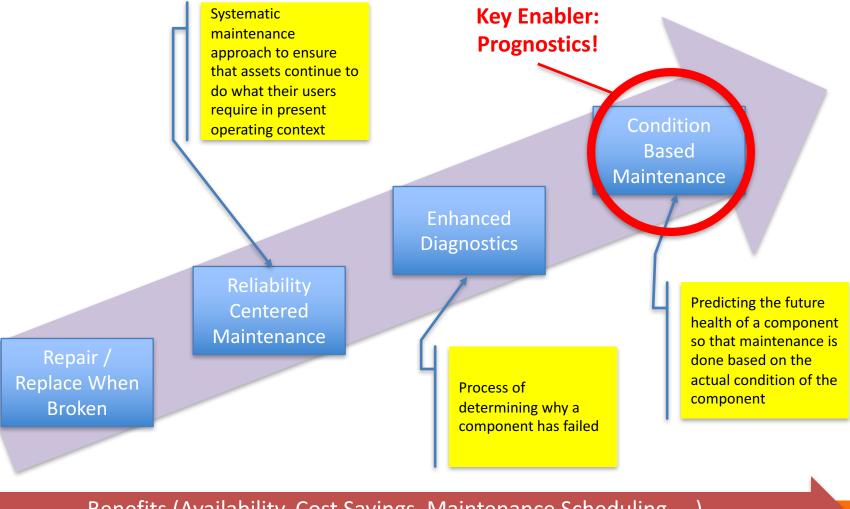
An Introduction to Data-Driven Prognostics of Engineering Systems

Jamie Coble 3 October 2016

Evolution of Maintenance Practices From Reactive to Preemptive



Benefits (Availability, Cost Savings, Maintenance Scheduling, ...)

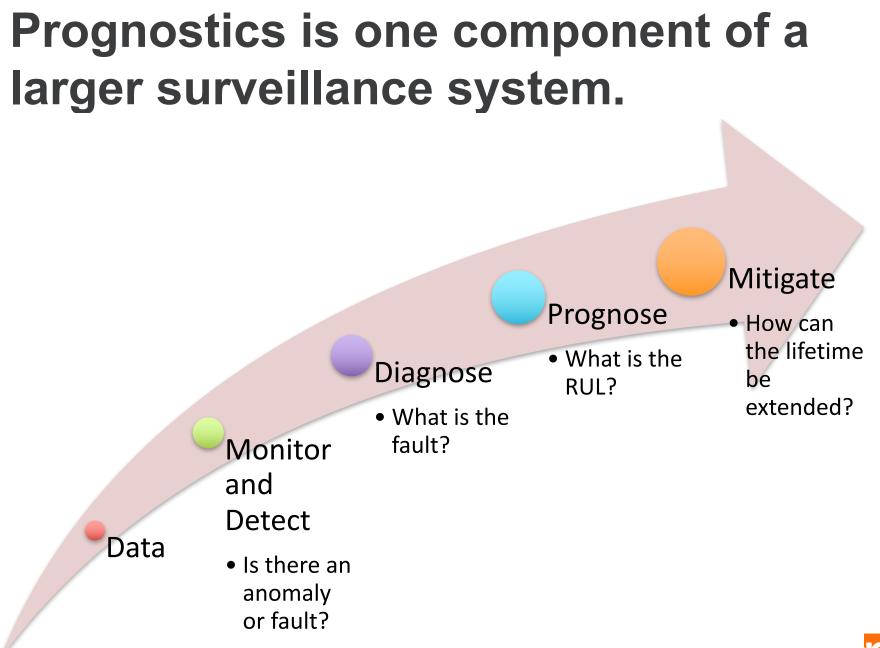
BIGID

Reliability and Prognostics

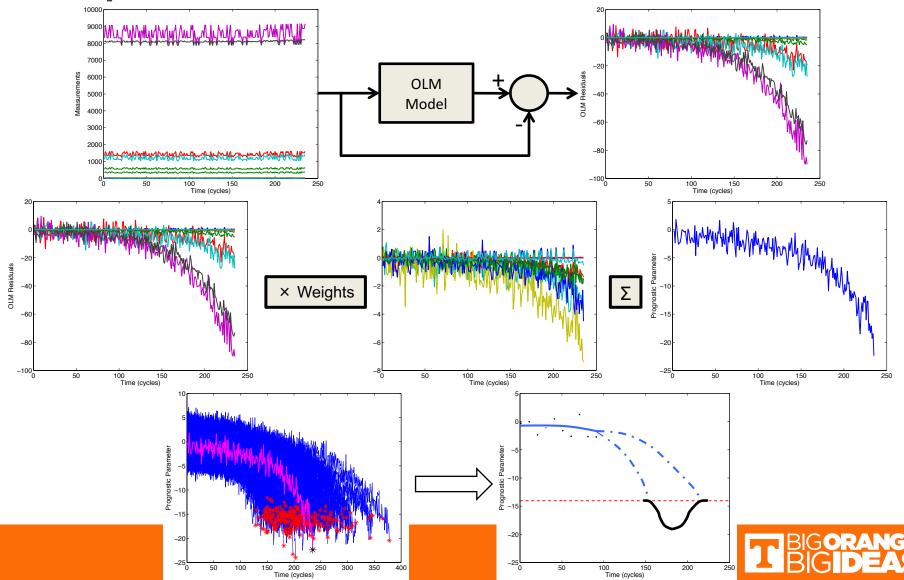
- Reliability analysis gives us information about the failure of a population of similar systems or components
- Prognostics extends this to a specific system or component
 - When will it fail?
 - What's the probability that it will fail in the next 5 minutes?
 - What's the probability that we can complete the mission before something fails?
- The potential benefits of early warning of impending failure are significant
 - Improved availability
 - Reduced equipment damage
 - Improved safety

Fully realized PHM systems have four key components

- Nondestructive measurement methods and analyses
 to detect degradation and anomalies
- Algorithms to characterize and monitor the degradation state of the component
- Prognostics that use the degradation state information to determine remaining useful life (RUL) and probability of failure (POF) of components
- Methods to integrate prognostic estimates into risk estimates and advanced control algorithms



Online condition assessment provides information about the evolving degradation of components



Asset surveillance systems extract knowledge from data

- Sensed data contains degradation information and should be used to improve operational reliability through:
 - Optimizing maintenance scheduling (condition-based)
 - Improving operations (equipment state knowledge)
- Several methods exist, the selection is based on
 - Data availability: failure, causal, effects
 - Knowledge of degradation modes (physical model)
- Each prognostic application may have its own specific needs requiring new and creative solutions

Prognostic Term Definitions

- Methods used to predict:
 - Remaining Useful Life (RUL): the amount of time, in terms of operating hours, cycles, or other measures the component will continue to meets its design specification.
 - Time of Failure (TOF): the time a component is expected to fail (no longer meet its design specifications).
 - Probability of Failure (POF): the failure probability distribution of the component.

