Quantum computing (QC)

 Overview

 Overview}

September 2018

Dr. Sunil Dixit
Technical Fellow

Why is QC Important?

"Let's make no mistake: the competition for a quantum computer is the new ams race. The competition to create the first large-scale quantum computer is heating up. The country that develops one first will have the ability to cripple militaries and topple the global economy... ...To deter such activity, and to ensure our security, the United States must win this new race to the quantum-computer revolution."

National Review (May 2017)

Classical Realm

Classical Physics Assumptions

- The universe is a giant machine
- All nonuniform motion and action have cause
- Uniform motion does not have cause (principle of inertia)
- If the state of motion is known now then all past and future states are accurately predictable because the universe is predictable
- Light is a wave described completely by Maxwell's electromagnetic equations
- Waves and particles are distinct
- A measurement can be accurately made and errors corrected caused by the measurement tool

Single Slit - Classical Marbles

Double Slits - Classical Marbles

Single Slit - Classical Waves

Double Slit - Classical Waves

Quantum Realm

Single Slit - Quantum Electrons

Double Slits - Quantum Electrons

Double Slit - Shoot One Electron At A Time

Double Slits - Quantum Electrons With Observer (Measure At One Slit)

Computational Capacity in the Universe

- Maximum possible elementary quantum logic operations:
- With gravitational degrees of freedom taken into account
$\frac{t}{t_{p}^{2}} \approx 10^{120}$
$t \approx 10^{10}$ years is the age of the universe with $t_{p}=\sqrt{G h / c^{5}}=5.391 \times 10^{-44} \mathrm{sec}$
is Planck time (the time scale at which gravitational effects are the same order as the quantum effects)
- With registered quantum fields alone:

$$
\frac{t}{t_{p}^{3 / 4}} \approx 10^{90}
$$

- Provides upper bounds computational capacity performed by all matter since the Universe began
- Provides lower bounds of a quantum computer required to simulate the entire Universe required operations and bits
- If the entire Universe performs a computation, these numbers give the numbers of operations and bits in that computation

Quantum Computing Principles

Quantum Principles Important For QC

- Mathematics
- Primarily Linear Algebra
- Mathematical Notation - the Dirac Notation
- Superposition
- Information Representation
- Uncertainty Principle
- Entanglement
- 6 Postulates of Quantum Mechanics

Quantum Superposition \& Uncertainty Principle $\Delta E \Delta t \geq \frac{\hbar}{2}$

Quantum Information Representation

- Physical Representation (Superposition and Entanglement)
- Electrons Spin Up / Spin Down
- Nuclear Spins
- Nuclear Magnetic Resonance
- Polarization of Light / Photons
- Optical Lattices
- Semiconductor Quantum DOT
- Semiconductor Josephson Junctions
- Ion Traps
- Others
- Classical Representation
- BIT $(0,1)$
- Quantum Representation
- Quantum BIT (qubit)

Quantum Dots

BLOCH representation of a qubit

$$
\vec{r}_{B L O C H}=\left(\hat{r}_{x}, \hat{r}_{y}, \hat{r}_{z}\right)=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
$$

Quantum Entanglement Electrons

Quantum Entanglement Photons

real-time imaging of quantum elftanglement

Quantum Entanglement (continued)

- Start with 2-qubits: $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle$ and $\beta_{0}|0\rangle+\beta_{1}|1\rangle$
- Both are their basis states
- How do we entangle them mathematically?
- Take the tensor product between the states

$$
\begin{aligned}
& \left(\alpha_{0}|0\rangle+\alpha_{1}|1\rangle\right) \otimes\left(\beta_{0}|0\rangle+\beta_{1}|1\rangle\right) \\
& =\alpha_{0} \beta_{0}|00\rangle+\alpha_{0} \beta_{1}|01\rangle+\alpha_{1} \beta_{0}|10\rangle+\alpha_{1} \beta_{1}|11\rangle
\end{aligned}
$$

- 2-qubits in arbitrary states cannot be decomposed into their separate qubit state. As an example, one of the Bell state $|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$, cannot be separated into its individual qubit state
- Einstein called entanglement as "spooky action at a distance," as it appeared to violate the speed limit of information transmission in theory of relativity (i.e., "c" the velocity of light)

Qubit \& Nuclear Spin Nuclear Magnetic Resonance

6 Postulates of QM deferred to backup slides

Basic Classical \& Quantum Computer Operations \& Flowchart Of Quantum Control

[^0]
Physical Quantum Computer

D-Wave

Microsoft

D-Wave Markets 1000 qubit computers for \$10M - \$15M

IBM

IBM 5 Qubit

Quantum Computing Models

Models of Quantum Computing

Quantum Circuits \& Gates

Quantum Circuits
 Quantum Circuits Error Corrections

Gate	Graphical	Mathematical Form	Comments
CNOT		$\left(\begin{array}{lllll}1000 \\ 0 & 1 & 0 & 0 \\ 0000 & \\ 000 & 1 \\ 0 & 0 & 0\end{array}\right)$	CNOT gate is a generalized XOR gate: its action on a bipartite state $\|A, B\rangle$ is $\|A, B \oplus A\rangle$, where \oplus is addition modulo 2 (an XOR operation)
SWAP \triangle		$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$	Swaps states: $(\alpha, \beta) \rightarrow(\beta, \alpha)$
Hadamard \triangle	H	$\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)=\frac{1}{\sqrt{2}}\left(\sigma_{x}+\sigma_{z}\right)$	H -gate (square root NOT gate) is an idempotent operator: $\mathrm{H}^{2}=I$. It transforms the computational basis into equal superpositions.
Pauli X, Y, Z \triangle	$x-y-=$	$\begin{aligned} & \sigma_{X, Y, Z}= \\ & \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right),\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right),\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \end{aligned}$	Quantum NOT is identical to $\sigma_{x}=>$ leaves $\|0\rangle$ invariant and changes the sign of $\mid 1>$. Rotations about the X, Y, Z axis
$\frac{\pi}{8} \text { T-Gate }$	T -	$\left(\begin{array}{lc}1 & 0 \\ 0 & e^{i \frac{\pi}{4}}\end{array}\right)$	Applies a phase shift to the target qubit. $\begin{aligned} & e^{i \frac{\pi}{4}}\|00\rangle \rightarrow \text { remains same } \\ & e^{i \frac{\pi}{4}}\|11\rangle \rightarrow \text { target qubit phase shift } \end{aligned}$
Measurement	$-\wedge=$	$\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$	Measurement collapses the superposed quantum states
Qubit		Wire $=$ single qubit	
n Qubits	1	Wire with n qubits	
Classical bit	-	Double wire $=$ single bit	

Properties of Quantum Circuits

- Are not acyclic (no loops)
- No FANIN. This implies that the circuit is not reversible; does not obey unitary operation
- No FANOUT. Cannot copy the qubit's state during the computational phase
- No-Cloning Theorem
- No copies of qubits in superposition (produces a multipartite entangled state)
$|\psi\rangle_{\text {NOT ALLOWED }}|\psi\rangle|\psi\rangle|\psi\rangle=(\alpha|0\rangle+\beta|1\rangle) \otimes(\alpha|0\rangle+\beta|1\rangle) \otimes(\alpha|0\rangle+\beta|1\rangle) ;$
$(\alpha|0\rangle+\beta|1\rangle) \otimes(\alpha|0\rangle+\beta|1\rangle) \otimes(\alpha|0\rangle+\beta|1\rangle)=\alpha|000\rangle+\beta|111\rangle=\left|\psi^{\prime}\right\rangle ;$
\Rightarrow Entangled 3qubits $\Rightarrow\left|\psi^{\prime}\right\rangle \neq|\psi\rangle$

IBM 5-Qubit Quantum Computer Using Toffoli Gates - Freely Available Quantum Computing

Timeline for IBM 17-qubit computer is unknown

Uses QASM (IBM Q) Assembler or QISKit SDK (Python code) discussed later, for producing the QC circuit results

IBM Q Experience End User License Agreement

Multi Qubit Gates (continued)

12) Qubit Teleportation Circuit

Squiggly lines correspond to movement of qubits. Straight lines correspond to movement of bits
$|\psi\rangle$ moves from the lower left hand corner from Alice to Bob in the upper right hand corner.

Only two classical bits remain with Alice in Step 4.

SINGLE QUANTUM PARTICLE IS TELEPORTED

Alice sends (with speed < speed of light) the two classical bits to Bob along a classical channel. Without these Bob will not know what he has received

Entanglement, as well, is not transported faster than the speed of light despite its undisputable magic

Infinite amount of information is passed with the qubit, however once Bob measures he can only get one bit of information

An arbitrary qubit is transferred from one location to another. In literature ALICE and BOB example is commonly utilized.
Teleportation takes two classical bits to one quantum state.

Quantum Teleportation Video

Quantum-Kit Simulation: https://en.wikipedia.org/wiki/Quantum teleportation\#/media/File:Quantum Teleportation.gif

Quantum Computing Programming Languages

QC Programming Languages and QC Simulators

Product	Description	Website
QCL	C like syntax and complete. The current version of QCL is 0.6.4 (Mar 27 2014), Source Distribution: 0.6 .4 (gcc 4.7 / gnu++98 compliant), Binary Distribution (64 bit): \qquad (AMD64, Linux 3.2, glibc2.13)	http://tph.tuwien.ac.at/~oemer/qcl.html
QASM	Assembler: Maps directly to quantum circuit model instructions MIT: qasm2circ; QISKit: openQASM	https://www.media.mit.edu/quanta/qasm2circ/ https://qiskit.org/documentation/quickstart.html
QISKit SDK Terra-Python API-Python	QISKit, a quantum program is an array of quantum circuits developed by IBM. Python program code workflow consists of three stages: Build, Compile, and Run.	https://qiskit.org/documentation/quickstart.html https://github.com/QISKit/qiskit-terra hittps://github.com/QISkit/qiskit-api-py
Q\#	Is a C\# like quantum programming language developed by Microsoft. It come with a quantum simulator in the quantum development kit.	https://www.microsoft.com/en-us/quantum/development-kit
CodeProject	Is a Java quantum code project	https://www.codeproject.com/Articles/1130092/Java-based-Quantum-Computing-library
Quantum-Kit	Is a graphical quantum circuit simulator	https://sites.google.com/view/quantum-kit/home
Other Simulators in various languages and tools	C/C++, CaML, Ocaml, F\#, GUI based, Java, Javascript, Julia, Maple, Mathematica, Maxima, Matlab/Octave, .NET, Online Services, Perl/PH,P, Python, Rust, and Scheme/Haskell/LISP/ML	https://quantiki.org/wiki/list-qc-simulators
Other Languages	See Wikipedia	https://en.wikipedia.org/wiki/Quantum programming

