NORTHROP GRUMMAN

Quantum computing (QC) Overview

September 2018

Dr. Sunil Dixit Technical Fellow

"Let's make no mistake: the competition for a quantum computer is the new arms race. The competition to create the first large-scale quantum computer is heating up. The country that develops one first will have the ability to cripple militaries and topple the global economy... ...To deter such activity, and to ensure our security, the United States must win this new race to the quantum-computer revolution."

National Review (May 2017)

Classical Realm

- The universe is a giant machine
- All nonuniform motion and action have cause
 - Uniform motion does not have cause (principle of inertia)
- If the state of motion is known now then all past and future states are accurately predictable because the universe is predictable
- Light is a wave described completely by Maxwell's electromagnetic equations
- Waves and particles are distinct
- A measurement can be accurately made and errors corrected caused by the measurement tool

Single Slit – Classical Marbles

Double Slits – Classical Marbles

Single Slit – Classical Waves

Double Slit – Classical Waves

Quantum Realm

Single Slit – Quantum Electrons

Double Slits – Quantum Electrons

Double Slit – Shoot One Electron At A Time

Double Slits – Quantum Electrons With Observer (Measure At One Slit)

Computational Capacity in the Universe

- Maximum possible elementary quantum logic operations:
 - With gravitational degrees of freedom taken into account

$$\frac{t}{t_n^2} \approx 10^{120}$$

 $t \approx 10^{10}$ years is the age of the universe

with
$$t_p = \sqrt{Gh} / c^5 = 5.391 \times 10^{-44} \text{ sec}$$

is Planck time (the time scale at which gravitational effects are the same order as the quantum effects)

• With registered quantum fields alone:

$$\frac{t}{t_p^{3/4}} \approx 10^{90}$$

- Provides upper bounds computational capacity performed by all matter since the Universe began
- Provides *lower bounds* of a quantum computer required to simulate the entire Universe required operations and bits
- *If the entire Universe performs a computation*, these numbers give the numbers of operations and bits in that computation

*Seth Lloyd, "Computational Capacity of the Universe", Phys. Rev. Letters, **88**(23), 2002 https://en.wikipedia.org/wiki/Observable_universe

NORTHROP GRUMMAN

Quantum Computing Principles

Quantum Principles Important For QC

- Mathematics
 - Primarily Linear Algebra
 - Mathematical Notation the Dirac Notation
- Superposition
- Information Representation
- Uncertainty Principle
- Entanglement
- 6 Postulates of Quantum Mechanics

See Backup Slides

Quantum Superposition & Uncertainty Principle

$$\Delta E \Delta t \ge \frac{\hbar}{2}$$

Quantum Information Representation

- Physical Representation (Superposition and Entanglement)
 - Electrons Spin Up / Spin Down
 - Nuclear Spins
 - Nuclear Magnetic Resonance
 - Polarization of Light / Photons
 - Optical Lattices
 - Semiconductor Quantum DOT
 - Semiconductor Josephson Junctions
 - Ion Traps
 - Others
- Classical Representation
 - BIT (0,1)
- Quantum Representation
 - Quantum BIT (qubit)

Quantum Dots

Trapped lons

Optical Lattices

BLOCH representation of a qubit

 $\vec{r}_{BLOCH} = (\hat{r}_x, \hat{r}_y, \hat{r}_z) = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$

Quantum Entanglement Electrons

Quantum Entanglement Photons

real-time imaging of quantum entanglement

Quantum Entanglement (continued)

- Start with 2-qubits: $\alpha_0 | 0 \rangle + \alpha_1 | 1 \rangle$ and $\beta_0 | 0 \rangle + \beta_1 | 1 \rangle$
 - Both are their basis states
- How do we entangle them mathematically?
 - Take the tensor product between the states

 $(\alpha_0 | 0 \rangle + \alpha_1 | 1 \rangle) \otimes (\beta_0 | 0 \rangle + \beta_1 | 1 \rangle)$

$$=\alpha_{0}\beta_{0}|00\rangle+\alpha_{0}\beta_{1}|01\rangle+\alpha_{1}\beta_{0}|10\rangle+\alpha_{1}\beta_{1}|11\rangle$$

- 2-qubits in arbitrary states cannot be decomposed into their separate qubit state. As an example, one of the Bell state $|\psi\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$, cannot be separated into its individual qubit state
- Einstein called entanglement as "spooky action at a distance," as it appeared to violate the speed limit of information transmission in theory of relativity (i.e., "c" the velocity of light)

Qubit & Nuclear Spin Nuclear Magnetic Resonance

6 Postulates of QM deferred to backup slides

Basic Classical & Quantum Computer Operations & Flowchart Of Quantum Control

NORTHROP GRUMMAN

Quantum computer image from: Nature 519, 66–69 (05 March 2015) doi:10.1038/nature14270

Physical Quantum Computer

D-Wave

Microsoft

D-Wave Markets 1000 qubit computers for \$10M - \$15M IBM

IBM 5 Qubit

NORTHROP GRUMMAN

Quantum Computing Models

Models of Quantum Computing

Quantum Circuits & Gates

Quantum Circuits Quantum Circuits Error Corrections

Gate	Graphical	Mathematical Form	Comments
CNOT	$ \begin{vmatrix} \alpha \rangle \qquad \qquad$	$ \begin{pmatrix} 1000\\ 0100\\ 0001\\ 0010 \end{pmatrix} $	CNOT gate is a generalized XOR gate: its action on a bipartite state $ A,B\rangle$ is $ A, B \oplus A\rangle$, where \oplus is addition modulo 2 (an XOR operation)
SWAP		$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$	Swaps states: $(\alpha, \beta) \rightarrow (\beta, \alpha)$
Hadamard	— н	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} (\sigma_x + \sigma_z)$	H-gate (square root NOT gate) is an idempotent operator: $H^2 = I$. It transforms the computational basis into equal superpositions.
Pauli X, Y, Z	— X — — Y — — Z —	$\sigma_{X,Y,Z} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	Quantum NOT is identical to $\sigma_x =>$ leaves $ 0>$ invariant and changes the sign of $ 1>$. Rotations about the X, Y, Z axis
$\frac{\pi}{8}$ T-Gate		$\begin{pmatrix} 1 & 0 \\ & & \\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix}$	Applies a phase shift to the target qubit. $e^{i\frac{\pi}{4}} 00\rangle \rightarrow$ remains same $e^{i\frac{\pi}{4}} 11\rangle \rightarrow$ target qubit phase shift
Measurement	— <mark> </mark>	$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$	Measurement collapses the superposed quantum states
Qubit		Wire = single qubit	
n Qubits	— <i>/</i> —	Wire with n qubits	
Classical bit		Double wire = single bit	

{H, T, and CNOT} are called the "Standard Set." Others in charts below

- Are not acyclic (no loops)
- No FANIN. This implies that the circuit is not reversible; does not obey unitary operation
- No FANOUT. Cannot copy the qubit's state during the computational phase
 - No-Cloning Theorem
 - No copies of qubits in superposition (produces a multipartite entangled state)

$$\begin{split} |\psi\rangle &\xrightarrow[NOT ALLOWED] |\psi\rangle |\psi\rangle |\psi\rangle = (\alpha |0\rangle + \beta |1\rangle) \otimes (\alpha |0\rangle + \beta |1\rangle) \otimes (\alpha |0\rangle + \beta |1\rangle); \\ (\alpha |0\rangle + \beta |1\rangle) \otimes (\alpha |0\rangle + \beta |1\rangle) \otimes (\alpha |0\rangle + \beta |1\rangle) = \alpha |000\rangle + \beta |111\rangle = |\psi'\rangle; \\ \Rightarrow \text{Entangled 3qubits} \Rightarrow |\psi'\rangle \neq |\psi\rangle \end{split}$$

IBM 5-Qubit Quantum Computer Using Toffoli Gates – Freely Available Quantum Computing

IBM Q Experience End User License Agreement

https://quantumexperience.ng.bluemix.net/qx/editor

Multi Qubit Gates (continued)

An arbitrary qubit is transferred from one location to another. In literature ALICE and BOB example is commonly utilized. Teleportation takes two classical bits to one quantum state.

IORTHROP GRUMMA

information

Quantum Teleportation Video

Quantum-Kit Simulation: https://en.wikipedia.org/wiki/Quantum_teleportation#/media/File:Quantum_Teleportation.gif

Quantum Computing Programming Languages

QC Programming Languages and QC Simulators

NORTHROP GRUMMAN

Product	Description	Website
QCL	C like syntax and complete. The current version of QCL is 0.6.4 (Mar 27 2014), Source Distribution: <u>qcl-0.6.4</u> (<i>gcc</i> 4.7 / <i>gnu</i> ++98 <i>compliant</i>), Binary Distribution (64 bit): <u>qcl-0.6.4-x86_64-linux-gnu.tgz</u> (<i>AMD64</i> , <i>Linux</i> 3.2, <i>glibc</i> 2.13)	http://tph.tuwien.ac.at/~oemer/qcl.html
QASM	Assembler: Maps directly to quantum circuit model instructions MIT: qasm2circ; QISKit: openQASM	https://www.media.mit.edu/quanta/qasm2circ/ https://qiskit.org/documentation/quickstart.html
QISKit SDK Terra-Python API-Python	QISKit, a quantum program is an array of quantum circuits developed by IBM. Python program code workflow consists of three stages: Build, Compile, and Run.	https://qiskit.org/documentation/quickstart.html https://github.com/QISKit/qiskit-terra https://github.com/QISKit/qiskit-api-py
Q#	Is a C# like quantum programming language developed by Microsoft. It come with a quantum simulator in the quantum development kit.	https://www.microsoft.com/en- us/quantum/development-kit
CodeProject	Is a Java quantum code project	https://www.codeproject.com/Articles/1130092/Java- based-Quantum-Computing-library
Quantum-Kit	Is a graphical quantum circuit simulator	https://sites.google.com/view/quantum-kit/home
Other Simulators in various languages and tools	C/C++, CaML, Ocaml, F#, GUI based, Java, Javascript, Julia, Maple, Mathematica, Maxima, Matlab/Octave, .NET, Online Services, Perl/PH,P, Python, Rust, and Scheme/Haskell/LISP/ML	https://quantiki.org/wiki/list-qc-simulators
Other Languages	See Wikipedia	https://en.wikipedia.org/wiki/Quantum_programming

THE VALUE OF PERFORMANCE.