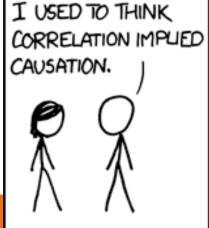
So what is data-driven prognostics?

- Prognostic models developed and derived from historic run-to-failure data
- Models are typically "black boxes" with no explicit system knowledge
- Data are typically preprocessed to extract useful information
 - Feature extraction
 - System monitoring
 - Detection, isolation, and diagnostics

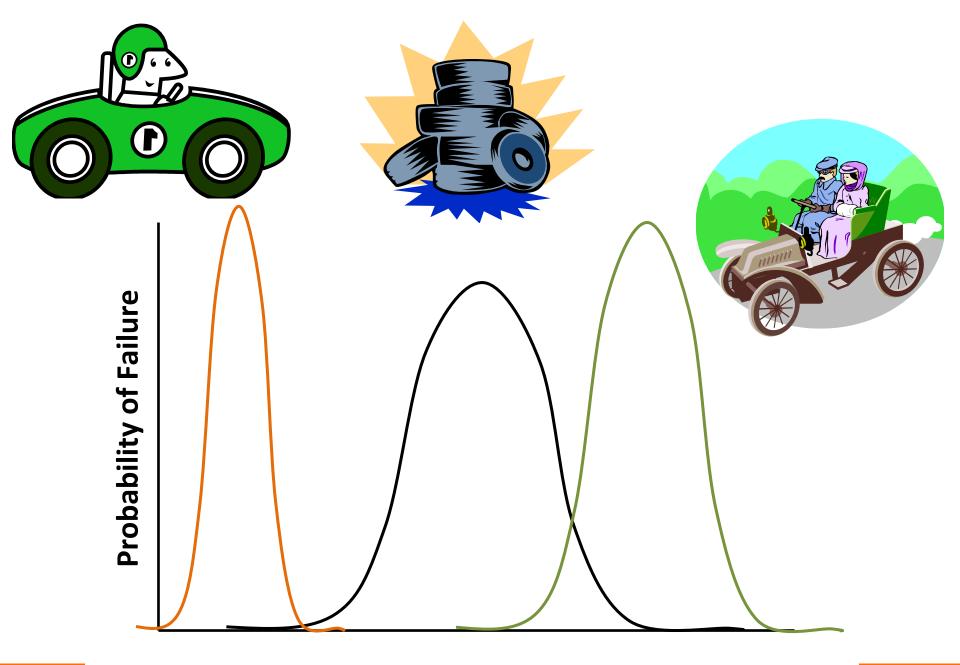
Sensed data contain information about the condition of components, systems, and processes

- A lot of data are being collected all the time
 - Equipment data, process parameters, operating conditions ...
- We want to
 - discover the underlying relationships in data
 - exploit these relationships to make predictions or

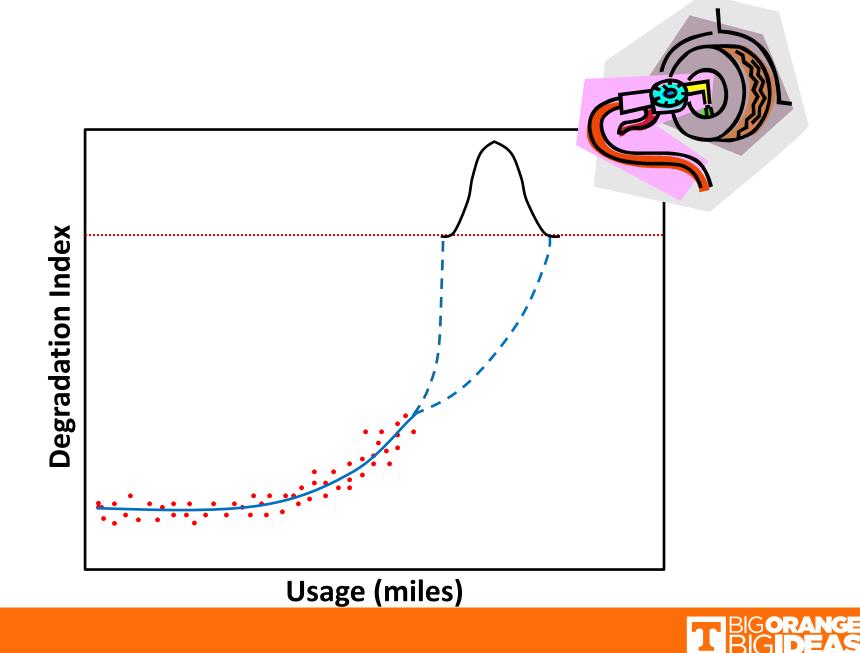
decisions about new data



THEN I TOOK A STATISTICS CLASS. NOW I DON'T.



Usage (miles)



Some Basic Prognostic Data Requirements

- For Type I, we need a population of historical failure times that include the expected operation
- For Type II, environmental and stressor conditions that drive the failure modes must be measurable
- For Type III, degradation must be related to a measurable parameter such as tread depth or bearing vibration level or temperature or inferred from available measurements

2008 PHM Challenge Data

- Develop a data-based prognostics algorithm with no knowledge of the system being monitored
- Provided 24 variables
 - 3 operating condition indicators
 - 21 sensed variables
- Provided simulated data for model development and testing
 - 218 training cases (run to failure)
 - 218 test cases (censored)
 - 435 final test cases (censored)

Saxena, A., K. Goebel, D. Simon, N. Eklund, "Prognostics Challenge Competition Summary: Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation BEDEAS Denver CO, Oct 6-9, 2008.

