

Annual Conference of the Prognostics and Health Management Society – PHM Data Challenge 2018

PHM DATA CHALLENGE 2018

The PHM Data Challenge is a competition open to all potential conference attendees. This year the challenge is focused on predicting faults in an ion mill etching tool. Participants will be scored based on their ability to successfully predict in advance when faults occur.

This is a fully open competition in which collaboration is encouraged. The teams may be composed of any combination of students, researchers, and industry professionals. The results will be evaluated by the Data Challenge Committee and all teams will be ranked. The top three scoring teams will be invited to present at a special session of the PHM conference and will be recognized at the Conference banquet event (scheduled for the evening of Wednesday, September 26th).

Data Challenge Chairs:

Jack Bonatakis, Seagate Technology, <u>jack.bonatakis@seagate.com</u> Abbas Chokor, Seagate Technology, <u>abbas.chokor@seagate.com</u> Nicholas Propes, Seagate Technology, <u>nicholas.c.propes@seagate.com</u>

Teams

Collaboration is encouraged and teams may be comprised of one or more students and professionals. The teams judged to have the first, second, and third best scores will be awarded prizes of \$600, \$400, and \$200, respectively, contingent upon:

- Having at least one member of the team register and attend the PHM 2018 Conference.
- Submitting a peer-reviewed conference paper. Submission of the data challenge special session papers is outside the regular paper submission process and follows its own modified schedule.
- Presenting the analysis results and technique employed at a special session within the Conference program.

The organizers of the competition reserve the right to both modify these rules and disqualify any team for any efforts it deems inconsistent with fair and open practices. In addition, the top entries will also be encouraged to submit a journal-quality paper to the International Journal of Prognostics and Health Management (ijPHM) – http://www.phmsociety.org/journal

Data Challenge Registration

Teams may register by contacting the Competition organizers (emails above) with their name(s), affiliation, and a team alias under which the scores would be posted. Please note: In the spirit of fair competition, we allow only one account per team. Please do not register multiple times under different user names, under fictitious names, or using anonymous accounts. Competition organizers reserve the right to delete multiple entries from the same person (or team) and/or to disqualify those who are trying to "game" the system or using fictitious identities.

Key Dates	
Competition Open	April 27, 2018
Training Data Posted and Scoring Website Open	April 27, 2018
Final Validation Set Posted	August 5, 2018
Competition Closed	August 12, 2018 (12:00 pm PST)
Preliminary Winners Announced	August 19, 2018
Winning Papers Due	September 2, 2018
Final Papers Due, Winners Announced	September 16, 2018
PHM Conference Dates	September 24-27, 2018

Key PHM Data Challenge Dates

System Description

This year's data challenge examines the fault behavior of an ion mill etch tool used in a wafer manufacturing process (see references at the end of this document). An ion mill etching tool is shown in Figure 1. The process of ion mill etching typically consists of the following steps:

- 1. Inserting a wafer into the mill
- 2. Configure wafer settings (rotation speed, angles, beam current / voltages, etc.)
- 3. Processing the wafer for a set amount of time
- 4. Repeat 2 or 3 for different steps of recipe
- 5. Remove wafer from mill

Figure 1. An Ion Mill Etching System.

An ion source generates ions that are accelerated through an electric field using a series of grids set at specific voltages. This creates an ion beam that travels and eventually strikes the wafer surface. Material is removed from the wafer when ions hit the wafer surface. The wafer is placed on a rotating fixture that can be tilted at different angles facing the incoming ion beam. The wafer can be shielded from the ion beam until ready for milling operation to commence using a shutter mechanism as shown in Figure 2. A Particle Beam Neutralizer (PBN) control system influences the ion beam shape / ion distribution as it travels to the wafer surface.

The wafer is cooled by a helium / water system called flowcool. The cooling system passes helium gas behind the wafer at a specified flow rate. The helium gas is indirectly cooled by a water system. The wafer and fixture o-ring separates the flowcool gas from the ion mill vacuum chamber.

Many different failure mechanisms can be present in this system including leaks between flowcool and ion mill chambers, electric grid wear, ion chamber wear, etc. It would be beneficial to predict where and when these failures occur and schedule downtime of these ion mills for maintenance operations.

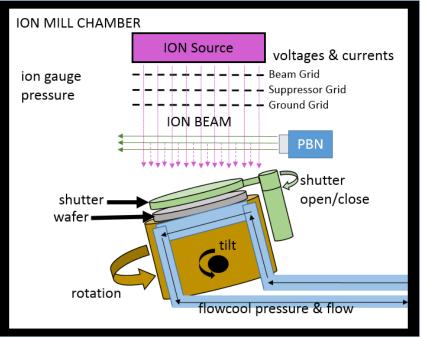


Figure 2. Wafer and ion mill etching process.

Objectives

The objective of this data challenge is to build a model from time series sensor data collected from various ion mill etching tools operating under various conditions and settings.

- 1. Diagnose failures (i.e. detect and identify)
- 2. Determine time remaining until next failure (i.e. predict remaining useful life)

Predictions of time-to-failure at a specific time should only use time-series data from current and past times. In other words, do not try to predict the point of failure first and then backtrack through time to determine time-to-failure predictions.