Quantum Algorithms

Quantum Computing Algorithms (continued)

NORTHROP GRUMMAN

Algorithm		Descrip	otion	Reference				
Algorithms Based on QFT								
Shor's; $O\left(n^2\left(\log N\right)^3\right)$	Integer factoriz prime numbers subgroup proble	ation (given integer N find its); discrete logarithms, hidden em, and order finding	Peter W. Shor, "Algorithms for Quantum Computation Discrete Log and Factoring," AT&T Bell Labs, <u>shor@research.att.com</u>					
Simon's; <i>exponential</i>	Exponential qua Searches for pa	ntum-classical separation. tterns in functions	Simon, D.R. (1995), <u>"On the power of quantum computation"</u> , Foundations of Computer Science, 1996 Proceedings., 35th Annual Symposium on: 116–123, retrieved 2011-06-06					
Deutsch's, Deutsch's – Jozsa, an extension Deutsch's algorithm	Depicts quantur superposition. " evaluate the inp the function is b	n parallelism and Black Box" inside. Can out function, but cannot see if palanced or constant	David Deutsch (1985). "Q Universal Quantum Comp 97 David Deutsch and Richar computation". Proceeding	uter". Proceedings of the Royal Society of London A. 400: rd Jozsa (1992). "Rapid solutions of problems by quantum is of the Royal Society of London A. 439: 553				
Bernstein/Vazirani; <i>polynomial</i>	Superpolynomia	I quantum-classical separation	Ethan Bernstein and Ume STOC, pages 11–20, 1993	sh Vazirani. <i>Quantum complexity theory</i> . In Proc. 25th 3				
Kitaev	Abelian hidden subgroup problem		A. Yu. Kitaev. <i>Quantum measurements and the Abelian stabilizer problem</i> , arXiv:quant-ph/9511026, 1995					
van Dam/Hallgren	Quadratic chara	cter problems	Wim van Dam, Sean Hallo Character Problems, Corr	gren, <i>Efficient Quantum Algorithms for Shifted Quadratic</i> <u>R quant-ph/0011067</u> (2000)				
Watrous	Algorithms for s	olvable groups	John Watrous, Quantum a ph/0011023, (2001)	algorithms for solvable groups, <u>arXiv:quant-</u>				
Hallgren	Pell's equation		Sean Hallgren. <i>Polynomial-time quantum algorithms for pell's equation and the principal ideal problem,</i> Proceedings of the thirty-fourth annual ACM symposium or the theory of computing, pages 653–658. ACM Press, 2002.					
Algorithms Based on Amplitude Amplification								
Grover's; $O(\sqrt{N})$	Search algorithm (database) for a statistical analys	n from an unordered list a marked element, and sis	Lov Grover, <i>A fast quantum mechanical algorithm for database search,</i> In Proceedings of 28th ACM Symposium on Theory of Computing, pages 212–219, 1996					
Traveling Salesman Problem; $O(\sqrt{N})$	Special case of	Grover's algorithm	https://en.wikipedia.org/w	viki/Travelling_salesman_problem				
	ne Learning		Quantum	Particle Swarm Optimization (QPSO)				

Quantum Algorithms (continued) Machine Learning Applications

39

NORTHROP GRUMMAN

Quantum Algorithm	Grover's Algorithm Applied?*	Execution Improvement vs. Classical	Quality of Learning Algorithm Studied	Quantum Computer Implementation	Quantum States?#	Reference
Neural networks	Yes		Numerical	Yes	No	1
Boosting	No	Quadratic	Analytical	Yes	No	2
K-medians	Yes	Quadratic	No	No	No	3
K-means	Optional	Exponential	No	No	Yes	4
Principal components	No	Exponential	No	Νο	Yes	5
Hierarchical clustering	Yes	Quadratic	No	Νο	Νο	6
Associative memory	Yes No		No No	No No	Νο	7 8
Support vector machines	Yes No	Quadratic Exponential	Analytical No	No No	No Yes	9 10
Nearest neighbors	Yes	Quadratic	Numerical	No	No	11
Regression	No		No	No	Yes	12
Hidden Markov Chains	No		No	Νο	Νο	13
Bayesian Methods	No		No	No	No	14

*Grover's search or extension used; #Input or output were both quantum states vs. classical vectors Most topics from: Peter Wittek, "Quantum Machine Learning", Elsevier Insights, 2014 THE VALUE OF PERFORMANCE.

Summary

Summary

- Develop / reuse quantum gates tailored to PHM
 - Creating "Oracles" are a very useful technique
 - Note: QC gates in series accumulate errors (described earlier)
- Tailor quantum machine learning algorithms for PHM algorithms
- "Quantum particle swarm optimization (QPSO)" appears to be a good candidate for dynamic degraded state prognostics (tracks dynamic changes to a particle in its local focus specified by the characteristics length vector of the swarm in some Hamiltonian potential {E+V(*r*)}. Implementation on a quantum computer? Develop technology / gates / methods to do QPSO on quantum computers.
- Consider "adiabatic quantum computing" as an alternative approach. It is based on the time evolution of a quantum system. A quantum adiabatic process is one in which the initial Hamiltonian evolves slowly to it final Hamiltonian (i.e., the time scale should be proportional to the energy difference between the ground state and the first excited)
 - For electrons the Hamiltonian can be represented by the Pauli operators
- Consider "cluster state quantum computing" that does not rely on quantum gates to do its processing (multi-qubits operations)

Treatment of topics discussed here are in Backup Slides

Summary (continued)

- NORTHROP GRUMMAN
- Develop quantum computer with superconducting materials at higher temperatures
 - Apart for space vehicles, current implementations for temperatures < 1.5[°]K are not feasible out of large infrastructures

*1 Gigapascal = 9869.2 Atmosphere

https://en.wikipedia.org/wiki/Superconductivity

& Ref. 15, 16

Summary (continued)

- Is classical cybersecurity safe with the power of quantum computing?
 - Reference: Lily Chen et al., "Report on Post-Quantum Cryptography", 2016 <u>http://dx.doi.org/10.6028/NIST.IR.8105</u>

Cryptographic Algorithm	Туре	Purpose	Impact from large-scale quantum computer	
AES	Symmetric key	Encryption	Larger key sizes needed	
SHA-2, SHA-3		Hash functions	Larger output needed	
RSA	Public key	Signatures, key establishment	No longer secure	
ECDSA, ECDH (Elliptic Curve Cryptography)	Public key	Signatures, key exchange	No longer secure	
DSA (Finite Field Cryptography)	Public key	Signatures, key exchange	No longer secure	

Table 1 - Impact of Quantum Computing on Common Cryptographic Algorithms

- If DWave 1000/2000 qubits Quantum Computer is a reality, AES and SHA-2/SHA-3 are unsafe
- Is quantum computing cybersecurity safe?
 - It is possible that we would need methods / techniques to keep Quantum Computers safe?
 - Still the issue of classical measurements

Treatment of topics discussed here are in Backup Slides

References

• Videos

- <u>Video from</u>
 <u>https://www.youtube.com/watch?v=fwXQjRBLwsQ</u>
 (Slits Video)
- <u>https://www.youtube.com/watch?v=815oMDT5g0o</u> (Superposition Video)
- <u>https://www.youtube.com/watch?v=9IOWZ0Wv218</u> (Entanglement Video)
- <u>https://www.youtube.com/watch?v=zNzzGgr2mhk</u> (Nuclear Magnetic Resonance Video)
- <u>https://www.youtube.com/watch?v=f5vOfr1dl4o</u> (Teleportation Video)
- Quantum Mechanics Books
 - Dirac Notation: "Principles of Quantum Mechanics", Ramamurti Shankar, Plenum Press, New York / London, 1980
 - "Lectures on Quantum Mechanics", Steven Weinberg, Cambridge University Press, New York, 2013
 - "Lectures on Computation", Richard P. Feynman, Westview Press (1996, reprinted 1999)
- Quantum Computing Books
 - Jun Sun, Choi-Hong Lai, Xiao-Jun Wu, "Particle Swarm Optimisation-Classical and Quantum Perspective", Chapman & Hall/CRC Press,2012
 - Peter Wittek, "Quantum Machine Learning", Elsevier Insights, 2014

