

# Tutorial Big Data Analytics in PHM

2016 Conference of the PHM Society Denver, CO

John Patanian

October 3, 2016

Imagination at work

### TUTORIAL AGENDA

- Introduction
- Big Data and PHM Architecture
- Key Components of Apache Hadoop
- General Analytics Patterns (Streaming, Batch, Ad-Hoc)
- Tips and Tricks
- Sample Analysis Using PHM 2008 Challenge Data Set
- Where to Go Next To Learn More



#### **TUTORIAL GOALS**

After this tutorial, you should be able to...

- Describe briefly components like Kafka, Hive, HDFS, MapReduce, Hive.
- Understand Streaming, Batch, and Interactive PHM Use Cases for PHM
- Understand differences in writing deploying analytics for the desktop vs. the Hadoop Cluster

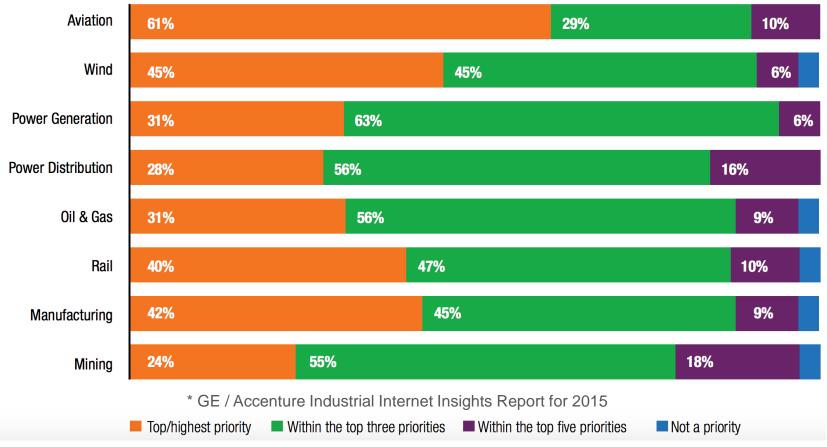
This is not ...

- A tutorial on Deep Learning
- A detailed tutorial on programming in Python.



#### **Business Case For Big Data Analytics**

How important is Big Data analytics relative to other priorities in your company?





#### The Business Case For Big Data Analytics

Highest-ranked priorities

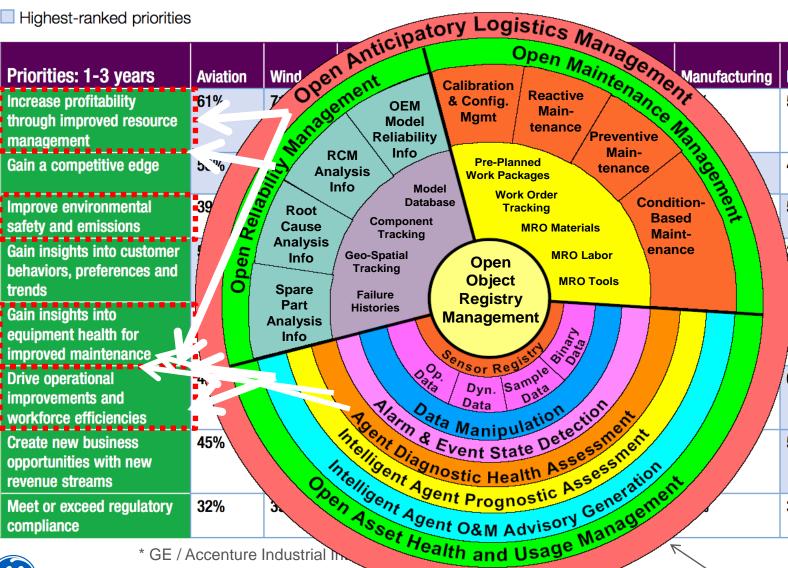
| Priorities: 1-3 years                                               | Aviation | Wind | Power<br>Generation | Power<br>Distribution | Oil & Gas | Rail | Manufacturing | Mining |
|---------------------------------------------------------------------|----------|------|---------------------|-----------------------|-----------|------|---------------|--------|
| Increase profitability<br>through improved resource<br>management   | 61%      | 71%  | 56%                 | 59%                   | 56%       | 67%  | 58%           | 55%    |
| Gain a competitive edge                                             | 58%      | 55%  | 53%                 | 69%                   | 50%       | 50%  | 76%           | 48%    |
| Improve environmental safety and emissions                          | 39%      | 61%  | 50%                 | 75%                   | 59%       | 43%  | 52%           | 58%    |
| Gain insights into customer<br>behaviors, preferences and<br>trends | 58%      | 61%  | 47%                 | 56%                   | 38%       | 60%  | 70%           | 39%    |
| Gain insights into<br>equipment health for<br>improved maintenance  | 55%      | 48%  | 34%                 | 56%                   | 47%       | 73%  | 67%           | 39%    |
| Drive operational<br>improvements and<br>workforce efficiencies     | 42%      | 48%  | 41%                 | 72%                   | 44%       | 53%  | 55%           | 64%    |
| Create new business<br>opportunities with new<br>revenue streams    | 45%      | 61%  | 34%                 | 53%                   | 47%       | 40%  | 52%           | 58%    |
| Meet or exceed regulatory<br>compliance                             | 32%      | 39%  | 41%                 | 63%                   | 50%       | 33%  | 39%           | 39%    |

