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 Ensembles of Models for Prognostics and Health 

Management (PHM):

o Accuracy

o Confidence Estimation

o Incremental Learning

Tutorial Contents
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ENSEMBLES OF MODELS
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Data & Information

Model 1 Model 2 Model H...

Outcome 1 Outcome 2 Outcome H...

Combination

Aggregated outcome

Ensembles of Models
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1. Generate the individual models of the ensemble

2.    Combine the outputs of the individual models

Model 1 Model 2 Model H

Model 1 Model 2 Model H...

Outcome 1 Outcome 2 Outcome H...

Combination

Aggregated outcome

...

Developing an Ensemble of Models
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ENSEMBLES OF MODELS FOR 

PROGNOSTICS AND 

HEALTH  MANAGEMENT
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 Ensembles of Models for Prognostics and Health 

Management (PHM):

o Accuracy

o Confidence Estimation

o Incremental Learning

Tutorial Contents



9

 Accuracy:

o What is it?

o Why ensembles?

o How?

A. Generate the individual models of the ensemble

B. Combine the outputs of the individual models

o Application: prognostics of turbofan engines
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 Fault Detection:

 Low rate of False Alarm

 Low rate of Missing Alarm

False Alarm

Rates

Missing

Alarm

Rates

0,24% 0,38%

Example:

Detection

Model

Normal 

Condition

level

P

…

Accuracy: What is it? 
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 Fault Diagnostics:

 Low Misclassification rate

C1 = Inner race

C2 = Balls

C3 = Outer race

Example:

Diagnostic

Model

Vibrational

signals

Inner race faults o = true

 = diagnostic model
Outer race faults

Balls’ faults

Misclassification rate = 0,78%

Accuracy: What is it? 
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 Prognostics
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Example:

Accuracy: What is it? 
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 Accuracy:

o What is it?

o Why ensembles?

o How?

A. Generate the individual models of the ensemble

B. Combine the outputs of the individual models

o Application: prognostics of turbofan engines
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“I’ll ask the audience”

combination of the answers

multiple performers

individual answer

Why Ensembles?
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 Condorcet Jury Theorem (1786) 

• 2 class problem

• H classifiers (H is an odd number)

• 𝑝1 = probability that an individual classifier chooses the correct class 

(equal for all the classifiers and all the patterns)

• the classifier outcomes are independent

• ensemble outcome: simple majority voting of the H classifiers

Class 1 Class 2

Number of votes

3

6

Ensemble outcome = class 2

Why Ensembles? [Diagnostics] 
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• 𝑝𝑒𝑛𝑠 = probability that the ensemble chooses the correct class

• If  
𝑝1 > 0.5
𝐻 → ∞

 Condorcet Jury Theorem (1786) 

• 2 class problem

• H classifiers (H is an odd number)

• 𝑝1 = probability that an individual classifier chooses the correct class 

(equal for all the classifiers and all the patterns)

• the classifier outcomes are independent

• ensemble outcome: simple majority voting of the H classifiers

𝑝𝑒𝑛𝑠 → 1

𝑝𝑒𝑛𝑠 = 𝑃 majority of the classifiers choose the correct class =

𝑃 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡
𝐻+1

2
classifiers choose the correct class =

 
𝑘=

𝐻+1

2

𝐻 𝑃{𝑘 classifiers choose the correct class}= 
𝑘=

𝐻+1

2

𝐻 𝐻
𝑘

𝑝1
𝑘 1 − 𝑝1

𝐻−𝑘

Why Ensembles? [Diagnostics] 
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Why Ensembles? [Diagnostics] 



18

Why Ensembles? 

 Questionable outcomes provided by ensemble of models…

Who will you choose… 

Jesus or Barabbas?
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Why Ensembles? 

Who will you choose… 

Jesus or Barabbas?

Indipendence of the classifiers?
Matthew 27:20: But the chief priests 

and the elders persuaded the crowd 

to ask for Barabbas and to have Jesus 

executed.

 Questionable outcomes provided by ensemble of models…
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 Accuracy:

o What is it?

o Why ensembles?

o How?

A. Generate the individual models of the ensemble

B. Combine the outputs of the individual models

o Application: prognostics of turbofan engines
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 Accuracy:

o What is it?

o Why ensembles?

o How?