Papers

- 1. Narayanan and Menneer (2000), *Quantum artificial neural network architectures and components*, Inform Sci., 128(3-4), 231-255
- 2. Neven et al. (2009), *Quantum pattern recognition with liquid*state nuclear magnetic resolution, Phys. Rev. A **79**, 042321
- 3. Aimeur et al. (2013), *Quantum speed-up for unsupervised learning Mach. Learn.*, 90(2), 261-287
- 4. Lloyd et al. (2013), Quantum algorithms for supervised and unsupervised machine learning, arXiv:1307.0411
- 5. Lloyd et al. (2013), Quantum principle component analysis, arXiv:1307.0411
- 6. Aimeur et al. (2013), Quantum speed-up for unsupervised learning Mach. Learn., 90(2), 261-287
- 7. Ventura and Martinez (2000), *Quantum associative memory*, Infom. Sci., 124(1), 273-296
- 8. Trugenberger (2001), *Probabilistic quantum memories*, Phys. Lett., 87, 067901
- 9. Anguita et al. (2003), *Quantum optimization for training support vector machines*, Neural Netw, 16(5), 763-770
- 10.Rebentrost et al. (2013), *Quantum support vector machine for big feature and big feature classification*, arXiv:1307.0471
- 11.Wiebe et al. (2014), *Quantum nearest neighbor algorithms for machine learning*, arXiv:1401.2142
- 12.Bisio et al. (2010), Optimal quantum learning of a unitary transformation, Phys. Rev. A 81(3), 032324

44

References (continued)

- 13 Siddarth Srinivasan et al., *Learning Hidden Quantum Markov Models*, Proceedings of the 21stInternational Conference on Artificial Intelligence and Statistics (AISTATS) 2018, Lanzarote, Spain. JMLR: W&CP volume 7X
- 14 Sentís, Gael; Calsamiglia, John; Muñoz-Tapia, Raúl; Bagan, Emilio (2012), *Quantum learning of coherent states. EPJ Quantum Technology.* **2** (1). <u>doi:10.1140/epjqt/s40507-015-0030-4</u>
- 15 Zhi-An Ren; et al. (2008), Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O_{1-x}F_x]FeAs, "Chin. Phys. Lett. 25, 2215 (2008)
- Li, Yinwei; Hao, Jian; Liu, Hanyu; Li, Yanling; Ma, Yanming (2014-05-07), <u>"The metallization and superconductivity of dense</u> <u>hydrogen sulfide"</u>. The Journal of Chemical Physics. **140** (17): 174712. arXiv:1402.2721
- Thi-An Ren; et al. (2008),), Superconductivity at 55 K in ironbased F-doped layered quaternary compound Sm[O_{1-x}F_x]FeAs, "Chin. Phys. Lett. 25, 2215 (2008)
- 18 Gelo Noel M. Tabia (2011), Qutrits Under a Microscope, American Physical Society March Meeting 2011, Dallas, Texas, United States (21 - 25 March 2011)
- 19 Frank Wilczek (1982), Phys. Rev. Lett. 49, 957
- 20 A. Kitaev (2003), Ann. Phys. 303, 2
- 21 Jacobson, Nathan (2009). *Basic Algebra I* (2nd ed.). Dover Publications

- Various Quantum Computing Websites
 - https://en.wikipedia.org/wiki/Quantum_computing
 - https://qnncloud.com/
 - https://en.wikipedia.org/wiki/Quantum_machine_learning
 - https://en.wikipedia.org/wiki/Quantum_algorithm

THE VALUE OF PERFORMANCE.

Backup Slides

Quantum Mathematics

- Mathematics
 - Primarily Linear Algebra
 - Notation Dirac Notation

"Bra" $\langle \psi |$; "Ket" $|\psi \rangle$; $\langle \psi | = | \psi \rangle^{\dagger} = | \psi^* \rangle^T$; † is Ajoint Operator $\langle \psi | \psi \rangle = 1 = \int dx \psi^*(x) \psi(x);$ $(|\psi\rangle, |\phi\rangle) = \langle \psi |\phi\rangle = \int dx \, \psi^*(x) \phi(x);$ $\langle \psi | \phi \rangle^* = \langle \phi | \psi \rangle;$ $\langle \psi | \hat{H} | \psi \rangle = \int dx \, \psi^*(x) \hat{H} \psi(x)$ (Acting on an Hamiltonian); Schrödinger Hamiltonian for the $N - particle \ case \ (\cancel{\pi} = 6.626 \times 10^{-34} \ Joule \ sec):$ $\hat{H} = \frac{-\hbar}{2} \sum_{n=1}^{N} \frac{1}{m} \nabla_n^2 + V(\vec{r}_1, \vec{r}_2 ... \vec{r}_N, t);$ Time dependent Schrödinger Equation $i \hbar \frac{\partial}{\partial t} \Psi(\vec{r}, t) = \hat{H} \Psi(\vec{r}, t)$

More mathematical details in Backup Slides

Quantum Mathematics

- Mathematics
 - Primarily Linear Algebra
 - Notation Dirac Notation

"Bra" $\langle \psi |$; "Ket" $|\psi \rangle$; $\langle \psi | = |\psi \rangle^{\dagger} = |\psi^{*} \rangle^{T}$; † is Ajoint Operator $\langle \psi |\psi \rangle = 1 = \int dx \psi^{*}(x) \psi(x)$; $(|\psi \rangle, |\phi \rangle) = \langle \psi |\phi \rangle = \int dx \psi^{*}(x) \phi(x)$; $\langle \psi |\phi \rangle^{*} = \langle \phi |\psi \rangle$; $\langle \psi |\hat{H} |\psi \rangle = \int dx \psi^{*}(x) \hat{H} \psi(x)$ (Acting on an Hamiltonian); Schrödinger Hamiltonian for the N - particle case:

$$\hat{H} = \frac{-\hbar}{2} \sum_{n=1}^{N} \frac{1}{m_n} \nabla_n^2 + V(\vec{r}_1, \vec{r}_2 ... \vec{r}_N, t)$$

Time dependent Schrödinger Equation :

$$i \hbar \frac{\partial}{\partial t} \Psi(\vec{r}, t) = \hat{H} \Psi(\vec{r}, t)$$

48

Linear Combination:
$$|\alpha\rangle = \sum_{i=1}^{n} c_i |b_i\rangle;$$

Linear Independence: $\sum_{i=1}^{n} c_i |b_i\rangle = 0$ iff $c_1 = ... = c_n = 0;$
Probability Amplitudes: $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle \Rightarrow$
 $|\alpha|^2 + |\beta|^2 = 1;$
Norm: $|||\alpha\rangle|| = \sqrt{\langle \alpha | \alpha \rangle} = \sqrt{\sum_{i=1}^{n} |\alpha_i|^2};$ unit vector: $\sum_i |\alpha_i|^2 = 1;$
Inner Product: $\langle \alpha | \alpha' \rangle = (\alpha_1^*, ..., \alpha_n^*) \begin{pmatrix} \alpha_1' \\ ... \\ \alpha'_n \end{pmatrix};$ $\langle \alpha | \beta \rangle = \langle \beta | \alpha \rangle^*; \langle \alpha | \beta \rangle = \sum_i^{n} \alpha_i^* \beta_i;$
Outer Product: $|\alpha\rangle\langle\beta| = \begin{pmatrix} \alpha_1 \\ ... \\ \alpha_n \end{pmatrix} (\beta_1^*, ..., \beta_n^*);$
Tensor Product: $|\alpha\rangle \otimes |\beta\rangle = |\alpha\rangle |\beta\rangle = |\alpha\beta\rangle;$
 $A \otimes B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \otimes \begin{pmatrix} x & y \\ v & w \end{pmatrix} = \begin{pmatrix} ax & ay & bx & by \\ av & aw & bv & bw \\ cx & cy & dx & dy \\ cv & cw & dv & dw \end{pmatrix};$
Orthogonality: $\langle \alpha | \beta \rangle = 0;$
Orthonormality : $\langle \alpha | \beta \rangle = \delta_{ij}$ $(i, j = 1, 2, ..., n); \delta_{ij} = 0, i \neq j;$
Trace: $tr(\alpha) = \sum_{i=1}^{n} \alpha_{ii};$
Hermitian Operators: $\psi^{\dagger} = \psi;$

$$\psi^{\dagger} = -\psi$$
 (anti)

- Postulate 1: At each instant the state of a physical system is represented by a ket |ψ⟩ in the space of states
- Postulate 2: Every observable attribute of a physical system is described by an operator that acts on the kets that describe the system

$$\hat{A} : |\psi\rangle \rightarrow |\psi'\rangle = \hat{A} |\psi\rangle$$

- For every operator, there are special states that are not changed (except for being multiplied by a constant) by the action of an operator

 $\hat{A} : | \varphi_a \rangle = a | \varphi_a \rangle$ $\varphi_a \text{ are eigenstates}$ a is eigenvalue

- Postulate 3: The only possible result of the measurement of an observable A is one of the eigenvalues of the corresponding operator \hat{A}
- Postulate 4: When a measurement of an observable A is made on a generic state $|\psi\rangle$, the probability of obtaining an eigenvalue a_n is given by the square of the inner product of $|\psi\rangle$ with the eigenstate $|a_n\rangle$ is $|\langle a_n |\psi\rangle|^2$, $\langle a_n |\psi\rangle$ is the probability amplitude

• Postulate 5: Immediately after the measurement of an observable A has yielded a value a_n , the state of the system is the normalized eigenstate $|a_n\rangle$

• Postulate 6: The time evolution of a quantum system preserves the normalization of the associated ket. The time evolution of the state of a quantum system is described by $|\psi(t)\rangle = \hat{U}(t,t_0) |\psi(t_0)\rangle$ for some unitary operator \hat{U}

Qubit Processor Architectures

D-Wave Markets 1000 qubit computers for \$10M - \$15M

IBM 5 Qubit

Microsoft

Physical Quantum Computer

D-Wave

Microsoft

IBM

CMC Microelectronics Quantum & Classical Systems Integration

Quantum Random Access Memory (QRAM)

Quantum Register is an interface to an addressable sequence of qubits..