\* GE / Accenture Industrial Internet Insights Report for 2015



2016 Annual Conference of the Prognostics and Health Management Society

#### PHM at the core of IOT for Industrial





\* GE / Accenture Industrial 2016 Annual Conference of the Prognostics and

Source: Penn State ARL Lab

6

Mining

55%

48%

58%

39%

**39%** 

64%

58%

39%

### Analytic Patterns – Ad-hoc

- Interactive from a prompt, REPL environment (IDE) or Notebook
- Data & method exploration, data vending, etc., simple BI tasks. Users want an desktop-like experience.
- Typical expected response in sub-seconds to a few seconds.





# Analytic Patterns - Streaming Low latency data refresh, analytics processing, end-to-end response Typically almost everything in memory.

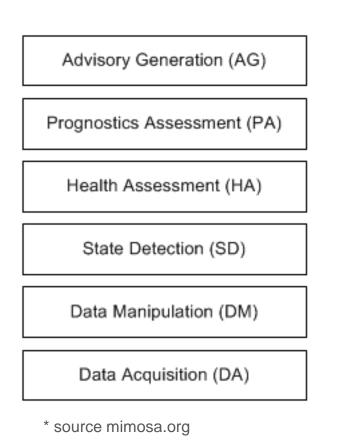
### Need Results in seconds or milliseconds

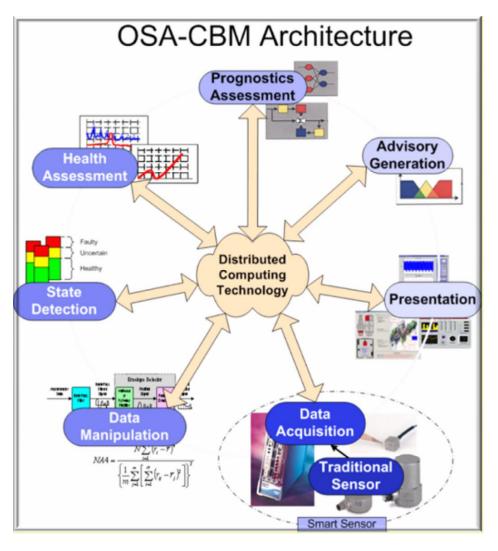
-Decision Support -Operator Guidance -Control or Human In the Loop

## **Analytic Patterns - Batch**

Scheduled or Event Driven
Slower Response Times are Acceptable
Large Volumes of Data
Can be used to develop pre-defined query results for serving BI presentation layer.