A. Generate the individual models of the ensemble

B. Combine the outputs of the individual models

o Application: prognostics of turbofan engines
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A. Generate the individual models of the ensemble

B. Combine the outcomes of the individual classifiers

Classifier 1 Classifier 2 Classifier H

Classifier 1 Classifier 2 Classifier H...

Outcome 1 Outcome 2 Outcome H...

Combination

Aggregated outcome

...

A: Generate the Individual Models of the Ensemble
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A: Generate the Individual Models of the Ensemble

• Diversity of the classifiers (individual classifiers make errors on 

different patterns) 

• The combinations improve upon the performance of the single 

classifier

Classifier 1 OK

Classifier 2 OK

Classifier 3 KO

Classifier 4 OK

Classifier 1 OK

Classifier 2 KO

Classifier 3 OK

Classifier 4 OK

Classifier 1 KO

Classifier 2 OK

Classifier 3 OK

Classifier 4 OK

Ensemble OK

Ensemble OK Ensemble OK

Classifier 1 OK

Classifier 2 OK

Classifier 3 OK

Classifier 4 KO

Ensemble OK

1x

2x

1x

2x
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 Training each classifier with different training patterns:

• Bagging

• Boosting

• Adaboost

A: Generate the Individual Models of the Ensemble
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The bagging algorithm

Training Set:  NkcxS kk ,...,1),,( 


Adapted from: Robi Polikar (2009), Scholarpedia, 4(1):2776 doi:10.4249/scholarpedia.2776 

http://www.scholarpedia.org/article/Ensemble_learning

A: Generate the Individual Models of the Ensemble

1x

2x
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The bagging algorithm

Training Set:  NkcxS kk ,...,1),,( 


Adapted from: Robi Polikar (2009), Scholarpedia, 4(1):2776 doi:10.4249/scholarpedia.2776 

http://www.scholarpedia.org/article/Ensemble_learning

A: Generate the Individual Models of the Ensemble

1x

2x

Do k= 1:N

• Random sample a patterns of S, with 

replacement

End

% build bootstrap set 1 (𝑆1) 
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The bagging algorithm

Training Set:  NkcxS kk ,...,1),,( 


Adapted from: Robi Polikar (2009), Scholarpedia, 4(1):2776 doi:10.4249/scholarpedia.2776 

http://www.scholarpedia.org/article/Ensemble_learning

A: Generate the Individual Models of the Ensemble

1x

2x

Do k= 1:N

• Random sample a patterns of S, with 

replacement

End

• Train a classifier on 𝑆1
• Add  the classifier to the ensemble

% build bootstrap set 1 (𝑆1) 2

3

3
2

2

2

3
2
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Adapted from: Robi Polikar (2009), Scholarpedia, 4(1):2776 doi:10.4249/scholarpedia.2776 

http://www.scholarpedia.org/article/Ensemble_learning

Do i=1,..,H

Do k= 1:N

• Random sample a patterns of S, with 

replacement

End

• Train a classifier on 𝑆𝑖
• Add  the classifier to the ensemble

End1x

2x
2

2

2

3

4

The bagging algorithm

Training Set:  NkcxS kk ,...,1),,( 


A: Generate the Individual Models of the Ensemble

% build bootstrap set i (𝑆𝑖) 
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correct classification
classification error

1x

2x

1x 1x

2x 2x

correct classification classification error

Adapted from: Robi Polikar (2009), Scholarpedia, 4(1):2776 doi:10.4249/scholarpedia.2776 

http://www.scholarpedia.org/article/Ensemble_learning

A: Generate the Individual Models of the Ensemble
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 Accuracy:

o What is it?

o Why ensembles?

o How?

A. Generate the individual models of the ensemble

B. Combine the outputs of the individual models

o Application: prognostics of turbofan engines
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B: Combine the Outcomes of the Individual Models

A. Generate the individual models of the ensemble

B. Combine the outcomes of the individual classifiers

Classifier 1 Classifier 2 Classifier H

Classifier 1 Classifier 2 Classifier H...

Outcome 1 Outcome 2 Outcome H...