QRAM: In QRAM, the address and output registers are composed of qubits. The address register contains a superposition of addresses: $\sum_{k} b_k |k\rangle_a$ and the output registers post superposition of information correlated with the address register: $\sum b_k |k\rangle_a |D_k\rangle_a$

QRAM Model: "Bucket-brigade", architecture optimizes the retrieval of data to O(log 2ⁿ) switches where "n" is the number of qubits in the address register. The basis of the architecture is to have qutrits instead of qubits allocated to the nodes of a bifurcation graph. "011" memory cell is an address register.

• Quantum Entropy: measure of information contained in a quantum system (von Neumann entropy):

$$S(\rho) = -tr(\rho \log_2 \rho) = -\sum_i \lambda_i \log_2 \lambda_i,$$

where λ_i are the members of the set of eigenvalues of ρ and $0 \log 0 \equiv 0$; $S(\rho)$ is nonnegative, maximum for mixed states For qubits $0 \le S(\rho) \le 1$; $S(\rho)$ provides information in measures of qubits

IORTHROP GRUMMA

 N qubits can store 2^N bits of information, e.g., DWave 1000 Qubits computer can store 2¹⁰⁰⁰ ~ 1.07x10³⁰¹ bits >> 10⁷⁵ – 10⁸² atoms in the universe

Note, however that N qubits can confer at most N bits of classical information

Quantum Random Access Memory (QRAM) (continued)

- |wait>, |left>, and |right> represent three-level qutrit quantum system. During each memory call the qutrit is in the |wait> state. The qubits of the address register are sent one by one through the graph and the wait state is transformed into |left> and |right> depending on the current qubit
- States not in |wait> states are routed immediately and the results are a superposition of routes
- The qutrit computation is to the O(1- €log N) where N is the number of qubits not in |wait> state

- A quantum circuit consist of
 - Finite sequence of wires representing qubits or sequences of qubits (quantum registers)
 - Quantum gates that represent elementary operations from the particular set of operations implemented on a quantum machine
 - Measurement gates that represent a measurement operation, which is usually executed as the final step of a quantum algorithm
 - It is possible to perform the measurement on each qubit in canonical basis $\{|0\rangle, |1\rangle\}$ which corresponds to the measurement of a set of observables
 - Composite n-qubit circuit obey unitary evolution (every operation on multiple qubits is described by a unitary matrix)
 - Unitary implies reversibility: it establishes a bijective mapping between input and output bits (with the output and operations, the initial state can be recovered). Since all unitary operators **U** are invertible with $U^{-1} = U^{\dagger}$ we can always "un-compute" (reverse the computation) on a quantum computer

Quantum Parallelism

- Is there a single operation that evaluates a single function on at least two possible inputs to a quantum circuit without destroying superposition?
 - The results of such an operation is known as *Quantum Parallelism*

Simple example of Quantum Parallelism $\frac{|0, f(0)\rangle + |1, f(1)\rangle}{\sqrt{2}}$ $\left(0 \right)$ U_{f} $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$; data register Function f in basis states: $\{0,1\} \mapsto \{0,1\}$ with appropriate sequence of quantum gates $|\alpha,\beta\rangle$ transform to $|\alpha,\beta\oplus f(\alpha)\rangle$; qubit α is called "data register"; qubit β is called "target register". If we apply a unitary transform U_f with β =0, such that the results becomes $|\alpha, f(\alpha)\rangle$ If we apply a Hadamard Gate on each data register it produces 2^n bits with n gates; then evaluate f with an appropriate U_f gate as in

RTHROP GRUMMA

the example, we can generalize for n qubits with $|0\rangle^{\otimes n} |0\rangle$ the input state, Quantum Parallelism:

$$\frac{1}{\sqrt{2^n}}\sum_{\alpha} |\alpha\rangle |f(\alpha)\rangle$$

Quantum Circuits (continued) Are one-shot circuits (run once from left to right)

ROP GRUMMA

- Circuit represents series of operations and measurements of n-qubit states
- Quantum gates $U_{f_1} \dots U_{f_3}$ are operators that operate on qubits
- Each operator above is unitary and described by 2ⁿ x 2ⁿ matrix (*n* depends on input states)
- Each Line is an abstract wire connecting quantum logic gates (or series of gates)
- The meter symbol represents a measurement

Single Qubit Gates

NORTHROP GRUMMAN

Constraint: $U^{\dagger}U = I$

(Identity matrix)

Input Amplitudes:

 $\left|\alpha\right|^{2}+\left|\beta\right|^{2}=1$

Output Amplitudes: $|\alpha'|^2 + |\beta'|^2 = 1$ 4) Qubit Pauli I-Gate Representation: 2 x 2 matrix

$$\sigma_0 = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$| 0 \rangle \rightarrow I \rightarrow | 0 \rangle$$
$$| 1 \rangle \rightarrow I \rightarrow | 1 \rangle$$
$$[\alpha \quad \beta] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \alpha | 0 \rangle + \beta$$

-

 $|1\rangle$

5) Qubit Pauli X-, Y-, and Z-Gates — Rotations about X, Y, and Z axis Representation:2 x 2 matrix

The unitary property provides other potential gates

Single Qubit Gates (continued)

NORTHROP GRUMMAN

Multi Qubit Gates

 $|11\rangle \rightarrow CNOT \rightarrow |10\rangle$

- True quantum gates must be reversible. Reversibility require a control line which is unaffected by a unitary transformation. Implement by carrying the input with results
- The gate is a 2 qubit gate represented by a 4 x 4 matrix

$$(\alpha | 0 \rangle + \beta | 1 \rangle) | 1 \rangle \rightarrow CNOT \rightarrow \alpha | 01 \rangle + \beta | 10 \rangle; | 0 \rangle (\alpha | 0 \rangle + \beta | 1 \rangle) \rightarrow CNOT \rightarrow \alpha | 00 \rangle + \beta | 01 \rangle; | 1 \rangle (\alpha | 0 \rangle + \beta | 1 \rangle) \rightarrow CNOT \rightarrow \alpha | 11 \rangle + \beta | 10 \rangle;$$

$$\begin{pmatrix} 1\,0\,0\,0\\0\,1\,0\,0\\0\,0\,0\,1\\0\,0\,1\,0 \end{pmatrix} \begin{pmatrix} \alpha\\0\\\beta\\0 \end{pmatrix} = \begin{pmatrix} \alpha\\0\\\beta\\0 \end{pmatrix} = \alpha \mid 00 \rangle + \beta \mid 11 \rangle$$

2-Qubit CNOT-Gate treatment in Backup Slides

Multi Qubit Gates (continued)

Equivalent Quantum Gate Operations (some examples)

7) Controlled-U Replaced by Equivalent Single Qubit Gates & CNOT gate **Controlled-Unitary Gate** Single Qubit Gates: A, B, C 8) Controlled-Pauli X Gate Replaced by Hadamard and Controlled-Pauli Z Gate 9) Controlled-Pauli X Gate Equivalent Circuit

IORTHROP GRUMMA

10) Qubit Toffoli Controlled-CNOT (CCNOT) or Deutsch ($\pi/2$) Gate

Space that swaps the last two entries

11) Qubit Fredkin (Controlled-SWAP) Gate

- Universal reversible gate
- Factor impossibly large number in short time periods
 - Secure quantum communications direct comparison of two sets of qubits for equality i.e., the two digital

 $(1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0)$

Multi Qubit Gates

13) Qubit Superdense Coding

Superdense coding takes a quantum state to two classical bits. It is a method for building shared quantum entanglement in order to increase the rate at which information may be sent through a noiseless quantum channel. Sending a single qubit noiselessly between sender and receiver gives maximum communication rate of one bit per qubit. If the sender's qubit is maximally entangled with a qubit in the receiver's possession, then dense coding increases the maximum rate to two bits per qubit.

Multi Qubit Gates (continued)

NORTHROP GRUMMAN

14) Qubit Error Correction Circuit

$$|\psi_1\rangle = \alpha |001\rangle + \beta |110\rangle;$$

 $|\psi_2\rangle = \alpha |0010\rangle + \beta |11000\rangle;$
 $|\psi_3\rangle = \alpha |0010\rangle + \beta |11001\rangle;$
 $|\psi_4\rangle = (\alpha |001\rangle + \beta |1100\rangle);$
 $|\psi_4\rangle = (\alpha |001\rangle + \beta |110\rangle) \otimes |0\rangle |1\rangle;$
M₁ and M₂ read 01 on lines 4 and 5. Feed 01
(error syndrome) into the QEC which performs
operations in the table below.
Apply qubit flip to line 3:
 $|\psi_5\rangle = \alpha |000\rangle + \beta |111\rangle$
1) Qubit-Flip (Amplitude Flip)
 $\alpha |001\rangle + \beta |110\rangle$
 $|0\rangle$
 $|0\rangle$
 $|0\rangle$
 $|0\rangle$
 $|0\rangle$
 $|0\rangle$
 $|10\rangle$
 $|0\rangle$
 $|11\rangle$
 $|10\rangle$
 $|10\rangle$
 $|11\rangle$
 $|10\rangle$
 $|10\rangle$
 $|11\rangle$
 $|10\rangle$
 $|11\rangle$
 $|10\rangle$
 $|11\rangle$
 $|10\rangle$
 $|11\rangle$
 $|10\rangle$
 $|11\rangle$
 $|11\rangle$

