who will you choose… 

Jesus or Barabbas?

Indipendence of the classifiers?
Matthew 27:20: But the chief priests 

and the elders persuaded the crowd 

to ask for Barabbas and to have Jesus 

executed.

 Questionable outcomes provided by ensemble of models…
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 Accuracy:

o What is it?

o Why ensembles?

o How?

A. Generate the individual models of the ensemble

B. Combine the outputs of the individual models

o Application: prognostics of turbofan engines



21

 Accuracy:

o What is it?

o Why ensembles?

o How?

A. Generate the individual models of the ensemble

B. Combine the outputs of the individual models

o Application: prognostics of turbofan engines
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A. Generate the individual models of the ensemble

B. Combine the outcomes of the individual classifiers

Classifier 1 Classifier 2 Classifier H

Classifier 1 Classifier 2 Classifier H...

Outcome 1 Outcome 2 Outcome H...

Combination

Aggregated outcome

...

A: Generate the Individual Models of the Ensemble
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A: Generate the Individual Models of the Ensemble

• Diversity of the classifiers (individual classifiers make errors on 

different patterns) 

• The combinations improve upon the performance of the single 

classifier

Classifier 1 OK

Classifier 2 OK

Classifier 3 KO

Classifier 4 OK

Classifier 1 OK

Classifier 2 KO

Classifier 3 OK

Classifier 4 OK

Classifier 1 KO

Classifier 2 OK

Classifier 3 OK

Classifier 4 OK

Ensemble OK

Ensemble OK Ensemble OK

Classifier 1 OK

Classifier 2 OK

Classifier 3 OK

Classifier 4 KO

Ensemble OK

1x

2x

1x

2x
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 Training each classifier with different training patterns:

• Bagging

• Boosting

• Adaboost

A: Generate the Individual Models of the Ensemble
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The bagging algorithm

Training Set:  NkcxS kk ,...,1),,( 


Adapted from: Robi Polikar (2009), Scholarpedia, 4(1):2776 doi:10.4249/scholarpedia.2776 

http://www.scholarpedia.org/article/Ensemble_learning

A: Generate the Individual Models of the Ensemble

1x

2x
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The bagging algorithm

Training Set:  NkcxS kk ,...,1),,( 


Adapted from: Robi Polikar (2009), Scholarpedia, 4(1):2776 doi:10.4249/scholarpedia.2776 

http://www.scholarpedia.org/article/Ensemble_learning

A: Generate the Individual Models of the Ensemble

1x

2x

Do k= 1:N

• Random sample a patterns of S, with 

replacement

End

% build bootstrap set 1 (𝑆1) 
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The bagging algorithm

Training Set:  NkcxS kk ,...,1),,( 


Adapted from: Robi Polikar (2009), Scholarpedia, 4(1):2776 doi:10.4249/scholarpedia.2776 

http://www.scholarpedia.org/article/Ensemble_learning

A: Generate the Individual Models of the Ensemble

1x

2x

Do k= 1:N

• Random sample a patterns of S, with 

replacement

End

• Train a classifier on 𝑆1
• Add  the classifier to the ensemble

% build bootstrap set 1 (𝑆1) 2

3

3
2

2

2

3
2
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Adapted from: Robi Polikar (2009), Scholarpedia, 4(1):2776 doi:10.4249/scholarpedia.2776 

http://www.scholarpedia.org/article/Ensemble_learning

Do i=1,..,H

Do k= 1:N

• Random sample a patterns of S, with 

replacement

End

• Train a classifier on 𝑆𝑖
• Add  the classifier to the ensemble

End1x

2x
2

2

2

3

4

The bagging algorithm

Training Set:  NkcxS kk ,...,1),,( 


A: Generate the Individual Models of the Ensemble

% build bootstrap set i (𝑆𝑖) 
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correct classification
classification error

1x

2x

1x 1x

2x 2x

correct classification classification error

Adapted from: Robi Polikar (2009), Scholarpedia, 4(1):2776 doi:10.4249/scholarpedia.2776 

http://www.scholarpedia.org/article/Ensemble_learning

A: Generate the Individual Models of the Ensemble
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 Accuracy:

o What is it?

o Why ensembles?

o How?