#### **CBM and Big Data Architectures**







### **Common Analytic Tasks**

Data Exploration:

- Visual Exploration
- Descriptive Statistics
- Correlation Analysis
- Domain Specific Analyses



Often a very interactive, iterative process. Ideal to have the same level of interactivity regardless of data size.



## Common Analytic Tasks – Model • Train many models on the same set of features.

- Build multiple models with different features
- Run a DOE on a single mode with different "knobs"
- Map by operating regime and train one or more models per regime.

These operations are time consuming on a desktop because code are most often written in one or more for loops ... a great opportunity for Model Parallelism



**Common Analytic Tasks** 

Data Preparation:

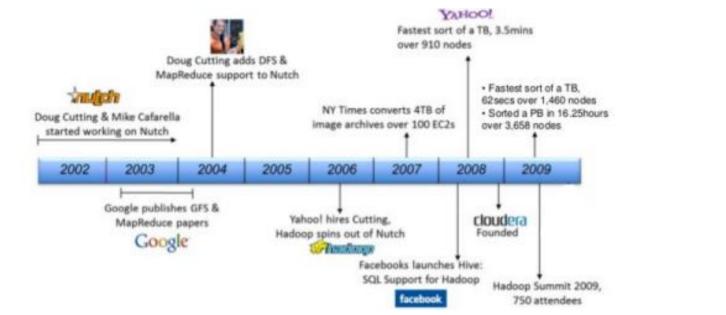
- Loading data set(s)
- Filtering
- Merging, Joining, Aggregating, Selecting
- Dealing with Data Quality
  - Missing Values, Outliers, Input errors
  - Imputation
- Feature Calculation, Extraction

Many "Embarassingly Parallel" operations directly translate between desktop and cluster

## What is Apache

Definition: An an open-source software ecosystem to store and process data that is too big for one device or server.

- Hadoop scales across tens to thousands of <u>commodity</u> servers that don't share memory or disk space.
- Hadoop manages hardware reliability through through redundancy and software.
- Processing happens close to the data whenever possible.



What is Apache



#### Hadoop : Two Foundational Components

- Hadoop Distributed File System: Resilient, high-throughput clustered storage.
- MapReduce: Distributed, fault-tolerant resource management & scheduling with a scalable data programming abstraction





**HDFS:** The scalable fail-safe distributed file system. Designed to store large amounts of data (TB to PB) and scale to many users.

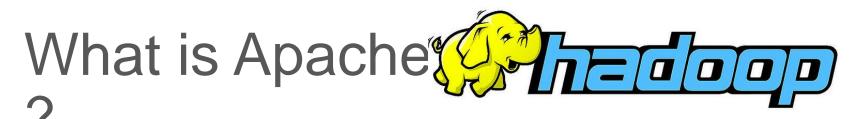
**Hive**: Original SQL on Hadoop. Define schema on distributed files (text, CSV, compressed) in HDFS. (Similar components are Impala, Drill, HAWQ).

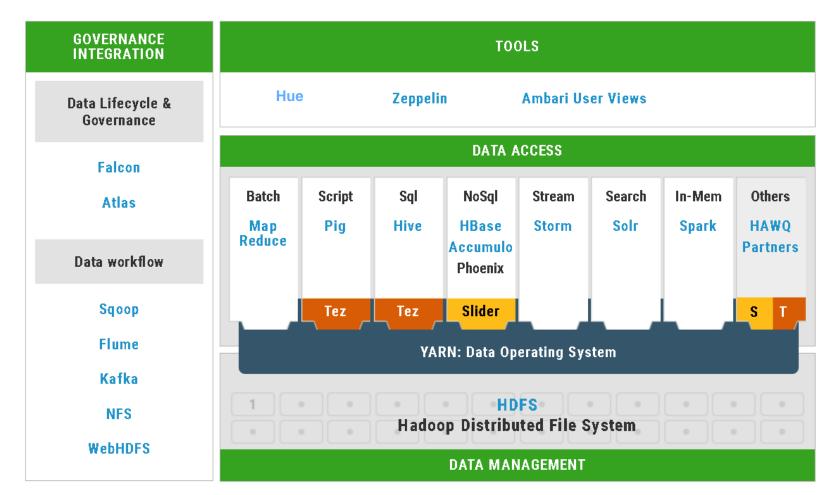
**MapReduce:** Legacy data processing architecture. Main API methods are Map, Reduce. Originally only batch. Latest enhancements are managable for some interactive use.

