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Evolution of Maintenance Practices
From Reactive to Preemptive

Repair	/	
Replace	When	

Broken

Reliability	
Centered	

Maintenance

Systematic	
maintenance	
approach	to	ensure	
that	assets	continue	to	
do	what	their	users	
require	in	present	
operating	context

Enhanced	
Diagnostics

Process	of	
determining	why	a	
component	has	failed

Condition	
Based	

Maintenance

Predicting	the	future	
health	of	a	component	
so	that	maintenance	is	
done	based	on	the	
actual	condition	of	the	
component

Key	Enabler:
Prognostics!



Reliability and Prognostics

• Reliability analysis gives us information about the failure 
of a population of similar systems or components

• Prognostics extends this to a specific system or 
component
• When will it fail?
• What’s the probability that it will fail in the next 5 minutes?
• What’s the probability that we can complete the mission before 

something fails?
• The potential benefits of early warning of impending 

failure are significant
• Improved availability
• Reduced equipment damage
• Improved safety



• Nondestructive measurement methods and analyses 
to detect degradation and anomalies

• Algorithms to characterize and monitor the 
degradation state of the component

• Prognostics that use the degradation state 
information to determine remaining useful life (RUL) 
and probability of failure (POF) of components

• Methods to integrate prognostic estimates into risk 
estimates and advanced control algorithms

Fully realized PHM systems have four key 
components



Prognostics is one component of a 
larger surveillance system.

Data

Monitor	
and	
Detect
• Is	there	an	
anomaly	
or	fault?

Diagnose
•What	is	the	
fault?

Prognose
•What	is	the	
RUL?

Mitigate
• How	can	
the	lifetime	
be	
extended?
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Online condition assessment provides 
information about the evolving degradation of 
components



Asset surveillance systems extract 
knowledge from data

• Sensed data contains degradation information and 
should be used to improve operational reliability 
through:
• Optimizing maintenance scheduling (condition-based)
• Improving operations (equipment state knowledge)

• Several methods exist, the selection is based on
• Data availability: failure, causal, effects
• Knowledge of degradation modes (physical model)

• Each prognostic application may have its own 
specific needs requiring new and creative solutions



Prognostic Term Definitions

• Methods used to predict:
• Remaining Useful Life (RUL): the amount of 

time, in terms of operating hours, cycles, or 
other measures the component will continue 
to meets its design specification.

• Time of Failure (TOF): the time a component 
is expected to fail (no longer meet its design 
specifications).

• Probability of Failure (POF): the failure 
probability distribution of the component.



So what is data-driven 
prognostics?

• Prognostic models developed and derived 
from historic run-to-failure data

• Models are typically “black boxes” with no 
explicit system knowledge

• Data are typically preprocessed to extract 
useful information
• Feature extraction
• System monitoring
• Detection, isolation, and diagnostics



Sensed data contain information about 
the condition of components, systems, 
and processes

• A lot of data are being collected all the time
• Equipment data, process parameters, operating 

conditions …

• We want to 
• discover the underlying relationships in data
• exploit these relationships to make predictions or 

decisions 
about new 
data
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Some Basic Prognostic Data 
Requirements
• For Type I, we need a population of historical 

failure times that include the expected operation

• For Type II, environmental and stressor conditions 
that drive the failure modes must be measurable

• For Type III, degradation must be related to a 
measurable parameter such as tread depth or 
bearing vibration level or temperature or inferred 
from available measurements



2008 PHM Challenge Data

• Develop a data-based prognostics algorithm 
with no knowledge of the system being 
monitored

• Provided 24 variables
• 3 operating condition indicators
• 21 sensed variables

• Provided simulated data for model 
development and testing
• 218 training cases (run to failure)
• 218 test cases (censored)
• 435 final test cases (censored)

Saxena,	A.,	K.	Goebel,	D.	Simon,	N.	Eklund,	"Prognostics	Challenge	Competition	Summary:	
Damage	Propagation	Modeling	for	Aircraft	Engine	Run-to-Failure	Simulation,"	PHM	'08,	
Denver	CO,	Oct	6-9,	2008.		



