A fast Monte Carlo method for model-based prognostics based on stochastic calculus

M. Corbetta C. S. Kulkarni

SGT Inc., NASA Ames Research Center

Ingredients of model-based prognostic:

- state-space formulations
- Monte Carlo (MC) methods

$$\dot{x} = f_{oldsymbol{ heta}}(x, u, \omega)$$
 $x^{(i)} \sim p(X)$

Ingredients of model-based prognostic:

- state-space formulations
- Monte Carlo (MC) methods

$$\dot{x} = f_{\theta}(x, u, \omega)$$

 $x^{(i)} \sim p(X)$

Some considerations:

- Monte Carlo methods are computationally expensive
- state-space formulations are differential equations with stochastic terms (SDE)

Contribution of this work

Try to take advantage of stochastic calculus and SDE solutions to accelerate model-based prognostic using Monte Carlo simulations (?).

Potential

reducing computational time preserving (enhancing) the precision of estimations

3 Applications

- Case study 1: prognostic of electrolytic capacitors
- Case study 2: remaining time to discharge of Lithium-ion batteries
- Case study 3: fatigue damage prognosis of cracked structure

4 Conclusions

Summary of model-based prediction

$$\dot{x} = f_{oldsymbol{ heta}} \left(x, u, \omega
ight) \ \downarrow \ x_k = x_{k-1} + f_{oldsymbol{ heta}} \left(x_{k-1}, u_{k-1}, \omega_{k-1}
ight) \Delta t_k$$

Summary of model-based prediction

$$\begin{split} \dot{x} &= f_{\theta} \left(x, u, \omega \right) \\ \downarrow \\ x_{k} &= x_{k-1} + f_{\theta} \left(x_{k-1}, u_{k-1}, \omega_{k-1} \right) \Delta t_{k} \\ \downarrow \\ \end{split}$$
Input: $x_{k}^{(i)} \sim p(X_{k}), l$
Output: $x_{k+l}^{(i)} \sim p(X_{k+l})$
for each $x_{k}^{(i)} \sim p(X_{k})$ do

$$\begin{vmatrix} \text{for each } \tau \in \{1, \dots, l\} \text{ do} \\ u_{k+\tau-1}^{(i)} \sim p(\Omega_{k+\tau-1}) \\ x_{k+\tau}^{(i)} &= x_{k+\tau-1}^{(i)} + f_{\theta}(x_{k+\tau-1}^{(i)}, u_{k+\tau-1}, \omega_{k+\tau-1}^{(i)}) \Delta t_{k+\tau-1} \\ \end{vmatrix}$$
end

<ロト < 団ト < 三ト < 三ト 三 のへで</p>

Summary of model-based prediction

State-space model utilized in prognostic (additive noise case)

 $\begin{aligned} \dot{x}_t &= f_{\theta}(x_t, u_t) + \omega_t \\ x_k &= x_{k-1} + f_{\theta}\left(x_{k-1}, u_{k-1}\right) \Delta t_k + \omega_{k-1} \Delta t_k \end{aligned}$

State-space model utilized in prognostic (additive noise case)

 $\begin{aligned} \dot{x}_t &= f_{\theta}(x_t, u_t) + \omega_t \\ x_k &= x_{k-1} + f_{\theta}\left(x_{k-1}, u_{k-1}\right) \Delta t_k + \omega_{k-1} \Delta t_k \end{aligned}$

Typical SDE formulation

$$\begin{split} \dot{X}_t &= f_{\theta}(X_t, U_t) + \sigma(t, X_t) \, \xi_t \\ X_t &= X_0 + \int_0^t f_{\theta}(X_s, U_s) \, \mathrm{d}s + \int_0^t \sigma(s, X_s) \, \mathrm{d}B_s \\ X_k &= X_0 + \sum_{s=0}^{k-1} f_{\theta}(X_s, U_s) \, \Delta t_s + \sum_{s=0}^{k-1} \sigma(s, X_s) \, \Delta B_s \end{split}$$

State-space model utilized in prognostic (additive noise case)