**Spark**: Latest generation data processing architecture in Hadoop. Offers 10-100x, speed improvements over MapReduce, API in Java, Scala, Python, and R. Handles batch, streaming and interactive.

**Sqoop**: Utility for Moving data between external databases, Hive, and HDFS





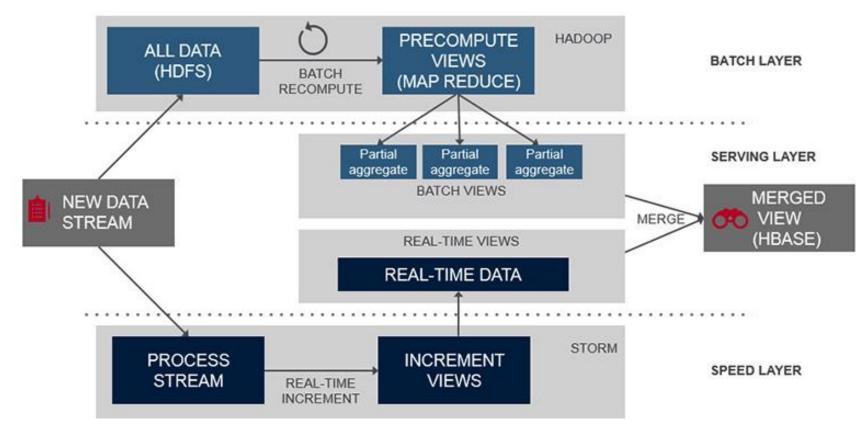




source: http://hortonworks.com/products/data-center/hdp/

#### Hadoop® Reference Architecture

Lambda architecture designed to support batch, streaming and BI



source mapr.com

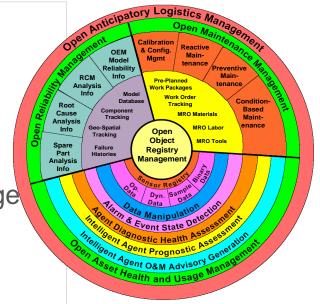


#### Where this does infrastructure work for PHM?

- Centralized Monitoring
- System Level, Fleet-Level Analysis and Operational Guidance
- Maintenance Recommendations
  - Integration of pre-processed data from edge devices.
  - Combined Data Sets
  - High Frequency data set transfer (latency due to bandwidth is a bottleneck).
- MAYB

GOOD

- Better scenario is edge processing of raw
  - data into features.





## Key Components

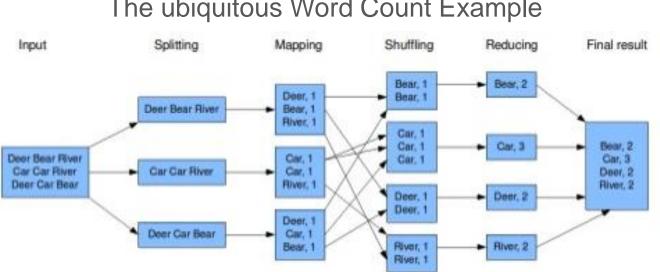


2016 Annual Conference of the PHM Society

#### **Apache Map Reduce**



Original Core Data Processing Engine of Hadoop



The ubiquitous Word Count Example

Translation of complex operations into Map and Reduce Operations is non-trivial



#### Apache Hive Overview



- Built on top of Hadoop
- Data stored in HDFS
- Hive compiles SQL-like HiveQL into MapReduce jobs (Hive 1.0), executes in parallel and returns results.
- Still makes up the vast majority of MapReduce job executions.
- Because of the overhead of MapReduce, even small jobs take at least a minute to return results, making it difficult for interactive use.
- No INSERT OR UPDATE
- Hive 2.0 Performance gains by replacing MapReduce as the Execution engine.
- JDBC and ODBC drivers are available to integrate with BI and desktop analysis tools.