RTHROP GRUMMA

- Same circuit as the amplitude flip circuit, except the Hadamard gates are added to the first three lines. Repetition code in the Hadamard gates correct for phase errors.
- · Errors happen between the encoding and the circuit
- Suppose the input state is: $|\psi_1\rangle = \alpha |++-\rangle + \beta |--+\rangle$ and phase flip occurs in line 2: $|\psi_2\rangle = (\alpha |001\rangle + \beta |110\rangle)|00\rangle$; note that is the same as in the qubit-flip (amplitude flip)
- Since the rest of the circuit is the same as the qubit-flip case. The output of QEC is: $\alpha |000\rangle + \beta |111\rangle$

Theorem: If a quantum error correcting code (QECC) corrects error A and B, then it also corrects errors $\alpha A + \beta B$

Multi Qubit Gates (continued)

NORTHROP GRUMMAN

16) Qubit Error Correction Circuit3) Qubit-Decoherence

Decoherence in qubit system can be modeled by introducing a relative phase:

$$\begin{split} | 0 \rangle \rightarrow | 0 \rangle & and | 1 \rangle \rightarrow e^{i\theta} | 1 \rangle, i.e., \\ | \psi \rangle &= \alpha | 0 \rangle + \beta | 1 \rangle \rightarrow \alpha | 0 \rangle + e^{i\theta} \beta | 1 \rangle; \\ i.e., | \psi \rangle &= \frac{| 0 \rangle + | 1 \rangle}{\sqrt{2}}; \\ \rho &= \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \rightarrow \frac{1}{2} \begin{pmatrix} 1 & e^{-i\theta} \\ e^{i\theta} & 1 \end{pmatrix} \end{split}$$

Decoherence is the loss of coherence in a quantum system due to interactions with external environment.

Density Operator for state $|\psi\rangle$: $\rho = |\psi\rangle\langle\psi|$; Time dependent Density Operator: $\rho(t) = U\rho(t_0)U^{\dagger}$; U is Unitary matrix $\rho^2 = (|\psi\rangle\langle\psi|)(|\psi\rangle\langle\psi|) = |\psi\rangle(\langle\psi|\psi\rangle)\langle\psi| = |\psi\rangle\langle\psi| = \rho;$ $Tr(\rho^2) = 1$

A global phase multiplies all superpositions, whereas a relative phase multiplies only a single term in the superposition and does not change measurements. We map, instead to a decoherent free subspace using logical gates in order avoid problems with physical global and relative phases:

$$|0_{L}\rangle = \frac{|0\rangle|1\rangle - i|1\rangle|0\rangle}{\sqrt{2}}; |1_{L}\rangle \frac{|0\rangle|1\rangle + i|1\rangle|0\rangle}{\sqrt{2}}$$

Introduce collective dephasing:

$$\begin{split} | 0_{L} \rangle &= \frac{| 0 \rangle e^{i\theta} | 1 \rangle - i e^{i\theta} | 1 \rangle | 0 \rangle}{\sqrt{2}} = e^{i\theta} | 0_{L} \rangle; \\ | 1_{L} \rangle \frac{| 0 \rangle e^{i\theta} | 1 \rangle + i e^{i\theta} | 1 \rangle | 0 \rangle}{\sqrt{2}} = e^{i\theta} | 1_{L} \rangle; \end{split}$$

Each logical qubit has ben altered by an overall global phase $e^{i\theta}$ and an arbitrary logical qubit is unchanged by decoherence. Hence error correction has been applied:

$$|\psi_{L}\rangle = \alpha |0_{L}\rangle + \beta_{L} |1\rangle \rightarrow e^{i\theta} \alpha |0_{L}\rangle + e^{i\theta} \beta_{L} |1\rangle = e^{i\theta} |\psi_{L}\rangle$$

17) Qubit Error Correction Circuit

3) Qubit-Continuous rotational error

 $R_{\theta} \text{ acts on the } j^{\text{th}} \text{ qubit}$ $R_{\theta}^{j} |\psi\rangle = \cos \frac{\theta}{2} |\psi\rangle - i \sin \frac{\theta}{2} Z^{j} |\psi\rangle$ $\Rightarrow \cos \frac{\theta}{2} |\psi\rangle I\rangle - i \sin \frac{\theta}{2} Z^{j} |\psi\rangle |Z^{j}\rangle$ Error Syndrome

Error syndrome is formed by measuring enough operators to determine the location error

Measuring the error syndrome collapses the state:Probability: $\cos^2 \frac{\theta}{2}$: $|\psi\rangle$ (no correction needed) $\sin^2 \frac{\theta}{2}$: $Z^j |\psi\rangle$ (Corrected with Z^j)

	Operators for Error Syndrome								
M_1	Ζ	Ζ							
M ₂		Ζ	Ζ						
M ₃				Ζ	Ζ				
M ₄					Ζ	Ζ			
M ₅							Ζ	Ζ	
M ₆								Ζ	Ζ
M ₇	Х	Х	Х	Х	Х	Х			
M ₈				Х	Х	Х	Х	Х	Х

These generate a group, the stabilizer of the code with all *M Pauli* **operators** with property: $M\psi\rangle = |\psi\rangle$ and all encoded sates $|\psi\rangle$
QASM2CIRC - MIT Simple Quantum Teleportation Circuit

NORTHROP GRUMMAN

https://www.media.mit.edu/quanta/qasm2circ/

#	% Time 01 [.]	% definitions for bit labels and initial	
# File: test2.qasm	% Gate 00 h(g1)	atotoo	
# Date: 29-Mar-04	% Time 02 [·]	sidles	
# Author: I. Chuang	% Gate 01 cnot(α 1 α 2)		
# # Sample gasm input file - simple telepoptation singuit	% Time 03°	\def\bA{ \q{q_{0}}}	
# Sample dasm input file - simple teleportation circuit	% Gate 02 $cnot(a0 a1)$	$defbB{a{a}{1}}$	
qubit q0	$\frac{1}{2}$ $\frac{1}$	dof b C(a(a(2)))	
qubit q1	% Gate 03 $h(a0)$		
qubit q2	$\%$ Gate 03 $\Pi(q0)$		
	% Gate 04 hop(q1) % Time 05:	% The quantum circuit as an xymatrix	
h q1 # create EPK pair	$^{\prime\prime}$ Coto 05 moosuro($^{\prime\prime}$ 0)		
cnot d0.d1 # Bell basis measurement	$\frac{1}{2}$ Gate 05 measure(q0)	\xymatrix@P_5nt@C_10nt(
h q0	% Gale of measure(q1)		
nop q1	% Time 06:		
measure q0	% Gate 07 c-x(q1,q2)	&\N &\gGA &\N	
measure q1	% Time 07:	\\ \bB & \gAB &\gBB &\gCB &\gDB	
c-x q1,q2 # correction step	% Gate 08 c-z(q0,q2)		
	% Qubit circuit matrix:	$\frac{1}{1} \frac{1}{100} \frac{1}{1$	
$ q_0\rangle \longrightarrow H / h $			
	% qu: n , n , gCA, gDA, gEA, N , gGA, N	&\gFC &\gGC &\n	
	% q1: gAB, gBB, gCB, gDB, gEB, gFB, N , N	%	
$ q_1\rangle - H + \oplus$	% q2: n , gBC, n , n , n , gFC, gGC, n	% Vertical lines and other post-	
	\documentclass[11pt]{article}	xymatrix latex	
	\input{xyqcirc.tex}		
$ q_2\rangle \longrightarrow X \vdash Z \vdash$	% definitions for the circuit elements	%	
	\def\gAB{\op{H}\w\A{gAB}}	\ar@{-}"gBC";"gBB"	
	\def\gBB{\b\w\A{gBB}}	\ar@{-}"gCB";"gCA"	
	\def\gBC{\o\w\A{gBC}}	\ar@{=}"gFC"·"gFB"	
	\def\gCA{\b\w\A{gCA}}	\ar@[_]"aCC":"aCA"	
	\def\gCB{\o\w\A{gCB}}		
	\def\gDA{\op{H}\w\A{gDA}}	}	
	\def\gDB{*-{}\w\A{gDB}}		
	\def\gEA{\meter\w\A{gEA}}	\end{document}	
	\def\gEB{\meter\w\A{gEB}}		
	\def\gFB{\b\W\A{gFB}}		
	\def\gFC{\op{X}\w\A{gFC}}		
	\def\gGA{\b\W\A{gGA}}		
73	\def\gGC{\op{Z}\w\A{gGC}}		

CodeProject Quantum Java Code


```
/**
                                                                   /**
* Constructs a new <code>Oubit</code> object.
* @param no0 complex number
* @param no1 complex number
                                                                    */
*/
public Qubit(ComplexNumber no0, ComplexNumber no1) {
qubitVector = new ComplexNumber[2];
qubitVector[0] = no0;
qubitVector[1] = no1;
                                                                   }
/**
* Constructs a new <code>Oubit</code> object.
* @param gubitVector an array of 2 complex numbers
*/
public Oubit(ComplexNumber[] gubitVector) {
this.qubitVector=Arrays.copyOf(qubitVector, qubitVector.length);
                                                                   }
/**
                                                                   /**
* Return the qubit represented as an array of 2 complex numbers.
* @return qubit
                                                                   */
*/
public ComplexNumber[] getQubit() {
ComplexNumber[] copyOfQubitVector = qubitVector;
                             return copyOfOubitVector;
}
                                                                   E XGate,
                                                                   E ZGate,
                                                                   E CNotGate
```

