

Theoretical Aspects of Prognostics

Panel Session Chair: Dr. Chetan Kulkarni

SGT/NASA Ames Research Center

<u>Panelists</u> Dr. Marcos Orchard University of Chile

Dr. Gautam Biswas Vanderbilt University

Dr. Matteo Corebbeta SGT/NASA Ames Research Center

Sponsored by UTC Aerospace Systems

- Key Constituent Elements:
 - Knowledge about current system condition (Bayesian processors)
 - Characterization of future operating profiles (Stochastic processes)
 - System degradation model
 - ✓ Model structure
 - ✓ Model parameters
 - Module for uncertainty characterization in future state transitions
 - □ Monte Carlo, rare event simulation algorithms
 - PF-based, Sigma-points-based, NN-based prognostic algorithms

• Dynamic Model for Feature Growth in Time:

$$\begin{cases} x_1(t+1) = x_1(t) + x_2(t) \cdot F(x_1(t), t, U) + \omega_1(t) \\ x_2(t+1) = x_2(t) + \omega_2(t) \end{cases}$$

- $x_1(t)$ is a state representing the fault dimension under analysis
- $x_2(t)$ is a state associated with an unknown model parameter
- *U* are external inputs to the system (load profile, etc.)
- F(x(t), t, U) is a general time-varying nonlinear function
- $\omega_1(t)$ and $\omega_2(t)$ are white noises (non necessarily Gaussian)
- Predicted State Density:

$$\tilde{p}(x_{t+p} \mid y_{1:t}) = \int \tilde{p}(x_t \mid y_{1:t}) \prod_{j=t+1}^{t+p} p(x_j \mid x_{j-1}) dx_{t:t+p-1}$$

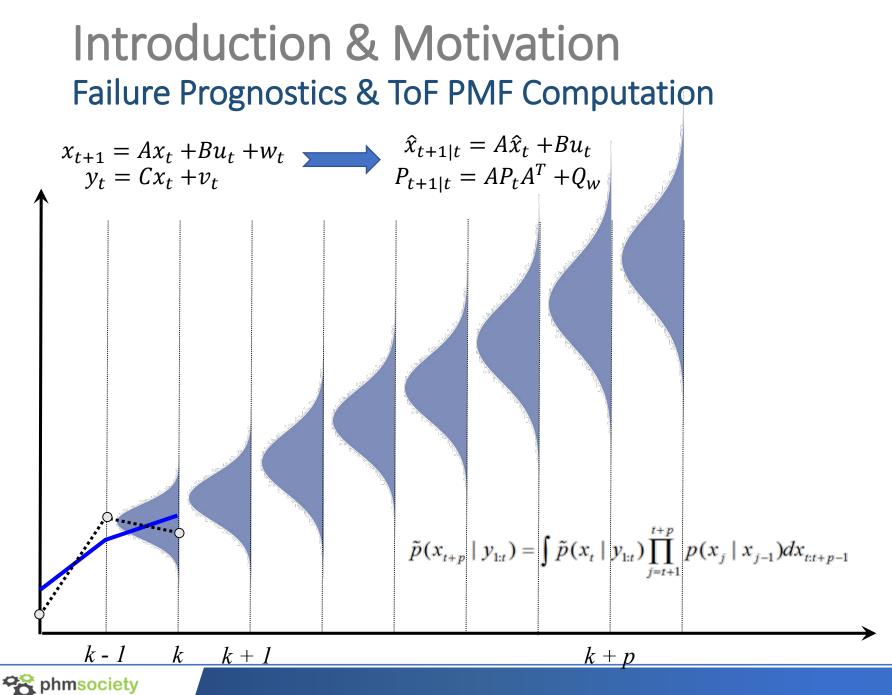
- Key Constituent Elements (Verification and Validation):
 - Knowledge about current system condition (Bayesian processors)
 - Characterization of future operating profiles (Stochastic processes)
 - System degradation model
 - ✓ Model structure
 - ✓ Model parameters
 - Module for uncertainty characterization in future state transitions
 - □ Monte Carlo, rare event simulation algorithms
 - PF-based, Sigma-points-based, NN-based prognostic algorithms

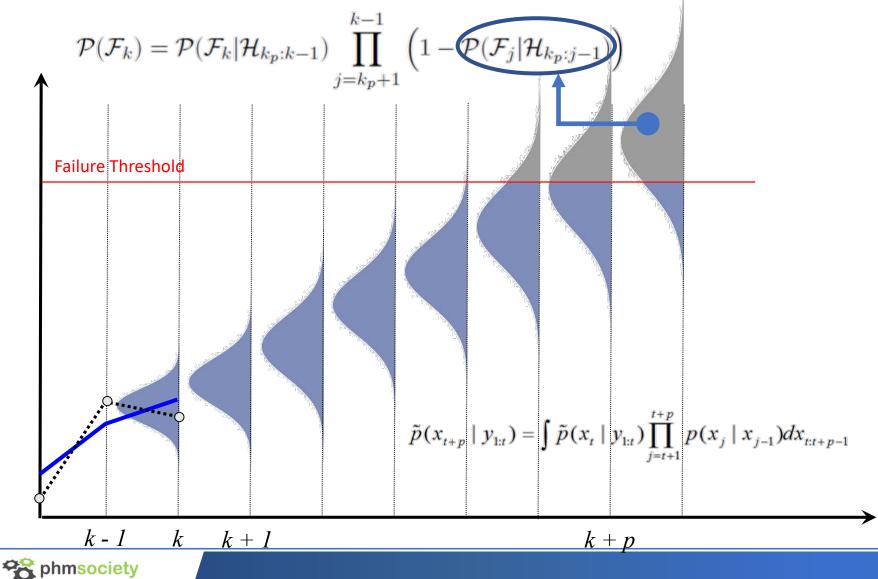
- Key Constituent Elements (Verification and Validation):
 - Knowledge about current system condition (Bayesian processors)
 - Characterization of future operating profiles (Stochastic processes)
 - System degradation model
 - ✓ Model structure
 - ✓ Model parameters
 - Module for uncertainty characterization in future state transitions
 - □ Monte Carlo, rare event simulation algorithms
 - PF-based, Sigma-points-based, NN-based prognostic algorithms