Simple QSAM Example Using QRAM Model

INITIALIZER2 Allocates register R to 2 qubits and initializes to $|00\rangle$
U TENSOR H H APPLY UR MEASURE R RES
Measures the q-register R and stores in bit array RES. What is the probability for the ground state (i.e., expectation value)?
from coefficient of $|00\rangle:\left|\frac{1}{2}\right|^{2}=\frac{1}{4}=0.25$
$\frac{1}{2}\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}\end{array}\right)$ register R in a balanced superposition of four basis states

$$
=\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle+\frac{1}{2}|11\rangle
$$

Quantum Algorithms

Quantum Computing Algorithms (continued)

Algorithm

Description

Reference

Algorithms Based on QFT

	Aigorithms Based on QF	
Shor's; $O\left(n^{2}(\log N)^{3}\right)$	Integer factorization (given integer N find its prime numbers); discrete logarithms, hidden subgroup problem, and order finding	Peter W. Shor, "Algorithms for Quantum Computation Discrete Log and Factoring," AT\&T Bell Labs, shor@research.att.com
Simon's; exponential	Exponential quantum-classical separation. Searches for patterns in functions	Simon, D.R. (1995), "On the power of quantum computation", Foundations of Computer Science, 1996 Proceedings., 35th Annual Symposium on: 116-123, retrieved 2011-06-06
Deutsch's, Deutsch's - Jozsa, an extension Deutsch's algorithm	Depicts quantum parallelism and superposition. "Black Box" inside. Can evaluate the input function, but cannot see if the function is balanced or constant	David Deutsch (1985). "Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer". Proceedings of the Royal Society of London A. 400: 97 David Deutsch and Richard Jozsa (1992). "Rapid solutions of problems by quantum computation". Proceedings of the Royal Society of London A. 439: 553
Bernstein/Vazirani; polynomial	Superpolynomial quantum-classical separation	Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. In Proc. 25th STOC, pages 11-20, 1993
Kitaev	Abelian hidden subgroup problem	A. Yu. Kitaev. Quantum measurements and the Abelian stabilizer problem, arXiv:quant-ph/9511026, 1995
van Dam/Hallgren	Quadratic character problems	Wim van Dam, Sean Hallgren, Efficient Quantum Algorithms for Shifted Quadratic Character Problems. \qquad (2000)
Watrous	Algorithms for solvable groups	John Watrous, Quantum algorithms for solvable groups, arXiv:quantph/0011023_(2001)
Hallgren	Pell's equation	Sean Hallgren. Polynomial-time quantum algorithms for pell's equation and the principal ideal problem, Proceedings of the thirty-fourth annual ACM symposium on the theory of computing, pages 653-658. ACM Press, 2002.
Algorithms Based on Amplitude Amplification		
Grover's; $O(\sqrt{N})$	Search algorithm from an unordered list (database) for a marked element, and statistical analysis	Lov Grover, A fast quantum mechanical algorithm for database search, In Proceedings of 28th ACM Symposium on Theory of Computing, pages 212-219, 1996
Traveling Salesman Problem; $O(\sqrt{N})$	Special case of Grover's algorithm	https://en.wikipedia.org/wiki/Travelling salesman problem
Machine Learning		Quantum Particle Swarm Optimization (QPSO)

Quantum Algorithms (continued)
 Machine Learning Applications

Quantum Algorithm	Grover's Algorithm Applied?*	Execution Improvement vs. Classical	Quality of Learning Algorithm Studied	Quantum Computer Implementation	Quantum States?*	Reference
Neural networks	Yes		Numerical	Yes	No	1
Boosting	No	Quadratic	Analytical	Yes	No	2
K-medians	Yes	Quadratic	No	No	No	3
K-means	Optional	Exponential	No	No	Yes	4
Principal components	No	Exponential	No	No	Yes	5
Hierarchical clustering	Yes	Quadratic	No	No	No	6
Associative memory	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$		$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	No	$\begin{aligned} & 7 \\ & 8 \end{aligned}$
Support vector machines	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	Quadratic Exponential	Analytical No	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{gathered} 9 \\ 10 \end{gathered}$
Nearest neighbors	Yes	Quadratic	Numerical	No	No	11
Regression	No		No	No	Yes	12
Hidden Markov Chains	No		No	No	No	13
Bayesian Methods	No		No	No	No	14

- Develop / reuse quantum gates tailored to PHM
- Creating "Oracles" are a very useful technique
- Note: QC gates in series accumulate errors (described earlier)
- Tailor quantum machine learning algorithms for PHM algorithms
- "Quantum particle swarm optimization (QPSO)" appears to be a good candidate for dynamic degraded state prognostics (tracks dynamic changes to a particle in its local focus specified by the characteristics length vector of the swarm in some Hamiltonian potential $\{\mathrm{E}+\mathrm{V}(\vec{r})\}$. Implementation on a quantum computer? Develop technology / gates / methods to do QPSO on quantum computers.
- Consider "adiabatic quantum computing" as an alternative approach. It is based on the time evolution of a quantum system. A quantum adiabatic process is one in which the initial Hamiltonian evolves slowly to it final Hamiltonian (i.e., the time scale should be proportional to the energy difference between the ground state and the first excited)
- For electrons the Hamiltonian can be represented by the Pauli operators
- Consider "cluster state quantum computing" that does not rely on quantum gates to do its processing (multi-qubits operations)

Summary (continued)

- Develop quantum computer with superconducting materials at higher temperatures
- Apart for space vehicles, current implementations for temperatures $<1.5^{\circ} \mathrm{K}$ are not feasible out of large infrastructures

*1 Gigapascal = 9869.2 Atmosphere https://en.wikipedia.org/wiki/Superconductivity

Summary (continued)

- Is classical cybersecurity safe with the power of quantum computing?
- Reference: Lily Chen et al., "Report on Post-Quantum Cryptography", 2016 http://dx.doi.org/10.6028/NIST.IR. 8105

Table 1 - Impact of Quantum Computing on Common Cryptographic Algorithms

Cryptographic Algorithm	Type	Purpose	Impact from large-scale quantum computer
AES	Symmetric key	Encryption	Larger key sizes needed
SHA-2, SHA-3	Public key	Signatures, key establishment	No longer secure
RSA	Public key	Signatures, key exchange	No longer secure
ECDSA, ECDH (Elliptic Curve Cryptography)	Hash functions	Larger output needed	
DSA (Finite Field Cryptography)	Public key	Signatures, key exchange	No longer secure

- If DWave 1000/2000 qubits Quantum Computer is a reality, AES and SHA-2/SHA-3 are unsafe
- Is quantum computing cybersecurity safe?
- It is possible that we would need methods / techniques to keep Quantum Computers safe?
- Still the issue of classical measurements

- Videos

- Video from https://www.youtube.com/watch? $\mathrm{v=fwXQjRBLwsQ}$ (Slits Video)
- https://www.youtube.com/watch?v=8150MDT5g0o (Superposition Video)
- https://www.youtube.com/watch?v=91OWZOWv218 (Entanglement Video)
- https://www.youtube.com/watch?v=zNzzGgr2mhk (Nuclear Magnetic Resonance Video)
- https://www.youtube.com/watch?v=f5vOfr1dl4o (Teleportation Video)

- Quantum Mechanics Books

- Dirac Notation: "Principles of Quantum Mechanics", Ramamurti Shankar, Plenum Press, New York / London, 1980
- "Lectures on Quantum Mechanics", Steven Weinberg, Cambridge University Press, New York, 2013
- "Lectures on Computation", Richard P. Feynman, Westview Press (1996, reprinted 1999)
- Quantum Computing Books
- Jun Sun, Choi-Hong Lai, Xiao-Jun Wu, "Particle Swarm Optimisation-Classical and Quantum Perspective", Chapman \& Hall/CRC Press, 2012
- Peter Wittek, "Quantum Machine Learning", Elsevier Insights, 2014

Papers

1. Narayanan and Menneer (2000), Quantum artificial neural network architectures and components, Inform Sci., 128(3-4), 231-255
2. Neven et al. (2009), Quantum pattern recognition with liquidstate nuclear magnetic resolution, Phys. Rev. A 79, 042321
3. Aimeur et al. (2013), Quantum speed-up for unsupervised learning Mach. Learn., 90(2), 261-287
4. Lloyd et al. (2013), Quantum algorithms for supervised and unsupervised machine learning, arXiv:1307.0411
5. Lloyd et al. (2013), Quantum principle component analysis, arXiv:1307.0411
6. Aimeur et al. (2013), Quantum speed-up for unsupervised learning Mach. Learn., 90(2), 261-287
7. Ventura and Martinez (2000), Quantum associative memory, Infom. Sci., 124(1), 273-296
8. Trugenberger (2001), Probabilistic quantum memories, Phys. Lett., 87, 067901
9. Anguita et al. (2003), Quantum optimization for training support vector machines, Neural Netw, 16(5), 763-770
10.Rebentrost et al. (2013), Quantum support vector machine for big feature and big feature classification, arXiv:1307.0471
11.Wiebe et al. (2014), Quantum nearest neighbor algorithms for machine learning, arXiv:1401.2142
10. Bisio et al. (2010), Optimal quantum learning of a unitary transformation, Phys. Rev. A 81(3), 032324

References (continued)

13 Siddarth Srinivasan et al., Learning Hidden Quantum Markov Models, Proceedings of the 21stInternational Conference on Artificial Intelligence and Statistics (AISTATS) 2018, Lanzarote, Spain. JMLR: W\&CP volume 7X

14 Sentís, Gael; Calsamiglia, John; Muñoz-Tapia, Raúl; Bagan, Emilio (2012), Quantum learning of coherent states. EPJ Quantum Technology. 2 (1). doi:10.1140/epjat/s40507-015-0030-4

15 Zhi-An Ren; et al. (2008), Superconductivity at 55 K in iron-based F-doped layered quaternary compound $\operatorname{Sm}\left[O_{1-x} F_{\chi}\right] F e A s$, "Chin. Phys. Lett. 25, 2215 (2008)
16. Li, Yinwei; Hao, Jian; Liu, Hanyu; Li, Yanling; Ma, Yanming (2014-05-07), "The metallization and superconductivity of dense hydrogen sulfide". The Journal of Chemical Physics. 140 (17): 174712. arXiv:1402.2721