A. Generate the individual models of the ensemble

B. Combine the outputs of the individual models

o Application: prognostics of turbofan engines
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B: Combine the Outcomes of the Individual Models

A. Generate the individual models of the ensemble

B. Combine the outcomes of the individual classifiers

Classifier 1 Classifier 2 Classifier H

Classifier 1 Classifier 2 Classifier H...

Outcome 1 Outcome 2 Outcome H...

Combination

Aggregated outcome

...
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 Simple majority voting: choose the class with the associated 

largest number of votes

Class 1 Class 2

Number

of votes 4

3

Combination

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Aggregated outcome

B: Combine the Outcomes of the Individual Models
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 Dynamic Approach:

classifier 1 … h … H

1st nearest neighbor OK OK KO

2nd nearest neighbor KO OK KO

3rd nearest neighbor OK OK OK

Model vote ∝ Local performance 2/3 1 1/3

Step 1: Identify the k-nearest 

neighbours of the test pattern in 

a validation set

Step 2: Estimate local performance of 

the ensemble individual  

classifiers on the k-nearest 

neighbours

Model vote ∝ local performance

Step 3: Assign the test pattern to the 

class with the associated largest 

vote

classifier 1 … h … H

vote 2/3 1 1/3

Class assigned to the test pattern

B: Combine the Outcomes of the Individual Models

Test pattern:

Validation set:

d

ix

1x
2x
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 Dynamic Approach:

• model vote depends from the test pattern position 

• model h vote proportional to model h classification performance on    

patterns similar to the test pattern

Test pattern:

Validation set:

d

ix

1x
2x

B: Combine the Outcomes of the Individual Models
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 Accuracy:

o What is it?

o Why ensembles?

o How?

A. Generate the individual models of the ensemble

B. Combine the outputs of the individual models

o Application: prognostics of turbofan engines
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Application: Prognostics of Turbofan Engines
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 The C-MAPPS dataset*

• 260 run-to-failure trajectories 

• 21 measured signals + 3 signals representative of the operating 

conditions

• 6 different operating conditions

Data 

Preprocessing**

Application: Prognostics of Turbofan Engines

* A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, PHM2008 

**M. Rigamonti,  P. Baraldi, E. Zio, I. Roychoudhury, K. Goebel, S. Poll, Echo State Network for Remaining Useful Life Prediction of a 

Turbofan Engine, PHM 2016, Bilbao
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 Ensemble individual model: echo state network* 

Application: Prognostics of Turbofan Engines

Advantages

• Non linear modeling

• Memory Property

• Intrinsic dynamic 

characteristics 

*M. Rigamonti,  P. Baraldi, E. Zio, I. Roychoudhury, K. Goebel, S. Poll, Echo State Network 

for Remaining Useful Life Prediction of a Turbofan Engine, PHM 2016, Bilbao
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A. Generate the individual models of the ensemble

B. Combine the outcomes of the individual classifiers

Classifier 1 Classifier 2 Classifier H

Classifier 1 Classifier 2 Classifier H...

Outcome 1 Outcome 2 Outcome H...

Combination

Aggregated outcome

...
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 Generate the Individual Models of the Ensemble: Bagging

Application: Prognostics of Turbofan Engines

70 run-to-failure training trajectories  

Bagging Set 1

Trajectory:   

2, 15, 24, 54, 68

Bagging Set 2

Trajectory:   

5, 11, 44, 54, 55

Bagging Set H

Trajectory:   

6, 35, 39, 44, 68

…

Echo State 

Network 

1

Echo State 

Network 

2

…

Echo State 

Network 

H=25
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A. Generate the individual models of the ensemble

B. Combine the outcomes of the individual classifiers

Classifier 1 Classifier 2 Classifier H

Classifier 1 Classifier 2 Classifier H...

Outcome 1 Outcome 2 Outcome H...