Combination

Aggregated outcome

...
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 Simple majority voting: choose the class with the associated 

largest number of votes

Class 1 Class 2

Number

of votes 4

3

Combination

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Aggregated outcome

B: Combine the Outcomes of the Individual Models
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 Dynamic Approach:

classifier 1 … h … H

1st nearest neighbor OK OK KO

2nd nearest neighbor KO OK KO

3rd nearest neighbor OK OK OK

Model vote ∝ Local performance 2/3 1 1/3

Step 1: Identify the k-nearest 

neighbours of the test pattern in 

a validation set

Step 2: Estimate local performance of 

the ensemble individual  

classifiers on the k-nearest 

neighbours

Model vote ∝ local performance

Step 3: Assign the test pattern to the 

class with the associated largest 

vote

classifier 1 … h … H

vote 2/3 1 1/3

Class assigned to the test pattern

B: Combine the Outcomes of the Individual Models

Test pattern:

Validation set:

d

ix

1x
2x
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 Dynamic Approach:

• model vote depends from the test pattern position 

• model h vote proportional to model h classification performance on    

patterns similar to the test pattern

Test pattern:

Validation set:

d

ix

1x
2x

B: Combine the Outcomes of the Individual Models
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 Accuracy:

o What is it?

o Why ensembles?

o How?

A. Generate the individual models of the ensemble

B. Combine the outputs of the individual models

o Application: prognostics of turbofan engines
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Application: Prognostics of Turbofan Engines
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 The C-MAPPS dataset*

• 260 run-to-failure trajectories 

• 21 measured signals + 3 signals representative of the operating 

conditions

• 6 different operating conditions

Data 

Preprocessing**

Application: Prognostics of Turbofan Engines

* A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, PHM2008 

**M. Rigamonti,  P. Baraldi, E. Zio, I. Roychoudhury, K. Goebel, S. Poll, Echo State Network for Remaining Useful Life Prediction of a 

Turbofan Engine, PHM 2016, Bilbao
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 Ensemble individual model: echo state network* 

Application: Prognostics of Turbofan Engines

Advantages

• Non linear modeling

• Memory Property

• Intrinsic dynamic 

characteristics 

*M. Rigamonti,  P. Baraldi, E. Zio, I. Roychoudhury, K. Goebel, S. Poll, Echo State Network 

for Remaining Useful Life Prediction of a Turbofan Engine, PHM 2016, Bilbao
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A. Generate the individual models of the ensemble

B. Combine the outcomes of the individual classifiers

Classifier 1 Classifier 2 Classifier H

Classifier 1 Classifier 2 Classifier H...

Outcome 1 Outcome 2 Outcome H...

Combination

Aggregated outcome

...
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 Generate the Individual Models of the Ensemble: Bagging

Application: Prognostics of Turbofan Engines

70 run-to-failure training trajectories  

Bagging Set 1

Trajectory:   

2, 15, 24, 54, 68

Bagging Set 2

Trajectory:   

5, 11, 44, 54, 55

Bagging Set H

Trajectory:   

6, 35, 39, 44, 68

…

Echo State 

Network 

1

Echo State 

Network 

2

…

Echo State 

Network 

H=25
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A. Generate the individual models of the ensemble

B. Combine the outcomes of the individual classifiers

Classifier 1 Classifier 2 Classifier H

Classifier 1 Classifier 2 Classifier H...

Outcome 1 Outcome 2 Outcome H...

Combination

Aggregated outcome

...
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 Combine the outputs of the individual models: dynamic approach 

Application: Prognostics of Turbofan Engines

• Identify the K trajectories of

the validation set most similar

to the test trajectory*

*Zio, E., Di Maio, F. A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure

scenarios of a nuclear system (2010) Reliability Engineering and System Safety, 95 (1), pp. 49-57.
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 Combine the outputs of the individual models: dynamic approach 

Application: Prognostics of Turbofan Engines

• Identify the K trajectories of

the validation set most similar

to the test trajectory
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 Combine the outputs of the individual models: dynamic approach 