17 Zhi-An Ren; et al. (2008),), Superconductivity at 55 K in ironbased F -doped layered quaternary compound $\mathrm{Sm}\left[\mathrm{O}_{1-x} \mathrm{~F}_{\chi}\right]$ FeAs, "Chin. Phys. Lett. 25, 2215 (2008)

18 Gelo Noel M. Tabia (2011), Qutrits Under a Microscope, American Physical Society March Meeting 2011, Dallas, Texas, United States (21-25 March 2011)

19 Frank Wilczek (1982), Phys. Rev. Lett. 49, 957
20 A. Kitaev (2003), Ann. Phys. 303, 2
21 Jacobson, Nathan (2009). Basic Algebra I (2nd ed.). Dover Publications

- Various Quantum Computing Websites
- https://en.wikipedia.org/wiki/Quantum computing
- https://anncloud.com/
- https://en.wikipedia.org/wiki/Quantum machine learning
- https://en.wikipedia.org/wiki/Quantum algorithm

Backup Slides

Quantum Mathematics

- Mathematics
- Primarily Linear Algebra
- Notation Dirac Notation

$$
\begin{aligned}
& " B r a "\langle\psi| ; ~ " \text { Ket" }^{\prime}|\psi\rangle ; \\
& \langle\psi|=|\psi\rangle^{\dagger}=\left|\psi^{*}\right\rangle^{T} ; \dagger \text { is Ajoint Operator } \\
& \langle\psi \mid \psi\rangle=1=\int d x \psi^{*}(x) \psi(x) ; \\
& (|\psi\rangle,|\phi\rangle)=\langle\psi \mid \phi\rangle=\int d x \psi^{*}(x) \phi(x) ; \\
& \langle\psi \mid \phi\rangle^{*}=\langle\phi \mid \psi\rangle ; \\
& \langle\psi| \hat{H}|\psi\rangle=\int d x \psi^{*}(x) \hat{H} \psi(x) \\
& (\text { Acting on an Hamiltonian }) ; \\
& \text { Schrödinger Hamiltonian for the } \\
& N-\text { particle case }\left(\text { th }=6.626 \times 10^{-34} \text { Joule sec }\right): \\
& \hat{H}=\frac{-\hbar}{2} \sum_{n=1}^{N} \frac{1}{m_{n}} \nabla_{n}^{2}+V\left(\vec{r}_{1}, \vec{r}_{2} \ldots \vec{r}_{N}, t\right) ;
\end{aligned}
$$

Time dependent Schrödinger Equation
$i \hbar \frac{\partial}{\partial t} \Psi(\vec{r}, t)=\hat{H} \Psi(\vec{r}, t)$

Quantum Mathematics

- Mathematics

- Primarily Linear Algebra
- Notation Dirac Notation
"Bra" $\langle\psi| ; ~ " K e t "|\psi\rangle$;
$\langle\psi|=|\psi\rangle^{\dagger}=\left|\psi^{*}\right\rangle^{T} ; \dagger$ is Ajoint Operator
$\langle\psi \mid \psi\rangle=1=\int d x \psi^{*}(x) \psi(x) ;$
$(|\psi\rangle,|\phi\rangle)=\langle\psi \mid \phi\rangle=\int d x \psi^{*}(x) \phi(x) ;$
$\langle\psi \mid \phi\rangle^{*}=\langle\phi \mid \psi\rangle ;$
$\langle\psi| \hat{H}|\psi\rangle=\int d x \psi^{*}(x) \hat{H} \psi(x)$
(Acting on an Hamiltonian);
Schrödinger Hamiltonian for the
N-particle case :
$\hat{H}=\frac{-t}{2} \sum_{n=1}^{N} \frac{1}{m_{n}} \nabla_{n}^{2}+V\left(\vec{r}_{1}, \vec{r}_{2} \ldots \vec{r}_{N}, t\right)$
Time dependent Schrödinger Equation :

Linear Combination: $|a\rangle=\sum_{i=1}^{n} c_{i}\left|b_{i}\right\rangle ;$
Linear Independence: $\sum_{i=1}^{n} c_{i}\left|b_{i}\right\rangle=0$ iff $c_{1}=\ldots=c_{n}=0$;
Probability Amplitudes: $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \Rightarrow$

$$
|\alpha|^{2}+|\beta|^{2}=1
$$

Norm: $\||\alpha\rangle \|=\sqrt{\langle\alpha \mid \alpha\rangle}=\sqrt{\sum_{i=1}^{n}\left|\alpha_{i}\right|^{2}} ;$ unit vector: $\sum_{i}\left|\alpha_{i}\right|^{2}=1$;
Inner Product: $\left\langle\alpha \mid \alpha^{\prime}\right\rangle=\left(\alpha_{1}^{*}, \quad \ldots \quad, \alpha_{n}^{*}\right)\left(\begin{array}{c}\alpha_{1}^{\prime} \\ \ldots \\ \alpha_{n}^{\prime}\end{array}\right) ;\langle\alpha \mid \beta\rangle=\langle\beta \mid \alpha\rangle^{*} ;\langle\alpha \mid \beta\rangle=\sum_{i}^{n} \alpha_{i}^{*} \beta_{i} ;$
Outer Product: $|\alpha\rangle\langle\beta|=\left(\begin{array}{c}\alpha_{1} \\ \ldots \\ \alpha_{n}\end{array}\right)\left(\beta_{1}^{*}, \quad \ldots \quad, \beta_{n}^{*}\right)$;
Tensor Product: $|\alpha\rangle \otimes|\beta\rangle=|\alpha\rangle|\beta\rangle=|\alpha \beta\rangle ;$

$$
A \otimes B=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \otimes\left(\begin{array}{cc}
x & y \\
v & w
\end{array}\right)=\left(\begin{array}{cccc}
a x & a y & b x & b y \\
a v & a w & b v & b w \\
c x & c y & d x & d y \\
c v & c w & d v & d w
\end{array}\right)
$$

Orthogonality: $\langle\alpha \mid \beta\rangle=0$;
Orthonormality : $\langle\alpha \mid \beta\rangle=\delta_{i j}(i, j=1,2, \ldots, n) ; \delta_{i j}=0, i \neq j$;
Trace: $\operatorname{tr}(\alpha)=\sum_{i=1}^{n} \alpha_{i i}$;
Hermitian Operators: $\psi^{\dagger}=\psi$;

$$
\psi^{\dagger}=-\psi(a n t i)
$$

6 Postulates of Quantum Mechanics

- Postulate 1: At each instant the state of a physical system is represented by a ket $|\psi\rangle$ in the space of states
- Postulate 2: Every observable attribute of a physical system is described by an operator that acts on the kets that describe the system

$$
\hat{A}:|\psi\rangle \rightarrow\left|\psi^{\prime}\right\rangle=\hat{A}|\psi\rangle
$$

- For every operator, there are special states that are not changed (except for being multiplied by a constant) by the action of an operator

$$
\begin{aligned}
& \hat{A}:\left|\varphi_{a}\right\rangle=a\left|\varphi_{a}\right\rangle \\
& \varphi_{a} \text { are eigenstates } \\
& \text { a is eigenvalue }
\end{aligned}
$$

6 Postulates of Quantum Mechanics (continued)

- Postulate 3: The only possible result of the measurement of an observable A is one of the eigenvalues of the corresponding operator \hat{A}
- Postulate 4: When a measurement of an observable A is made on a generic state $|\psi\rangle$, the probability of obtaining an eigenvalue a_{n} is given by the square of the inner product of $|\psi\rangle$ with the eigenstate $\left|a_{n}\right\rangle$ is $\left|\left\langle a_{n} \mid \psi\right\rangle\right|^{2},\left\langle a_{n} \mid \psi\right\rangle$ is the probability amplitude

6 Postulates of Quantum Mechanics (continued)

- Postulate 5: Immediately after the measurement of an observable A has yielded a value a_{n}, the state of the system is the normalized eigenstate $\left|a_{n}\right\rangle$
- Postulate 6: The time evolution of a quantum system preserves the normalization of the associated ket. The time evolution of the state of a quantum system is described by $|\psi(t)\rangle=\hat{U}\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle$ for some unitary operator \hat{U}

Qubit Processor Architectures

IBM Quantum Processor Architecture

Layered architecture

D-Wave Markets 1000 qubit computers for \$10M - \$15M

IBM 5 Qubit

Physical Quantum Computer

D-Wave

Microsoft

IBM

CMC Microelectronics Quantum \& Classical Systems Integration

Quantum Random Access Memory (QRAM)

Quantum Register is an interface to an addressable sequence of qubits..
QRAM: In QRAM, the address and output registers are composed of qubits. The address register contains a superposition of addresses: $\sum_{k} b_{k}|k\rangle_{a}$ and the output registers post superposition of information correlated with the address register: $\sum_{k} b_{k}|k\rangle_{a}\left|D_{k}\right\rangle_{d}$
QRAM Model: "Bucket-brigade", architecture optimizes the retrieval of data to $\mathrm{O}\left(\log 2^{n}\right)$ switches where " n " is the number of qubits in the address register. The basis of the architecture is to have qutrits instead of qubits allocated to the nodes of a bifurcation graph. "011" memory cell is an address register.