Combination

Aggregated outcome

...
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 Combine the outputs of the individual models: dynamic approach 

Application: Prognostics of Turbofan Engines

• Identify the K trajectories of

the validation set most similar

to the test trajectory*

*Zio, E., Di Maio, F. A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure

scenarios of a nuclear system (2010) Reliability Engineering and System Safety, 95 (1), pp. 49-57.
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 Combine the outputs of the individual models: dynamic approach 

Application: Prognostics of Turbofan Engines

• Identify the K trajectories of

the validation set most similar

to the test trajectory
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 Combine the outputs of the individual models: dynamic approach 

Application: Prognostics of Turbofan Engines

ESN

1

ESN 

2

… ESN 

H

RUL Prediction error on the 

most similar trajectory 3.11 1.88 … 2.01

RUL Prediction error on the 

2nd most similar trajectory
1.89 13.13 … 3.90

RUL Prediction error on the 

3nd most similar trajectory
2.00 6,99 5,09

• Identify the K trajectories of the

validation set most similar to the

test trajectory

• Estimate the individual ESN

error on the K trajectories of

the validation set most similar

to the test trajectory
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 Combine the outputs of the individual models: dynamic approach 

Application: Prognostics of Turbofan Engines

• Identify the K trajectories of the

validation set most similar to the

test trajectory

• Estimate the individual ESN

error on the K trajectories of the

validation set most similar to the

test trajectory

• Estimate the individual ESN

local errors as average of the

individual ESN error on the K

most similar trajectories

ESN 1 ESN 2 … ESN H

RUL Prediction error 

on the most similar 

trajectory

3.11 1.88 … 2.01

RUL Prediction error 

on the 2nd most 

similar trajectory

1.89 13.13 … 3.90

RUL Prediction error 

on the 3nd most 

similar trajectory

2.00 6,99 5,09

Local Error

(LE) 2.66 7.33 … 5.00
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 Combine the outputs of the individual models: dynamic approach 

Application: Prognostics of Turbofan Engines

• Identify the K trajectories of the

validation set most similar to the

test trajectory

• Estimate the individual ESN

error on the K trajectories of the

validation set most similar to the

test trajectory

• Estimate the individual ESN

local error as average of the

individual ESN errors on the k

most similar trajectories

• Assign a weight to each model:

ESN 1 ESN 2 … ESN H

RUL Prediction error 

on the most similar 

trajectory

3.11 1.88 … 2.01

RUL Prediction error 

on the 2nd most 

similar trajectory

1.89 13.13 … 3.90

RUL Prediction error 

on the 3nd most 

similar trajectory

2.00 6,99 5,09

Local Error

(LE) 2.66 7.33 … 5.00

Model Weight 0.52 0.19 0.29





H

j j

i
i

LE

LE

1

1

1
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 Combine the outputs of the individual models: dynamic approach 

Application: Prognostics of Turbofan Engines

• Identify the K trajectories of the

validation set most similar to the

test trajectory

• Estimate the individual ESN

errors on the K trajectories of the

validation set most similar to the

test trajectory

• Estimate the individual ESN

local errors as average of the

individual ESN errors on the K

most similar trajectories

• Assign a weight to each model

• Compute the RUL prediction

as weighted sum of the

individual model RUL

predictions:

ESN 1 ESN 2 … ESN H

RUL Prediction error 

on the most similar 

trajectory

3.11 1.88 … 2.01

RUL Prediction error 

on the 2nd most 

similar trajectory

1.89 13.13 … 3.90

RUL Prediction error 

on the 3nd most 

similar trajectory

2.00 6,99 5,09

Local Error

(LE) 2.66 7.33 … 5.00

Model Weight 0.52 0.19 0.29





H

i

ii RULRUL
1





Application: Prognostics of Turbofan Engines

 Results 

Dynamic Ensemble
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Cumulative Relative Accuracy Alpha-Lambda

𝜶 = 𝟎. 𝟐

Steadiness

Individual Echo 

State Network 0.476 ± 0.041 0.390 ± 0.052 4.968 ±1.213

Ensemble 

(aggregation = 

simple average)