Type I – Reliability-based 
Prediction
• Type I prognostics characterize the expected 

lifetime of the average component operating 
in historically average conditions

• Major Assumption: Future components will 
operate in similar conditions and degrade in 
similar ways to those seen in the past

• May be applied when data collection of 
stressor or component condition measures is 
not possible
• At beginning of life, these things may be unknown 

or unavailable



Type I – Reliability-based 
Prediction
• Estimate failure density functions with 

parametric or non-parametric models  
• A population of components is tracked and

their failure times are noted
• Components that have not failed are called

censored data and that information is also
used to predict the failure density

• Example parametric models include 
exponential, normal, log-normal, and 
Weibull



Weibull Model

• Probably the most common parametric 
model is the Weibull distribution.  

• This model is used because it is flexible 
enough to model a variety of failure rate 
profiles.  

• The failure rate is modeled with two 
parameters
• a shape parameter (b) and 
• a characteristic life (q)

1

( ) tt
bbl

q q

-
æ ö= ç ÷
è ø



Two Parameter Weibull

• Increasing failure rate (b>1), a constant 
failure rate (b=1), and a decreasing failure 
rate (b<1)

• Does a good job of modeling failure data with 
exponential, normal, or Rayleigh distributions
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Using a Type I model to do 
prognostics
• The failure criterion 

is some value of 
reliability (R(t|T))

• For some desired 
α, 
we can calculate 
the 
value of t such that 
R(t|T) = α

R t T( ) = R(t, t > T )R(T )
=α

R(t, t > T ) =α ∗R(T )

note R(t) =1−F(t)

⇒1−F(t, t > T ) =α ∗R(T )
F(t, t > T ) =1−α ∗R(T )
t = F−1(1−α ∗R(T )), t > T
RULα = t −T



Type I Results – Weibull Analysis

• Calculate failure time for all failed cases, 
then fit a Weibull model to the histogram

• ML estimates
• β = 4.38
• θ = 225.66



Type I Results – Weibull Analysis



Type I prognostics have many 
limitations.
• A readily apparent disadvantage of reliability 

data-based prognostics is that it does not 
consider the operating condition of the 
component
• Components operating under harsh conditions would 

be expected to fail sooner and components operating 
under mild conditions to last longer

• Failures observed during lifetime tests may not 
be useful for different operating conditions
• Multiple fault modes are often merged into one 

distribution
• Operation of a specific component may be very 

different from historic operation



Type II – Stressor-based 
Prediction
• Type II prognostics estimate the lifetime of the 

average component in a specific environment
• Major Assumption: Components operating in 

similar conditions will degrade in similar ways; 
unit-to-unit variation is not significant

• Type II can be applied if stressor variables are 
measureable and well-correlated to component 
degradation

• Stressor-based reliability models, Proportional 
hazards models, life consumption models, Markov 
chain Monte Carlo models



Type II Reliability Models

• Instead of lumping all your failure data in to one 
reliability model, you can have separate PoF (or 
R or F) models for each operating condition



Proportional Hazards Model
• Similar equipment may have dissimilar operating 

conditions or histories because of different factors 
such as loads and stresses
• Called “covariates”

• Modeling the failure data requires isolating the 
effects of these covariate factors

• Proportional Hazard model assumes hazard rate 
can be divided separated into two functions
• Baseline hazard rate depending only on time
• A second function only dependent on the covariates

• Factors are assumed to be multiplicative rather 
than additive
• Maintains that each condition is relative to some 

baseline

1 0 1 1( , ,..., ) exp( ,..., )n n nt Z Z Z Zl l b b=



Fitting the regression 
parameters

• z is a row vector of covariates
• β is a column vector of regression parameters

• Defines the effects of the covariates

• Different functional forms of ψ may be used
• Typically exponential: ψ(z;β)=exp(zβ)

• Use maximum likelihood method to estimate the 
values of β given the observed failure times (and 
censored times) and covariates

λ t, z( ) = λo(t)ψ(z;β)



Estimating RUL

• PH model gives the survival function 
(reliability function, R) as a function of both 
time and covariates

• Once you have R, you can solve for the RUL 
just like we did with standard (type I) 
reliability models

H (t, z) = λ(u, z)du
0

t

∫

R(t,Z ) = exp −H (t, z)( )



PH Model Results

• Covariates are 
mean value of 
each of the 3 
environmental 
sensors

• Reliability 
cutoff of 0.95 
used



Markov Chain Models

• MC models explain the equipment degradation 
through a transition of states
• The states can be the environmental conditions that 

cause degradation
• Transition probabilities control state movement 

through a transition matrix Q
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Markov Chains