- Quantum Entropy: measure of information contained in a quantum system (von Neumann entropy):

$$
S(\rho)=-\operatorname{tr}\left(\rho \log _{2} \rho\right)=-\sum_{i} \lambda_{i} \log _{2} \lambda_{i}
$$

where λ_{i} are the members of the set of eigenvalues of ρ and $0 \log 0 \equiv 0 ; S(\rho)$ is nonnegative, maximum for mixed states For qubits $0 \leq S(\rho) \leq 1 ; S(\rho)$ provides information in measures of qubits

- N qubits can store 2^{N} bits of information, e.g., DWave 1000 Qubits computer can store $2^{1000} \sim 1.07 \times 10^{301}$ bits $\gg 10^{75}-10^{82}$ atoms in the universe
Note, however that \mathbf{N} qubits can confer at most \mathbf{N} bits of classical information

Quantum Random Access Memory (QRAM) (continued)

- |wait>, |left>, and |right> represent three-level qutrit quantum system. During each memory call the qutrit is in the |wait> state. The qubits of the address register are sent one by one through the graph and the wait state is transformed into |left> and |right> depending on the current qubit
- States not in |wait> states are routed immediately and the results are a superposition of routes
- The qutrit computation is to the $\mathrm{O}(1-€ \log \mathrm{~N})$ where N is the number of qubits not in |wait> state

- A quantum circuit consist of

- Finite sequence of wires representing qubits or sequences of qubits (quantum registers)
- Quantum gates that represent elementary operations from the particular set of operations implemented on a quantum machine
- Measurement gates that represent a measurement operation, which is usually executed as the final step of a quantum algorithm
- It is possible to perform the measurement on each qubit in canonical basis $\{|0\rangle,|1\rangle\}$ which corresponds to the measurement of a set of observables
- Composite n-qubit circuit obey unitary evolution (every operation on multiple qubits is described by a unitary matrix)
- Unitary implies reversibility: it establishes a bijective mapping between input and output bits (with the output and operations, the initial state can be recovered). Since all unitary operators \mathbf{U} are invertible with $U^{-1}=U^{\dagger}$ we can always "un-compute" (reverse the computation) on a quantum computer

Quantum Parallelism

- Is there a single operation that evaluates a single function on at least two possible inputs to a quantum circuit without destroying superposition?
- The results of such an operation is known as Quantum Parallelism

Simple example of Quantum Parallelism

Function f in basis states: $\{0,1\} \mapsto\{0,1\}$ with appropriate sequence of quantum gates $|\alpha, \beta\rangle$ transform to $|\alpha, \beta \oplus f(\alpha)\rangle ;$
qubit α is called "data register"; qubit β is called "target register". If we apply a
unitary transform U_{f} with $\beta=0$, such that the results becomes $|\alpha, f(\alpha)\rangle$
If we apply a Hadamard Gate on each data register it produces 2^{n} bits with n gates; then evaluate f with an appropriate U_{f} gate as in the example, we can generalize for n qubits with $|0\rangle^{\otimes n}|0\rangle$ the input state, Quantum Parallelism:
$\frac{1}{\sqrt{2^{n}}} \sum_{\alpha}|\alpha\rangle|f(\alpha)\rangle$

Quantum Circuits (continued)

Are one-shot circuits (run once from left to right)

- Circuit represents series of operations and measurements of n-qubit states
- Quantum gates $\mathrm{U}_{\mathrm{f}_{1}} \ldots \mathrm{U}_{\mathrm{f}_{3}}$ are operators that operate on qubits
- Each operator above is unitary and described by $2^{n} \times 2^{n}$ matrix (n depends on input states)
- Each Line is an abstract wire connecting quantum logic gates (or series of gates)
- The meter symbol represents a measurement

Single Qubit Gates

1) Qubit NOT-Gate

Representation:
2×2 matrix
$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Constraint:
$U^{\dagger} U=I$
(Identity matrix)
Input Amplitudes:

$$
|\alpha|^{2}+|\beta|^{2}=1
$$

Output Amplitudes:

$$
\left|\alpha^{\prime}\right|^{2}+\left|\beta^{\prime}\right|^{2}=1
$$

4) Qubit Pauli I-Gate Representation:
2×2 matrix

$$
\sigma_{0}=I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$|0\rangle \rightarrow I \rightarrow|0\rangle$
$|1\rangle \rightarrow I \rightarrow|1\rangle$
$\left[\begin{array}{ll}\alpha & \beta\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\alpha|0\rangle+\beta|1\rangle$

Single Qubit Gates (continued)

4) Qubit Phase S-Gate

$$
\begin{gathered}
-\mathrm{S} \\
\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right)\binom{\alpha}{\beta}= \\
\alpha|0\rangle+\beta i|1\rangle
\end{gathered}
$$

5) Qubit $\frac{\pi}{8}$ T-Gate

$$
\begin{aligned}
& -\mathrm{T} \\
& \left(\begin{array}{cc}
1 & \mathrm{O} \\
\mathrm{O} & e^{i \frac{\pi}{4}}
\end{array}\right)\binom{\alpha}{\beta}= \\
& \alpha|\mathrm{O}\rangle+e^{i \frac{\pi}{4}} \beta|1\rangle \\
& \text { Note: } \mathrm{S}=\mathrm{T}^{2}
\end{aligned}
$$

6) Qubit Hadamard H-Gate (square root NOT gate)

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{\alpha}{\beta}=
$$

$$
\alpha\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)+\beta\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
$$

7) Qubit Rotational R-Gates
$\left[\begin{array}{cc}\mathrm{R}_{\mathrm{X}} \\ \cos \frac{\theta}{2} & -i \sin \frac{\theta}{2} \\ -i \sin \frac{\theta}{2} & \cos \frac{\theta}{2}\end{array}\right]=e^{-i \theta \frac{X}{2}}$

$$
\frac{\mathrm{R}_{\mathrm{Y}}-}{\left[\begin{array}{cc}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\
\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right]=e^{-i \theta \frac{Y}{2}}}
$$

$$
\left[\begin{array}{cc}
\mathrm{R}_{\mathbf{Z}}- \\
e^{-i \frac{\theta}{2}} & 0 \\
0 & -e^{-i \frac{\theta}{2}}
\end{array}\right]=e^{-i \theta \frac{Z}{2}}
$$

Multi Qubit Gates

1) Qubit CNOT-Gate

$|00\rangle \rightarrow$ CNOT $\rightarrow|00\rangle$;
$|01\rangle \rightarrow$ CNOT $\rightarrow|01\rangle ;$
$|10\rangle \rightarrow$ CNOT $\rightarrow|11\rangle ;$
$|11\rangle \rightarrow$ CNOT $\rightarrow|10\rangle$
$(\alpha|0\rangle+\beta|1\rangle)|1\rangle \rightarrow C N O T \rightarrow \alpha|01\rangle+\beta|10\rangle ;$
$|0\rangle(\alpha|0\rangle+\beta|1\rangle) \rightarrow C N O T \rightarrow \alpha|00\rangle+\beta|01\rangle ;$
$|1\rangle(\alpha|0\rangle+\beta|1\rangle) \rightarrow$ CNOT $\rightarrow \alpha|11\rangle+\beta|10\rangle ;$
$\left(\begin{array}{l}1000 \\ 0100 \\ 0001 \\ 0010\end{array}\right)\left(\begin{array}{l}\alpha \\ 0 \\ \beta \\ 0\end{array}\right)=\left(\begin{array}{l}\alpha \\ 0 \\ \beta \\ 0\end{array}\right)=\alpha|00\rangle+\beta|11\rangle$

2) Controlled X, Y, Z Gates

- CNOT is a controlled-X-gate
- $\mathrm{SXS}^{\dagger}=$ controlled-Y-gate
- HXH = controlled-Z-gate

5) Copying Circuits

Only on non-superposed states $(\alpha|0\rangle+\beta|1\rangle)|0\rangle=\alpha|00\rangle+\beta|10\rangle$; combined state $(\alpha|00\rangle+\beta|10\rangle) \rightarrow C N O T \rightarrow \alpha|00\rangle+\beta|11\rangle ;$ not a copy of original state $(\alpha|0\rangle+\beta|1\rangle)(\alpha|0\rangle+\beta|1\rangle) \neq \alpha|00\rangle+\beta|11\rangle ;$
A qubit in an input unknown state cannot be copied. It must be measured before being copied. The information held in the probability amplitudes α and β is lost.

3) Reversible Circuit
 At end of computation all ancillae retain initia

 values, except one ancilla bit, designated as the "answer" bit, carries the value of the function

4) Swap Qubit States

SWAP12 $=$ CNOT12 \rightarrow CNOT21 \rightarrow CNOT12 $(\alpha, \beta) \rightarrow(\alpha, \alpha \oplus \beta) \rightarrow(\beta, \alpha \oplus \beta) \rightarrow(\beta, \alpha)$
6) Bell State Circuit

Entangled states

 are produced:$\beta_{00}, \beta_{01}, \beta_{10}$, and β_{11}

$$
\begin{aligned}
& |00\rangle \rightarrow \beta \rightarrow \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \rightarrow \beta_{00} \\
& |01\rangle \rightarrow \beta \rightarrow \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \rightarrow \beta_{01} \\
& |10\rangle \rightarrow \beta \rightarrow \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \rightarrow \beta_{10} \\
& |11\rangle \rightarrow \beta \rightarrow \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle) \rightarrow \beta_{11}
\end{aligned}
$$

Equivalent Quantum Gate Operations (some examples)
7) Controlled-U Replaced by Equivalent Single Qubit Gates \& CNOT gate

8) Controlled-Pauli X Gate Replaced by Hadamard and Controlled-Pauli Z Gate

9) Controlled-Pauli X Gate Equivalent Circuit

10) Qubit Toffoli Controlled-CNOT (CCNOT) or Deutsch ($\pi / 2$) Gate

- Universal reversible gate
- Fast, stable to imperfections, and has high fidelity for fault-tolerant quantum computation
- Control qubits remain unaffected
- Third target qubit is flipped if both control lines are set to 1 , else it is left alone.

$$
\left.\begin{array}{l}
\text { Toffoli Matrix: } \\
=|000\rangle\langle 000|+|001\rangle\langle 001|+|010\rangle\langle 010|+|011\rangle\langle 011|+ \\
|100\rangle\langle 100|+|101\rangle\langle 101|+\underbrace{|110\rangle\langle 111|+|111\rangle\langle 110|}_{\substack{\text { Permutations in 8 Dimension Hilbert } \\
\text { Space that swaps the last two entries }}}=
\end{array}=\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Multi Qubit Gates (continued)

11) Qubit Fredkin (Controlled-SWAP) Gate

\| ${ }^{\text {¢ }}$	$-\|\alpha\rangle$
S	S - $\|\alpha \beta\rangle \oplus\|\alpha \chi\rangle$
$\chi\rangle$	$-\|\alpha \chi\rangle \oplus\|\alpha \beta\rangle$

- Universal reversible gate
- Factor impossibly large number in short time periods
- Secure quantum communications - direct comparison of two sets of qubits for equality i.e., the two digital signatures are the same

Fredkin Matrix :

$\left.=|000\rangle\langle 000|+|001\rangle\langle 001|+|010\rangle\langle 010|+|011\rangle\langle 011|++\begin{array}{llllllll}|100\rangle\langle 100|+ & |101\rangle\langle 110|+|110\rangle\langle 101|+|111\rangle\langle 111|\end{array}\right) \left.=$| 0 | 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | | | |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | | | |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | | | | |
| 0 | 0 | 0 | 0 | 0 | 0 | \right\rvert\,