0.417 ± 0.031 0.400 ± 0.049 4.444 ± 0.326

Ensemble

(aggregation = 

dynamic 

approach)

0.369 ± 0.029 0.421 ± 0.028 4.414 ± 0.319

 Results – Prognostic Metrics (70 test trajectories)  

Application: Prognostics of Turbofan Engines






RUL

RULLUR
RA




ˆ
,)var( :)( tttt TSI 



True RUL

Ensemble: Aggregation = Simple Average

Ensemble: Aggregation = Dynamic approach

Application: Prognostics of Turbofan Engines

 Results – Comparison between different approaches for the 

aggregation of the individual model outputs

test trajectory 22



Application: Prognostics of Turbofan Engines

 Results – Analysis of the individual model weights 

larger the weight 

better the prediction

Ensemble: Aggregation = dynamic approach



 Ensembles of Models for Prognostics and Health 

Management (PHM):

o Accuracy

o Confidence Estimation

o Incremental Learning

Tutorial Contents



 Confidence estimation:

o What is it?

o Why ensembles?

o How?

o Application: prognostics of turbine blades
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Prognostic

Model

Is my prognostic

model a magician?

I don’t belive it!

1x

2x

nx

The pump is going to fail

in: 77 hours, 25 minutes, 

18 seconds

Confidence estimation: what is it?
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Confidence estimation: what is it?

Prognostic

Model

Is my prognostic

model a magician?

I don’t belive it!

1x

2x

nx

The pump is going to fail

in: 77 hours, 25 minutes, 

18 seconds

Prognostic

Model

1x

2x

nx

The pump is going to fail in 

the interval [72, 84 hours] 

with  probability 95%

I believe it! I will do 

maintenance within 3 

days
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Confidence estimation: what is it?
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 Confidence estimation:

o What is it?

o Why ensembles?

o How?

o Application: prognostics of turbine blades
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Why ensemble? [Diagnostics] 

Combination

Aggregated outcome:

Confidence:                             high 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

 Single model outcome distribution  information on the 

confidence
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Why ensemble? [Diagnostics] 

 Single model outcome distribution  information on the 

confidence

Combination

Aggregated outcome:

Confidence:  Low (it could also be      )

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
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 Confidence estimation:

o What is it?

o Why ensembles?

o How?

oApplication: prognostics of turbine blades



 Sources of Uncertainty in Prognostics

1) noise on the observations (measurements) 

61

Time

Failure Threshold

Noise on 

degradation

measurement

Elongation

x

tp

True elongation

Elongation measure

How? [prognostics] 



 Sources of Uncertainty in Prognostics

1) noise on the observations (measurements)

2) Intrinsic stochasticity due to the degradation process and unknown

future external/operational conditions (process)

62How? [prognostics] 

Time

Failure Threshold

Elongation

x

tp



 Sources of Uncertainty in Prognostics

1) noise on the observations (measurements)

2) intrinsic stochasticity due to the degradation process and unknown

future external/operational conditions (process)

3) modeling errors, i.e. inaccuracy of the PHM model used to

perform the prediction (model)

63How? [prognostics] 

How to quantify uncertainty on the RUL prediction ???
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RUL pdf estimate

True RUL



• Prediction error:

𝜀 = 𝑟𝑢𝑙 − 𝑟 𝑢𝑙

64How? [prognostics] 

Present 

Time

RUL

Failure

RUL

tp

time
Predicted Failure

Prognostic

Model



 Prediction error:

𝜀 = 𝑟𝑢𝑙 − 𝑟 𝑢𝑙
 Assumptions: 

• 𝐸 𝜀 = 0 (the prognostic model is unbiased)

• 𝜀 has a normal distribution

65How? [prognostics] 

Random Variable!