 $\begin{aligned} \dot{x}_t &= f_{\theta}(x_t, u_t) + \omega_t \\ x_k &= x_{k-1} + f_{\theta}\left(x_{k-1}, u_{k-1}\right) \Delta t_k + \omega_{k-1} \Delta t_k \end{aligned}$

Typical SDE formulation

$$\begin{split} \dot{X}_t &= f_{\theta}(X_t, U_t) + \sigma(t, X_t) \xi_t \\ X_t &= X_0 + \int_0^t f_{\theta}(X_s, U_s) \, \mathrm{d}s + \int_0^t \sigma(s, X_s) \, \mathrm{d}B_s \\ X_k &= X_0 + \sum_{s=0}^{k-1} f_{\theta}(X_s, U_s) \, \Delta t_s + \sum_{s=0}^{k-1} \sigma(s, X_s) \, \Delta B_s \end{split}$$

Considerations

under certain assumptions (e.g., $\sigma \neq \sigma(X_t)$), we can compute the SDE terms separately and we can find similarities between noise term and the diffusion term

・ロト 《母》 《ヨ》 《ヨ》 《日》

State-space model utilized in prognostic (additive noise case)

 $\dot{x}_t = f_{\theta}(x_t, u_t) + \omega_t$ $x_k = x_{k-1} + f_{\theta}(x_{k-1}, u_{k-1}) \Delta t_k + \omega_{k-1} \Delta t_k$

Typical SDE formulation

$$\begin{aligned} \dot{X}_t &= f_{\theta}(X_t, U_t) + \sigma(t, X_t) \xi_t \\ X_t &= X_0 + \int_0^t f_{\theta}(X_s, U_s) \, \mathrm{d}s + \int_0^t \sigma(s, X_s) \, \mathrm{d}B_s \\ X_k &= X_0 + \sum_{s=0}^{k-1} f_{\theta}(X_s, U_s) \, \Delta t_s + \sum_{s=0}^{k-1} \sigma(s, X_s) \, \Delta B_s \end{aligned}$$

Considerations

under certain assumptions (e.g., $\sigma \neq \sigma(X_t)$), we can compute the SDE terms separately and we can find similarities between noise term and the diffusion term

Let us consider $\sigma(t, X_t) = \sigma$ in the SDE:

$$\int_0^t \sigma \mathrm{d}B \approx \sum_{s=0}^{k-1} \sigma \Delta B_s$$

Let us consider $\sigma(t, X_t) = \sigma$ in the SDE:

$$\int_0^t \sigma \mathrm{d}B \approx \sum_{s=0}^{k-1} \sigma \Delta B_s$$

If we assume $\omega \sim \mathcal{N}(0, \sigma)$ in the state-space model:

$$\omega_{k-1}\Delta t_k = \sigma \, z_{k-1}\Delta t_k = \sigma \, \Delta B_k$$

Some useful properties of Brownian motion B:

•
$$\mathrm{d}B \sim \mathcal{N}(0,\mathrm{d}t)
ightarrow \mathrm{d}B^{(i)} = \sqrt{\mathrm{d}t}\, z^{(i)}$$

•
$$B_{t_2} - B_{t_1} \sim \mathcal{N}(0, t_2 - t_1)$$

Applications

Case study 1: prognostic of electrolytic capacitors¹:

$$\dot{C}_{l} = lpha C_{l} - lpha eta + \omega$$
 $C_{l}(t) = e^{lpha t} \left(-eta + eta e^{-lpha t} + \int_{0}^{t} \sigma e^{-lpha s} \mathrm{d}B_{s}
ight)$

¹Celaya J, Kulkarni C, Biswas G, Saha S, Goebel K. A model-based prognostic methodology for electrolytic capacitors based on electrical overstress accelerated aging. Annual Conference of the PHM Society 2011; 25-29 Sept. 2011

Applications

Case study 1: prognostic of electrolytic capacitors¹:

$$\dot{C}_{I} = \alpha C_{I} - \alpha \beta + \omega$$

$$C_{I}(t) = e^{\alpha t} \left(-\beta + \beta e^{-\alpha t} + \int_{0}^{t} \sigma e^{-\alpha s} dB_{s} \right)$$

$$\int_0^t \sigma e^{-\alpha s} \mathrm{d}B_s \approx \sum_{s=0}^{k-1} \sigma e^{-\alpha t_s} \Delta B_s^{(i)}, \quad \forall \ i = 1, \dots, N$$