- Key Constituent Elements (Verification and Validation):
 - Knowledge about current system condition (Bayesian processors)
 - Characterization of future operating profiles (Stochastic processes)
 - System degradation model → Learning
 - ✓ Model structure
 - ✓ Model parameters
 - Module for uncertainty characterization in future state transitions
 - □ Monte Carlo, rare event simulation algorithms
 - PF-based, Sigma-points-based, NN-based prognostic algorithms

- Key Constituent Elements (Verification and Validation):
 - Knowledge about current system condition (Bayesian processors)
 - Characterization of future operating profiles (Stochastic processes)
 - System degradation model → Learning
 - ✓ Model structure
 - ✓ Model parameters
 - Module for uncertainty characterization in future state transitions
 - \Box Monte Carlo, rare event simulation algorithms \rightarrow OK
 - PF-based, Sigma-points-based, NN-based prognostic algorithms

- Key Constituent Elements (Verification and Validation):
 - Knowledge about current system condition (Bayesian processors)
 - Characterization of future operating profiles (Stochastic processes)
 - System degradation model → Learning
 - ✓ Model structure
 - ✓ Model parameters
 - Module for uncertainty characterization in future state transitions
 - \Box Monte Carlo, rare event simulation algorithms \rightarrow OK
 - □ PF-based, Sigma-points-based, NN-based prognostic algorithms → ?????





We denote \mathcal{H}_k as the event of *being in a faulty, although operative,* condition at time k, whereas \mathcal{F}_k denotes the event of *undergoing a catastrophic failure* at time k.

We can define a probability space $(\Omega, \mathcal{B}, \mathcal{P})$, where

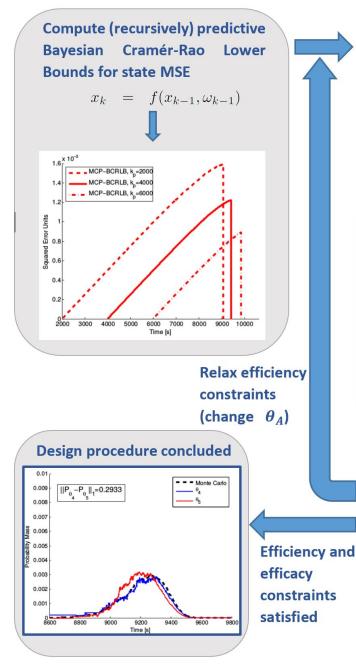
- $\Omega = \{ \left(\bigcup_{j=k_p}^{k-1} \mathcal{H}_j \right) \bigcup \mathcal{F}_k | k \in \mathbb{N}, 0 < k_p < k \}$ is the sample space that determines all possible sequences where the system remains operative until the time instant "k", when it actually undergoes a catastrophic failure,
- $\mathcal{B} = \sigma(\Omega)$ is the σ -algebra generated by Ω ,
- \mathcal{P} is a function that assigns a probability measure to every event in the σ -algebra \mathcal{B} .

Denoting $\mathcal{H}_{k_p:k} = \bigcup_{j=k_p}^k \mathcal{H}_j$, and according to the definition of conditional probability, it follows that:

$$\mathcal{P}(\mathcal{F}_k) = \frac{\mathcal{P}(\mathcal{F}_k, \mathcal{H}_{k_p:k-1})}{\mathcal{P}(\mathcal{H}_{k_p:k-1}|\mathcal{F}_k)}, \quad \forall k > k_p$$
(1)

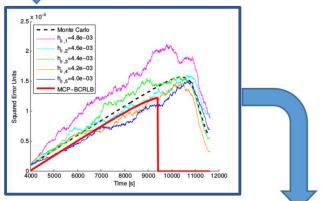
It is assumed that the system can only experiment one catastrophic failure, then $\mathcal{P}(\mathcal{H}_{k_p:k-1}|\mathcal{F}_k) = 1$. Hence,

$$\mathcal{P}(\mathcal{F}_k) = \mathcal{P}(\mathcal{F}_k, \mathcal{H}_{k_p:k-1}) = \mathcal{P}(\mathcal{F}_k | \mathcal{H}_{k_p:k-1}) \mathcal{P}(\mathcal{H}_{k_p:k-1}), \quad \forall k > k_p \quad (2)$$



Prognostic algorithm with hyperparameter vector $\boldsymbol{\theta} = \begin{bmatrix} \boldsymbol{\theta}_A^T & \boldsymbol{\theta}_B^T \end{bmatrix}^T$

- Fix θ_A using efficiency criteria and generate hyper-parameters candidates for θ_B
- Compare predictive MSE and MCP-• BCRLBs



Evaluate performance of prognostic algorithm in terms of the estimated Time-of-Failure PMF (effectiveness)