Type I – Reliability-based Prediction

- Type I prognostics characterize the expected lifetime of the average component operating in historically average conditions
- Major Assumption: Future components will operate in similar conditions and degrade in similar ways to those seen in the past
- May be applied when data collection of stressor or component condition measures is not possible
 - At beginning of life, these things may be unknown or unavailable

Type I – Reliability-based Prediction

- Estimate failure density functions with parametric or non-parametric models
 - A population of components is tracked and their failure times are noted
 - Components that have not failed are called censored data and that information is also used to predict the failure density
- Example parametric models include exponential, normal, log-normal, and Weibull

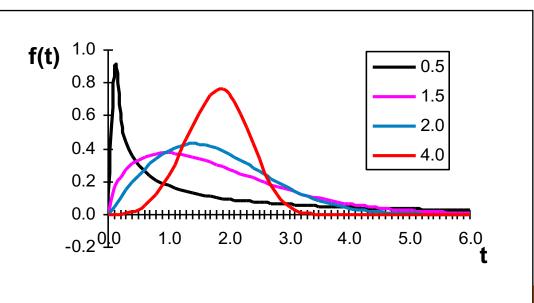
Weibull Model

- Probably the most common parametric model is the Weibull distribution.
- This model is used because it is flexible enough to model a variety of failure rate profiles.
- The failure rate is modeled with two parameters
 - a shape parameter (β) and
 - a characteristic life (θ)

$$\lambda(t) = \frac{\beta}{\theta} \left(\frac{t}{\theta}\right)^{\beta - 1}$$

Two Parameter Weibull

- Increasing failure rate (β >1), a constant failure rate (β =1), and a decreasing failure rate (β <1)
- Does a good job of modeling failure data with exponential, normal, or Rayleigh distributions



Using a Type I model to do prognostics

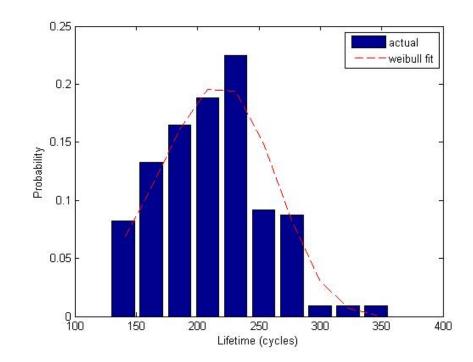
- The failure criterion is some value of reliability (*R(t*|*T)*)
- For some desired α , we can calculate the value of t such that $R(t|T) = \alpha$

 $R(t|T) = \frac{R(t,t>T)}{R(T)} = \alpha$ $R(t, t > T) = \alpha * R(T)$ note R(t) = 1 - F(t) $\Rightarrow 1 - F(t, t > T) = \alpha * R(T)$ $F(t, t > T) = 1 - \alpha * R(T)$ $t = F^{-1}(1 - \alpha * R(T)), t > T$ $RUL_{\alpha} = t - T$

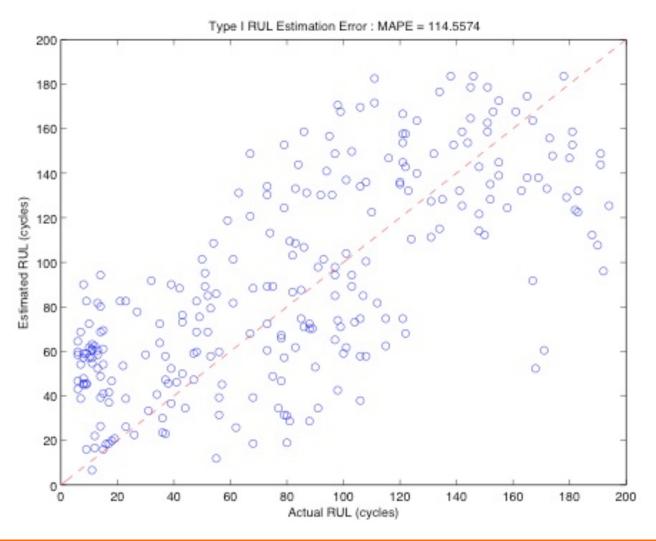
Type I Results – Weibull Analysis

• Calculate failure time for all failed cases, then fit a Weibull model to the histogram

- ML estimates
 - $\beta = 4.38$
 - θ = 225.66



Type I Results – Weibull Analysis



Type I prognostics have many limitations.

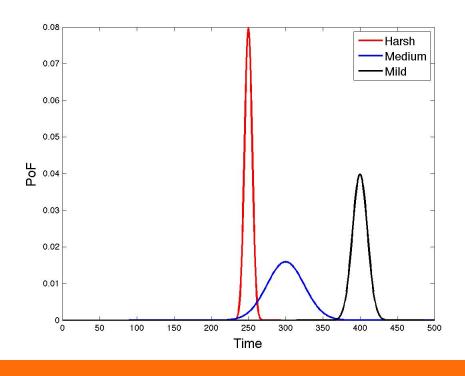
- A readily apparent disadvantage of reliability data-based prognostics is that it does not consider the operating condition of the component
 - Components operating under harsh conditions would be expected to fail sooner and components operating under mild conditions to last longer
- Failures observed during lifetime tests may not be useful for different operating conditions
 - Multiple fault modes are often merged into one distribution
- Operation of a specific component may be very different from historic operation

Type II – Stressor-based Prediction

- Type II prognostics estimate the lifetime of the average component in a specific environment
- Major Assumption: Components operating in similar conditions will degrade in similar ways; unit-to-unit variation is not significant
- Type II can be applied if stressor variables are measureable and well-correlated to component degradation
- Stressor-based reliability models, Proportional hazards models, life consumption models, Markov chain Monte Carlo models

Type II Reliability Models

 Instead of lumping all your failure data in to one reliability model, you can have separate PoF (or *R* or *F*) models for each operating condition



Proportional Hazards Model

- Similar equipment may have dissimilar operating conditions or histories because of different factors such as loads and stresses
 - Called "covariates"
- Modeling the failure data requires isolating the effects of these covariate factors
- Proportional Hazard model assumes hazard rate can be divided separated into two functions
 - Baseline hazard rate depending only on time
 - A second function only dependent on the covariates
- Factors are assumed to be multiplicative rather than additive
 - Maintains that each condition is relative to some baseline