¹Celaya J, Kulkarni C, Biswas G, Saha S, Goebel K. A model-based prognostic methodology for electrolytic capacitors based on electrical overstress accelerated aging. Annual Conference of the PHM Society 2011; 25-29 Sept. 2011

MCS SDF 2.5 probability density 0.5 0.0 0.4 0.6 0.8 1.0 capacitance loss, %

Capacitance loss at t = 50 h

Capacitance loss at t = 100 h

◆□▶ ◆□▶ ◆三≯ ◆三≯ 三 少々で

Capacitance loss at t = 150 h

Capacitance loss at t = 200 h

▲口 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

time [h]	$\mathrm{KL}(p_{\mathrm{MCS}} p_{\mathrm{SDE}})$	Hyp. test @ $\nu = 0.05$ H_0 : $\mu_{C_l,MCS} = \mu_{C_l,SDE}$ H_1 : $\mu_{C_l,MCS} \neq \mu_{C_l,SDE}$		computi	ng time [s]
			$t_{ u/2,2N-2}$	MCS	SDE
50	0.00405	0.305		0.230	0.243
100	0.000703	0.441	1 061	0.427	0.468
150	0.00429	0.095	1.901	0.627	0.700
200	0.00514	1.187		0.819	0.990

time [h]	$\mathrm{KL}(p_{\mathrm{MCS}} p_{\mathrm{SDE}})$	Hyp. test @ $\nu = 0.05$ H_0 : $\mu_{C_l,\text{MCS}} = \mu_{C_l,\text{SDE}}$ H_1 : $\mu_{C_l,\text{MCS}} \neq \mu_{C_l,\text{SDE}}$		computi	ng time [s]
			$t_{ u/2,2N-2}$	MCS	SDE
50	0.00405	0.305		0.230	0.243
100	0.000703	0.441	1 061	0.427	0.468
150	0.00429	0.095	1.901	0.627	
200	0.00514	1.187		0.819	0.990

Time-to-failure (TTF) prediction:

$$\mathbb{E}[\mathbf{T}_{\mathrm{F}}] = \frac{1}{\alpha} \ln \left(1 - \frac{C_{l,th}}{\beta} \right)$$
$$\mathbf{T}_{\mathrm{F}}^{(i)} = \frac{1}{\alpha} \ln \frac{C_{l,th} - \beta}{\int_{0}^{\mathbb{E}[\mathcal{T}_{f}]} \sigma e^{-\alpha s} \mathrm{d}B_{s} - \beta} \quad \forall i = 1, \dots, N$$

◆□ ▶ ◆舂 ▶ ◆臣 ▶ ◆臣 ▶ ● ● ● ● ●

time-to-failure pdf, $C_{l,th} = 8\%$

Hyp. test @ $ u = 0.05$			
H_0 : μ	$c_{l,\mathrm{MCS}} = \mu_{C_l,\mathrm{SDE}}$		
$H_1: \ \mu_{C_I,\mathrm{MCS}} eq \mu_{C_I,\mathrm{SDE}}$			
T	$t_{ u/2,2N-2}$		
0.049	1.961		
	Hyp. $H_0: \mu$ $H_1: \mu$ T 0.049		

(ロト (母) (ヨ) (ヨ) (日)

Applications

Case study 2: predicting the remaining time to discharge of Lithium-ion batteries using a simple state-of-charge (SOC) model²: $R = \text{internal resistance}, E = \text{total energy delivered}, S = \text{SOC}, \omega \sim \mathcal{N}(0, \sigma^2)$

$$\dot{R} = \omega_R$$

 $\dot{S} = -\frac{P}{E} + \omega_S$
 $\dot{E} = \omega_E$

²Sierra G, Orchard M, Goebel K, Kulkarni C. Battery Health Management for Small-size Rotary-wing Electric Unmanned Aerial Vehicles: An Efficient Approach for Constrained Computing Platforms. Reliability Engineering & System Safety 2018