#### Apache Sqoop

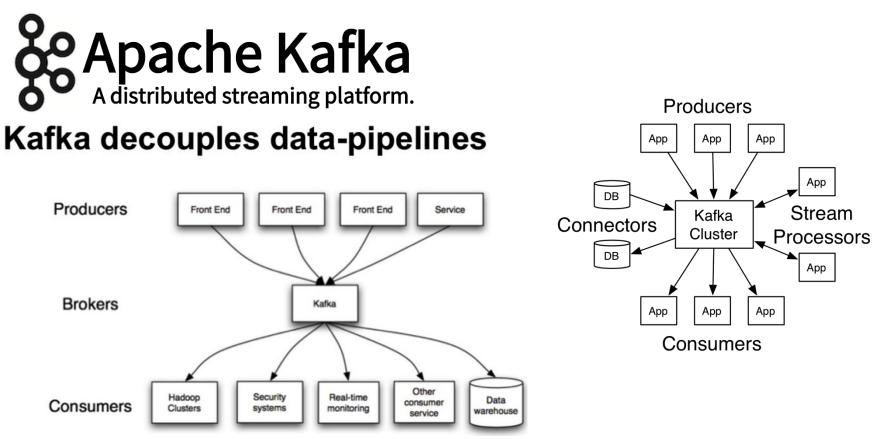
# Used for moving data between databases, HDFS and HIVE. Works with any database with a JDBC Driver.

#### Example SQOOP Command

# -P command will prompt the user for a password at the prompt # -m 1 does sequential import of the data (not require a primary key) (this uses a single mapper) # --hive-import will automatically create a hive table

```
sqoop import
    --connect 'jdbc:sqlserver://1.23.456.78;DatabaseName=PHMDemo' \
    --table DataChallenge \
    --fetch-size=10000 \
    --username '<EnterUserName>' \
    -P \
    -m 1 \
    --hive-import
```





Apache Kafka is a distributed streaming platform. It lets you...

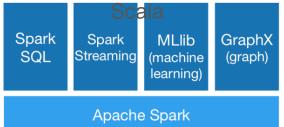
- Publish and subscribe to streams of data like a messaging system.
- Store streams of data in a distributed, replicated cluster
- Process streams of data in real-time.
- Typically used at front of Lambda architecture.





**Apache Spark™** is a fast and general engine for large-scale data processing.

#### APIs in Java, Python, R, and



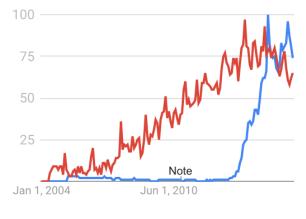
#### **Brief History of Spark**

- 2002 MapReduce @ Google
- 2004 MapReduce paper
- 2006 Hadoop @ Yahoo
- 2008 Hadoop Summit
- 2010 Spark paper
- 2011 Hadoop 1.0 GA
- 2014 Apache Spark top-level
- 2014 1.2.0 release in December
- 2015 1.3.0 release in March
- 2015 1.4.0 release in June
- 2015 1.5.0 release in September
- 2016 1.6.0 release in January
- 2016 2.0.0 Release in July



#### Interest over time

United States. 2004 - present.