 $\lambda(t, Z_1, \dots, Z_n) = \lambda_0 \exp(\beta_1 Z_1, \dots, \beta_n Z_n)$

Fitting the regression parameters $\lambda(t,z) = \lambda_o(t)\psi(z;\beta)$

- *z* is a row vector of covariates
- β is a column vector of regression parameters
 - Defines the effects of the covariates
- Different functional forms of ψ may be used
 - Typically exponential: $\psi(z;\beta) = exp(z\beta)$
- Use maximum likelihood method to estimate the values of β given the observed failure times (and censored times) and covariates

Estimating RUL

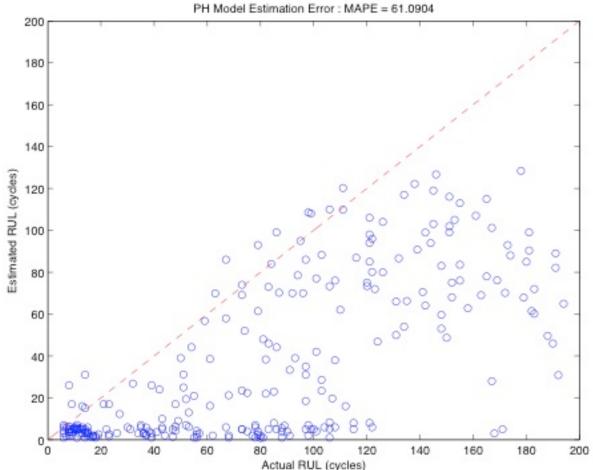
• PH model gives the survival function (reliability function, *R*) as a function of both time and covariates

$$H(t,z) = \int_{0}^{t} \lambda(u,z) du$$
$$R(t,Z) = \exp(-H(t,z))$$

 Once you have R, you can solve for the RUL just like we did with standard (type I) reliability models

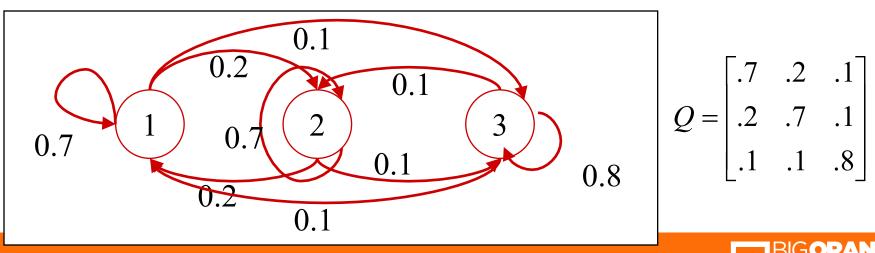
PH Model Results

- Covariates are mean value of each of the 3 environmental sensors
- Reliability cutoff of 0.95 used



Markov Chain Models

- MC models explain the equipment degradation through a transition of states
 - The states can be the environmental conditions that cause degradation
 - Transition probabilities control state movement through a transition matrix Q



Markov Chains

- A Markov chain is a process that consists of a finite number of states and some known probabilities P_{ij}, where P_{ij} is the probability of moving from state j to state i
- This process is independent of all previous states, only the current state has any bearing on the transition probabilities

$$P(X_{t} = j | X_{0} = i_{0}, X_{1} = i_{1}, ..., X_{t-1} = i_{t-1})$$
$$= P(X_{t} = j | X_{t-1} = i_{t-1}) = P_{ij}(t-1)$$

Type II Markov chain models really consist of two models

- The first model, the Markov chain, generates a possible future progression of operating conditions
- The second model maps these operating conditions onto a degradation parameter with some defined threshold value

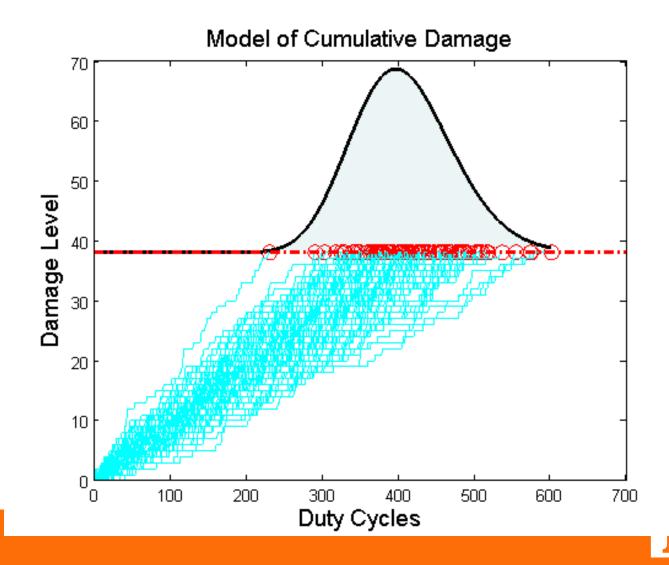
State to degradation mapping

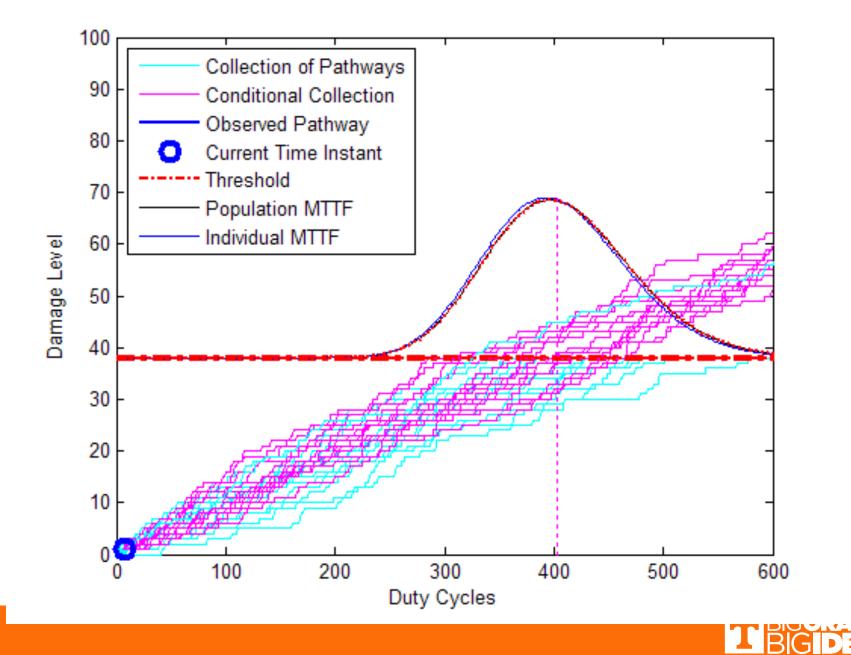
- In general, the mapping can be any function of the states $D(t = n) = f(x_0, x_1, ..., x_n)$
- One simple approach is to assume each state contributes some deterministic amount of degradation
 - If state *i* contributes d_i degradation, then:

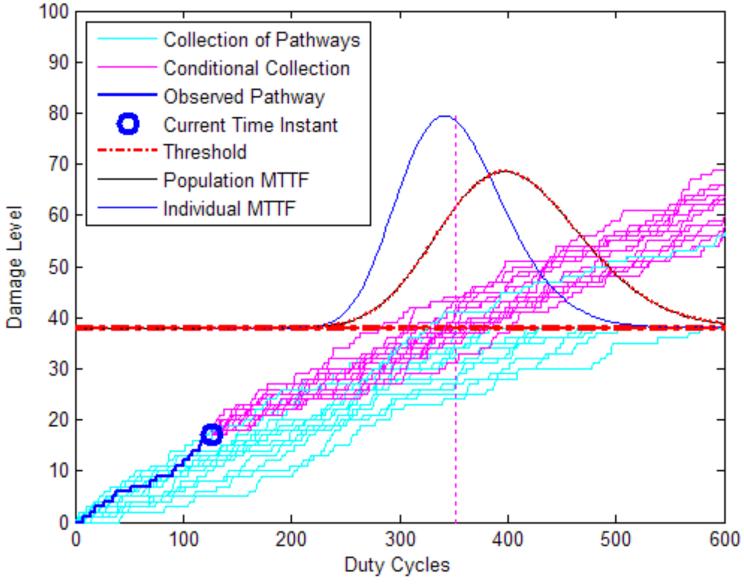
$$D(t=n) = \sum_{k=1}^{n} d_{x_k}$$

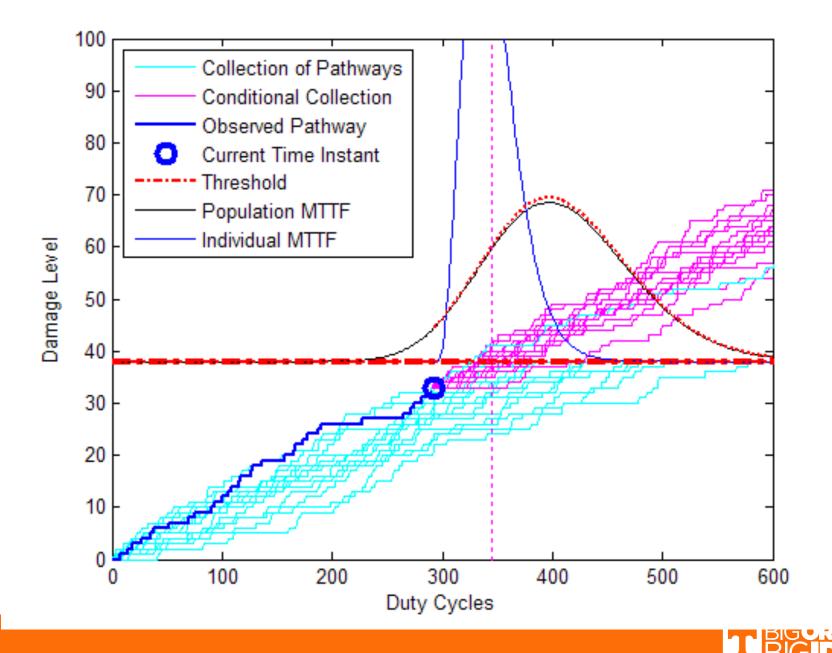
 We can easily extend this to probabilistic degradation amounts

Markov chain prognosis, t = 0









Type II Results – Markov Chain Model

- Data divided into six operating conditions according to the three condition variables
- Used historic paths to determine condition transfer probabilities
 - Assume we have static transfer probabilities
 - Can be made time-dependent

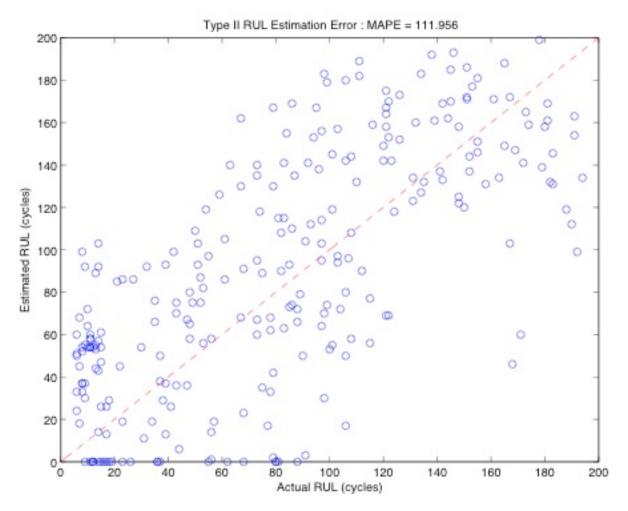
То						
From	1	2	3	4	5	6
1	0.14	0.16	0.15	0.16	0.15	0.24
2	0.16	0.15	0.14	0.14	0.15	0.25
3	0.15	0.14	0.15	0.15	0.15	0.26
4	0.16	0.15	0.15	0.15	0.15	0.24
5	0.15	0.15	0.15	0.15	0.15	0.26
6	0.15	0.14	0.15	0.15	0.15	0.26

