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XKCD comic from September 28
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Eyjafjallajökull – $2-5bn
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Nevada del Ruiz – 23,000 fatalities
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Mount Pelée, Martinique – 30,000 fatalities

“One hundred years ago, government officials in Martinique
made the mistake of assuming that, despite signs to the
contrary, Mount Pelée would behave in 1902 as it had in 1851 –
when a rain of ash from what they considered a benign volcano
surprised, but did not harm those living under its shadow.”
(Cristina Reed, Geotimes 2002)
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Pyroclastic – “broken fire” – flows
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Mount Agung
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Mount Agung
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Montserrat – A volcanologist playground
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Data at Montserrat – valleys traversed by PFs
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Data at Montserrat – PF frequency and volume
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Data at Montserrat – (negative) slope α
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Learning about α from data

Bayes Theorem

p(α | data) ∝ p(data | α)p(α)

Typically can’t compute p(α | data), but can sample
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Data at Montserrat – p(α | data)
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Data and data models at Montserrat
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α < 1 indicates so-called heavy tails
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Data and data models at Montserrat
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Rare Events

Pareto model is much more likely to observe
future volumes that far exceed those in the
recent history...

Consider a record of 10 volumes (V1, . . . , V10)

non-heavy tailed:

P (V11 > 10 max(V1, ..., V10)) = 1/200, 000

heavy tailed:
P (V11 > 10 max(V1, ..., V10)) = 1/100
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What happens at larger-than-recorded volumes?
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We would like records from many volcanic eruptions
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Best we can do: simulate replicate volcanic eruptions
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Physics based models as a “lab”

Assume: flow layer thin relative to lateral extension

continuity

x momentum

∂h

∂t
+
∂hux
∂x

+
∂huy
∂y

= es

∂hux
∂t

+
∂(hu2x + kapgzh

2/2)

∂x
+
∂huyux
∂y

=

gxh+ uxes−
ux√
u2x + u2y

(gz +
u2x
κx

)h tan(φbed)−sgn(∂uxy)hkap
∂hgz
∂y

sin(φint)

1 Gravitational driving force
2 Coulomb friction at the base – φbed
3 Intergranular Coulomb force – φint

due to velocity gradients normal to flow direction

(see Savage; Bursik; Pitman)
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Simulated pyroclastic flows at four different inputs (V, θ)
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Belham Valley Probabilistic Hazard Map (t=2.5 yrs)

incorporate any/all sources
of knowledge

physics of granular flow

data on frequency/size
of flows

avoid one-off simulations

Methodology developed for hazard mapping works for UQ
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Simulation details: TITAN2D (Patra)

Large scale computations to produce realistic simulations
of mass flows — depth average hyperbolic balance laws

like shallow water with dissipative friction terms

finite-volume 2nd order Godunov solver

integrated with GIS to obtain terrain data

local, adaptive mesh refinement

High performance techniques for efficiency

parallel

dynamic load balancing

∼ 1 hr run time

each initialized with volume and initial direction
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Physical scenarios: data and models of p(V, θ)
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Possible statistical models for physical scenarios, p(V, θ)

linear volume model

(2 parameters)
frequency model, rate= λ

(1 parameter)

uniform

Von Mises (2 pars)
(Gaussian on a circle)
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Physical scenarios: data and models of p(V, θ)
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Possible statistical models for physical scenarios, p(V, θ)

linear volume model

(2 parameters)
frequency model, rate= λ

(1 parameter)

uniform

Von Mises (2 pars)
(Gaussian on a circle)
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Monte Carlo Simulation

Idea literally named for gambling

“roll” the “die” N times

“die” is probabilistic scenario model

“roll” is the flow model exercised at a
sampled scenario

P (hazard)= (# of catastrophes)/N
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four draws from p(V, θ)
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Cartoon p(physical scenario)

Physical Scenarios



MULOGO

Cartoon p(physical scenario)

Physical Scenarios

Monte Carlo Samples
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Cartoon p(physical scenario)

Physical Scenarios

scenarios leading

to catastrophe
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Uncertainty

Aleatory variability — random scenarios

volume

initiation angle

frequency

Epistemic uncertainty — imperfect descriptions

probabilistic models (of random scenarios)

numerical resolution

physical parameters
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Strategy: separate physical model from probabilistic models

Idea: A given V − θ pair will either result in inundation or
not independent of how probable that event is

Run TITAN2D at (V, θ) pairs spread over “physical
scenario” space, collect max height of resulting flow
around volcano.