Multi Qubit Gates

1) Qubit CNOT-Gate

- True quantum gates must be reversible. Reversibility require a control line which is unaffected by unitary transformation. Implement by carrying the input with results
- \oplus represent the classical XOR with input on the beta line and the control line in the alpha line
- The gate is a 2 qubit gate represented by a 4×4 matrix

$$
\begin{aligned}
& |00\rangle \rightarrow C N O T \rightarrow|00\rangle ; \\
& (\alpha|0\rangle+\beta|1\rangle)|1\rangle \rightarrow C N O T \rightarrow \alpha|01\rangle+\beta|10\rangle ; \\
& |0\rangle(\alpha|0\rangle+\beta|1\rangle) \rightarrow C N O T \rightarrow \alpha|00\rangle+\beta|01\rangle ; \\
& |1\rangle(\alpha|0\rangle+\beta|1\rangle) \rightarrow C N O T \rightarrow \alpha|11\rangle+\beta|10\rangle ; \\
& \left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\alpha \\
0
\end{array} 1000\right.
\end{aligned}
$$

2) Qubit NOT Two Gates

 Which Acts On Qubit 2$$
\begin{aligned}
& N O T_{2}=I \otimes X=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & 0\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
0\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & 1\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) ;
\end{aligned}
$$

$(0100)|00\rangle \rightarrow N O T_{2}=I \otimes X \rightarrow|01\rangle ;$
$1000 \quad|01\rangle \rightarrow N_{2}=I \otimes X \rightarrow|00\rangle ;$
$|00\rangle \rightarrow I \otimes X \rightarrow|01\rangle$;
$0001{ }^{\prime}|10\rangle \rightarrow \mathrm{NOT}_{2}=I \otimes X \rightarrow|11\rangle ;$
$|01\rangle \rightarrow I \otimes X \rightarrow|00\rangle ;$
$0010|11\rangle \rightarrow \mathrm{NOT}_{2}=I \otimes X \rightarrow|10\rangle ;$
$|11\rangle \rightarrow I \otimes X \rightarrow|10\rangle$

Multi Qubit Gates (continued)

13) Qubit Superdense Coding

Superdense coding takes a quantum state to two classical bits. It is a method for building shared quantum entanglement in order to increase the rate at which information may be sent through a noiseless quantum channel. Sending a single qubit noiselessly between sender and receiver gives maximum communication rate of one bit per qubit. If the sender's qubit is maximally entangled with a qubit in the receiver's possession, then dense coding increases the maximum rate to two bits per qubit.

Multi Qubit Gates (continued)

14) Qubit Error Correction Circuit

$\left|\psi_{1}\right\rangle=\alpha|001\rangle+\beta|110\rangle ;$
$\left|\psi_{2}\right\rangle=\alpha|00100\rangle+\beta|11000\rangle ;$
$\left|\psi_{3}\right\rangle=\alpha|00101\rangle+\beta|11001\rangle ;$
$\left|\psi_{4}\right\rangle=(\alpha|001\rangle+\beta|110\rangle) \otimes|0\rangle|1\rangle ;$
M_{1} and M_{2} read 01 on lines 4 and 5. Feed 01 (error syndrome) into the QEC which performs operations in the table below.
Apply quit flip to line 3 :
$\left|\psi_{5}\right\rangle=\alpha|000\rangle+\beta|111\rangle$

1) Qubit-Flip (Amplitude Flip)

Errors in quit superposition and entanglement occur due to increase in thermal motion of quits as a result of environmental temperature increase. Qubit encoding errors are also possible. Reasons for single quit errors:

1) Qubit Flip X:

$$
X|0\rangle=|0\rangle ; X|1\rangle=|0\rangle
$$

2) Qubit Phase Flip $Z: Z|0\rangle=|0\rangle ; Z|1\rangle=-|1\rangle$
3) Qubit Complete Decoherence ρ :

$$
\rho \rightarrow \frac{1}{2}\left(\rho+Z \rho Z^{\dagger}\right)
$$

$$
\text { where } \rho=\sum O_{i} \rho O_{i}^{\dagger} ; 0 \text { is } 2 \times 2 \text { matrix }
$$

4) Quit Rotation $\mathrm{R}_{\theta}: \quad R_{\theta}|0\rangle=|0\rangle ; R_{\theta}|1\rangle=e^{i \theta}|1\rangle$
5) Basis states: $\{|0>| 1>$,

M_{1}	M_{2}	Action
0	0	No action $\|111>\rightarrow\| 111>$
0	1	Flip quit $3 ;\|110>\rightarrow\| 111>$
1	0	Flip quit $2 ;\|101>\rightarrow\| 111>$
1	1	Flip quit $1 ;\|011>\rightarrow\| 111\rangle$

$$
\uparrow\left|\psi_{1}\right\rangle \uparrow\left|\psi_{2}\right\rangle
$$

Error Syndrome

$$
\uparrow\left|\psi_{3}\right\rangle \quad \uparrow\left|\psi_{4}\right\rangle \quad \uparrow\left|\psi_{5}\right\rangle
$$

Multi Qubit Gates (continued)

15) Qubit Error Correction Circuit

- Same circuit as the amplitude flip circuit, except the Hadamard gates are added to the first three lines. Repetition code in the Hadamard gates correct for phase errors.
- Errors happen between the encoding and the circuit
- Suppose the input state is: $\left|\psi_{1}\right\rangle=\alpha|++-\rangle+\beta|--+\rangle$ and phase flip occurs in line 2: $\left|\psi_{2}\right\rangle=(\alpha|001\rangle+\beta|110\rangle)|00\rangle$; note that is the same as in the qubit-flip (amplitude flip)
- Since the rest of the circuit is the same as the qubit-flip case. The output of QEC is: $\alpha|000\rangle+\beta|111\rangle$

Multi Qubit Gates (continued)

16) Qubit Error Correction Circuit
 3) Qubit-Decoherence

Decoherence is the loss of coherence in a quantum system due to interactions with external environment.
Decoherence in qubit system can be modeled by introducing a relative phase:

$$
\begin{aligned}
& |0\rangle \rightarrow|0\rangle \text { and }|1\rangle \rightarrow e^{i \theta}|1\rangle, \text { i.e., } \\
& |\psi\rangle=\alpha|0\rangle+\beta|1\rangle \rightarrow \alpha|0\rangle+e^{i \theta} \beta|1\rangle \\
& \text { i.e., }|\psi\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}} ; \\
& \rho=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \rightarrow \frac{1}{2}\left(\begin{array}{cc}
1 & e^{-i \theta} \\
e^{i \theta} & 1
\end{array}\right)
\end{aligned}
$$

```
Density Operator for state }|\psi\rangle\mathrm{ :
\rho=|\psi\rangle\langle\psi|;
```

Time dependent Density Operator:
$\rho(t)=U \rho\left(t_{0}\right) U^{\dagger} ; \mathrm{U}$ is Unitary matrix
$\rho^{2}=(|\psi\rangle\langle\psi|)(|\psi\rangle\langle\psi|)=|\psi\rangle(\langle\psi \mid \psi\rangle)\langle\psi|=|\psi\rangle\langle\psi|=\rho ;$
$\operatorname{Tr}\left(\rho^{2}\right)=1$

A global phase multiplies all superpositions, whereas a relative phase multiplies only a single term in the superposition and does not change measurements. We map, instead to a decoherent free subspace using logical gates in order avoid problems with physical global and relative phases:
$\left|0_{L}\right\rangle=\frac{|0\rangle|1\rangle-i|1\rangle|0\rangle}{\sqrt{2}} ;\left|1_{L}\right\rangle \frac{|0\rangle|1\rangle+i|1\rangle|0\rangle}{\sqrt{2}}$
Introduce collective dephasing:
$\left|0_{L}\right\rangle=\frac{|0\rangle e^{i \theta}|1\rangle-i e^{i \theta}|1\rangle|0\rangle}{\sqrt{2}}=e^{i \theta}\left|0_{L}\right\rangle ;$
Each logical qubit has ben altered by an overall global phase $\mathrm{e}^{i \theta}$ and an arbitrary logical qubit is unchanged by decoherence. Hence error correction has been applied:

$$
\left|\psi_{L}\right\rangle=\alpha\left|0_{L}\right\rangle+\beta_{L}|1\rangle \rightarrow e^{i \theta} \alpha\left|O_{L}\right\rangle+e^{i \theta} \beta_{L}|1\rangle=e^{i \theta}\left|\psi_{L}\right\rangle
$$

$$
\left|1_{L}\right\rangle \frac{|0\rangle e^{i \theta}|1\rangle+i e^{i \theta}|1\rangle|0\rangle}{\sqrt{2}}=e^{i \theta}\left|1_{L}\right\rangle
$$

Multi Qubit Gates (continued)

17) Qubit Error Correction Circuit

3) Qubit-Continuous rotational error

$$
\begin{aligned}
& R_{\theta}^{j}|\psi\rangle=\cos \frac{\theta}{2}|\psi\rangle-i \sin \frac{\theta}{2} Z^{j}|\psi\rangle \\
& \left.\Rightarrow \cos \frac{\theta}{2}|\psi\rangle I\right\rangle-i \sin \frac{\theta}{2} Z^{j}|\psi\rangle\left|Z^{j}\right\rangle \\
& \text { Error Syndrome }
\end{aligned}
$$

Error syndrome is formed by measuring enough operators to determine the location error

Measuring the error syndrome collapses the state:

Probability:

$$
\begin{array}{ll}
\cos ^{2} \frac{\theta}{2}:|\psi\rangle & \text { (no correction needed) } \\
\sin ^{2} \frac{\theta}{2}: \quad Z^{j}|\psi\rangle & \text { (Corrected with } Z^{j} \text {) }
\end{array}
$$

Pauli Group Stabilizers

	Operators for Error Syndrome								
M_{1}	Z	Z							
M_{2}		Z	Z						
M_{3}				Z	Z				
M_{4}					Z	Z			
M_{5}							Z	Z	
M_{6}								Z	Z
M_{7}	X	X	X	X	X	X			
M_{8}				X	X	X	X	X	X

These generate a group, the stabilizer of the code with all M Pauli operators with property: $\mathrm{M} \psi\rangle=|\psi\rangle$ and all encoded sates $|\psi\rangle$