Type II Results – Markov Chain Model

- Operation condition evolutions can be generated (MC Model I)
- However, this cannot easily be related to a deterministic degradation measure (MC Model II)

Correlation to				
Lifetime				
1	0.12			
2	-0.037			
3	0.041			
4	0.021			
5	-0.064			
6	-0.046			

Markov Chain Results

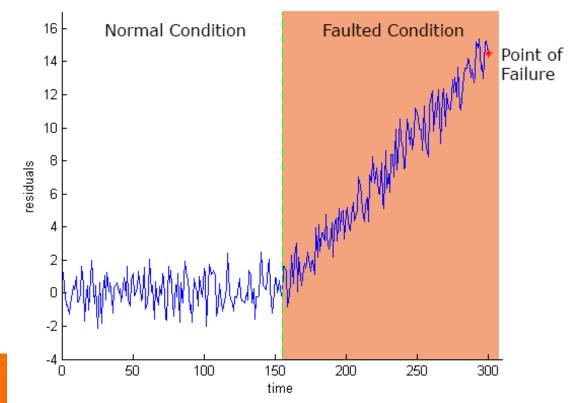


Type III – Degradation-based Prediction

- Type III prognostics estimate the lifetime of the specific component in its specific operating environment
- Type III algorithms track the degradation (damage) as a function of time and predict when the total damage will exceed a predefined threshold that defines failure
- Damage is generally assumed to be cumulative (irreversible)
- Markov chain Monte Carlo model, shock model, general path model, particle filter-based model

Type III – Degradation Based Prognostics

- Direct measurements of the individual can be monitored to detect when a fault occurs
- A fault progresses until failure is reached



Type III: Degradation-Based Prognostics

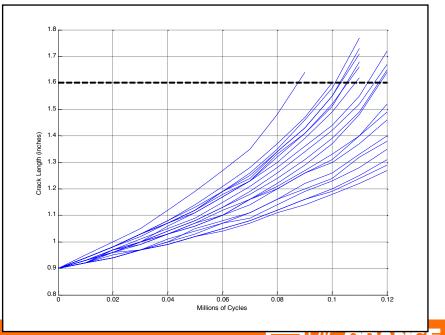
- A degradation measure is a scalar or vector quantity that numerically reflects the current ability of the system to perform its designated functions properly. It is a quantity that is correlated with the probability of failure at a given moment.
- A degradation path is a trajectory along which the degradation measure is evolving in time towards the critical level corresponding to a failure event.

General Path Models

- Traditional reliability methods use only time-to-failure data to estimate failure distributions
- Some systems result in few or no failures during accelerated life testing
- Degradation measurements may contain useful information about product reliability

GPM to enhance reliability analysis

- The GPM was originally developed to estimate the failure density for censored data.
 - Lu, C.J. and W.Q. Meeker, "Using Degradation Measures to Estimate a Time-to-Failure Distribution," *Technometrics*, Vol 35, No 2, May 1993, pp. 161-174.
- Degradation paths were extrapolated to find estimated failure times
- The distribution was estimated from measured and estimated failure times



General Path Models

 Degradation 18 signal for each individual device is unique Crack Length (i 1.2 There is a critical threshold 0.8 0.02 0.04 0.06 0.08 0.1 0.12 at which failure Millions of Cycles occurs

"Unique Path" assumption introduces individual-based TOF estimates

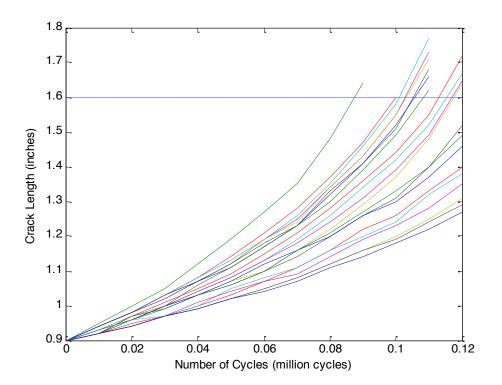
• The observed degradation path, y, is modeled by $w = w(t, \alpha, \Theta) + c$

 $y_i = \eta(t, \varphi, \Theta_i) + \varepsilon$

- where φ is the vector of fixed effects (population) parameters and Θ_i is the vector of random (individual) effects for unit *i*
- The function, η , can be any type of model
 - Regression, spline, nonparametric, neural network, etc.
- It's convenient and straightforward to use linear models and OLS regression

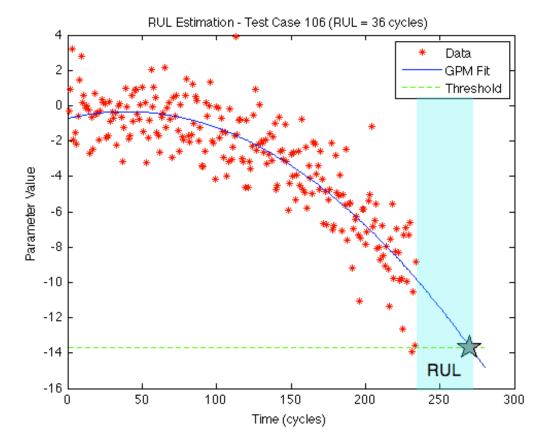
Using the GPM to estimate RUL

- Step 1: Fit a parametric model to the exemplar degradation paths; quantify mean and covariance values to describe individual, random parameters
 - Censored data can be used
 - Physical models can be used when available