 Prediction error:

𝜀 = 𝑟𝑢𝑙 − 𝑟 𝑢𝑙
 Assumptions: 

• 𝐸 𝜀 = 0 (the prognostic model is unbiased)

• 𝜀 has a normal distribution

 Objective:  V𝑎𝑟 𝜀 = 𝜎𝜀
2 = 𝐸 𝑟𝑢𝑙 − 𝑟 𝑢𝑙 2

66How? [prognostics] 
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 Prediction error:

𝜀 = 𝑟𝑢𝑙 − 𝑟 𝑢𝑙
 Assumptions: 

• 𝐸 𝜀 = 0 (the prognostic model is unbiased)

• 𝜀 has a normal distribution

 Objective:  V𝑎𝑟 𝜀 = 𝜎𝜀
2 = 𝐸 𝑟𝑢𝑙 − 𝑟 𝑢𝑙 2

67How? [prognostics] 
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 Prediction error:

𝜀 = 𝑟𝑢𝑙 − 𝑟 𝑢𝑙
 Assumptions: 

• 𝐸 𝜀 = 0 (the prognostic model is unbiased)

• 𝜀 has a normal distribution

 Objective:  V𝑎𝑟 𝜀 = 𝜎𝜀
2 = 𝐸 𝑟𝑢𝑙 − 𝑟 𝑢𝑙 2

68How? [prognostics] 
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Prediction Interval:

𝑃 𝑟𝑢𝑙5 ≤ 𝑟𝑢𝑙 ≤ 𝑟𝑢𝑙95 = 90%
with:

𝑟𝑢𝑙𝛼 = 𝑟 𝑢𝑙 − 𝑐𝛼𝜎𝜀



 Sources of uncertainty in prognostics

1) Measurements  𝜎𝑀𝐸
2

2) Degradation Process  𝜎𝑃𝑅
2

3) Modeling Error  𝜎𝑀𝑂
2

 Prediction error decomposition

69

V𝑎𝑟 𝜀 = 𝜎𝜀
2 = 𝜎𝑀𝐸

2 +𝜎𝑃𝑅
2 +𝜎𝑀𝑂

2

How? [prognostics] 



 Model uncertainty estimate: 

70

2

MO

(Heskes, 1997) T. Heskes. Practical confidence and prediction intervals in Advances Neural Information Processing Systems 9, M. Mozer, M.

Jordan, and T. Heskes, Eds. Cambridge, MA: MIT Press, 1997, pp. 466–472.

How? [prognostics] 
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 Process and measurement uncertainty estimate: 

71
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How? [prognostics] 



 Process and measurement uncertainty estimate: 

72
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TRAINING DATASET

22

MEPR  

How? [prognostics] 

)( ptx
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 Confidence estimation:

o What is it?

o Why ensembles?

o How?

o Application: prognostics of turbine blades



 Turbine Blade Creep Propagation

Application: prognostics of turbine blades

Component: turbine blade
Degradation mechanism: creep
Degradation indicator: blade elongation 

𝑥 𝑡 =
Length(t) – initial length

initial length



 Available Information

Application: prognostics of turbine blades

• Failure threshold (1.5%)

• Historical sequences of elongation measurements in turbine blades 

(13 run-to-failure trajectories)

Time

Fault 
Initiation

Failure Threshold

elongation
d



 Available Information

Application: prognostics of turbine blades

• Failure threshold

• Historical sequences of elongation measurements in turbine blades

• Sequence of elongation measurements of the turbine blade under 

observation

Time

Fault 
Initiation

Failure Threshold

td

elongation

𝑥 𝑡



 Ensemble of Bootstrapped Models

Application: prognostics of turbine blades

Training data
Creep strain 

measurements

Bagging

Time

Failure Threshold

elongation

𝑥 𝑡

10 training run-to-failure

trajectories



 Ensemble of Bootstrapped Models

Application: prognostics of turbine blades

Training data
Creep strain 

measurements

Bagging

Time

Failure
Threshold

Subset 1

elongation

𝑥 𝑡



Training data

Creep strain 

measurements

Subset 1

Bootstrap

Model 1

Time

Failure
Threshold

elongation
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Application: prognostics of turbine blades



 Ensemble of Bootstrapped Models

Application: prognostics of turbine blades
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Training data
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Application: prognostics of turbine blades



[…]