• A Markov chain is a process that consists of a 
finite number of states and some known 
probabilities Pij, where Pij is the probability of 
moving from state j to state i

• This process is independent of all previous 
states, only the current state has any bearing on 
the transition probabilities

P( Xt  = j | X0  = i0, X1 = i1, ..., Xt-1  = it-1) 
   = P( Xt  = j | Xt-1  = it-1) = Pij(t-1)



Type II Markov chain models really 
consist of two models

• The first model, the Markov chain, 
generates a possible future progression of 
operating conditions

• The second model maps these operating 
conditions onto a degradation parameter 
with some defined threshold value



State to degradation mapping

• In general, the mapping can be any function of 
the states

• One simple approach is to assume each state 
contributes some deterministic amount of 
degradation
• If state i contributes di degradation, then:

• We can easily extend this to probabilistic degradation 
amounts

D(t = n) = f x0, x1,..., xn( )

D(t = n) = dxk
k=1

n

∑



Markov chain prognosis, t = 0









Type II Results – Markov Chain Model

• Data divided into six operating conditions according to 
the three condition variables

• Used historic paths to determine condition transfer 
probabilities
• Assume we have static transfer probabilities
• Can be made time-dependent

To	
From 1 2 3 4 5 6

1 0.14 0.16 0.15 0.16 0.15 0.24
2 0.16 0.15 0.14 0.14 0.15 0.25
3 0.15 0.14 0.15 0.15 0.15 0.26
4 0.16 0.15 0.15 0.15 0.15 0.24
5 0.15 0.15 0.15 0.15 0.15 0.26
6 0.15 0.14 0.15 0.15 0.15 0.26



Type II Results – Markov Chain Model

• Operation condition evolutions can be 
generated (MC Model I)

• However, this cannot easily be related to a 
deterministic degradation measure (MC 
Model II) Correlation	to	

Lifetime
1 0.12
2 -0.037
3 0.041
4 0.021
5 -0.064
6 -0.046



Markov Chain Results



Type III – Degradation-based 
Prediction
• Type III prognostics estimate the lifetime of the 

specific component in its specific operating 
environment

• Type III algorithms track the degradation (damage) 
as a function of time and predict when the total 
damage will exceed a predefined threshold that 
defines failure

• Damage is generally assumed to be cumulative 
(irreversible)

• Markov chain Monte Carlo model, shock model, 
general path model, particle filter-based model 



Type III – Degradation Based 
Prognostics 
• Direct measurements of the individual can 

be monitored to detect when a fault occurs
• A fault progresses until failure is reached



Type III: Degradation-Based 
Prognostics
• A degradation measure is a scalar or vector

quantity that numerically reflects the current
ability of the system to perform its designated
functions properly. It is a quantity that is
correlated with the probability of failure at a
given moment.

• A degradation path is a trajectory along
which the degradation measure is evolving in
time towards the critical level corresponding
to a failure event.



General Path Models

• Traditional reliability methods use only 
time-to-failure data to estimate failure 
distributions

• Some systems result in few or no failures 
during accelerated life testing

• Degradation measurements may contain 
useful information about product reliability



GPM to enhance reliability 
analysis
• The GPM was originally developed to estimate the 

failure density for censored data.
• Lu, C.J. and W.Q. Meeker, "Using Degradation 

Measures to Estimate a Time-to-Failure Distribution," 
Technometrics, Vol 35, No 2, May 1993, pp. 161-174.

• Degradation paths were 
extrapolated to find 
estimated failure times 

• The distribution was 
estimated from measured
and estimated failure 
times
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General Path Models

• Degradation 
signal for each 
individual 
device is unique

• There is a 
critical threshold 
at which failure 
occurs
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“Unique Path” assumption introduces 
individual-based TOF estimates

• The observed degradation path, y, is 
modeled by

• where φ is the vector of fixed effects 
(population) parameters and Θi is the vector 
of random (individual) effects for unit i

• The function, η, can be any type of model
• Regression, spline, nonparametric, neural 

network, etc.
• It’s convenient and straightforward to use 

linear models and OLS regression

ejh +Q= ),,( ii ty



Using the GPM to estimate RUL

• Step 1: Fit a parametric 
model to the exemplar 
degradation paths; 
quantify mean and 
covariance values to 
describe individual, 
random parameters
• Censored data can be 

used
• Physical models can be 

used when available
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Using the GPM to estimate RUL

• Step 2: Use the 
model from step 1 
and existing 
degradation 
measurements to fit a 
model to the current 
individual

• Step 3: Extrapolate 
this model to the 
critical failure 
threshold to estimate 
RUL



If this is your population of historic 
prognostic parameters …
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… which would you expect to be the 
correct prognostic trend for a new 
system?