* Check if gubit state is valid * @return true if the state is valid, otherwise false public boolean isValid(){ double sum=0.0; for(ComplexNumber c:this.gubitVector){ double mod=ComplexMath.mod(c); sum+=mod*mod; return (sum==1.0); public class OubitZero extends Oubit { // Construct a new <code> OubitZero</code> object. public QubitZero() { super(new ComplexNumber(1.0, 0.0), new ComplexNumber(0.0, 0.0)); * Currently Implemented Quantum Gates. public enum EGateTypes { // Hadamard Gate E HadamardGate, // Pauli-X Gate // Pauli-Z Gate // CNOT Gate

QISKit SDK – Quantum Python Code Example

https://qiskit.org/documentation/quickstart.html

Import the QISKit SDK from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import available_backends, execute

Create a Quantum Register with 2 qubits. q = QuantumRegister(2) # Create a Classical Register with 2 bits. c = ClassicalRegister(2) # Create a Quantum Circuit qc = QuantumCircuit(q, c)

Add a H gate on qubit 0, putting this qubit in superposition. qc.h(q[0]) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting # the qubits in a Bell state. qc.cx(q[0], q[1]) # Add a Measure gate to see the state. qc.measure(q, c)

See a list of available local simulators print("Local backends: ", available_backends({'local': True}))

Compile and run the Quantum circuit on a simulator backend job_sim = execute(qc, "local_qasm_simulator") sim_result = job_sim.result()

Show the results
print("simulation: ", sim_result)
print(sim_result.get_counts(qc))

QUACK Simulator In MATLAB/OCTAVE

NORTHROP GRUMMAN

5 Qubit Tofolli Gate and QISKIT Programming

from qiskit import QuantumRegister, QuantumCircuit

n = 5 # must be >= 2

```
ctrl = QuantumRegister(n, 'ctrl')
anc = QuantumRegister(n-1, 'anc')
tgt = QuantumRegister(1, 'tgt')
```

circ = QuantumCircuit(ctrl, anc, tgt)

copy
circ.cx(anc[n-2], tgt[0])

uncompute
for i in range(n-1, 1, -1):
 circ.ccx(ctrl[i], anc[i-2], anc[i-1])
circ.ccx(ctrl[0], ctrl[1], anc[0])

from qiskit.tools.visualization import circuit_drawer circuit_drawer(circ)

JQuantum Java Quantum Simulator

NORTHROP GRUMMAN

http://jquantum.sourceforge.net/

Quantum Algorithms

NORTHROP GRUMMAN

- Quantum algorithms are realized by quantum circuits
 - Complexity optimization
- Turing machine complexity definitions
 - P is the set of problems that can be solved by deterministic Turing machines in Polynomial number of steps
 - NP is the set of problems that can be solved by Nondeterministic Turing machines in Polynomial number of steps

 $P \subseteq NP; P = NP? (not proven yet)$

- coP is the set of problems whose complements can be solved by deterministic Turing machine in Polynomial number of steps
- coNP is the set of problems whose complements can be solved by a Nondeterministic Turing machine in Polynomial number of steps

 $NP \subseteq PSPACE$

 PSPACE is the set of problems that can be solved by deterministic Turing machine using a Polynomial number of SPACEs on the tape

 $P \subseteq coP \subseteq coNP$; $coNP \subseteq PSPACE$

- Probabilistic Turing machine (PTM) complexity definitions
 - BPP is the set of problems that can be solved by Probabilistic Turing machines in Polynomial time with some errors possible

Turing Machine "String-101" Execution Time

	Exact	Probable
Deterministic	N +N/2	NA
Probabilistic	N +N/2	N/2
Quantum	N/2	NA

- RP is the set of problems that can be solved by Probabilistic Turing machines in Polynomial time with false negatives possible
- coRP replaces "false negatives" with "false positives" in RP definition
- ZPP replaces "some errors possible" with "zero error" in BPP definition
- Quantum Turing machine (QTM) complexity definitions
- BQP, ZQP,
- Is a set of problems that can be solved by QTM in
 Polynomial time with Bounded error on both sides
- EQP
- Replaces **B**ounded error with "Exactly (without error)" in definition of QTM

- QSPACE $QSPACE(f(n)) \subseteq SPACE((f(n))^2)$

Quantum Computing Algorithms

- Quantum Turing Machine (QTM)
 - Is well formed if the constructed U_M preserves isometric inner product in
 complex space
 - QTM is similar to the probabilistic Turning machine (PTM), except that the probability amplitudes are complex number amplitudes
 - Probabilistic TM (PTM) traverses the tape left to right; QTM traverses in both directions simultaneously
 - QTM performs all operations simultaneously and enters a superposition of all the resulting states
 - When QTM is measured, it collapses into a single complex number configuration (state) and behaves like the PTM upon observation

In "m" time steps the initial configuration will be in a configuration of "superposition(s) of configuration(s)":

$$\underbrace{U_{M} \circ U_{M} \circ \dots U_{M} | config_{n}}_{t(m) times} = U_{M}^{t(m)} | config_{n} \rangle$$

Quantum Turing Complexity details in Backup Slides

Quantum Algorithms (continued)

- Quantum Fourier Transform (QFT) (Unitary Operator and Reversible)
- n-qubit QFT Input State: $|\psi\rangle = \sum_{x=0}^{2n-1} \alpha_x |x\rangle$ • Output State: $|\psi'\rangle = U_{QFT} |\psi\rangle = \sum_{x=0}^{2n-1} \sum_{y=0}^{2n-1} \frac{\alpha_x e^{2\pi i x y/2^n}}{\sqrt{2^n}} |y\rangle$
- 3-qubit QFT Apply H date to state $|x_{2}\rangle$

Apply IF gate to state
$$+x_2/$$

 $H |x_2\rangle = \frac{1}{\sqrt{2}} \sum_{y} (-1)^{x_2 y} |y\rangle = \frac{1}{\sqrt{2}} \sum_{y} e^{2\pi i x_2 y/2} |y\rangle$
 $= \frac{1}{\sqrt{2}} |0\rangle + e^{2\pi i \left(\frac{x_0}{2^2} + \frac{x_2}{2}\right)} |1\rangle$

$$\frac{1}{\sqrt{2}} |0\rangle + e^{2\pi i \left(\frac{x_0}{2}\right)} |1\rangle \otimes \frac{1}{\sqrt{2}} |0\rangle + e^{2\pi i \left(\frac{x_0}{2^2} + \frac{x_1}{2}\right)} |1\rangle \otimes = \frac{1}{\sqrt{2}} |0\rangle + e^{2\pi i \left(\frac{x_0}{2^3} + \frac{x_1}{2^2} + \frac{x_2}{2}\right)} |1\rangle$$

- $\begin{array}{l} \text{ Apply S gate with control bit for state } |x_1\rangle \text{ either } |0\rangle \text{ or } |1\rangle; For |1\rangle: S |1\rangle = e^{2\pi i \frac{x_1}{4}} |1\rangle \\ \text{ State of System at this point: } I \otimes S |x_1\rangle = |x_1\rangle \otimes = \frac{1}{\sqrt{2}} |0\rangle + e^{2\pi i \left(\frac{x_0}{2^3} + \frac{x_1}{2^2} + \frac{x_2}{2}\right)} |1\rangle \\ \text{ Apply T gate with control bit for state } |x_0\rangle: \\ |x_0\rangle \otimes |x_1\rangle \otimes \frac{1}{\sqrt{2}} |0\rangle + e^{2\pi i \left(\frac{x_0}{2^3} + \frac{x_1}{2^2} + \frac{x_2}{2}\right)} |1\rangle \end{array}$
- $|x_1\rangle$ goes through the H gate and Controlled S-gate: $|x_1\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle + e^{2\pi i \left(\frac{x_0}{2^2} + \frac{x_1}{2}\right)}|1\rangle$ $|x_{0}\rangle \otimes = \frac{1}{\sqrt{2}} |0\rangle + e^{2\pi i \left(\frac{x_{0}}{2^{2}} + \frac{x_{1}}{2}\right)} |1\rangle \otimes = \frac{1}{\sqrt{2}} |0\rangle + e^{2\pi i \left(\frac{x_{0}}{2^{3}} + \frac{x_{1}}{2^{2}} + \frac{x_{2}}{2}\right)} |1\rangle$
- State of System at this point:
- Finally Hadamard gate applied to $|x_0\rangle : |x_0\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle + e^{2\pi i \left(\frac{x_0}{2}\right)}|1\rangle$ — 81

Final System State

Quantum Computing Algorithms (continued)

- Basic framework for all QC algorithms
 - Start with qubits in a particular classical state
 - The system is put into a superposition of many states
 - Unitary operations act on this superposition
 - Measurement of qubits in final states
- Definitions
 - **Discrete Logarithm Problem**: Given a prime number p, a base $b \in Z_p^*$, and an arbitrary element $y \in Z_p^*$, find an $x \in Z_p^*$ such that $b^x = y \mod p$
 - Hidden Subgroup Problem: G is a group. Let H < G be a subgroup implicitly defined by a function of f on G is constant and distinct on every co-set o H. The problem is to find a set of generators for H
 - Abelian Group (abstract algebra): Is a commutative group (generalize arithmetic addition of integers), is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written, i.e., these are the groups that obey the axiom of commutativity; named after early 19th century mathematician Niels Henrik Abel (ref. 21)
 - Abelian Hidden Subgroup Problem: *G* is a finite Abelian group with cyclic decomposition $G = Z_{n_0} \times ... \times Z_{n_L}$ Let H < G be a subgroup implicitly defined by a function of *f* on *G* is constant and distinct on every co-set o *H*. The problem is to find a set of generators for *H*
 - Pell's Equation Problem: Find an integral and positive solutions to $x^2 dy^2 = 1$