- Apache Spark
- MapReduce

#### Google Trends



Much more extensive API than MapReduce AND at a higher level of abstraction

Spark Context

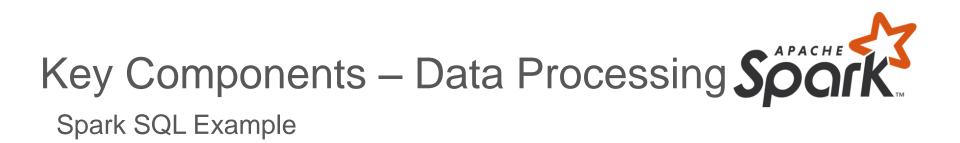
DataFrame

Spark SQL

Resilient Distributed Dataset (RDD)

Spark MLLib





from pyspark import SparkContext

from pyspark.sql import HiveContext

```
sc = SparkContext()
```

```
database_names = sqlContext.sql("SHOW DATABASES") # No data is transferred
database_names.collect() # Data is transferred when an action method is called.
database_names.take(2)
```

```
# The Result below is a data frame
phm_data = sqlContext.sql("SELECT * FROM PHMDATA WHERE SETTING1 > 0 AND SETTING2 > 10")
```



#### A hands on example

### Processing the 2008 PHM Data Challenge Data Set See github repository for Jupyter Notebooks

#### https://github.com/patanijo/PHM2016

This data set is not very big, but is used for demonstration purposes.



#### **Tips and Tricks**

- When data fits into memory, don't use a distributed processing paradigm.
- Understand what you lose by sampling your data set.
- Common scenario: Filter, column selection, feature calculations and extraction done using Big Data processing, often data set may no longer be big.



#### **Tips and Tricks**

- Transition between desktop to cluster execution is often challenging, still requires a change of thought process.
- Some algorithms don't readily translate to a distributed version.
- Process is greatly simplified if your code is written into modular functions (Don't write everything in one big function). If operation can be applied to each element of a row or column, or to an entire row or column, translation is straight-forward.
- Thought process about how to enable a calculation on a distributed framework is similar to thought process of how to vectorize an operation.
- Iterative operations are easier with Spark than with MapReduce, but still not a direct translation from Desktop to cluster.



#### How to Learn More

- DataBricks (i.e. the creators of Spark) have free accounts that enable execution on a small cluster running within AWS.
- The edX MOOC platform offers a series of online courses, ranging from Introductory to Advanced Machine Learning on Spark. These series of courses were created by Databricks Download a version of Hadoop or Spark and run on your Desktop. The Hortonworks Sandbox is a good Hadoop setup with Images available for several virtual machines. Your datasets will be limited to the size of your computer, but you will learn the API.
- Recommended approach is to take a problem you have already solved and see if you can replicate it in Spark.



#### Demo of Sample Non-Spark Analysis

https://github.com/patanijo/PHM2016/blob/master/Sa mple\_Analysis\_Notebook\_Non\_Spark.ipynb

**Homework**: Repeat this analysis using Spark (on a local machine or an available cluster). Solutions will be posted later this week on the same repository.







#### Instructions for Installing Apache Spark Standalone on OS/X

Follow Instructions Here:

https://medium.com/data-science-cafe/apache-spark-1-6-0setup-on-mac-os-x-yosemited58076e8064e?swoff=true#.qqpb3kikb

After following instructions execute the following command: echo "127.0.0.1 \$HOSTNAME" | sudo tee -a /etc/hosts Command to start with IPYTHON



## Instructions for Installing Apache Hadoop on Windows

Recommended to Install on a VM Such as VirtualBox or VMWare

https://www.virtualbox.org/wiki/Downloads

For example link to HortonWorks Sandbox downloads:

http://hortonworks.com/downloads/#sandbox

This installs a complete stack of Hadoop tools.



Pandas to Spark

#### **Converting between pandas and Spark DataFrames:**

https://databricks.com/blog/2015/08/12/from-pandas-to-apache-sparksdataframe.html

https://medium.com/@chris\_bour/6-differences-between-pandas-and-sparkdataframes-1380cec394d2#.5eme3r4Iw

https://lab.getbase.com/pandarize-spark-dataframes/



Title or Job Number | XX Month 201X