Data Description

Thedataforthischallengewillbeavailableathttps://drive.google.com/open?id=15Jx9Scq9FqpIGn8jbAQBIcHSXvIoPzb.The description of the settings / sensordata can be found in the Table below.The data has been anonymized so the units are not provided.

ID#	Parameter Name	Туре	Description
S1	time	Numeric	time
S2	Tool	Categorical	tool id
S3	stage	Categorical	processing stage of wafer
S4	Lot	Categorical	wafer id
S5	runnum	Numeric	number of times tool has been run
S6	recipe	Categorical	describes tool settings used to process wafer
S7	recipe_step	Categorical	process step of a recipe
S8	IONGAUGEPRESSURE	Numeric	pressure reading for the main process chamber when
		(Sensor)	under vacuum
S9	ETCHBEAMVOLTAGE	Numeric	voltage potential applied to the beam plate of the grid
			assembly

S10	ETCHBEAMCURRENT	Numeric	ion current impacting the beam grid determining the amount of ions accelerated through the grid assembly to the wafer
S11	ETCHSUPPRESSORVOLTAGE	Numeric	voltage potential applied to the suppressor plate of the grid assembly
S12	ETCHSUPPRESSORCURRENT	Numeric (Sensor)	ion current impacting the suppressor grid plate
S13	FLOWCOOLFLOWRATE	Numeric	rate of flow of helium through the flowcool circuit, controlled by mass flow controller
S14	FLOWCOOLPRESSURE	Numeric (Sensor)	resulting helium pressure in the flowcool circuit
\$15	ETCHGASCHANNEL1READBACK	Numeric	rate of flow of argon into the source assembly in the vacuum chamber
S16	ETCHPBNGASREADBACK	Numeric	rate of flow of argon into the PBN assembly in the chamber
S17	FIXTURETILTANGLE	Numeric	wafer tilt angle setting
S18	ROTATIONSPEED	Numeric	wafer rotation speed setting
S19	ACTUALROTATIONANGLE	Numeric (Sensor)	measure wafer rotation angle
S20	FIXTURESHUTTERPOSITION	Numeric	open / close shutter setting for wafer shielding
S21	ETCHSOURCEUSAGE	Numeric	counter of use for the grid assembly consumable
S22	ETCHAUXSOURCETIMER	Numeric	counter of the use for the chamber shields consumable
S23	ETCHAUX2SOURCETIMER	Numeric	counter of the use for the chamber shields consumable
S24	ACTUALSTEPDURATION	Numeric (Sensor)	measured time duration for a particular step

The faults are marked in another file with corresponding time.

ID#	Parameter Name	Туре	Description
F1	time	Numeric	time (e.g. seconds)
F2	fault_name	Categorical	name of the particular class of fault that occurred at the specified time
F3	Tool	Categorial	

The time when the failure occurs is provided and is when the operator shuts down the machine for maintenance. This is what should be predicted. The actual start of the failure may occur much earlier than the provide failure time—this time is not provided.

The data is contained in a zip file. In this zip file, there are two folders, *train* and *test*. The *train* folder contains the training data used for modeling purposes. The *test* folder contains the test data that is to be used with your model to generate submissions of time-to-failure for the three different failure modes of interest: FlowCool Pressure Dropped Below Limit, Flowcool Pressure Too High Check Flowcool Pump, and Flowcool leak. The time where faults occur is found in the *train/train_faults* folder. Some time-to-failure examples are provided in the *train/train_tff* folder. There are '*null*' values where faults do not occur in within a specified time horizon. The .csv files under the *train* folder represent the 'sensor' data that are used as predictors. Each of these files represent a separate ion milling tool.

Submissions

The scoring website (<u>http://70.32.24.178:8080</u>) is where submissions are to be sent for automated scoring on the test data set. Please contact <u>nicholas.c.propes@seagate.com</u> to create an account with the following information:

- Team Name:
- Team Members Real Names:
- Team Contact Email:
- Team Affiliation: <University Name, Company Name, etc.>

A submission consists of a single .zip file. This file is constructed by creating a folder called 'test' and placing the separate prediction files within. These prediction files should have the same filename and same number of rows as the corresponding 'sensor' data file. However, the prediction file should have the following columns: time, TTF_FlowCool Pressure Dropped Below Limit, TTF_Flowcool Pressure Too High Check Flowcool Pump, and TTF_Flowcool leak. There should be one prediction file per 'sensor' data file. Use the data in the test folder from the supplied data to create the 5 prediction files to place into your own test folder for submission. Only one submission per day per team is allowed.

Scoring

Scoring is computed by comparing the TTF submission with a ground truth TTF. Each TTF prediction has a subscore that is computed with the following rules:

Ground Truth TTF (GT)	Submission TTF (SUB)	Score
Number	Number	exp(-0.001*GT)*abs(GT-SUB)
NaN	Number	exp(-0.001*SUB)*SUB
Number	NaN	exp(-0.001*GT)*GT
NaN	NaN	0

The subscores for each prediction are summed and then divided by the total number of cells for each file. The file scores then then summed. A better score is one that is lower.

References

- 1. <u>http://www.ionbeammilling.com/about the ion milling process</u>
- 2. <u>https://www.azom.com/article.aspx?ArticleID=7533</u>