Quantum Algorithms (continued)

NORTHROP GRUMMAN

- Grover's search algorithm (class of algorithms called *amplitude amplification*)
 - Finds an element in an unordered set quadratically faster O(N^{1/2}) time than any theoretical limit for classical algorithms O(N/2)
 - Internal calls to an oracle "O" for value of function (i.e., membership is true for an instance)

N entries with n = log(N) bits

Apply Hadamard transform on $|0\rangle^{\otimes n}$ to produce equal superposition state

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{x=0}^{n-1} |x\rangle$$

Apply the Grover diffusion operator

2 Hadamard operations require *n* operations each

The conditional phase shift is a controlled unitary operation and require O(n) gates

The Oracle complexity is application dependent, in this algorithm it requires only one call per iteration

Apply measurement

 Quantum Fourier Transform (QFT) (Unitary Operator and Reversible) **n-qubit QFT** • Input State: $|\psi\rangle = \sum_{x=0}^{2n-1} \alpha_x |x\rangle$ • Output State: $|\psi' = \rangle = U_{QFT} |\psi\rangle = \sum_{x=0}^{2n-1} \sum_{y=0}^{2n-1} \frac{\alpha_x e^{2\pi i x y/2^n}}{\sqrt{2^n}} |y\rangle$ $O(\log^2 n)$ execution time $|x_2\rangle$ - $\omega = e^{\frac{\pi}{4}}$ S $\frac{1}{\sqrt{2^n}}$ **QFT** period superpositions Period 3 3 6 9 M-6 M-3 Period 4 M-7 **M-3** 1 5 9

2-Qubit & 3-Qubit treatment in Backup Slides

Quantum Algorithms (continued)

• 2 Qubit QFT matrix form
– QFT full matrix form:

$$|\psi'\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle;$$

$$|\psi'\rangle = U_{QFT}|\psi\rangle = \frac{1}{\sqrt{4}} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & e^{\frac{\pi i}{4}} & e^{\frac{\pi i}{4}} & e^{\frac{\pi i}{4}} \\ 1 & e^{\frac{\pi i}{4}} & e^{\frac{\pi i}{4}} & e^{\frac{\pi i}{4}} \\ 1 & e^{\frac{\pi i}{4}} & e^{\frac{\pi i}{4}} & e^{\frac{\pi i}{4}} \\ 1 & e^{\frac{\pi i}{4}} & e^{\frac{\pi i}{4}} & e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{1}{\sqrt{2}} e^{\frac{\pi i}{4}} \\ \frac{1}{\sqrt{2}} + 0 + 0 + \frac{$$

Quantum Algorithms (continued)

- Shor's algorithm
 - Is a factoring algorithm
 - It can be used to break encryption codes
 - Computation execution time is O(n²log n log log n) number of polynomial steps; n bits to represent number N
 - Classically it is O(e^{cn1/3} log^{2/3}n) exponential steps

Algorithm Steps

- 1. Input a positive integer N with $n = \log_2 N$
- 2. Use a polynomial algorithm to determine if N is a prime or a power of prime. If it is prime, declare and exit. If it is power of prime, declare and exit
- Randomly select an integer a: 1<a<N. Perform Euclid's algorithm to find GCD(a,N). If GCD is not 1, then return value and exit
- 4. Use the quantum circuit to find the period r
- 5. If r is odd, or if $a^{r/2} \equiv -1$ Mod N return to Step 3 and choose another a
- 6. Use Euclid's algorithm to calculate the $GCD(a^{r/2})$
- 7. + 1,N) and GCD($a^{r/2}$ 1,N). Return at least one non trivial solution
- 8. Output a factor p of N if it exists

$$\psi_{3}\rangle = \frac{\sum_{a \equiv a^{\overline{x}} Mod(N)} \left| x, a^{\overline{x}} Mod(N) \right|}{\left[\frac{2^{m}}{r} \right]} = \frac{\sum_{j=0}^{\frac{2^{m}}{r-1}} \left| t_{0} + jr, a^{\overline{x}} Mod(N) \right|}{\left[\frac{2^{m}}{r} \right]};$$

where t_0 is the first time $a^{t_0} = a^{\overline{x}} Mod(N)$ is measured

Quantum Adiabatic Computing

NORTHROP GRUMMAN

- Uses adiabatic processes for QC in the following steps:
 - Create an initial state of qubits
 - Start with an initial Hamiltonian and very it very slowly (adiabatically)
 - ${\rm H}_{\rm initial}$ transforms into ${\rm H}_{\rm final}$ whose eigenstates encode the solution
 - The Hamiltonian ground state is created

$$H_{initial} = -\sum_{i} X^{j}$$

- Consists of Pauli Operators
- The final Hamiltonian

$$H_{final} = -\sum_{x} c_{x} \mid x \rangle \langle x \mid$$

If the T is the total time of computation, we can interpolate the Hamiltonian solution at any time "t". Let s=1/T with 0≤s≤1:

$$\hat{H} = (1 - s)H_{initial} + sH_{final}$$

$$t_{Hamiltonian} \square t_{Critical}; H_{initial} \xrightarrow{\rightarrow}{}_{slowly} H_{final}$$

$$Uncertainity \operatorname{Pr}inciple: \Delta E \Delta t \ge \frac{\hbar}{2}$$

$$\Rightarrow \Delta t \ge \frac{\hbar}{2} \frac{1}{\Delta E}$$

Topological Quantum Computing (QC)

• Anyons (named by Frank Wilczek 1982 – ref. 19)

- Obey exotic statistics including Fermi-Dirac statistics for fermions (Leptons, Quarks)
- Bose-Einstein statistics for bosons (Gauge, Higgs)
- They cannot occupy the same space
- Have arbitrary phase factors
- Follow non-trivial unitary evolutions when particles are exchanged
- Transformation of the anionic wave function obey exchange symmetry
- Hence the name "Any" + "ons"
- Kitaev (2003 ref. 20) demonstrate that anyons could be used to perform fault tolerant computation

Anyonic QC				
QC	Anyonic Operations			
Initialize state	Create and arrange anyons			
QC gates	Braid anyons			
State measurement	Detect anionic charge			

- One configuration of topological fault tolerant quantum computation
- During initialization a pair of anyons a, \overline{a} are created from vacuum (i.e., e^- , e^+ electron-positron pair)
- Braided operations unitarily evolve to their fusion state
- Fusing the anyons together give a set of measurement outcomes e_i; i=1,... which encodes the results of the computation

Laboratory Systems: Electron gas in high magnetic field is sandwiched between thin semiconductor layers of aluminum gallium arsenide

Cluster State Quantum Computing (CSQC) Represent CSQC as Graphs

- CSQC is a multipartite qubit (highly entangled) modeling scheme. It simulates unitary dynamics in crystal lattices. Within this model, the cluster states are a series of measured points in the computation; the result is used to select a new basis for the next measurement, thus forming a *feedback loop*
 - CSQC is represented a graph (each node/vertex of the graph is a qubit; the edges of the graph are the CZ gates
 - It is a two-step process: 1) initialize a set of qubits in some state, for example start with |+> then apply the CPHASE gates to the states
 - Measure the qubits in some basis states. As the next measurement is taken the choice of the new basis depends/determined by the previous measurement results
 - Effect of CZ application:

Example: initial *product* state: $|+\rangle_{C} = |+\rangle \otimes |+\rangle \rightarrow CZ |+\rangle \otimes |+\rangle$, *is C*

where
$$CZ = \frac{1}{2} \left[I \otimes I + Z \otimes I + I \otimes Z - Z \otimes Z \right]$$

Chose a basis state:

$$A = \frac{1}{2} \left[\left(\frac{|0\rangle + |1\rangle}{\sqrt{2}} \right) \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}} \right) \right]$$

$$CZ |+\rangle \otimes |+\rangle = \left[A + (Z \otimes I)A + (I \otimes Z)A - (Z \otimes Z)A \right]$$

$$= \frac{1}{2} \left[|00\rangle + |01\rangle + |10\rangle - |11\rangle \right]$$

This operation gives an entangled 2 Qubit State represented by

This operation gives an entangled 2-Qubit State represented by:

4-qubit cluster state Edges are c-phase gates Vertices are qubits

CZ (controlled Z gate

is controlled phase operation):

CZ =	(1)	0	0	0
	0	1	0	0
	0	0	1	0
	0	0	0	-1)

Phase shift is applied to the target qubit with control qubit in state |1>: CZ|11>=-|11>

90

Quantum Particle Swarm Optimization (QPSO)

From: Jun Sun, Choi-Hong Lai, Xiao-Jun Wu, "Particle Swarm Optimisation-Classical and Quantum Perspective", Chapman & Hall/CRC Press, 2012

- QPSO Algorithm
 - Uses the one of many potential functions for determination of particle position using the Schrödinger equation with Hamiltonian Ĥ (here the simple case of delta potential well is used)
 - Uses the mean best position "x" of particle to enhance the global search capability for particle position
 - Unlike the classical PSO algorithm the QPSO does not require the velocity vectors of particle and fewer parameters to adjust. It is simpler to implement
 - Choosing QPSO parameters swarm size, problem dimension, the number of maximum iteration, and the most important parameter " α " the contraction-expansion coefficient (CE) describes the dynamical behavior of individual particles and the algorithm converges (for $\alpha \le \alpha_0 \in [1.7, 1.8]$)