0 50 100 150 200 250
-5

0

5

10

15

20

25

30

Time (cycles)

Pr
og

no
st

ic
 P

ar
am

et
er

Case #127 (37 observations)

 

 
Observations
Quad Fit

0 50 100 150
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Time (cycles)

Pr
og

no
st

ic
 P

ar
am

et
er

Case #127 with prior information (37 observations)

 

 
Observations
Quad Fit
Threshold



We can use Bayesian methods to 
incorporate our prior expectations into 
the GPM fit

Model for DATA
M(Q)

DATA

Prior f(Q)

Likelihood
L(DATA | Q)

Posterior
f( Q | DATA)

NEW DATA

New Prior 
f(Q)

New Posterior
f( Q | DATA)



Conjugate prior methods can be 
used with linear regression models 

• Bayesian methods for linear regression can be used to 
incorporate prior information

• The standard linear regression model is given by

• The model parameters are estimated as:
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Prior Information About 
Regression Coefficients
• Assume the parameters are normally distributed:
• The prior information on βj is treated as another observation in the 

regression

• New parameter estimates become the prior information for the next 
data observation
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Prior Information About All 
Regression Coefficients

),(~ 0 bbb SN

ú
û

ù
ê
ë

é
=

0
*

b
Y

Y ú
û

ù
ê
ë

é
=

kI
X

X* ú
û

ù
ê
ë

é
S

S
=S

b0
0

*
y

β̂ = (X*T Σ* −1 X*)− 1 X *T Σ* −1Y *



Comparison of GPM and 
GPM/Bayes RUL Predictions



Type III Results – General Path Model

• Monitoring system 
residuals as prognostic 
parameters
• Same shape for every 

case
• Same value at failure

• Six residuals were 
identified and combined 
(weighted average) as 
the prognostic 
parameter
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Type III Results – General Path Model

• Used 
Bayesian 
priors 
estimated from 
historic failure 
cases

• Quadratic fit
f (t) = β1t

2 +β2t +β3



Data Requirements for each Type

• For Type I, failure modes must be related to usage time or 
number of operating cycles for historical data to be beneficial.

• Failures cannot be random (characterized by an exponential 
failure model), we don�t replace our tires for fear of hitting a nail.

• For Type II, environmental effects that drive the failure modes 
must be measurable.

• Must measure temperature, load, cavitation, etc.

• For Type III, degradation severity must be related to a 
measurable or inferable degradation parameter such as tread 
depth, bearing vibration level, or impeller thickness.

• Degradation growth must be slow enough for decisions to be 
made and actions to be taken.



Lifecycle Prognostics

Type I Type II Type III

Operating Time



Questions left unanswered

• How do we propagate uncertainty through 
our prognostics?

• How do we assess and compare the 
performance of prognostic models?

• What about physics-based models?
• What do we do if we don’t have a large 

history of degradation and failure data?
• How can we combine physics-based and 

data-driven approaches?



To summarize data-driven 
prognostics … 

• There is no one-size-fits-all solution to prognostics!
• Different data may be available
• Different algorithms may be best for different systems or 

fault modes
• Several approaches and algorithms exist; selection is 

based on
• Data available: failure, causal, effects.
• Knowledge of degradation mode (physical model)

• Sensed data contains degradation information and 
should be used to improve operational reliability 
through:
• Optimizing maintenance scheduling (condition-based)
• Improving operations and asset utilization (equipment 

state knowledge)



• Online performance metrics for prognostics
• Data analysis during non-stationary operation
• Online performance metrics
• Verification and validation methodologies
• Algorithms to mine information from large data

• Identify important degradation correlations
• Uncover significant maintenance relationships
• Optimize data usage to improve safety and reliability

• Integration of PHM results into operations and 
maintenance planning, risk assessment, and optimal 
control

Research Opportunities



Questions?

jamie@utk.edu