QASM2CIRC - MIT
 Simple Quantum Teleportation Circuit

CodeProject Quantum Java Code

```
/**
* Constructs a new <code>Qubit</code> object.
* @param no0 complex number
* @param no1 complex number
*
*/
public Qubit(ComplexNumber no0, ComplexNumber no1) {
qubitVector = new ComplexNumber[2];
qubitVector[0] = no0;
qubitVector[1] = no1;
}
/**
* Constructs a new <code>Qubit</code> object.
* @param qubitVector an array of 2 complex numbers
*/
public Qubit(ComplexNumber[] qubitVector) {
this.qubitVector=Arrays.copyOf(qubitVector, qubitVector.length);
}
/**
* Return the qubit represented as an array of 2 complex numbers.
* @return qubit
*/
public ComplexNumber[] getQubit() {
ComplexNumber[] copyOfQubitVector = qubitVector;
                    return copyOfQubitVector;
}
```

```
/**
    * Check if qubit state is valid
    * @return true if the state is valid, otherwise false
    */
public boolean isValid(){
double sum=0.0;
for(ComplexNumber c:this.qubitVector){
double mod=ComplexMath.mod(c);
sum+=mod*mod;
}
return (sum==1.0);
}
public class QubitZero extends Qubit {
// Construct a new <code> QubitZero</code> object.
public QubitZero() {
super(new ComplexNumber(1.0, 0.0), new ComplexNumber(0.0, 0.0));
}
}
/**
    * Currently Implemented Quantum Gates.
*/
public enum EGateTypes {
// Hadamard Gate
E_HadamardGate,
// Pauli-X Gate
E_XGate,
// Pauli-Z Gate
E_ZGate,
// CNOT Gate
E_CNotGate
}
```


QISKit SDK - Quantum Python Code Example

```
# Import the QISKit SDK
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit import available_backends, execute
# Create a Quantum Register with 2 qubits.
q = QuantumRegister(2)
# Create a Classical Register with 2 bits.
c = ClassicalRegister(2)
# Create a Quantum Circuit
qc = QuantumCircuit(q, c)
# Add a H gate on qubit 0, putting this qubit in superposition.
qc.h(q[0])
# Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting
# the qubits in a Bell state.
qc.cx(q[0], q[1])
# Add a Measure gate to see the state.
qc.measure(q, c)
# See a list of available local simulators
print("Local backends: ", available_backends({'local': True}))
# Compile and run the Quantum circuit on a simulator backend
job_sim = execute(qc, "local_qasm_simulator")
sim_result = job_sim.result()
# Show the results
print("simulation: ", sim_result)
print(sim_result.get_counts(qc))
```


QUACK Simulator In MATLAB/OCTAVE

Matlab

Octave

5 Qubit Tofolli Gate and QISKIT Programming

from qiskit import QuantumRegister, QuantumCircuit
$\mathrm{n}=5$ \# must be $>=2$
ctrl = QuantumRegister(n, 'ctrl')
anc = QuantumRegister($\mathrm{n}-1$, 'anc')
tgt = QuantumRegister(1, 'tgt')
circ $=$ QuantumCircuit(ctrl, anc, tgt)
\# compute
circ.ccx(ctrl[0], ctrl[1], anc[0])
for i in range($2, n$):
circ.ccx $(\operatorname{ctrl[i]}$, anc[i-2], anc[i-1])
\# copy
circ.cx(anc[n-2], tgt[0])
\# uncompute
for i in range($\mathrm{n}-1,1,-1$):
circ.ccx(ctrr[i], anc[i-2], anc[i-1])
circ.ccx $(\operatorname{ctrl}[0], \operatorname{ctr}[1], \operatorname{anc}[0])$

from qiskit.tools.visualization import circuit_drawer
circuit_drawer(circ)
https://qiskit.org/documentation/qiskit.html

JQuantum Java Quantum Simulator

- Quantum algorithms are realized by quantum circuits
- Complexity optimization
- Turing machine complexity definitions
- \mathbf{P} is the set of problems that can be solved by deterministic Turing machines in Polynomial number of steps
- NP is the set of problems that can be solved by Nondeterministic Turing machines in Polynomial number of steps

$$
P \subseteq N P ; P=N P ?(\text { not proven yet })
$$

- coP is the set of problems whose complements can be solved by deterministic Turing machine in Polynomial number of steps
- coNP is the set of problems whose complements can be solved by a Nondeterministic Turing machine in Polynomial number of steps

$$
N P \subseteq P S P A C E
$$

- PSPACE is the set of problems that can be solved by deterministic Turing machine using a Polynomial number of SPACEs on the tape

$$
P \subseteq c o P \subseteq c o N P ; c o N P \subseteq P S P A C E
$$

- Probabilistic Turing machine (PTM) complexity definitions
- BPP is the set of problems that can be solved by Probabilistic Turing machines in Polynomial time with some errors possible

Turing Machine "String-101" Execution Time

Exact

Deterministic
$\mathbf{N + N / 2}$
NA

Probabilistic

$\mathbf{N}+\mathbf{N} / \mathbf{2}$
N/2

Quantum

N/2
NA

- RP is the set of problems that can be solved by Probabilistic Turing machines in Polynomial time with false negatives possible
- coRP replaces "false negatives" with "false positives" in RP definition
- ZPP replaces "some errors possible" with "zero error" in BPP definition
- Quantum Turing machine (QTM) complexity definitions
- BQP, ZQP,
- Is a set of problems that can be solved by QTM in

Polynomial time with Bounded error on both sides

- EQP
- Replaces Bounded error with "Exactly (without error)" in definition of QTM
- QSPACE $Q S P A C E(f(n)) \subseteq S P A C E\left((f(n))^{2}\right)$

Quantum Computing Algorithms

- Quantum Turing Machine (QTM)

- Is well formed if the constructed U_{M} preserves isometric inner product in \square complex space
- QTM is similar to the probabilistic Turning machine (PTM), except that the probability amplitudes are complex number amplitudes
- Probabilistic TM (PTM) traverses the tape left to right; QTM traverses in
 both directions simultaneously
- QTM performs all operations simultaneously and enters a superposition of all the resulting states

In " m " time steps the initial configuration will be in a configuration of "superposition(s) of configuration(s)": $\underbrace{\left.U_{M} \circ U_{M} \circ \ldots U_{M} \mid \text { config }_{n}\right\rangle}_{t(m) \text { times }}=U_{M}^{t(m)} \mid$ config $_{n}\rangle$

- When QTM is measured, it collapses into a single complex number configuration (state) and behaves like the PTM upon observation

Quantum Algorithms (continued)

- Quantum Fourier Transform (QFT) (Unitary Operator and Reversible)

- Inpubit State! $\left.{ }^{\top}{ }^{\top} \psi\right\rangle=\sum_{x=0}^{2 n-1} \alpha_{x}|x\rangle$
- Output State $\left|\psi^{\prime}=\right\rangle=U_{Q F T}|\psi\rangle=\sum_{x=0}^{2 n-1} \sum_{y=0}^{2 n-1} \frac{\alpha_{x} e^{2 \pi i x y / 2^{n}}}{\sqrt{2^{n}}}|y\rangle$
- 3-qubit QFT
- Apply H gate to state $\left|x_{2}\right\rangle$

$$
\begin{aligned}
& H\left|x_{2}\right\rangle=\frac{1}{\sqrt{2}} \sum_{y}(-1)^{x_{2} y}|y\rangle=\frac{1}{\sqrt{2}} \sum_{y} e^{2 \pi i x_{2} y / 2}|y\rangle \\
& =\frac{1}{\sqrt{2}}|0\rangle+e^{2 \pi i\left(\frac{x_{0}}{2^{2}}+\frac{x_{2}}{2}\right.}|1\rangle
\end{aligned}
$$

$\left|x_{2}\right\rangle-\mathbf{H}-\mathbf{S}-\mathbf{T}$ $\left|x_{1}\right\rangle$ $\left|x_{0}\right\rangle$

$$
\frac{1}{\sqrt{2}}|0\rangle+e^{2 \pi i\left(\frac{x_{0}}{2}\right)}|1\rangle \otimes \frac{1}{\sqrt{2}}|0\rangle+e^{2 \pi i\left(\frac{x_{0}}{2}+\frac{x_{1}}{2}\right)}|1\rangle \otimes=\frac{1}{\sqrt{2}}|0\rangle+e^{2 \pi}
$$

- Apply S gate with control bit for state $\left|x_{1}\right\rangle$ either $|0\rangle$ or $|1\rangle ; F o r|1\rangle: S|1\rangle=e^{2 \pi \frac{i_{1}}{4}}|1\rangle$
- State of System at this point: $I \otimes S\left|x_{1}\right\rangle=\left|x_{1}\right\rangle \otimes=\frac{1}{\sqrt{2}}|0\rangle+e^{2 \pi i\left(\frac{x_{0}}{2^{3}}+\frac{x_{1}}{2^{2}}+\frac{x_{2}}{2}\right.}|1\rangle$
- Apply T gate with control bit for state $\left|x_{0}\right\rangle:\left|x_{0}\right\rangle \otimes\left|x_{1}\right\rangle \otimes \frac{1}{\sqrt{2}}|0\rangle+e^{2 \pi i\left(\frac{x_{0}}{2^{+}}+\frac{x_{1}}{2^{2}+\frac{x_{2}}{2}}\right)|1\rangle .}$
$-\left|x_{1}\right\rangle$ goes through the H gate and Controlled S-gate: $\left|x_{1}\right\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle+e^{2 \pi i\left(\frac{x_{0}}{2^{+}}+\frac{x_{1}}{2}\right)}|1\rangle$
- State of System at this point:

$$
\left|x_{0}\right\rangle \otimes=\frac{1}{\sqrt{2}}|0\rangle+e^{2 \pi i\left(\frac{x_{0}}{2^{+}}+\frac{x_{1}}{2}\right)}|1\rangle \otimes=\frac{1}{\sqrt{2}}|0\rangle+e^{2 \pi i\left(\frac{x_{0}}{2^{3}}+\frac{x_{1}}{2^{2}}+\frac{x_{2}}{2}\right)}|1\rangle
$$

$\overline{-}_{81}$ Finally Hadamard gate applied to $\left|x_{0}\right\rangle: \quad\left|x_{0}\right\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle+e^{2 \pi i\left(\frac{x_{0}}{2}\right)}|1\rangle-$