Application: Prognostics of Turbofan Engines

ESN

1

ESN 

2

… ESN 

H

RUL Prediction error on the 

most similar trajectory 3.11 1.88 … 2.01

RUL Prediction error on the 

2nd most similar trajectory
1.89 13.13 … 3.90

RUL Prediction error on the 

3nd most similar trajectory
2.00 6,99 5,09

• Identify the K trajectories of the

validation set most similar to the

test trajectory

• Estimate the individual ESN

error on the K trajectories of

the validation set most similar

to the test trajectory
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 Combine the outputs of the individual models: dynamic approach 

Application: Prognostics of Turbofan Engines

• Identify the K trajectories of the

validation set most similar to the

test trajectory

• Estimate the individual ESN

error on the K trajectories of the

validation set most similar to the

test trajectory

• Estimate the individual ESN

local errors as average of the

individual ESN error on the K

most similar trajectories

ESN 1 ESN 2 … ESN H

RUL Prediction error 

on the most similar 

trajectory

3.11 1.88 … 2.01

RUL Prediction error 

on the 2nd most 

similar trajectory

1.89 13.13 … 3.90

RUL Prediction error 

on the 3nd most 

similar trajectory

2.00 6,99 5,09

Local Error

(LE) 2.66 7.33 … 5.00
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 Combine the outputs of the individual models: dynamic approach 

Application: Prognostics of Turbofan Engines

• Identify the K trajectories of the

validation set most similar to the

test trajectory

• Estimate the individual ESN

error on the K trajectories of the

validation set most similar to the

test trajectory

• Estimate the individual ESN

local error as average of the

individual ESN errors on the k

most similar trajectories

• Assign a weight to each model:

ESN 1 ESN 2 … ESN H

RUL Prediction error 

on the most similar 

trajectory

3.11 1.88 … 2.01

RUL Prediction error 

on the 2nd most 

similar trajectory

1.89 13.13 … 3.90

RUL Prediction error 

on the 3nd most 

similar trajectory

2.00 6,99 5,09

Local Error

(LE) 2.66 7.33 … 5.00

Model Weight 0.52 0.19 0.29





H

j j

i
i

LE

LE

1

1

1


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 Combine the outputs of the individual models: dynamic approach 

Application: Prognostics of Turbofan Engines

• Identify the K trajectories of the

validation set most similar to the

test trajectory

• Estimate the individual ESN

errors on the K trajectories of the

validation set most similar to the

test trajectory

• Estimate the individual ESN

local errors as average of the

individual ESN errors on the K

most similar trajectories

• Assign a weight to each model

• Compute the RUL prediction

as weighted sum of the

individual model RUL

predictions:

ESN 1 ESN 2 … ESN H

RUL Prediction error 

on the most similar 

trajectory

3.11 1.88 … 2.01

RUL Prediction error 

on the 2nd most 

similar trajectory

1.89 13.13 … 3.90

RUL Prediction error 

on the 3nd most 

similar trajectory

2.00 6,99 5,09

Local Error

(LE) 2.66 7.33 … 5.00

Model Weight 0.52 0.19 0.29





H

i

ii RULRUL
1





Application: Prognostics of Turbofan Engines

 Results 

Dynamic Ensemble
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Cumulative Relative Accuracy Alpha-Lambda

𝜶 = 𝟎. 𝟐

Steadiness

Individual Echo 

State Network 0.476 ± 0.041 0.390 ± 0.052 4.968 ±1.213

Ensemble 

(aggregation = 

simple average)

0.417 ± 0.031 0.400 ± 0.049 4.444 ± 0.326

Ensemble

(aggregation = 

dynamic 

approach)

0.369 ± 0.029 0.421 ± 0.028 4.414 ± 0.319

 Results – Prognostic Metrics (70 test trajectories)  

Application: Prognostics of Turbofan Engines






RUL

RULLUR
RA




ˆ
,)var( :)( tttt TSI 



True RUL

Ensemble: Aggregation = Simple Average

Ensemble: Aggregation = Dynamic approach

Application: Prognostics of Turbofan Engines

 Results – Comparison between different approaches for the 

aggregation of the individual model outputs

test trajectory 22



Application: Prognostics of Turbofan Engines

 Results – Analysis of the individual model weights 

larger the weight 

better the prediction

Ensemble: Aggregation = dynamic approach



 Ensembles of Models for Prognostics and Health 

Management (PHM):

o Accuracy

o Confidence Estimation

o Incremental Learning

Tutorial Contents



 Confidence estimation:

o What is it?

o Why ensembles?

o How?

o Application: prognostics of turbine blades
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Prognostic

Model

Is my prognostic

model a magician?

