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Why do Older Adults Fall More Younger Adults?

;) Factors Influencing Slips and Falls
‘ (Intrinsic Changes Associated with Aging)

1. Sensory Degradation.
2. Cognitive Impairment.
3. Muscle Weakness.

4. Gait Adaptation.

More importantly, extrinsic environmental factors and
how those factors interact with intrinsic conditions
must be considered.

What is the relationship between these
risk factors and slip and fall accidents in
the elderly? And, how can we use this
info to assess fall risk
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Slip and Fall Experiments




Trip and Fall Experiments
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Bottom Line

Initial response sequence after slip
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Summary of Gait Study Results

o Rlecziacltive Recovery Phase was the most important for the
elderly.

» Control systems exhibited a finite time delay between the moment
a stimulus was provided (i.e., perturbation) and the moment the
system returned a response (i.e., nothing happens
instantaneously).

» In many situations : the responses also depended nonlinearly on
the input, such that the evolution of the system in the present
depended sensitively on its state in the past (e.g., muscle
fatigue).

» This nonlinear time-delay systems (autonomic motor control) can
be quantified by nonlinear dynamics - stability assessments.
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Predictability and Chaos

Can having a multiple variables influence
predictability?

— Due to nonlinear dynamical interactions and the
phenomenon of chaos (generation of complexity from
simplicity).

— Chaos means that the behavior of a nonlinear system
depends sensitively on where a system starts its
motion (your birth, etc.).

— The solution to such equation look erratic and

may pass all the traditional tests for randomness
even though they are deterministic.
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Random and Chaotic
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Rationale

; - = 'r == Figure 1.1. (A) Two normal
2 E i distributions with different
E [ X £ TN means and variances. (B) A
k- E KX E \ normal distribution (solid line)
A : : ... andadistribution with a
o stretched “tail” (dashed line).

(C) Atime series. (D) Two time
series with identical summary
X means. (E) Two time-ordered
velocity x position profiles. (F)
A N ) Categorical responses with
Onservaion Numbes Tima different orders of presentation
(indicated by the arrows).
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Physically coupled oscillators

Figure 1.2. lllustration of time series collection, phase space
ey reconstruction, and CRQ measures %REC and MAXL. Blue
[ - g :’I corresponds to data from one member of the participant
s pair and red corresponds to data from the other member of
the participant pair. %REC quantifies shared locations in
- | reconstructed phase space of two points from the two time
Xy | il series. MAXL quantifies the longest of parallel trajectory of
the two time series in reconstructed phase space.
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Stability and Complexity

How can one take advantage of the technique of phase
space reconstruction to quantify what appears to be
terribly complex postural activity?
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Dynamic Stability

» Based on nonlinear dynamics theory
» Measures the resistance (i.e. stability) of the target dynamic system

to small perturbations
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Applications:

» Dingwell et al. (2000) applied Lyapunov exponents to show that
individuals with pathological gait slows down to increase their
dynamic stability.

» Granata and Lockhart (2008) applied limit cycle measures to
differentiate fall-prone elderly from their health counterparts.

» Lockhart and Liu (2008) applied Lyapunov to differentiate fallers
and non-fallers.
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Stability and Variability

Gait variability & Instability

Inability to ambulate in a repetitive & stable manner

Fall accidents

Gait pathology

sIndividuals with step variability fell more often than non-fallers.
(Guimaraes et al., 1980)

*Gait variability is demonstrated to be linked to falls in the elderly.
(Imms et al., 1979)
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Linear Variability

® Foundation for using linear variability measures to
quantify stability is lacking.
® Traditional linear measures mask the true structure

of motor variability
® Averaging procedure - lose spatial information (e.g. average multiple gait cycles)
¢ Time normalization - lose temporal information (e.g. 100% gait cycle)

¢ Contains little information about the stability of locomotor control system
corresponding to perturbations. (Dingwell et al., 2000; Buzzi et al., 2003)
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Gait Cycle Normalized to 100 data points

Normalized 40 Gait Cycles

40 Gait Cycles Compression of Signal

40 Gait Cycles  Stretching of Signal
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Dynamic Stability: Floquet

If no perturbation,
xi4q = flx)
If small perturbation,

Axipq = vf(xi)' Ax;

Leg Velocity __,

After Taylor series expansion =
AXjiq =] - AX;

Eigenvalues of ]

Floquet Multiplier



Data Analysis:
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Data Analysis

Dynamic_Stability
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Dynamic Stability:

Lyapunov

Au

/Stability Analysis: Overview

Original time series
data (AP acceleration,
40 gait cycles)

to mutual information method Nearest false neighbours method

Time-delayed coordinate method
Time delay (10 Embedding
frames) dimension (5)

N

\ Reconstructed

state space

Rosenstein's algorithm (Rosenstein, 1993)

Average divergence
between nearby trajectories

maxLE (0-1 gait step)
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Maximum Lyapunov exponent

(maxLE) by group. FO = fall-prone

old; HO = healthy old; HY = healthy
Kyoung (Lockhart and Liu, 2008) /
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Dynamic Stability:
Rosenstein’s Algorithm for maxLE
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Approximate Entropy: Complexity

"7 22yearcld Femals YewsSues  Mean HR=64.7

8D=39

ApEN quantifies regularity and complexity of a ;:}ww ‘ fremos
SYyStem (pincus, 1904) § o e )
Approximate Entropy: It is the logarithmic ST T T T
likelihood that the patterns of the data are . o
close to each other and will not remain close go] e T
for the next comparison within a longer Y A
! " AW - B s Yt

pattern. i ‘.lJ
- High ApEn values indicate unpredictability and T

random variation =
- Low ApEn indicates high predictability and Heart rate signals of

regularity of time series data old and young

If Sy is a time series of length N participant. asspedtrom

Lipsitz and Goldberger, 1992

w-(m-1)

ApEn(Nmd) = (N =m+ 1) Y IOl ) = (V= m) ! Y e ) 17
= &

Where m is the pattern length ( usually chosen
as 2) and d is similarity coefficient (chosen as
0.2 % of SD of time series)
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Complexity of Fallers

(@ Non Faller (b) Faller
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Bottom Line-SE

®Fallers @Non-Fallers

08

0.6

04

0.2

0 APEO APEC [ MLEO MLEC
wFallers 133 137 119 11
oNon-Fallers 149 145 125 108

Flexible adaptations to changing demands



Literature Values - DFA
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Emotions

Heart rate signal for four emotions
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