Quantum Computing Algorithms (continued)

- Basic framework for all QC algorithms
- Start with qubits in a particular classical state
- The system is put into a superposition of many states
- Unitary operations act on this superposition
- Measurement of qubits in final states
- Definitions
- Discrete Logarithm Problem: Given a prime number p, a base $b \in Z_{p}^{*}$, and an arbitrary element $y \in Z_{p}$, find an $x \in Z_{p}^{*}$ such that $b^{x}=y \bmod p$
- Hidden Subgroup Problem: G is a group. Let $H<G$ be a subgroup implicitly defined by a function of f on G is constant and distinct on every co-set o H. The problem is to find a set of generators for H
- Abelian Group (abstract algebra): Is a commutative group (generalize arithmetic addition of integers), is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written, i.e., these are the groups that obey the axiom of commutativity; named after early 19th century mathematician Niels Henrik Abel (ref. 21)
- Abelian Hidden Subgroup Problem: G is a finite Abelian group with cyclic decomposition $G=Z_{n_{0}} \times \ldots \times Z_{h_{L}}$ Let $H<G$ be a subgroup implicitly defined by a function of f on G is constant and distinct on every co-set o H. The problem is to find a set of generators for H
- Pell's Equation Problem: Find an integral and positive solutions to $x^{2}-d y^{2}=1$

Quantum Algorithms (continued)

- Grover's search algorithm (class of algorithms called amplitude amplification)
- Finds an element in an unordered set quadratically faster $\mathrm{O}\left(\mathrm{N}^{1 / 2}\right)$ time than any theoretical limit for classical algorithms $\mathrm{O}(\mathrm{N} / 2)$
- Internal calls to an oracle "O" for value of function (i.e., membership is true for an instance)

N entries with $n=\log (N)$ bits
Apply Hadamard transform on $|0\rangle^{\otimes n}$ to produce equal superposition state

$$
|\psi\rangle=\frac{1}{\sqrt{n}} \sum_{x=0}^{n-1}|x\rangle
$$

Apply the Grover diffusion operator
2 Hadamard operations require n operations each
The conditional phase shift is a controlled unitary operation and require $O(n)$ gates

The Oracle complexity is application dependent, in this algorithm it requires only one call per iteration

Apply measurement

Quantum Algorithms (continued)

- Quantum Fourier Transform (QFT) (Unitary Operator and Reversible)

n-qubit QFT

- Input State: $|\psi\rangle=\sum_{x=0}^{2 n-1} \alpha_{x}|x\rangle$
- Output State: $\left|\psi^{\prime}=\right\rangle=U_{Q F T}|\psi\rangle=\sum_{x=0}^{2 n-12 n-1} \sum_{y=0} \frac{\alpha_{x} e^{2 \pi i x y / 2^{n}}}{\sqrt{2^{n}}}|y\rangle$

Quantum Algorithms (continued)

- 2 Qubit QFT matrix form $|\psi\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle$;
- QFT full matrix form:

$$
\begin{aligned}
& \left|\psi^{\prime}\right\rangle=U_{Q F T}|\psi\rangle=\frac{1}{\sqrt{4}}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & e^{\frac{\pi i}{4}} & e^{\frac{\pi i 2}{4}} & e^{\frac{\pi i 3}{4}} \\
1 & e^{\frac{\pi i 2}{4}} & e^{\frac{\pi i 4}{4}} & e^{\frac{\pi i 6}{4}} \\
1 & e^{\frac{\pi i 3}{4}} & e^{\frac{\pi i 6}{4}} & e^{\frac{\pi i 9}{4}}
\end{array}\right)\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right) \\
& \left.=\frac{1}{\sqrt{4}} \begin{array}{l}
\frac{1}{\sqrt{2}}+0+0+\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}+0+0+\frac{1}{\sqrt{2}} e^{\frac{\pi i 3}{4}} \\
\frac{1}{\sqrt{2}}+0+0+\frac{1}{\sqrt{2}} e^{\frac{\pi i 6}{4}} \\
\frac{1}{\sqrt{2}}+0+0+\frac{1}{\sqrt{2}} e^{\frac{\pi i 9}{4}}
\end{array}\right)=\frac{1}{\sqrt{4}}\left(\begin{array}{l}
\frac{1}{\sqrt{2}}+0+0+\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}+0+0+\frac{-1+i}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}+0+0+\frac{-i}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}+0+0+\frac{1+i}{\sqrt{2}}
\end{array}\right) \\
& \left(\begin{array}{l}
\frac{2}{\sqrt{8}} \\
\frac{\sqrt{2}-1+i}{4} \\
\frac{1-i}{\sqrt{8}} \\
\frac{\sqrt{2}+1+i}{4}
\end{array}\right)=\frac{2}{\sqrt{8}}|00\rangle+\frac{\sqrt{2}-1+i}{4}|01\rangle+\frac{1-i}{\sqrt{8}}|10\rangle+\frac{\sqrt{2}+1+i}{4}|11\rangle .
\end{aligned}
$$

Quantum Algorithms (continued)

- Shor's algorithm

- Is a factoring algorithm
- It can be used to break encryption codes
- Computation execution time is $\mathrm{O}\left(n^{2} \log n\right.$ $\log \log n$) number of polynomial steps; n bits to represent number N
- Classically it is $\mathrm{O}\left(\mathrm{e}^{\mathrm{cn} 1 / 3 \log 2 / 3 n}\right)$

Algorithm Steps

1. Input a positive integer N with $\mathrm{n}=\log _{2} \mathrm{~N}$
2. Use a polynomial algorithm to determine if N is a prime or a power of prime. If it is prime, declare and exit. If it is power of prime, declare and exit
3. Randomly select an integer $a: 1<a<N$. Perform Euclid's algorithm to find GCD (a, N). If GCD is not 1, then return value and exit
4. Use the quantum circuit to find the period r
5. If r is odd, or if $\mathrm{a}^{\mathrm{r} / 2} \equiv-1$ Mod N return to Step 3 and choose another a
6. Use Euclid's algorithm to calculate the $\operatorname{GCD}\left(\mathrm{a}^{r / 2}\right.$
7. $+1, \mathrm{~N})$ and $\operatorname{GCD}\left(\mathrm{a}^{\mathrm{r} / 2}-1, \mathrm{~N}\right)$. Return at least one non trivial solution
8. Output a factor p of N if it exists

Evaluation of f on all possibilities:

$$
\begin{aligned}
& \left|\psi_{2}\right\rangle=\frac{\sum_{x \in\{0,1\}^{m}}\left|x, f_{a, N}(x)\right\rangle}{\sqrt{2^{m}}}=\frac{\sum_{x \in\left\{0,11^{m}\right.}\left|x, a^{x} \operatorname{Mod}(N)\right|}{\sqrt{2^{m}}} ; \\
& \left|\psi_{3}\right\rangle=\frac{\sum_{a=a^{\bar{a}} \operatorname{Mod}(N)}\left|x, a^{\bar{x}} \operatorname{Mod}(N)\right|}{\left[\frac{2^{m}}{r}\right]}=\frac{\sum_{j=0}^{\frac{2}{}^{r-1}}\left|t_{0}+j r, a^{\bar{x}} \operatorname{Mod}(N)\right|}{\left[\frac{2^{m}}{r}\right]} ;
\end{aligned}
$$

where t_{0} is the first time $a^{t_{0}}=a^{\bar{x}} \operatorname{Mod}(N)$ is measured

$$
\left|\psi_{0}\right\rangle=\left|0_{m}, 0_{n}\right\rangle ;\left|\psi_{1}\right\rangle=\frac{\sum_{x \in\{0,1\}^{m}}\left|x, 0_{n}\right\rangle}{\sqrt{2^{m}}} ;
$$

Quantum Adiabatic Computing

- Uses adiabatic processes for QC in the following steps:
- Create an initial state of qubits
- Start with an initial Hamiltonian and very it very slowly (adiabatically)
- $\mathrm{H}_{\text {initial }}$ transforms into $\mathrm{H}_{\text {final }}$ whose eigenstates encode the solution

Adiabatic Process

$t_{\text {Hamiltonian }} \square t_{\text {Critical }} ; H_{\text {initial }} \rightarrow$ slowly $H_{\text {final }}$ Uncertainity Pr inciple: $\Delta E \Delta t \geq \frac{\not K}{2}$ $\Rightarrow \Delta t \geq \frac{K}{2} \frac{1}{\Delta E}$

- The Hamiltonian ground state is created

$$
H_{i n i t i a l}=-\sum_{j} X^{j}
$$

- Consists of Pauli Operators
- The final Hamiltonian

$$
H_{\text {final }}=-\sum_{x} c_{x}|x\rangle\langle x|
$$

- If the T is the total time of computation, we can interpolate the Hamiltonian solution at any time " t ".
 Let $s=1 / T$ with $0 \leq s \leq 1$:

$$
\hat{H}=(1-s) H_{\text {initial }}+s H_{\text {final }}
$$

Topological Quantum Computing (QC)

- Anyons (named by Frank Wilczek 1982 - ref. 19)

STANDARD MODEL OF ELEMENTARY PARTICLES

- Obey exotic statistics including Fermi-Dirac statistics for fermions (Leptons, Quarks)
- Bose-Einstein statistics for bosons (Gauge, Higgs)
- They cannot occupy the same space
- Have arbitrary phase factors
- Follow non-trivial unitary evolutions when particles are exchanged
- Transformation of the anionic wave function obey exchange symmetry
- Hence the name "Any" + "ons"
- Kitaev (2003 - ref. 20) demonstrate that anyons could be used to perform fault tolerant computation

Anyonic QC	
QC	Anyonic Operations
Initialize state	Create and arrange anyons
QC gates	Braid anyons
State measurement	Detect anionic charge

- One configuration of topological fault tolerant quantum computation
- During initialization a pair of anyons a, \bar{a} are created from vacuum (i.e., e^{-}, e^{+}electron-positron pair)
- Braided operations unitarily evolve to their fusion state
- Fusing the anyons together give a set of measurement outcomes $e_{i} ; i=1, \ldots$ which encodes the results of the computation