Interpolate between these runs to predict which
locations would be inundated for any V − θ flow.

Statistical emulator – interpolation & uncertainty
estimates
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Emulator – statistical model of physical model
Gaussian processes for computer models
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Challenges for hazard mapping

Emulate whole map at once?

Huge matrix inversion.
Complicated, topography dependent, spatial footprints

-treat each site individually, build M GaSP in parallel

Many scenarios lead to no flow at many locations

-run physical model a N “spread out” scenarios

-choose site-specific subdesigns from N model runs

-include “important” runs resulting in no-flow
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Emulator at one map site
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Emulator at one map site
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Making a hazard map

1 Run N = 2048 TITAN2D, store data for each location
2 Repeat following process, in parallel, for each site

1 choose subdesign
2 fit emulator
3 draw catastrophic contours, ψ(θ)’s

3 Choose model for aleatory variability of scenarios
4 Run probability calculations, in parallel, for each site

Note

step 1 is expensive,

2 is parallelizable, 4 is post processing!

details in SIAM/ASA JUQ (Spiller 2014), overview in IJUQ (Bayarri 2015)
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P(catastrophe in 2.5 years)
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Epistemic uncertainty: uncertainty in probability model

Recall volume data used to characterize p(V, θ) (aleatory variability)
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Epistemic uncertainty: uncertainty in probability model

Recall volume data used to characterize p(V, θ) (aleatory variability)
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each red curve corresponds to a different slope p(V, θ|α)

now probability calculation is cheap —

we can find P (hazard) for each α!
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Epistemic uncertainty: uncertainty in probability model

Recall volume data used to characterize p(V, θ) (aleatory variability)
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each red curve corresponds to a different slope p(V, θ|α)

now probability calculation is cheap —

we can find P (hazard) for each α!
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Epistemic uncertainty: in probability & physical models

uncertainty in prob model
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uncertainty in phys model
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Repeat probability calculations many times

vary α – probability model
vary friction uncertainty – physical model
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Histograms of catastrophic probabilities – close

red – fix friction, vary α′s blue – fix α = α̂, vary friction
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Histograms of catastrophic probabilities – far

red – fix friction, vary α′s blue – fix α = α̂, vary friction

0 0.01 0.02 0.03
0

50

100

150

200

250

300

350

probability of catastrophe

P(catastrophe)=0.0067



MULOGO

A retrospective “validation”

use data from 1995-2003
to estimate Poisson
frequencies for

(top, stationary)
(mid, low activity)
(bottom, high activity)

forecast probabilities of
inundation for 2004-2010
under these three
scenarios

white overlay, extent of
deposits for 2004-2010
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Aleatoric variability – short term modeling
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Aleatoric variability – short term modeling
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Short-term probabilistic hazard maps

90 days 180 days

µo = 135◦

µo = 0◦
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To wrap up

Take home message

Emulator of physical model identifies important regions of
state space independent of probabilistic model

Enables fast, flexible direct or MC probability calculations
w/o more physical simulations

Framework for exploring multiple sources of epistemic
uncertainty and aleatory variability

Not a replacement, but a tool for civil protection and
scientists to forecast dynamic hazards and quantify
uncertainty
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interdisciplinary research team

Along with many current and former students...
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The End

https://sites.google.com/view/elainespiller

Thanks to NSF: DMS-0757549-0757367-0757527,
DMS-1228317-1228265-1228217, EAR-1331353,
DMS-1622403-1621853-1622467, SES-1521855
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Beyond Montserrat: sparse data to inform scenarios

Hierarchical Linear Model Example: basal friction vs. volume
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Montserrat
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Montserrat
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Ogburn et. al. Journal of Statistics in Volcanology 2016


