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“Behavior and Motor Control”

“Variability, driving force of nature”

R
e

a
l-tim

e
N

o
n

-r e
a

l-tim
e

In
te

g
ra

tiv
e

a
m

b
u
la

to
ry

m
e
a
s

u
re

m
e

n
t

fra
m

ew
o
rk

IMU-P

Networking

Bluetooth

Zigbee
WiFi

Cellular

Fall Event Detection

2-dimension motion feature
(angular rate & body orientation)

Fast threshold technique

Prior to the impact detection

Portable Sensors

Accelerometer

Gyroscope

Temperature sensor
Pulsoximeter

Magnetometer

Fall Risk Prediction

Local dynamic stability

(max Lyapunov exponent)

Floquet dynamic stabilityL
e
g
 V

e
lo

c
ity

Stance

Leg Angle

L
e
g
 V

e
lo

c
ity

Stance

Leg Angle

Gait Analysis

Spatial (Step length)
Temporal 

(stance time, swing time)

Walking velocity
Gait symmetry

ADL Classification

Sit-to-stand / stand-to-sit
Lying down

Stooping
Walking / Stairs climbing

Gait stability Symmetry 

Index (GSI)

“Movement 

Variability 

and Stability”



2

Why do Older Adults Fall More Younger Adults?

What is the relationship between these 

risk factors and slip and fall accidents in 

the elderly? And, how can we use this 

info to assess fall risk……

Slip and Fall Experiments



3

Trip and Fall Experiments
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Bottom Line

Summary of Gait Study Results 

Reactive Recovery Phase was the most important for the 
elderly.

Control systems exhibited a finite time delay between the moment 
a stimulus was provided  (i.e., perturbation) and the moment the 
system returned a response (i.e., nothing happens 
instantaneously). 

In many situations :  the responses also depended nonlinearly on 
the input, such that the evolution of the system in the present
depended sensitively on its state in the past (e.g., muscle 
fatigue). 

This nonlinear time-delay systems (autonomic motor control) can 
be quantified by  nonlinear dynamics - stability assessments.
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Predictability and Chaos

• Can having a multiple variables influence 
predictability? 

– Due to nonlinear dynamical interactions and the 
phenomenon of chaos (generation of complexity from 
simplicity).

– Chaos means that the behavior of a nonlinear system 
depends sensitively on where a system starts its 
motion (your birth, etc.).

– The solution to such equation look erratic and 
may pass all the traditional tests for randomness 
even though they are deterministic.

Random and Chaotic
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Rationale

Figure 1.1.  (A) Two normal 

distributions with different 

means and variances.  (B) A 

normal distribution (solid line) 

and a distribution with a 

stretched “tail” (dashed line).  

(C) A time series.  (D) Two time 

series with identical summary 

means.  (E) Two time-ordered 

velocity × position profiles.  (F) 

Categorical responses with 

different orders of presentation 

(indicated by the arrows).

Riley, M. A., & Van Orden, G. C. (2005).  Tutorials in 

contemporary nonlinear methods for the behavioral 

sciences. Retrieved March 1, 2005, from 

http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp

Physically coupled oscillators

Figure 1.2. Illustration of time series collection, phase space 

reconstruction, and CRQ measures %REC and MAXL. Blue 

corresponds to data from one member of the participant 

pair and red corresponds to data from the other member of 

the participant pair.  %REC quantifies shared locations in 

reconstructed phase space of two points from the two time 

series.  MAXL quantifies the longest of parallel trajectory of 

the two time series in reconstructed phase space.
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Stability and Complexity

How can one take advantage of the technique of phase 

space reconstruction to quantify what appears to be 

terribly complex postural activity? 

Dynamic Stability

Based on nonlinear dynamics theory

Measures the resistance (i.e. stability) of the target dynamic system 
to small perturbations

Applications:

» Dingwell et al. (2000) applied Lyapunov exponents to show that 
individuals with pathological gait slows down to increase their 
dynamic stability.

» Granata and Lockhart (2008) applied limit cycle measures to 
differentiate fall-prone elderly from their health counterparts.

» Lockhart and Liu (2008) applied Lyapunov to differentiate fallers 
and non-fallers.

Perturbation

(a) (b)
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Stability and Variability

Gait variability & Instability

Inability to ambulate in a repetitive & stable manner

Gait pathology

Fall accidents

•Individuals with step variability fell more often than non-fallers. 

(Guimaraes et al., 1980)

•Gait variability is demonstrated to be linked to falls in the elderly. 

(Imms et al., 1979)

Linear Variability

 Foundation for using linear variability measures to 

quantify stability is lacking.

 Traditional linear measures mask the true structure 

of motor variability
 Averaging procedure - lose spatial information (e.g. average multiple gait cycles)

 Time normalization - lose temporal information (e.g. 100% gait cycle)

 Contains little information about the stability of locomotor control system 

corresponding to perturbations. (Dingwell et al., 2000; Buzzi et al., 2003)
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Gait Cycle Normalized to 100 data points

40 Gait Cycles

40 Gait Cycles

Normalized 40 Gait Cycles

Stretching of Signal

Compression of Signal

Dynamic Stability:  Floquet

 If no perturbation,

 If small perturbation,

 After Taylor series expansion

 Eigenvalues of J                    

Floquet Multiplier 
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Data Analysis:  
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Data Analysis

Dynamic Stability: Lyapunov

Stability Analysis: Overview

Maximum Lyapunov exponent 
(maxLE) by group. FO = fall-prone
old; HO = healthy old; HY = healthy 
young (Lockhart and Liu, 2008)
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Locomotion Research Laboratory, Virginia Tech
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Dynamic Stability: 

Rosenstein’s Algorithm for maxLE

Approximate Entropy:  Complexity

ApEn quantifies regularity and complexity of a 

system (Pincus, 1994)

- High ApEn values indicate unpredictability and 

random variation

- Low ApEn indicates high predictability and 

regularity of time series data

Approximate Entropy:  It is the logarithmic 

likelihood that the patterns of the data are 

close to each other and will not remain close 

for the next comparison within a longer 

pattern. 

If SN is a time series of length N

Where m is the pattern length ( usually chosen 

as 2) and d is similarity coefficient  (chosen as 

0.2 % of SD of time series )

Heart rate signals of 

old and young 

participant. Adapted from 

Lipsitz and Goldberger, 1992 

17
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Complexity of Fallers

Fall Risk

F NF

Instrument Instrument

FP IMU FP IMU

DFA_Alpha Mean 1.04 1.00 1.04 0.99

Std Dev 0.22 0.21 0.19 0.18

ApEn Mean 0.57 1.34 0.59 1.36

Std Dev 0.20 0.11 0.19 0.10

SaEn_pos (m2,r0.2) Mean 0.20 1.63 0.20 1.70

Std Dev 0.17 0.31 0.15 0.28

SaEn_vel (m3,r0.25) Mean 1.05 2.06 1.08 2.08

Std Dev 0.33 0.16 0.33 0.06

Bottom Line-SE

Flexible adaptations to changing demands
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Literature Values - DFA
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Emotions
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