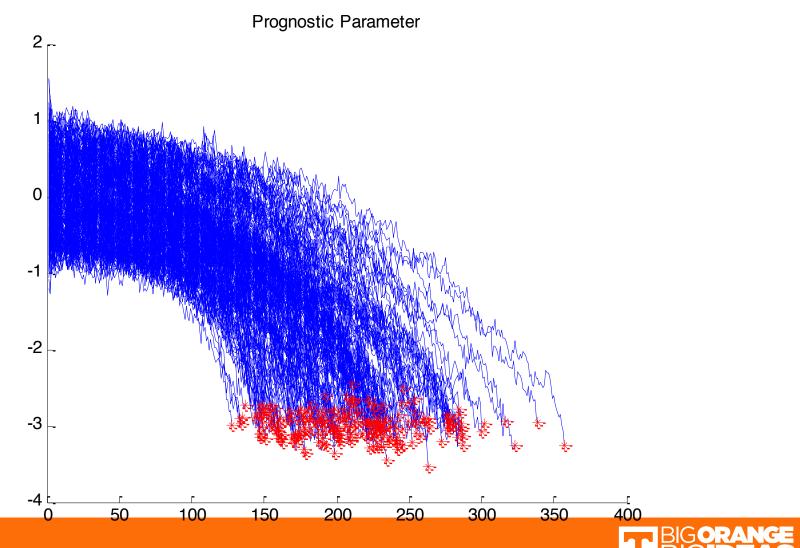


Using the GPM to estimate RUL

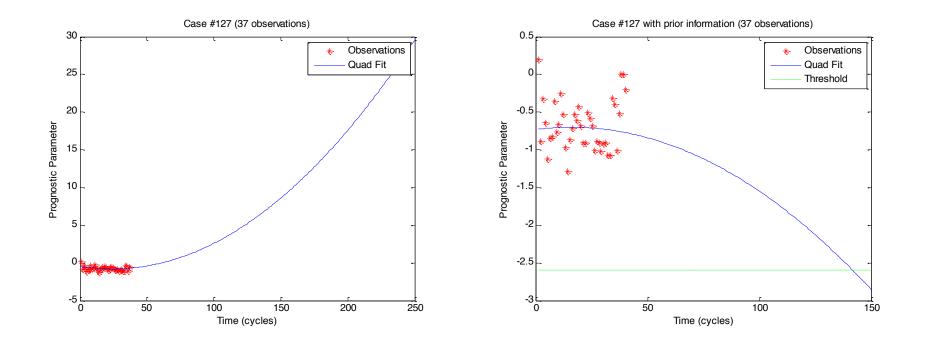
- Step 2: Use the model from step 1 and existing degradation measurements to fit a model to the current individual
- Step 3: Extrapolate this model to the critical failure threshold to estimate RUL



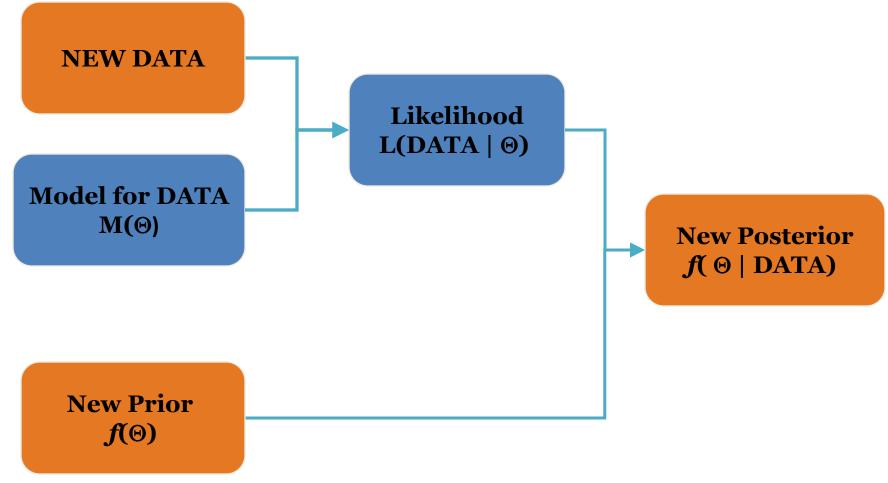
If this is your population of historic prognostic parameters ...



... which would you expect to be the correct prognostic trend for a new system?



We can use Bayesian methods to incorporate our prior expectations into the GPM fit



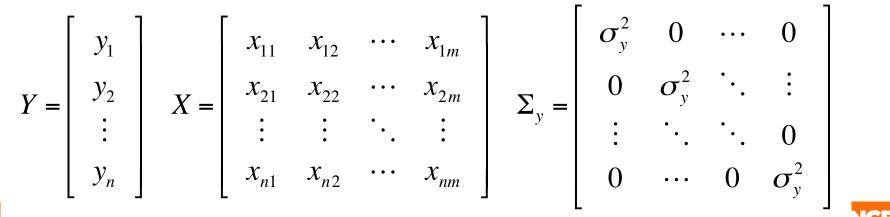
Conjugate prior methods can be used with linear regression models

- Bayesian methods for linear regression can be used to incorporate prior information
- The standard linear regression model is given by

$$Y = X\beta$$

• The model parameters are estimated as:

$$\beta = \left(X^T \Sigma_y^{-1} X\right)^{-1} X^T \Sigma_y^{-1} Y$$



Prior Information About Regression Coefficients

- Assume the parameters are normally distributed: $\beta_j \sim N(\beta_{j_o}, \sigma_{\beta_i}^2)$
- The prior information on β_j is treated as another observation in the regression

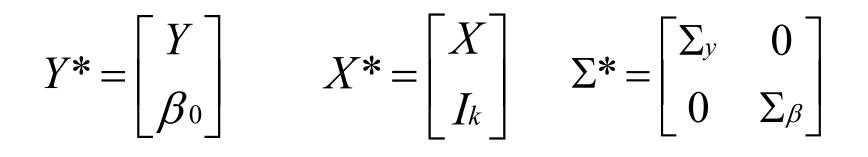
Г

$$Y^{*} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \\ \beta_{j_{o}} \end{bmatrix} X^{*} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1m} \\ x_{21} & x_{22} & \cdots & x_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nm} \\ 0 & \cdots & 1 & 0 \end{bmatrix} \Sigma_{y}^{*} = \begin{bmatrix} \sigma_{y}^{2} & 0 & \cdots & 0 & 0 \\ 0 & \sigma_{y}^{2} & \ddots & \vdots & 0 \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & \sigma_{y}^{2} & 0 \\ 0 & 0 & \cdots & 0 & \sigma_{\beta_{j}}^{2} \end{bmatrix}$$

• New parameter estimates become the prior information for the next data observation