I don’t belive it!

1x

2x

nx

The pump is going to fail

in: 77 hours, 25 minutes, 

18 seconds

Confidence estimation: what is it?
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Confidence estimation: what is it?

Prognostic

Model

Is my prognostic

model a magician?

I don’t belive it!

1x

2x

nx

The pump is going to fail

in: 77 hours, 25 minutes, 

18 seconds

Prognostic

Model

1x

2x

nx

The pump is going to fail in 

the interval [72, 84 hours] 

with  probability 95%

I believe it! I will do 

maintenance within 3 

days
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Confidence estimation: what is it?
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 Confidence estimation:

o What is it?

o Why ensembles?

o How?

o Application: prognostics of turbine blades
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Why ensemble? [Diagnostics] 

Combination

Aggregated outcome:

Confidence:                             high 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

 Single model outcome distribution  information on the 

confidence
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Why ensemble? [Diagnostics] 

 Single model outcome distribution  information on the 

confidence

Combination

Aggregated outcome:

Confidence:  Low (it could also be      )

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
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 Confidence estimation:

o What is it?

o Why ensembles?

o How?

oApplication: prognostics of turbine blades



 Sources of Uncertainty in Prognostics

1) noise on the observations (measurements) 

61

Time

Failure Threshold

Noise on 

degradation

measurement

Elongation

x

tp

True elongation

Elongation measure

How? [prognostics] 



 Sources of Uncertainty in Prognostics

1) noise on the observations (measurements)

2) Intrinsic stochasticity due to the degradation process and unknown

future external/operational conditions (process)

62How? [prognostics] 

Time

Failure Threshold

Elongation

x

tp



 Sources of Uncertainty in Prognostics

1) noise on the observations (measurements)

2) intrinsic stochasticity due to the degradation process and unknown

future external/operational conditions (process)

3) modeling errors, i.e. inaccuracy of the PHM model used to

perform the prediction (model)

63How? [prognostics] 

How to quantify uncertainty on the RUL prediction ???
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• Prediction error:

𝜀 = 𝑟𝑢𝑙 − 𝑟 𝑢𝑙

64How? [prognostics] 

Present 

Time

RUL

Failure

RUL

tp

time
Predicted Failure

Prognostic

Model



 Prediction error:

𝜀 = 𝑟𝑢𝑙 − 𝑟 𝑢𝑙
 Assumptions: 

• 𝐸 𝜀 = 0 (the prognostic model is unbiased)

• 𝜀 has a normal distribution

65How? [prognostics] 

Random Variable!



 Prediction error:

𝜀 = 𝑟𝑢𝑙 − 𝑟 𝑢𝑙
 Assumptions: 

• 𝐸 𝜀 = 0 (the prognostic model is unbiased)

• 𝜀 has a normal distribution

 Objective:  V𝑎𝑟 𝜀 = 𝜎𝜀
2 = 𝐸 𝑟𝑢𝑙 − 𝑟 𝑢𝑙 2

66How? [prognostics] 
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 Prediction error:

𝜀 = 𝑟𝑢𝑙 − 𝑟 𝑢𝑙
 Assumptions: 

• 𝐸 𝜀 = 0 (the prognostic model is unbiased)

• 𝜀 has a normal distribution

 Objective:  V𝑎𝑟 𝜀 = 𝜎𝜀
2 = 𝐸 𝑟𝑢𝑙 − 𝑟 𝑢𝑙 2

67How? [prognostics] 
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 Prediction error:

𝜀 = 𝑟𝑢𝑙 − 𝑟 𝑢𝑙
 Assumptions: 

• 𝐸 𝜀 = 0 (the prognostic model is unbiased)

• 𝜀 has a normal distribution

 Objective:  V𝑎𝑟 𝜀 = 𝜎𝜀
2 = 𝐸 𝑟𝑢𝑙 − 𝑟 𝑢𝑙 2

68How? [prognostics] 
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Prediction Interval:

