

PHM for Space Applications Panel:

Space Propulsion System Wireless Sensor Technology (WST) Needs/Challenges

Jim Larkin – Aerojet Rocketdyne

James.Larkin@Rocket.com

Wireless History

- Wireless technology was invented in the late 1800s
- Fast forward to 1962, the first communication satellite (Telstar), was launched
- In 1979, the first automatic cellular network was developed
- Wi-Fi then became popular with the public in 1997
- Decades later, wireless sensor technology (WST) is being used for many common applications: security systems, computers, sensors
- A wide variety of space propulsion systems could benefit from WST
- This presentation is scoped to needs/challenges specifically for the following:
 - Solids
 - Liquids
 - Air-breathing Hypersonics

Solids

- <u>Description</u>: Solid rocket motors (SRMs) generate thrust from burning solid propellants (fuel and oxidizer)
- <u>Applications</u>:
 - Launch Vehicle: Solid motors are used to boost a space vehicle from a pad
 - *Missile*: SRMs provide the thrust for strategic and tactical missiles

http://rocket.com/files/aerojet/images/media/TacticalArmyTACMS.jpg

Solids (cont.)

- <u>WSTNeeds/Challenges</u>:
 - Parameter measurement: stress, strain, temperature, humidity, acceleration, deformation (multiple measurement types from a given sensor is a plus)
 - Unique identification capability
 - Auto-ignition avoidance (energetic material compatibility / EMI requirements)
 - Long-term reliability (on the order of 40 to 50 years)
 - Tight repeatability (minimal drift is a must)
 - Robust (especially in terms of temperature and G-shock)
 - Calibrate-able (if embedded)
 - Wireless reader (usable on a strategic missile confined within silo)
 - Light-weight (grams) and small (minimal impact to assembly/performance)

<u>BOTTOM LINE</u>: Need to define **system readiness** via **propellant/liner/insulation system health status** (pre-flight focused)

Liquids

- <u>Description</u>: Liquid rockets generate thrust from burning liquefied propellants (fuel and oxidizer)
- <u>Applications</u>:
 - Launch Vehicle: Liquid rockets are used to boost a space vehicle from a pad, as well as for maneuvering it in space

http://rocket.com/files/aerojet/images/media/spaceshuttleemain1_0.jpg

cp0046 15 NSS 2015 RL10 engine

Liquids (cont.)

- <u>WSTNeeds/Challenges</u>:
 - Parameter measurement: speed (pump), temperature, pressure, flow, acceleration, position (multiple measurement types from a given sensor is a plus)
 - Unique identification capability
 - Tight repeatability
 - Robust (especially in terms of cryogenic-to-high-temperature thermal shock)
 - Smart / local processing with data validation and calibration capabilities
 - High-speed processing capability (on the order of milliseconds for operational control)
 - Reusability

<u>BOTTOM LINE</u>: Need to define **propulsion system capability** via **overall system health status** (pre-flight, flight, and post-flight)

Air-breathing Hypersonics

- <u>Description</u>: Hypersonic engines generate thrust from burning fuel using external ramair (oxidizer)
- <u>Applications</u>:
 - Cruise Vehicle: Hypersonic engines provide the thrust for cruise vehicles
 - *Missile*: Hypersonic engines provide the thrust for missiles

http://rocket.com/files/aerojet/images/media/hypersonics1.jpg

http://rocket.com/files/aerojet/images/media/hypersonics2.jpg

Air-breathing Hypersonics (cont.)

- <u>WST Needs/Challenges</u>:
 - Parameter measurement: position (shock-train; actuator), speed (pump), temperature, pressure, flow, acceleration (multiple measurement types from a given sensor is a plus)
 - Unique identification capability
 - Tight repeatability
 - Robust (especially in terms of high-temperature)
 - Smart / local processing with data validation and calibration capabilities
 - High-speed processing capability (on the order of milliseconds for operational control)
 - Reusability

<u>BOTTOM LINE</u>: Need to define **propulsion system capability** via **overall system health status** (pre-flight, flight, and post-flight)

	Space Propulsion System WST Needs/Challenges						
	Parameter Measurements						
	- Acceleration - Temperature	- Flow - Position (actuator) - Pressure - Speed (pump)	- Deformation - Humidity - Strain - Stress	- Position (shock wave)	- Robust - Tight repeatability - Unique ID	- High-speed - Reusable - Smart	- Auto-ignition avoidance - Calibrate-able - Light-weight & small - Long term reliability - Wireless reader
Solids	x		x		х		Х
Liquids	x	x			х	Х	
Hypersonics	x	х		Х	х	Х	

<u>BOTTOM LINE</u>: Space propulsion WST needs and challenges have been defined, now the PHM community is being asked to deliver