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Introduction & Motivation
Failure Prognostics & ToF PMF Computation

e Key Constituent Elements:

e Knowledge about current system condition
(Bayesian processors)
e Characterization of future operating profiles
(Stochastic processes)
e System degradation model
v' Model structure
v' Model parameters
e Module for uncertainty characterization in future state
transitions
(d Monte Carlo, rare event simulation algorithms
1 PF-based, Sigma-points-based, NN-based prognostic
algorithms
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e Dynamic Model for Feature Growth in Time:

%, (6 +1) = x,(0) + x,(0) - F(x,(0),2,U) + 0, (1)
<

A2 (t+1) =x,(t)+ 0,(7)

x,(?) is a state representing the fault dimension under analysis
x,(?) is a state associated with an unknown model parameter
U are external inputs to the system (load profile, etc.)
F(x(t),t,U) is a general time-varying nonlinear function

@,(t) and w,(t) are white noises (non necessarily Gaussian)

e Predicted State Density:
t+p

ﬁ(pr | yl:r) - Iﬁ(‘x! | yl:r)H p(x_;' I x_;'—l)dxr:r+p—l

Jj=t+l1
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Xtr1 = Axy +Buy +wy ‘ Xev1)t = AXy ;I'But
A Ve = Cx¢ +v Peyqe = APLA +Q,,

t+p

ﬁ(pr ‘ yl:r) - Iﬁ(xr | yl:r)H p(x_; | xj—l)dxt:f+p—l

j=t+1

k-1 k  k+1 k+p
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P(Fi

FailureiThreshold

t+p
H p(x_; | xj—l )dxr:f+p—l
j=t+1
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We denote H;. as the event of being in a faulty, although operative,
condition at time k, whereas F). denotes the event of undergoing a
catastrophic failure at time k.

We can define a probability space (€2, B, P), where

- Q= {(U;L;ip Hj) UFk| k€N, 0 <k, <k} is the sample space
that determines all possible sequences where the system remains

operative until the time instant "k", when it actually undergoes a
catastrophic failure,

- B =0(Q) is the o-algebra generated by (2,
- P is a function that assigns a probability measure to every event in
the o-algebra B.
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Denoting Hy,.r. = U;-C:kp H;, and according to the definition of conditional
probability, it follows that:

P(Fr Hip—1)
P(Hipr—1|Fr)

P(Fi) = Vk > k, (1)

It is assumed that the system can only experiment one catastrophic failure,
then P(Hy,..—1|Fi) = 1. Hence,

P(Fr) = P(Fr. Hipk—1) = P(Fr|Hipih—1) P(Hipik—1). Yk >k, (2)
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Bayesian
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Cramér-Rao Lower
Bounds for state MISE
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F(@r—1, k1)
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