𝑃 𝑟𝑢𝑙5 ≤ 𝑟𝑢𝑙 ≤ 𝑟𝑢𝑙95 = 90%
with:

𝑟𝑢𝑙𝛼 = 𝑟 𝑢𝑙 − 𝑐𝛼𝜎𝜀



 Sources of uncertainty in prognostics

1) Measurements  𝜎𝑀𝐸
2

2) Degradation Process  𝜎𝑃𝑅
2

3) Modeling Error  𝜎𝑀𝑂
2

 Prediction error decomposition

69

V𝑎𝑟 𝜀 = 𝜎𝜀
2 = 𝜎𝑀𝐸

2 +𝜎𝑃𝑅
2 +𝜎𝑀𝑂

2

How? [prognostics] 



 Model uncertainty estimate: 

70

2

MO

(Heskes, 1997) T. Heskes. Practical confidence and prediction intervals in Advances Neural Information Processing Systems 9, M. Mozer, M.

Jordan, and T. Heskes, Eds. Cambridge, MA: MIT Press, 1997, pp. 466–472.
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 Process and measurement uncertainty estimate: 
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How? [prognostics] 



 Process and measurement uncertainty estimate: 
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Validation dataset
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 Process and measurement uncertainty estimate: 
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Test pattern: 

Current degradation measuraments
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 Confidence estimation:

o What is it?

o Why ensembles?

o How?

o Application: prognostics of turbine blades



 Turbine Blade Creep Propagation

Application: prognostics of turbine blades

Component: turbine blade
Degradation mechanism: creep
Degradation indicator: blade elongation 

𝑥 𝑡 =
Length(t) – initial length

initial length



 Available Information

Application: prognostics of turbine blades

• Failure threshold (1.5%)

• Historical sequences of elongation measurements in turbine blades 

(13 run-to-failure trajectories)

Time

Fault 
Initiation

Failure Threshold

elongation
d



 Available Information

Application: prognostics of turbine blades

• Failure threshold

• Historical sequences of elongation measurements in turbine blades

• Sequence of elongation measurements of the turbine blade under 

observation

Time

Fault 
Initiation

Failure Threshold

td

elongation

𝑥 𝑡



 Ensemble of Bootstrapped Models

Application: prognostics of turbine blades

Training data
Creep strain 

measurements

Bagging

Time

Failure Threshold

elongation

𝑥 𝑡

10 training run-to-failure

trajectories



 Ensemble of Bootstrapped Models

Application: prognostics of turbine blades

Training data
Creep strain 

measurements

Bagging

Time

Failure
Threshold

Subset 1

elongation

𝑥 𝑡



Training data

Creep strain 

measurements

Subset 1

Bootstrap

Model 1

Time

Failure
Threshold

elongation

𝑥 𝑡

Application: prognostics of turbine blades



 Ensemble of Bootstrapped Models

Application: prognostics of turbine blades

Time
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Training data

Creep strain 

measurements

Subset 2

Subset 1

Bagging Model 2

Model 1

Time

Failure
Threshold

elongation

𝑥 𝑡

Application: prognostics of turbine blades
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Training data
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Application: prognostics of turbine blades
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[…]

Application: prognostics of turbine blades



 Ensemble of Bootstrapped Models

Application: prognostics of turbine blades
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 Ensemble of Bootstrapped Models

Application: prognostics of turbine blades
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Application: prognostics of turbine blades

3 validation

run-to-failure trajectories
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Application: prognostics of turbine blades



 RUL prediction with cprediction bounds (90% confidence interval)

Application: prognostics of turbine blades
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 Uncertainty estimate

Application: prognostics of turbine blades

True

Bootstrap 

estimate

Elongation 𝑥 𝑡



 Ensembles of Models for Prognostics and Health 

Management (PHM):

o Accuracy

o Confidence Estimation

o Incremental Learning

Tutorial Contents



 Incremental learning:

o What is it?

o Why ensembles?

o How?

o Application: fault diagnostics in a nuclear power plant 

system



time = 𝑡1

𝑥1

𝑥2

Incremental learning: What is it? [fault detection]



time = 𝑡1

𝑥1

𝑥2

time = 𝑡2

𝑥1

𝑥2

𝑥1

Incremental learning: What is it? [fault detection]