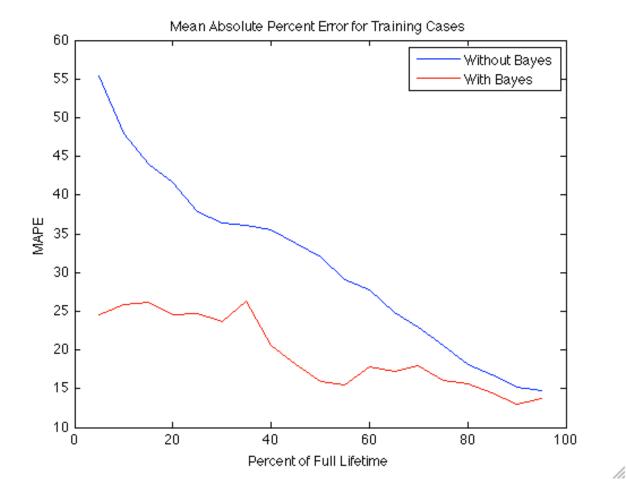
Prior Information About All Regression Coefficients

 $\beta \sim N(\beta_0, \Sigma_\beta)$



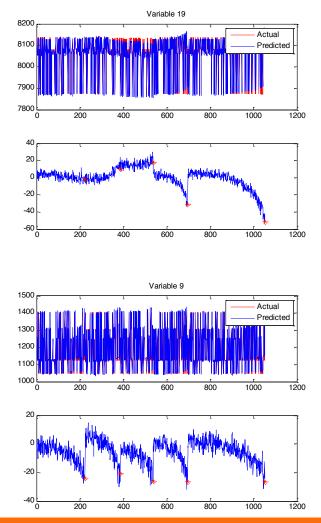
 $\hat{\beta} = (X^{*T} \Sigma^{*-1} X^{*})^{-1} X^{*T} \Sigma^{*-1} Y^{*}$

Comparison of GPM and GPM/Bayes RUL Predictions



Type III Results – General Path Model

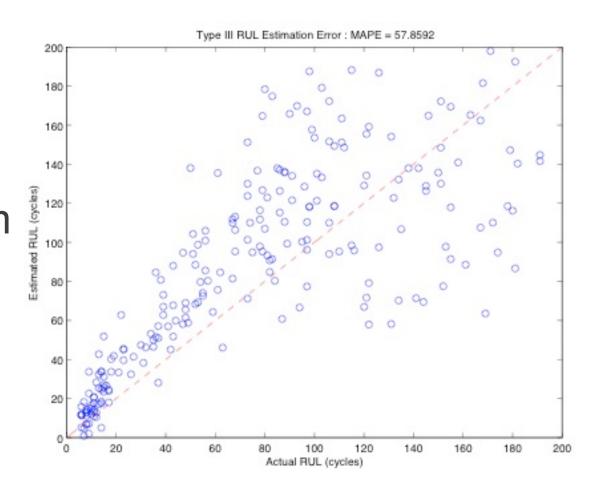
- Monitoring system residuals as prognostic parameters
 - Same shape for every case
 - Same value at failure
- Six residuals were identified and combined (weighted average) as the prognostic parameter



BIG**ORANGE** BIG**IDEAS**

Type III Results – General Path Model

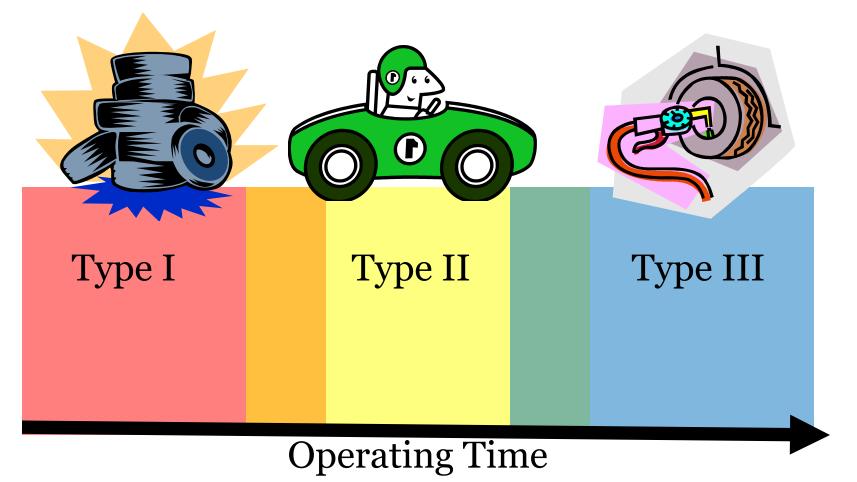
- Used
 Bayesian
 priors
 estimated from
 historic failure
 cases
- Quadratic fit $f(t) = \beta_1 t^2 + \beta_2 t + \beta_3$



Data Requirements for each Type

- For Type I, failure modes must be related to usage time or number of operating cycles for historical data to be beneficial.
 - Failures cannot be random (characterized by an exponential failure model), we don't replace our tires for fear of hitting a nail.
- For Type II, environmental effects that drive the failure modes must be measurable.
 - Must measure temperature, load, cavitation, etc.
- For Type III, degradation severity must be related to a measurable or inferable degradation parameter such as tread depth, bearing vibration level, or impeller thickness.
 - Degradation growth must be slow enough for decisions to be made and actions to be taken.

Lifecycle Prognostics



Questions left unanswered

- How do we propagate uncertainty through our prognostics?
- How do we assess and compare the performance of prognostic models?
- What about physics-based models?
- What do we do if we don't have a large history of degradation and failure data?
 - How can we combine physics-based and data-driven approaches?

To summarize data-driven prognostics ...

- There is no one-size-fits-all solution to prognostics!
 - Different data may be available
 - Different algorithms may be best for different systems or fault modes
- Several approaches and algorithms exist; selection is based on
 - Data available: failure, causal, effects.
 - Knowledge of degradation mode (physical model)
- Sensed data contains degradation information and should be used to improve operational reliability through:
 - Optimizing maintenance scheduling (condition-based)
 - Improving operations and asset utilization (equipment state knowledge)

Research Opportunities

- Online performance metrics for prognostics
- Data analysis during non-stationary operation
- Online performance metrics
- Verification and validation methodologies
- Algorithms to mine information from large data
 - Identify important degradation correlations
 - Uncover significant maintenance relationships
 - Optimize data usage to improve safety and reliability
- Integration of PHM results into operations and maintenance planning, risk assessment, and optimal control

Questions?

jamie@utk.edu