- i.e., $\alpha_0 = e^{\gamma} = 1.781$; is optimized for behavior particle $\Rightarrow \gamma = 0.577215665$ is called the Euler constant <u>qpso\qpso.bat</u> finds the mean best fit to particle position "x"

$$\hat{H} = -\frac{\hbar}{2m}\frac{d}{dy^2} - \gamma \delta(y);$$

where γ is intensity of potential well, y = x - p;

Schrödinger equation:

$$\frac{d^2\psi}{dy^2} + \frac{2m}{\hbar^2} \left[E + \gamma \delta(y) \right] \psi = 0;$$

Wave function solution is:

$$\psi(y) = \frac{1}{\sqrt{L}} e^{-\frac{y}{L}}; L = \frac{1}{\beta} = \frac{\pi^2}{m\gamma};$$

Probability Distribution Function:

$$F(y) = 1 - e^{-2\frac{|y|}{L}};$$

Particles position is given by:

$$x = p \pm \frac{L}{2} \ln\left(\frac{1}{u}\right)$$

where u is random number uniformly distributed on (0,1); $u \square U(0,1)$

QPSO (continued)

NORTHROP GRUMMAN

- Variants of QPSO have been utilized
 - Cooperative QPSO (CQPSO); Gao et.Al [2007], Sun et al. [2008]
 - Diversity-controlled QPSO (DCQPSO);
 Riget et al. [2002], Ursem et al. [2001],
 Sun et al. [2006]
 - Local-attractor QPSO (LAQPSO); Shao et al. [2016]
 - QPSO Tournament-selector (QPSO-TS); P. Angeline [1998]
 - QPSO-Roulette-Wheel selection (QPSO-RS); Long et al. [2009]
 - QPSO with Hybrid Distribution (QPSO-HD); Sun et al. [2006]
 - QPSO with Mutation; Liu et al. [2006], Fang et al. [2009]

- H. Gao et al., A cooperative approach to quantum-behaved particle swarm optimization, In Proceedings of the 2007 IEEE International Symposium on Intelligent Signal Processing, Madrid, Spain, 2007, pp. 1–6
- S. Lu, C. Sun, Quantum-behaved particle swarm optimization with cooperativecompetitive coevolutionary, In Proceedings of the 2008 International Symposium on Knowledge Acquisition and Modeling, Wuhan, China, 2008, pp. 593–597. 32
- S. Lu, C. Sun, Coevolutionary quantum-behaved particle swarm optimization with hybrid cooperative search, In Proceedings of the 2008 Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Washington, DC, 2008, pp. 109–113
- J. Sun, W. Xu, W. Fang. Quantum-behaved particle swarm optimization with a hybrid probability distribution, In Proceedings of the Ninth Pacific Rim International Conference on Artificial Intelligence, Guilin, China, 2006, pp. 737–746.
- Shao D., Hu S., Fei Y., A new quantum particle swarm optimization algorithm, Neural Network World 5/2016, 477–496
- J. Liu, J. Sun, W. Xu. Quantum-behaved particle swarm optimization with adaptive mutation operator, In Proceedings of the 2006 International Conference on Natural Computing, Hainan, China, 2006, pp. 959–967.
- W. Fang, J. Sun, W. Xu. Analysis of mutation operators on quantum-behaved particle swarm optimization algorithm, New Mathematics and Natural Computation, 2009, 5(2): 487–496
- H. Long, J. Sun, X. Wang, C. Lai, W. Xu. Using selection to improve quantum behaved particle swarm optimization, International Journal of Innovative Computing and Applications, 2009, 2(2): 100–114.
- P.J. Angeline, Using selection to improve particle swarm optimization, In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, Anchorage, AK, 1998, pp. 84–89.
- J. Riget, J. Vesterstroem. A diversity-guided particle swarm optimizer—The ARPSO: Department of Computer Science, University of Aarhus, Aarhus, Denment, 2002
- R.K. Ursem. Diversity-guided evolutionary algorithms, In Proceedings of the 2011 Parallel Problem Solving from Nature Conference, Paris, France, 2001, pp. 462–471
- J. Sun, W. Xu, W. Fang, Quantum-behaved particle swarm optimization algorithm with controlled diversity, In Proceedings of the 2006 International Conference on Computational Science, Reading, MA, 2006, pp. 847–854.
- J. Sun, W. Xu, W. Fang, Enhancing global search ability of quantum-behaved particle swarm optimization by maintaining diversity of the swarm, In Proceedings of the 2006 International Conference on Rough Sets and Current Trends in Computing, Kobe, Japan, 2006, pp. 736–745.

QPSO (continued) Applications

- Antenna Design: Determine infinitesimal dipoles to represent an arbitrary antenna for near-field distributions (ref. Mikki et al. [2006])
- **Biomedicine:** Coupling RFB neural networks to the QPSO algorithm for the culture conditions of hyaluronic acid production by Streptococcus zooepidemicus (Lui et al. [2009]). Lu and Wang [2008] employed QPSO to estimate parameters from kinetic model of batch fermentation
- Mathematical Programming: Integer programming (Liu et al. [2006]), constrained nonlinear programming (Liu et al. [2008]), combinatorial optimization (Wang et al. [2008]), layout optimization (Xiao et al. [2009]), and multiobjective design optimization of laminated composite components (Omkar et al. [2009])
- Communication Networks: NP-hard QoS multicast routing (converted to integer programming and solved by Sun et al. [2006]), RBFNN network anomaly detection (hybrid QPSO with gradient descent algorithm to train RBFNN by Ma et al. [2008], Wavelet NN & conjugate gradient algorithm for network anomaly detection (Ma et al. [2007], WLS-SVM QPSO for anomaly detection (Wu et al. [2008]), mobile IP routing (Zhao et al. [2008]), and channel assignment (Yue et al [2009])

- S. Mikki et al., Infinitesimal dipole model for dielectric resonator antennas using the QPSO algorithm, Proceedings of the 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, 2006, pp. 3285-3288
- Lui et al., Culture conditions...neural network and quantumbehaved particle swarm optimization algorithm, Enzyme and Microbial Technology, 2009, 44(1), pp. 24-32
- K. Lu and R. Wang, Application of PSO and QPSO ... glutamic acid batch fermentation, In Proceedings of the Seventh World Congress on Intelligent Control and Automation, Chongqinq, China, 2008, pp. 8968-8971
- J. Liu et al., Quantum-behaved particle swarm optimization for integer programming, In Proceedings of the 2006 International Conference on Neural Information Processing, Hong Kong, China, 2006, pp. 1042-1050
- H. Liu et al., A modified quantum-behaved particle swarm optimization for constrained optimization, In Proceedings o the 2008 International Symposium on Intelligent Information Technology Application Workshops, Shanghai, China, 2008, pp. 531-534
- J. Wang et al., Discrete quantum-behaved particle swarm optimization of distribution for combinatorial optimization, In Proceedings of the 2008 IEEE World Congress on Computational Intelligence, Hong Kong, China, 2008, pp. 897-904
- B. Xiao et al., Optimal planning of substation locating and sizing based on improved QPSO algorithm, In Proceedings of the Asia-Pacific, Power and Energy Engineering Conference, Shanghai, China, 2009, pp. 1-5

QPSO (continued) Applications

NORTHROP GRUMMAN

- Many <u>other</u> applications employing QPSO algorithm in the following areas:
 - Control Engineering
 - Clustering & Classification
 - Image Processing
 - Image processing, image segmentation, image registration, image interpolation, and face recognition and registration
 - Fuzzy Systems
 - Finance
 - Graphics
 - Rectangular packing problem, polygonal approximation curves, and irregular polygon layouts
 - Power Systems
 - Modelling
 - SVM, LS-SVM
 - Transistor Devices
 - Detection of unstable orbits in a non-Lyapunov technique
 - Filters
 - Design of Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters
 - Multiprocessor Scheduling
 - *From: Jun Sun, Choi-Hong Lai, Xiao-Jun Wu, "Particle Swarm Optimisation-Classical and Quantum Perspective", Chapman & Hall/CRC Press, 2012*

- S.N. Omkar et al., Quantum behaved particle swarm optimization (QPSO) for multi-objective design optimization of composite structures, Expert Systems with Applications, 2009, 36(8), pp. 11312-11322
- R. Ma et al., Network anomaly detection using RBF neural networks with hybrid QPSO, In Proceedings of the IEEE International Conference on Networking, Sensing and Control, Chicago, IL, 2008, pp, 1284-1287
- J. Sun et al., QoS multicast routing algorithm, In Proceedings of the 2006 International Conference on Simulated Evolution and Learning, Hefei, China, 2006, pp. 261-268
- D. Zhao et al., An approach to mobile IP routing based on QPSO algorithm. In Proceedings of the Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, China, 2008, pp. 667-671
- R. Ma et al., Hybrid QPSO based wavelet neural networks for network anomaly detection, In Proceedings of the Second Workshop on Digital Media and its Application in Museum and Heritages, Qingdao, China, 2007, pp 442-447
- R. Wu et al., An approach to WLS-SVM based on QPSO algorithm in anomaly detection, In Proceedings of the 2008 World Congress on Intelligent Control and Automation, Chongqing, China, 2008, pp. 4468-4472
- C. Yue et al., Channel assignment based on QPSO algorithm, Communications Technology, 2009, 42(2), pp. 204-206

THE VALUE OF PERFORMANCE.