Evolving environment…

Context Change…



time = 𝑡1

𝑥1

𝑥2

time = 𝑡2

𝑥1

𝑥2

𝑥1

𝑥2
Incremental learning

Incremental learning: What is it? [fault detection]
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ON LINE OPERATION 
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time

Incremental learning: What is it? [fault diagnostics]



t1

• Operational condition: O1

• Faults of classes {C1,C2}

Performance of DM1:

OK

DATA 

COLLECTION
ON LINE OPERATION 

OF DM1

Diagnostics

Dataset 1

•Operational condition O1
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time

Incremental learning: What is it? [fault diagnostics]



t1

• Operational condition: O1

• Faults of classes {C1,C2}

Performance of DM1:

OK

DATA 

COLLECTION t2

NEW:

• fault of a new class C3

• Change in the operational condition: O1O2

Possible change of the input-output 

relationship 
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Incremental learning: What is it? [fault diagnostics]



t1

• Operational condition: O1

• Faults of classes {C1,C2}

Performance of DM1:

OK

DATA 

COLLECTION t2

Performance of DM1 decreases

Dataset 1
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time

Incremental learning: What is it? [fault diagnostics]



time
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DATA 

COLLECTION t3

Dataset 2

•Operational conditions O2

•Faults of classes {C1,C2,C3}

•N2 new patterns

DATA  

COLLECTION

Discard DM1

Train a New Diagnostic Model (DM*)  using

(Dataset 1+ Dataset 2)

• Loss of all previously acquired knowledge

• Computational and financial efforts necessary for each 

model retraining

catastrophic 

forgetting

Diagnostic model

DM1

t2

Dataset 1

•Operational conditions O1
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Incremental learning: What is it? [fault diagnostics]



time

t1

DATA 

COLLECTION t2
DATA  

COLLECTION

Performance of DM2:

OK

• Learn the novel information content of Dataset 2 

without forgetting the previously acquired knowledge 

by DM1

• Update the model without requiring access to the 

previously seen datasets

Incremental 

learning 

DM2

ON LINE 

OPERATION 

OF DM2

Diagnostic model

DM1

Dataset 1

•Operational condition O1

•Faults of classes {C1    ,C2   }

•N1 patterns  kkk cxx ,, 21

Dataset 2

•Operational condition O2

•Faults of classes {C1,C2,C3}

•N2 new patterns

Incremental learning: What is it? [fault diagnostics]



 Incremental learning:

o What is it?

o Why ensembles?

o How?

o Application: fault diagnostics in a nuclear power plant 

system



Why ensembles? [Diagnostics]

Dataset 1

•N1 patterns

•Faults of classes C1,C2

Build DM1:

Ensemble E

made of H1 classifiers

time

ON LINE 

OPERATION 

OF DM1

Collect Dataset 2

•N2 patterns

• Faults of classes C1, C2 ,C3

NEW:

• fault of a new class C3,

Performance DM1 

decreases

Update DM1:

add to ensemble E

H2 new classifiers trained  with 

Dataset 2  

DM2:

Ensemble 

made of H1 + H2 

classifiers

t1

 Ensemble of ensembles for novelty identifiability



 Incremental learning:

o What is it?

o Why ensembles?

o How?

o Application: fault diagnostics in a nuclear power plant 

system



How?

1. AdaBoost

2. Ensemble of Ensembles

3. Consult and vote procedure



How?
108

Original dataset S

x
x

x

x
x

x
x

x

x
x

x

x

x

x

x

x

x o o

o
o

o
o

o

o

o

o

o

o

o

o
o

o
o

x

x
o

x

x

x
x

x
x

x

x

x

x

x

x

x

x

o o

o
o

oo

o
o

o

o
o

o

2

2
3

2

2

3x

x

x
x

x
x

x

x

x

x

x

x

x

x

o o

o
o

oo

o
o

o

o
o

o

2

2
3

2

2

3

Build a classifier

x
x

x

x
x

x
x

x

x
x

x

x

x

x

x

x

x o o

o
o

o
o

o

o

o
o

o
o

o

o
o

o
o

x

x
o

Test Model1 on 

S

Sample Bootstrapped Training 

dataset 1 

(Uniform Distribution

(p1(k)=1/N, k=1…,N))