Training data

Creep strain 

measurements

Subset 2

Subset 

H=25

Subset 1

Bagging

elongation

𝑥 𝑡

Model 2

Model 1

Application: prognostics of turbine blades
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Application: prognostics of turbine blades



 Ensemble of Bootstrapped Models

Application: prognostics of turbine blades
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 Ensemble of Bootstrapped Models

Application: prognostics of turbine blades
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3 validation

run-to-failure trajectories
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Application: prognostics of turbine blades



 RUL prediction with cprediction bounds (90% confidence interval)

Application: prognostics of turbine blades
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 Uncertainty estimate

Application: prognostics of turbine blades

True

Bootstrap 

estimate

Elongation 𝑥 𝑡



 Ensembles of Models for Prognostics and Health 

Management (PHM):

o Accuracy

o Confidence Estimation

o Incremental Learning

Tutorial Contents



 Incremental learning:

o What is it?

o Why ensembles?

o How?

o Application: fault diagnostics in a nuclear power plant 

system



time = 𝑡1

𝑥1

𝑥2

Incremental learning: What is it? [fault detection]



time = 𝑡1

𝑥1

𝑥2

time = 𝑡2

𝑥1

𝑥2

𝑥1

Incremental learning: What is it? [fault detection]

Evolving environment…

Context Change…
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Incremental learning

Incremental learning: What is it? [fault detection]
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Incremental learning: What is it? [fault diagnostics]
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• Operational condition: O1

• Faults of classes {C1,C2}
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Diagnostics
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Incremental learning: What is it? [fault diagnostics]



t1

• Operational condition: O1

• Faults of classes {C1,C2}

Performance of DM1:

OK

DATA 

COLLECTION t2

NEW:

• fault of a new class C3

• Change in the operational condition: O1O2

Possible change of the input-output 

relationship 

Dataset 1

•Operational condition O1
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Diagnostic model

DM1

C1

C2

 21 , xx

time

Incremental learning: What is it? [fault diagnostics]



t1

• Operational condition: O1

• Faults of classes {C1,C2}

Performance of DM1:

OK

DATA 

COLLECTION t2

Performance of DM1 decreases

Dataset 1
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Incremental learning: What is it? [fault diagnostics]
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DATA 

COLLECTION t3

Dataset 2

•Operational conditions O2

•Faults of classes {C1,C2,C3}

•N2 new patterns

DATA  

COLLECTION

Discard DM1

Train a New Diagnostic Model (DM*)  using

(Dataset 1+ Dataset 2)

• Loss of all previously acquired knowledge

• Computational and financial efforts necessary for each 

model retraining

catastrophic 

forgetting

Diagnostic model

DM1

t2

Dataset 1

•Operational conditions O1
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•N1 patterns  kkk cxx ,, 21

Incremental learning: What is it? [fault diagnostics]



time

t1

DATA 

COLLECTION t2
DATA  

COLLECTION

Performance of DM2:

OK

• Learn the novel information content of Dataset 2 

without forgetting the previously acquired knowledge 

by DM1

• Update the model without requiring access to the 

previously seen datasets

Incremental 

learning 

DM2

ON LINE 

OPERATION 

OF DM2

Diagnostic model
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Dataset 1

•Operational condition O1
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Dataset 2
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Incremental learning: What is it? [fault diagnostics]



 Incremental learning:

o What is it?

o Why ensembles?

o How?

o Application: fault diagnostics in a nuclear power plant 

system



Why ensembles? [Diagnostics]

Dataset 1

•N1 patterns

•Faults of classes C1,C2

Build DM1:

Ensemble E

made of H1 classifiers

time

ON LINE 

OPERATION 

OF DM1

Collect Dataset 2

•N2 patterns

• Faults of classes C1, C2 ,C3

NEW:

• fault of a new class C3,

Performance DM1 

decreases

Update DM1:

add to ensemble E

H2 new classifiers trained  with 

Dataset 2  

DM2:

Ensemble 

made of H1 + H2 

classifiers

t1

 Ensemble of ensembles for novelty identifiability



 Incremental learning:

o What is it?

o Why ensembles?

o How?

o Application: fault diagnostics in a nuclear power plant 

system



How?