We can directly sample from the pdfs of R and E at time t: $\begin{array}{c} R_t^{(i)} \sim \mathcal{N}(0, \sigma_R^2 \ t) \\ E_t^{(i)} \sim \mathcal{N}(0, \sigma_E^2 \ t) \end{array}$

We can directly sample from the pdfs of R and E at time t:

 $\begin{array}{l} R_t^{(i)} \sim \mathcal{N}(0, \sigma_R^2 \ t) \\ E_t^{(i)} \sim \mathcal{N}(0, \sigma_E^2 \ t) \end{array}$

the *i*-th SOC sample becomes:

$$S_t^{(i)} = S_0 - \frac{P}{E_t^{(i)}} t + \sigma_S \sqrt{t} z^{(i)}$$

Current i_t and voltage V_t are then estimated from R and S $V_t = v_{oc,t}(S_t) - i_t(R_t, P_t) R_t + \omega_V$

E, R, S over time

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Comparing SOC distributions at t = 200 s

$\mathrm{KL}(\mathbf{\textit{p}}_{\mathrm{MCS}} \mathbf{\textit{p}}_{\mathrm{SDE}})$	ĩ	$t_{ u/2,2N-2}$	comput MCS	ing time [s] SDE
0.00138	1.454	1.961	2.978	0.009

Case study 3: fatigue damage prognosis of cracked structure under constant amplitude fatigue loading, using Paris' law:

$$\frac{\mathrm{d}\mathbf{a}}{\mathrm{d}\mathbf{n}} = \mathbf{C}'\mathbf{a}^{\gamma}\mathbf{e}^{\omega}$$

Case study 3: fatigue damage prognosis of cracked structure under constant amplitude fatigue loading, using Paris' law:

$$rac{\mathrm{d} a}{\mathrm{d} n} = C' a^{\gamma} e^{\omega}$$
 $rac{1}{C'} \int_{a_0}^{a_f} rac{1}{a^{\gamma}} \mathrm{d} a = \int_0^{n_f} e^{\omega_s} \mathrm{d} a$

Case study 3: fatigue damage prognosis of cracked structure under constant amplitude fatigue loading, using Paris' law:

$$\begin{aligned} \frac{\mathrm{d}a}{\mathrm{d}n} &= C'a^{\gamma}e^{\omega} \\ \frac{1}{C'}\int_{a_0}^{a_f}\frac{1}{a^{\gamma}}\mathrm{d}a &= \int_0^{n_f}e^{\omega_s}\mathrm{d}s \\ \int_0^{\mathbb{E}[n_f]}e^{\omega_s}\mathrm{d}s &\approx \sum_{s=0}^{k-1}e^{\omega^{(i)}}\Delta n_s \quad \forall i = 1, \dots, N \end{aligned}$$

Case study 3: fatigue damage prognosis of cracked structure

FCG over time (n = 100000 load cycles)

◆□▶ ◆□▶ ◆三≯ ◆三≯ 三 のへぐ

Case study 3: fatigue damage prognosis of cracked structure

crack length pdf, n = 100000 load cycles

SDE method does not help in this case:

$\mathrm{KL}(p_{\mathrm{MCS}} p_{\mathrm{SDE}})$	ĩ	$t_{ u/2,2N-2}$
0.00198	1.748	1.961

computing	time [s]
MCS	SDE
0.180	0.205

・ロット 《四ッ 《回》 《回》 《日》

Case study 3: fatigue damage prognosis of cracked structure

time-to-failure pdf, $a_{th} = 6 \text{ mm}$

Conclusions

To summarize

- Fast MC approximation of prediction distributions using stochastic calculus
- Pro: pdfs of interest can be computed much faster
- Cons: limited to relatively simple models
- Cons: does not generalize easily, performance are model-dependent

Future works

- generalize to $x_0 \sim p(X_0)$ and $\theta \sim p(\theta)$ before deployment.
- o extension to vector SDEs and other model classes, whenever possible
- o sensitivity analysis: number of samples, number of prediction steps, etc.

A fast Monte Carlo method for model-based prognostic based on stochastic calculus Matteo Corbetta, Chetan Kulkarni - SGT, NASA Ames Research Center matteo.corbetta@nasa.gov