Cluster State Quantum Computing (CSQC) Represent CSQC as Graphs

- CSQC is a multipartite qubit (highly entangled) modeling scheme. It simulates unitary dynamics in crystal lattices. Within this model, the cluster states are a series of measured points in the computation; the result is used to select a new basis for the next measurement, thus forming a feedback loop
- CSQC is represented a graph (each node/vertex of the graph is a qubit; the edges of the graph are the CZ gates
- It is a two-step process: 1) initialize a set of qubits in some state, for example start with |+> then apply the CPHASE gates to the states
- Measure the qubits in some basis states. As the next measurement is taken the choice of the new basis depends/determined by the previous measurement results
- Effect of CZ application:

4-qubit cluster state Edges are c-phase gates Vertices are qubits

CZ (controlled Z gate is controlled phase operation):
$C Z=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$
Phase shift is applied to the target qubit with control qubit in state |1>: $C Z|11>=-| 11>$

- This operation gives an entangled 2-Qubit State represented by:

Quantum Particle Swarm Optimization (QPSO)

- QPSO Algorithm

- Uses the one of many potential functions for determination of particle position using the Schrödinger equation with Hamiltonian \hat{H} (here the simple case of delta potential well is used)
- Uses the mean best position " x " of particle to enhance the global search capability for particle position
- Unlike the classical PSO algorithm the QPSO does not require the velocity vectors of particle and fewer parameters to adjust. It is simpler to implement
- Choosing QPSO parameters swarm size, problem dimension, the number of maximum iteration, and the most important parameter " α " the contraction-expansion coefficient (CE) describes the dynamical behavior of individual particles and the algorithm converges (for $\alpha \leq \alpha_{0} \in[1.7,1.8]$)
- qpsolqpso.bat finds the mean best fit to particle position " x "
$\hat{H}=-\frac{t}{2 m} \frac{d}{d y^{2}}-\gamma \delta(y) ;$
where γ is intensity of potential well, $y=x-p$;
Schr o dinger equation:
$\frac{d^{2} \psi}{d y^{2}}+\frac{2 m}{\hbar^{2}}[E+\gamma \delta(y)] \psi=0 ;$
Wave function solution is:

$$
\psi(y)=\frac{1}{\sqrt{L}} e^{-\frac{y}{L}} ; L=\frac{1}{\beta}=\frac{\hbar^{2}}{m \gamma} ;
$$

Probability Distribution Function:

$$
F(y)=1-e^{-\frac{2 y}{L} \frac{y}{L}} ;
$$

Particles position is given by:

$$
x=p \pm \frac{L}{2} \ln \left(\frac{1}{u}\right) ;
$$

where u is random number uniformly distributed
on $(0,1) ; u \square U(0,1)$

- Variants of QPSO have been utilized
- Cooperative QPSO (CQPSO); Gao et. Al [2007], Sun et al. [2008]
- Diversity-controlled QPSO (DCQPSO); Riget et al. [2002], Ursem et al. [2001], Sun et al. [2006]
- Local-attractor QPSO (LAQPSO); Shao et al. [2016]
- QPSO Tournament-selector (QPSOTS); P. Angeline [1998]
- QPSO-Roulette-Wheel selection (QPSO-RS); Long et al. [2009]
- QPSO with Hybrid Distribution (QPSOHD); Sun et al. [2006]
- QPSO with Mutation; Liu et al. [2006], Fang et al. [2009]
H. Gao et al., A cooperative approach to quantum-behaved particle swarm optimization, In Proceedings of the 2007 IEEE International Symposium on Intelligent Signal Processing, Madrid, Spain, 2007, pp. 1-6
- S. Lu, C. Sun, Quantum-behaved particle swarm optimization with cooperativecompetitive coevolutionary, In Proceedings of the 2008 International Symposium on Knowledge Acquisition and Modeling, Wuhan, China, 2008, pp. 593-597. 32
- S. Lu, C. Sun, Coevolutionary quantum-behaved particle swarm optimization with hybrid cooperative search, In Proceedings of the 2008 Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Washington, DC, 2008, pp. 109-113
- J. Sun, W. Xu, W. Fang. Quantum-behaved particle swarm optimization with a hybrid probability distribution, In Proceedings of the Ninth Pacific Rim International Conference on Artificial Intelligence, Guilin, China, 2006, pp. 737-746.
- Shao D., Hu S., Fei Y., A new quantum particle swarm optimization algorithm, Neural Network World 5/2016, 477-496
- J. Liu, J. Sun, W. Xu. Quantum-behaved particle swarm optimization with adaptive mutation operator, In Proceedings of the 2006 International Conference on Natural Computing, Hainan, China, 2006, pp. 959-967.
- W. Fang, J. Sun, W. Xu. Analysis of mutation operators on quantum-behaved particle swarm optimization algorithm, New Mathematics and Natural Computation, 2009, 5(2): 487-496
- H. Long, J. Sun, X. Wang, C. Lai, W. Xu. Using selection to improve quantum behaved particle swarm optimization, International Journal of Innovative Computing and Applications, 2009, 2(2): 100-114.
- P.J. Angeline, Using selection to improve particle swarm optimization, In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, Anchorage, AK, 1998, pp. 84-89.
- J. Riget, J. Vesterstroem. A diversity-guided particle swarm optimizer-The ARPSO: Department of Computer Science, University of Aarhus, Aarhus, Denment, 2002
- R.K. Ursem. Diversity-guided evolutionary algorithms, In Proceedings of the 2011 Parallel Problem Solving from Nature Conference, Paris, France, 2001, pp. 462-471
- J. Sun, W. Xu, W. Fang, Quantum-behaved particle swarm optimization algorithm with controlled diversity, In Proceedings of the 2006 International Conference on Computational Science, Reading, MA, 2006, pp. 847-854.
- J. Sun, W. Xu, W. Fang, Enhancing global search ability of quantum-behaved particle swarm optimization by maintaining diversity of the swarm, In Proceedings of the 2006 International Conference on Rough Sets and Current Trends in Computing, Kobe, Japan, 2006, pp. 736-745.

QPSO (continued) Applications

- Antenna Design: Determine infinitesimal dipoles to represent an arbitrary antenna for near-field distributions (ref. Mikki et al. [2006])
- Biomedicine: Coupling RFB neural networks to the QPSO algorithm for the culture conditions of hyaluronic acid production by Streptococcus zooepidemicus (Lui et al. [2009]). Lu and Wang [2008] employed QPSO to estimate parameters from kinetic model of batch fermentation
- Mathematical Programming: Integer programming (Liu et al. [2006]), constrained nonlinear programming (Liu et al. [2008]), combinatorial optimization (Wang et al. [2008]), layout optimization (Xiao et al. [2009]), and multiobjective design optimization of laminated composite components (Omkar et al. [2009])
- Communication Networks: NP-hard QoS multicast routing (converted to integer programming and solved by Sun et al. [2006]), RBFNN network anomaly detection (hybrid QPSO with gradient descent algorithm to train RBFNN by Ma et al. [2008], Wavelet NN \& conjugate gradient algorithm for network anomaly detection (Ma et al. [2007], WLS-SVM QPSO for anomaly detection (Wu et al. [2008]), mobile IP routing (Zhao et al. [2008]), and channel assignment (Yue et al [2009])
- S. Mikki et al., Infinitesimal dipole model for dielectric resonator antennas using the QPSO algorithm, Proceedings of the 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, 2006, pp. 3285-3288
- Lui et al., Culture conditions...neural network and quantumbehaved particle swarm optimization algorithm, Enzyme and Microbial Technology, 2009, 44(1), pp. 24-32
- K. Lu and R. Wang, Application of PSO and QPSO ... glutamic acid batch fermentation, In Proceedings of the Seventh World Congress on Intelligent Control and Automation, Chongqinq, China, 2008, pp. 8968-8971
- J. Liu et al., Quantum-behaved particle swarm optimization for integer programming, In Proceedings of the 2006 International Conference on Neural Information Processing, Hong Kong, China, 2006, pp. 1042-1050
- H. Liu et al., A modified quantum-behaved particle swarm optimization for constrained optimization, In Proceedings o the 2008 International Symposium on Intelligent Information Technology Application Workshops, Shanghai, China, 2008, pp. 531-534
- J. Wang et al., Discrete quantum-behaved particle swarm optimization of distribution for combinatorial optimization, In Proceedings of the 2008 IEEE World Congress on Computational Intelligence, Hong Kong, China, 2008, pp. 897904
- B. Xiao et al., Optimal planning of substation locating and sizing based on improved QPSO algorithm, In Proceedings of the AsiaPacific, Power and Energy Engineering Conference, Shanghai, China, 2009, pp. 1-5

QPSO (continued) Applications

- Many other applications employing QPSO algorithm in the following areas:
- Control Engineering
- Clustering \& Classification
- Image Processing
- Image processing, image segmentation, image registration, image interpolation, and face recognition and registration
- Fuzzy Systems
- Finance
- Graphics
- Rectangular packing problem, polygonal approximation curves, and irregular polygon layouts
- Power Systems
- Modelling
- SVM, LS-SVM
- Transistor Devices
- Detection of unstable orbits in a nonLyapunov technique
- Filters
- Design of Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters
- S.N. Omkar et al., Quantum behaved particle swarm optimization (QPSO) for multi-objective design optimization of composite structures, Expert Systems with Applications, 2009, 36(8), pp. 11312-11322
- R. Ma et al., Network anomaly detection using RBF neural networks with hybrid QPSO, In Proceedings of the IEEE International Conference on Networking, Sensing and Control, Chicago, IL, 2008, pp, 1284-1287
- J. Sun et al., QoS multicast routing algorithm, In Proceedings of the 2006 International Conference on Simulated Evolution and Learning, Hefei, China, 2006, pp. 261-268
- D. Zhao et al., An approach to mobile IP routing based on QPSO algorithm. In Proceedings of the Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, China, 2008, pp. 667-671
- R. Ma et al., Hybrid QPSO based wavelet neural networks for network anomaly detection, In Proceedings of the Second Workshop on Digital Media and its Application in Museum and Heritages, Qingdao, China, 2007, pp 442-447
- R. Wu et al., An approach to WLS-SVM based on QPSO algorithm in anomaly detection, In Proceedings of the 2008 World Congress on Intelligent Control and Automation, Chongqing, China, 2008, pp. 4468-4472
- C. Yue et al., Channel assignment based on QPSO algorithm, Communications Technology, 2009, 42(2), pp. 204-206
- Multiprocessor Scheduling

the value of performance.

NORTHROP GRUMMAN

[^0]: Quantum computer image from: Nature 519, 66-69 (05 March 2015) doi:10.1038/nature14270