1. AdaBoost

2. Ensemble of Ensembles

3. Consult and vote procedure



How?
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1. Adaboost: 

 Sequential production of classifiers

 Each classifier is dependent from the previous one

 Patterns that are incorrectly classified by previous classifiers are 

chosen more often for the next classifier training
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1. AdaBoost: 

 Sequential production of classifiers

 Each classifier is dependent from the previous one

 Examples that are incorrectly classified by previous classifiers are 

chosen more often for the next classifier training

How?



How? Ensemble of Ensembles  
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2. Ensemble of Ensembles

From each dataset S1, 

S2, … which becomes 

available, an ensemble 

of classifiers is 

generated



How? Consult and vote 112

Ensemble 1 learns classes 1,2 and 3Ensemble 2 learns classes 1,2,3 and 4

Testing with new, class – 4 data

Ensemble 2 correctly classifies new dataEnsemble 1 inevitably misclassifies
Ensemble 1 classifiers then realize that Ensemble 2 dominantly choose a new class on which

they are not trained. Hence, Ensemble 1 classifiers decide to withdraw their decision

Adapted from: M. Muhlbaier, A. Topalis, and R. Polikar, “Learn++.nc: Combining ensemble of classifiers with dynamically 

weighted consult-and-vote for efficient incremental learning of new classes.” IEEE Transactions on Neural Networks, vol. 20(1), 

pp. 152–168, 2009

• A vote is associated to 

each classifier

• Classifiers consult 

each other to determine 

their voting weight 



 Incremental learning:

o What is it?

o Why ensembles?

o How?

o Application: fault diagnostics in a nuclear power plant 

system



Application: fault diagnostics in a nuclear power plant system

Data provided by the Institute for Energy - Halden Reactor Project (Norway)

 Forsmark 3 BWR Nuclear Power Plant (Sweden)



Application: fault diagnostics in a nuclear power plant system

 System faults:

• C1 - Leakage in the first high pressure preheater to the drain tank 

• C2 - Leakage through the second high-pressure preheater

• C3 - Leakage through the first high pressure preheater Drain back-up 

valve to the condenser

• C4  - Leakage through the high-pressure preheaters bypass valve

• C5 - Leakage through the second high-pressure preheater drain back-up 

valve to the feedwater tank



Application: fault diagnostics in a nuclear power plant system

 Signals Selected for the classification:

• Temperature in drain 4 before VB3 [◦C]

• Water level in tank TD1 [m]

• Feedwater Temperature  after EA2 in train A  [◦C]

• Feedwater Temperature after EB2 in train B  [◦C]



Application: fault diagnostics in a nuclear power plant system

Number of patterns

Training 

Dataset

Normal Class 1 Class 2 Class 3 Class 4 Class 5

S1 90 60 60 60 60 -

Number of classifiers: 10

Ensemble base classifiers: neural network

Performance on test sets: 

117

Testset classes Performance

S1
Test 1,2,3,4 0.981

S2
Test 1,2,3,4,5 0.830

Diagnostic Model DM1

All patterns of class 5  are 

misclassified!

 Dataset 1
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Application: fault diagnostics in a nuclear power plant system

 Classification of a Transient of Class 1
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Application: fault diagnostics in a nuclear power plant system

 Classification of a Transient of Class 5



Number of patterns

Training 

Dataset

Normal Class 

1

Class 2 Class 3 Class 4 Class 5

S1 90 60 60 60 60 -

S2 90 60 60 60 90 60

Update of diagnostic model DM1 with 10 new classifiers

120

Diagnostic Model DM2

Testset classes Performance

S1
Test 1,2,3,4 0.984

S2
Test 1,2,3,4,5 0.987

Application: fault diagnostics in a nuclear power plant system

 Dataset 2
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Application: fault diagnostics in a nuclear power plant system

 Classification of a Transient of Class 5



Conclusions

 Ensembles of Models for PHM:

o Accuracy

o Confidence Estimation

o Incremental Learning
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