Model1

1. Adaboost: 

 Sequential production of classifiers

 Each classifier is dependent from the previous one

 Patterns that are incorrectly classified by previous classifiers are 

chosen more often for the next classifier training
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1. Adaboost: 

 Sequential production of classifiers

 Each classifier is dependent from the previous one

 Examples that are incorrectly classified by previous classifiers are 

chosen more often for the next classifier training

How?
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1. AdaBoost: 

 Sequential production of classifiers

 Each classifier is dependent from the previous one

 Examples that are incorrectly classified by previous classifiers are 

chosen more often for the next classifier training

How?



How? Ensemble of Ensembles  

111
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2. Ensemble of Ensembles

From each dataset S1, 

S2, … which becomes 

available, an ensemble 

of classifiers is 

generated



How? Consult and vote 112

Ensemble 1 learns classes 1,2 and 3Ensemble 2 learns classes 1,2,3 and 4

Testing with new, class – 4 data

Ensemble 2 correctly classifies new dataEnsemble 1 inevitably misclassifies
Ensemble 1 classifiers then realize that Ensemble 2 dominantly choose a new class on which

they are not trained. Hence, Ensemble 1 classifiers decide to withdraw their decision

Adapted from: M. Muhlbaier, A. Topalis, and R. Polikar, “Learn++.nc: Combining ensemble of classifiers with dynamically 

weighted consult-and-vote for efficient incremental learning of new classes.” IEEE Transactions on Neural Networks, vol. 20(1), 

pp. 152–168, 2009

• A vote is associated to 

each classifier

• Classifiers consult 

each other to determine 

their voting weight 



 Incremental learning:

o What is it?

o Why ensembles?

o How?

o Application: fault diagnostics in a nuclear power plant 

system



Application: fault diagnostics in a nuclear power plant system

Data provided by the Institute for Energy - Halden Reactor Project (Norway)

 Forsmark 3 BWR Nuclear Power Plant (Sweden)



Application: fault diagnostics in a nuclear power plant system

 System faults:

• C1 - Leakage in the first high pressure preheater to the drain tank 

• C2 - Leakage through the second high-pressure preheater

• C3 - Leakage through the first high pressure preheater Drain back-up 

valve to the condenser

• C4  - Leakage through the high-pressure preheaters bypass valve

• C5 - Leakage through the second high-pressure preheater drain back-up 

valve to the feedwater tank



Application: fault diagnostics in a nuclear power plant system

 Signals Selected for the classification:

• Temperature in drain 4 before VB3 [◦C]

• Water level in tank TD1 [m]

• Feedwater Temperature  after EA2 in train A  [◦C]

• Feedwater Temperature after EB2 in train B  [◦C]



Application: fault diagnostics in a nuclear power plant system

Number of patterns

Training 

Dataset

Normal Class 1 Class 2 Class 3 Class 4 Class 5

S1 90 60 60 60 60 -

Number of classifiers: 10

Ensemble base classifiers: neural network

Performance on test sets: 

117

Testset classes Performance

S1
Test 1,2,3,4 0.981

S2
Test 1,2,3,4,5 0.830

Diagnostic Model DM1

All patterns of class 5  are 

misclassified!

 Dataset 1
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Application: fault diagnostics in a nuclear power plant system

 Classification of a Transient of Class 1
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Application: fault diagnostics in a nuclear power plant system

 Classification of a Transient of Class 5



Number of patterns

Training 

Dataset

Normal Class 

1

Class 2 Class 3 Class 4 Class 5

S1 90 60 60 60 60 -

S2 90 60 60 60 90 60

Update of diagnostic model DM1 with 10 new classifiers

120

Diagnostic Model DM2

Testset classes Performance

S1
Test 1,2,3,4 0.984

S2
Test 1,2,3,4,5 0.987

Application: fault diagnostics in a nuclear power plant system

 Dataset 2



N
o

rm
a

liz
e

d
  
V

o
te

time

Application: fault diagnostics in a nuclear power plant system

 Classification of a Transient of Class 5



Conclusions

 Ensembles of Models for PHM:

o Accuracy

o Confidence Estimation

o Incremental Learning
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